
LATEX, concisely

c© Adrian Johnstone

November 22, 2007

Contents

Preface xiii

1 First examples 1
1.1 TEX and LATEX 1
1.2 Customising LATEX 2
1.3 A note on pronunciation 3
1.4 A first example 3
1.5 A large example 5

1.5.1 Preliminaries 5

2 Commands and variables 17
2.1 How to spot a command 17

2.1.1 Special characters 17
2.1.2 Groups 18
2.1.3 Characters that are sometimes special 19
2.1.4 Control words and control symbols 19
2.1.5 Keywords 19
2.1.6 Parameters 20

2.2 Using commands inside parameters 20
2.3 Commands, declarations and environments 21
2.4 LATEX variables 21

3 Document styles 23
3.1 How to find style files 23

3.1.1 The inputs directory 24
3.2 Standard subsidiary style files 24
3.3 Letters 25
3.4 Page layout 25

3.4.1 Single and double column printing 28
3.4.2 Vertical page alignment 29
3.4.3 Page numbering 29
3.4.4 Changing the header and footer 29

3.5 How TEX builds pages 30
3.6 Controlling line breaking 31
3.7 Controlling hyphenation 32

ii Contents

3.8 Controlling page breaking 32

4 Structuring a document 33
4.1 The titlepage 33

4.1.1 Do-it-yourself titles 34
4.2 Abstracts 34
4.3 Sectioning commands 34
4.4 Making a table of contents 35
4.5 List of figures and list of tables 35
4.6 Adding entries to contents or tables files 35
4.7 Adding free text to contents or tables files 36
4.8 Making appendices 36
4.9 Footnotes 36
4.10 Marginal notes 37
4.11 Using multiple files 37

4.11.1 Selective inclusion of files 38
4.12 Writing a message during processing 38
4.13 Varying output during a run 38
4.14 Making an index 39

4.14.1 Writing an index file 40
4.14.2 The theindex environment 40
4.14.3 How to turn an index file into an index 41

4.15 Making a glossary 41
4.16 Suppressing output files 41

5 Fonts and special symbols 43
5.1 Normal text 43

5.1.1 Type styles 43
5.1.2 Emphasised text 44
5.1.3 Ligatures 44
5.1.4 Kerning 45
5.1.5 Dashes 45
5.1.6 Quote marks 45
5.1.7 Logos 46
5.1.8 Type sizes 46
5.1.9 Special symbols and foreign characters 47
5.1.10 Foreign accents 47

5.2 Maths mode text 48
5.2.1 Maths type styles 48
5.2.2 Bold maths 48
5.2.3 Log-like functions 49
5.2.4 Maths accents 49
5.2.5 Greek characters 49
5.2.6 Other mathematical symbols 50

5.3 Leaving space in a document 51
5.3.1 Standard vertical spaces 53

Contents iii

5.3.2 Standard horizontal spaces 53
5.3.3 Springs and leaders 54
5.3.4 Space after full stops 54
5.3.5 Space after italics 55

5.4 Accessing other TEX fonts 55
5.4.1 Font magnifications 56
5.4.2 Accessing characters by number 57
5.4.3 How to find out what fonts are available 57

6 Text displays 59
6.1 Indented displays 59

6.1.1 quote 60
6.1.2 quotation 60
6.1.3 verse 60

6.2 Non-justified displays 61
6.3 List making displays 61

6.3.1 enumerate 61
6.3.2 itemize 62
6.3.3 description 63

6.4 Verbatim displays 63
6.5 Problems with display spacing 64
6.6 Making new kinds of lists 65

7 Tables, figures and pictures 67
7.1 The tabbing environment 67

7.1.1 Setting tabs 67
7.1.2 Moving between tabs 68
7.1.3 Indenting and outdenting 68
7.1.4 Saving tab stop settings 68
7.1.5 Special alignment commands 69
7.1.6 Accents in tabbing mode 69

7.2 The tabular environment 69
7.2.1 tabular environment parameters 70
7.2.2 Column formatting commands 70
7.2.3 Row formatting commands 70
7.2.4 Spanning multiple columns 71
7.2.5 Placing horizontal rules 71
7.2.6 Adding extra vertical rules 71

7.3 Floats 71
7.3.1 Using the h command 72
7.3.2 Problems with floats 72
7.3.3 Captions 73

7.4 Handling graphics 73
7.4.1 Picture inclusion 73
7.4.2 Pictures made up of dots 73
7.4.3 Building pictures with special characters 74

iv Contents

7.5 The picture environment 74
7.5.1 picture commands 74
7.5.2 Graphics objects 75
7.5.3 Lines and vectors 75
7.5.4 Circles and discs 75
7.5.5 Joining curves and lines 75
7.5.6 picture boxes 76
7.5.7 Vertically aligned text 76
7.5.8 The bezier curve drawing command 77
7.5.9 Pictures within pictures 77

8 Typesetting mathematics 81
8.1 LATEX maths mode environments 81
8.2 Subscripts, superscripts and stacks 82
8.3 Fractions and roots 83
8.4 plain TEX fraction-like commands 83
8.5 Large delimiters 83

8.5.1 The plain TEX cases command 84
8.6 Ellipsis 84
8.7 Over and underlining 85
8.8 Over and under braces 85
8.9 Maths mode size styles 86
8.10 Using text mode inside maths mode 86
8.11 Mixing bold and unbold maths 86
8.12 Maths font loading 87
8.13 Spacing in maths mode 87

9 Cross referencing and bibliographies 89
9.1 Defining labels 89
9.2 Referencing labels 90
9.3 Referencing citations 90
9.4 Defining citations using thebibliography 91
9.5 Defining citations using an external database file 91
9.6 Changing the style of automatically generated bibliographies 91
9.7 Running BIBTEX 92
9.8 The format of bib files 93

9.8.1 Typing titles 95
9.8.2 Typing names 95
9.8.3 Abbreviations in the bib file 96

9.9 Distributing bibliographies 96

10 Defining commands 97
10.1 Making new commands 97

10.1.1 New commands with parameters 97
10.1.2 Redefining existing commands 98

10.2 Environments 98

Contents v

10.3 Counted environments 99
10.3.1 Sharing counters 99

11 LATEX style parameters 101
11.1 LATEX variables revisited 101
11.2 Counters 102

11.2.1 Declaring counters and printing their values 102
11.2.2 More on page numbering 103
11.2.3 LATEX commands to manipulate counter values 103
11.2.4 TEX counter arithmetic commands 104

11.3 Lengths 105
11.3.1 Declaring length registers 106
11.3.2 LATEX length register commands 106
11.3.3 TEX commands for manipulating lengths 107

11.4 Rubber lengths and skips 108
11.4.1 Using skips in LATEX 108
11.4.2 Infinitely stretchable glue 109

11.5 Interchanging skips, lengths and counters 109
11.6 Boxes 109

11.6.1 Hboxes 110
11.6.2 Vboxes 110
11.6.3 Rules 111
11.6.4 Saveboxes 111
11.6.5 Specifying exact box placement 112

11.7 Parameter charts 112
11.8 Page style parameters 113
11.9 Paragraph parameters 115
11.10 List style parameters 115
11.11 Float parameters 119

11.11.1 Vertical float spacing 119
11.11.2 Limiting the number of floats on a page 119
11.11.3 Double page parameters 120

11.12 Display maths parameters 120
11.13 Tabular and array parameters 120
11.14 Framebox parameters 121
11.15 Sectioning parameters 121
11.16 Default parameter values 122

12 Writing a style file 123
12.1 The LATEX format 123
12.2 How style files fit in 124
12.3 Internal and external commands 125
12.4 The rudiments of TEX programming 125

12.4.1 TEX definitions 126
12.4.2 \def and its variants 126
12.4.3 Definitions with parameters 127

vi Contents

12.4.4 Command assignments 127
12.4.5 Grouping 128
12.4.6 TEX control flow 128
12.4.7 TEX conditionals 128
12.4.8 User defined conditionals 129
12.4.9 TEX loops 129
12.4.10 The LATEX ifthen style commands 130
12.4.11 TEX modes 130
12.4.12 Penalties 131

12.5 An overview of article.sty 131
12.5.1 Initialisation and internal options 132
12.5.2 Undefined options 132
12.5.3 Type size suboption processing 132
12.5.4 The typesize file 133
12.5.5 Environments 133
12.5.6 Enumerate and itemize 134
12.5.7 Sectioning 134
12.5.8 Table of contents, list of figures and list of tables 135
12.5.9 Index 136
12.5.10 Floats 136
12.5.11 Title and abstract 137
12.5.12 Page styles 137
12.5.13 Initialisation 137

12.6 The report and book styles 137
12.7 The letter style 138
12.8 A few special effects 138

12.8.1 Globally disabling hyphenation 139
12.8.2 Turning off leaders 139
12.8.3 Defining chapter-like units 139
12.8.4 Changing float captions 139
12.8.5 Changing contents entries 140
12.8.6 How to make section headings hang back 140

13 LATEX past, present and future 141
13.1 TEX and LATEX history 141

13.1.1 TEX version 3 142
13.2 How to get add-ons 143
13.3 Useful extensions and auxiliary programs 144
13.4 International LATEX 144
13.5 AMS-LATEX 144
13.6 Beyond LATEX 2.09 144
13.7 The Mainz extensions to LATEX 2.09 145
13.8 Other useful style files 146
13.9 Useful auxiliary programs 146
13.10 Using other fonts 147
13.11 User groups 148

Contents vii

A Hints on running LATEX 149
A.1 Getting LATEX 149
A.2 How to run LATEX 149

B Error messages 151
B.1 Responding to errors 151
B.2 Warnings 152
B.3 Error messages 152
B.4 Warning messages 156

List of Figures

3.1 An example typeset letter 26
3.2 Source code for letter 27
3.3 LATEX page structure 28
3.4 A4 page size commands 29

5.1 17pt characters 56

6.1 Nested enumerate environments 62
6.2 Nested itemize environments 63
6.3 Verbatim commands and environments 64

7.1 The tabbing environment 68
7.2 The tabular environment 69
7.3 Sample Bezier curves 77
7.4 Example picture: logic gates 78
7.5 Example picture source code 79

8.1 Use of ellipsis 85

9.1 Screen output of the BIBTEX program 92
9.2 bbl file output of the BIBTEX program 93
9.3 bib file format 94

10.1 Numbered environments (theorems) 99

11.1 LATEX and TEX counter arithmetic 105
11.2 Inserting spring commands 109
11.3 Page parameters 114
11.4 Paragraph parameters 116
11.5 List parameters 118
11.6 Float parameters 119
11.7 Tabular and array parameters 121
11.8 Frame parameters 121

List of Tables

3.1 Page numbering styles 29
3.2 Page styles for modifying headers and footers 30

5.1 Type styles 44
5.2 Automatically detected ligatures 44
5.3 Dashes 45
5.4 Size changing commands 46
5.5 Font sizes using standard styles 47
5.6 Special symbols and foreign characters 47
5.7 Foreign accents 48
5.8 Calligraphic capitals 48
5.9 Log like functions 49
5.10 Maths accents 50
5.11 Greek letters 50
5.12 Miscellaneous symbols of type ord 51
5.13 Binary operations of type bin 51
5.14 Relations of type rel 52
5.15 Negated relations of type rel 52
5.16 Arrows of type rel 52
5.17 Variable size operators of type op 53
5.18 Delimiters of types open and close 53
5.19 Common Computer Modern fonts 55

6.1 Non-justified displays 61

8.1 LATEX maths environments 82
8.2 Maths text styles 86
8.3 Maths spacing rules 87

9.1 bib file document entry types 94
9.2 BIBTEX field names 95

11.1 Length dimensional units 107

Preface

The book is written for people who already have some familiarity with computers
and want a short overview of LATEX. To that end, I have attempted to introduce
features in the order in which they might be required by someone learning the
system, and give a complete treatment of their capabilities in a single pass. The
main aim is to cover all of LATEX’s features in as concise a fashion as possible,
presenting concentrated information in a small book affordable by students.

A secondary aim is to give an understanding of the processes underlying LATEX’s
operation as a guide to the writer of style files. Many people find that LATEX is easy
to use for straightforward tasks, but can be obstructive if one wants to change the
details of page layout. This has given LATEX the quite undeserved reputation of
being a tool for neophytes only. In particular, many plain TEX users refuse to have
anything to do with it because they claim that they simply can’t do some things.
This is a shame, because some of LATEX’s basic facilities (such as cross referencing
and automatic table of contents generation) are so useful that plain TEX users are
almost bound to end up implementing them themselves or doing the job by hand.

It turns out that LATEX is malleable, but TEX code is often very difficult to read,
and the LATEX source code runs to hundreds of pages, so most users admit defeat
and put up with the standard styles. As a result, many LATEX documents look
similar which is a waste of a fine typesetting system. However, if you persevere,
you will find that modifying an existing style file is quite straightforward.

A word of warning is in order here. The title of this book is ‘LATEX, concisely’ and
concise is not a synonym for precise. It is inevitable that much detail, especially
concerning internals, is missing. However, my own experience of teaching LATEX
users is that given enough help to overcome the initial opaqueness of style file source
code they can progress to make changes as they need them. I have concentrated
on making common adjustments to existing styles rather than attempting a grand
overview of how to program TEX and LATEX. A comprehensive explanation would
surely run to several volumes, and other authors are far more qualified than I for
such a task.

Prefaces usually finish with some acknowledgements, but I would like to make
some apologies as well. Most of all I would like to apologise to Phil Taylor, our local
TEX guru, who firmly believes that all TEX users should stick to plain TEX. He will
almost certainly be appalled to learn that this book could not have been written
without his help. I should also apologise to my students, who have been waiting
for this expanded edition for two years. I am indebted to many people for the

xiv

help they have given me either directly, or indirectly by the provision of excellent
software tools. In particular, I would like to thank Peter Hoare and Dave Whiteland
(who drew some of the figures for me), and the support staff and my academic
colleagues at Royal Holloway, University of London, King’s College London and
Curtin University of Technology, Western Australia.

In the process of writing this book I have used six different TEX implementa-
tions running on three different operating systems, and on a variety of machines
ranging in size from a room down to a book. The dedication of the small army of
TEX implementers and maintainers in providing public domain software of such an
astoundingly high standard is truly remarkable. Knuth and Lamport’s altruism in
placing their original work in the public domain would probably seem incomprehen-
sible to anyone outside of the computing profession. Let us hope that this tradition
of sharing long continues.

In real life I design computer hardware and integrated circuits so perhaps I
should be blasé, but the rate of technological progress never ceases to amaze me.
The final copy of this book was typeset on a notebook computer little larger than
the printed text and it ran about fifteen times faster than my first TEX system.
Apart from the extraordinary increase in speed, my notebook computer allowed
me to typeset in the garden, and so my final acknowledgement is to Jennifer, who
provided the garden.

June 1992

1

First examples

TEX is a computer typesetting system written by Professor Donald Knuth of Stan-
ford University. It can produce books, letters and articles typeset to the highest
standards. TEX is not a ‘word processor’ — you prepare TEX input files using a
separate text editor. The input file consists of the text you want to appear on the
printed page interspersed with formatting commands which specify how the text is
to be typeset. The actual spacing and layout of the source file does not necessarily
reflect the spacing of the printed page. This is in contrast to word processors which
often try to give a visual indication of the printed output whilst you are typing.

The TEX program itself provides about 300 ‘primitive commands’, which as their
name suggests are rather low level. Describing a document using these primitives
would be time consuming and error prone. TEX therefore offers a way of creating
new commands of arbitrary complexity by defining macros.

A macro is a single command that is shorthand for a sequence of other com-
mands. When TEX encounters a macro it simply replaces it with the underlying
sequence of commands — an operation referred to as macro expansion. Some of
these commands might be macros too, so the process continues until all the macros
have been expanded to a list of primitives.

1.1 TEX and LATEX

In the TEXbook [Knu86a] Knuth describes a set of macros that equip TEX with a
more high level set of commands. This package is called plain TEX. Although it
is much easier to use than primitive TEX it still leaves many design decisions to
the user and as a result most people build up their own sets of macros to enhance
plain to their own personal requirements. This is a blessing and a curse — on the
one hand you get exactly the visual effects you want, but on the other you have
to learn rather a lot about TEX’s internals to write a good set of macros. It turns
out that macro expansion languages exhibit rather subtle (i.e. confusing) behaviour,
and writing powerful and general macros can be very time consuming.

LATEX is an alternative (and much larger) set of macros for TEX that has ca-
pabilities similar to the Unix troff system and the VMS Runoff program. It will
automatically build a table of contents, list of figures and an index. It has a rather
powerful mechanism for describing tables, and it can even draw simple pictures.
The system was originally described in the LATEX book [Lam86] written by Leslie
Lamport, the author of LATEX.

2 FIRST EXAMPLES

Presently the world of TEX users divides into roughly two camps — those who
use plain and ‘roll their own’ high level macros, and those who use LATEX. (In fact
this is an insulting over-simplification: there are a number of other alternative macro
packages, especially AMS-TEX which is popular with mathematicians. However,
LATEX and plain are distributed with nearly all TEX systems, whereas these other
packages have to be acquired separately, limiting their use to those who actively seek
them out. You will find more information on other macro packages in Chapter 13.)

As a matter of fact LATEX is built on top of a slightly modified version of plain
so you might think that the two packages would be compatible with each other.
Sadly this is not so. Most of plain will work within LATEX but important parts do
not. In addition, it is easy to upset LATEX’s internal definitions by careless use of
plain commands.

In retrospect, it seems unfortunate that the full plain command set was not left
embedded within LATEX. Many plain TEX users refuse to have anything to do with
LATEX because they claim that their own macros will not work, and also that LATEX
forces their documents into a certain style. The former is probably true (although
conversion of many macros is trivial), the latter is not. LATEX is easy to customise,
but unfortunately the LATEX book provides little advice on how to go about it.

1.2 Customising LATEX

The central idea in LATEX is to use a single set of commands to define the logical
flow of the document (in terms of chapter headings, definition of tables and so
on) and then have a separate set of definitions called a style that specifies how the
logical units should actually appear on the page. That way the process of producing
logically structured text is separated from the visual design of the finished document.

The macro definitions making up the document style are usually kept in a sepa-
rate file called a style file. Four standard styles are distributed with LATEX — book,
report, article and letter. This book has been formatted using a modified
version of book which produces documents to the Ellis Horwood house style.

Since all of the visual formatting information is kept is a separate file named at
the beginning of the document file, wholesale changes can be made to the look of
the printed document file (including changing the size of the type and the size of
the printed page) with a single change to the source file.

It is important to resist the temptation to put specific visual formatting com-
mands into your document. Sometimes it is necessary — some of the tables in this
book have been specially balanced for the Ellis Horwood size pages and would need
adjusting for a smaller or larger page for instance, but by and large you should never
specify where exactly on a page an item is to go. If you want to change the look of
your document you should write a new style file which in most cases need be only a
slightly modified version of one of the standard styles. Chapter 11 describes LATEX’s
visual formatting parameters, and Chapter 12 describes how to obtain commonly
requested effects by modifying the standard styles.

It is quite likely that at some stage you will run up against a die-hard plain TEX
user who will sneer at you for using LATEX and tell you that he can, for instance,
put equation numbers just where he wants them. Well so can you, but he may

A note on pronunciation 3

not believe it. If you run up against such a zealot then treat them with courtesy,
perhaps even sympathy, but do not allow them to distract you from getting your
job done.

1.3 A note on pronunciation

Having dispensed with the politics, the next pressing question is how to pronounce
‘LATEX’. Knuth is quite clear in the TEXbook that TEX is an uppercase form of the
Greek τεχ, meaning art as well as technology. Hence it should be pronounced teck,
where the -ck should be like the final ‘ch’ in the Scottish loch. It is a sound that
does not really occur in English, and so many people approximate it to -k, giving
tek. Whatever you do, don’t pronounce χ as an X (teks) or you will receive pitying
smiles from those in the know.

Deciding on the pronunciation of ‘LATEX’ is a little more difficult because Lam-
port declined to specify it on the basis that ‘...pronunciation is best determined by
usage, not fiat’. Round here people say lay-teck although I know one person who
says lah-teck.

1.4 A first example

When you meet a new computer language (and TEX is a language, although not a
very general purpose one) the first thing to do is to write a program that outputs
Hello world! and get it to run. To make LATEX typeset and print out a message
you should perform the following four steps.

(The commands required for steps 2–4 vary from computer to computer. If you
are working on a large computer installation then you should ask another user or
the system manager what to do. If you are running on a personal computer then
look in the manuals for your TEX system or ask the person who installed TEX.
Appendix A gives hints for using several TEX systems running on Unix, MS-DOS
and VMS.)

1. Use a text editor to create a file called world.tex containing these lines:

\documentstyle{article}
\begin{document}
Hello world!
\end{document}

2. Run LATEX on world.tex

When you run LATEX on world.tex you should see messages similar to these
appearing on your screen

This is TeX, Version 3.0
(WORLD.TEX
LaTeX Version 2.09 <18 March 1992>

4 FIRST EXAMPLES

(ARTICLE.STY
Standard Document Style ’article’. <14 Jan 92>
(ART10.STY))
No file WORLD.aux.
[1] (WORLD.AUX)
Output written on WORLD.DVI (1 page, 232 bytes).
Transcript written on WORLD.LOG.

The messages you see are likely to differ in detail from these. The dates in
angle brackets give the release dates of this version of LATEX. (If the dates you
see are earlier than mid-1991, you should consider updating your system.) The
filenames may appear differently depending on the computer you are using.
Don’t worry about these minor differences, but if you see messages like

! Undefined control sequence.
l.1 \documntstyle

{article}
?

or

LaTeX error. See LaTeX manual for explanation.
Type H <return> for immediate help.

! Missing \begin{document}.
?

then you have an error. After printing the question mark, TEX will stop and
wait for instructions. You will find advice on how to interpret TEX’s error
messages in Appendix B, but for now just type X in response to the question
mark. This causes TEX to eXit so that you can re-edit the file world.tex and
fix your spelling error.

At the end of the run you will find two new files world.dvi and world.log1.
The log file contains a copy of all the messages that appear on your screen
during the run, sometimes with extra information. The dvi file is a device-
independent description of your document that makes no assumptions about
the kind of printer you will be using.

3. Run a DVI driver

A DVI driver is a program that takes the .dvi file and translates it into a
printable file for a specific printer. TEX uses the graphics capability of the
printer to draw the characters rather than simply using the manufacturer
supplied characters. There are many different ways of describing graphics
commands to printers, and therefore many different DVI drivers are required.

1On VMS and some other operating systems this file is called world.lis to avoid confusion
with batch log files

A large example 5

Most DVI drivers have a multitude of options to select which pages are to be
printed (useful if you want to check a single change in a large document) and
in some cases to print two pages side by side at reduced magnification (and
hence reduced quality) on a single sheet, which helps save paper if you just
want a draft printout. It would be a good idea to obtain a copy of the manual
for your DVI driver. Often it is available as a DVI file, so you can use the
driver to print the documentation2.

4. Send the output of the driver to the printer. Sometimes the operating system
print command is used but usually some special command is required. On
some systems, the DVI driver automatically sends its output to the printer,
so this step may not be needed at all.

When you have successfully completed these stages you will get something that
looks like the example shown on page 6. Just to prove to yourself that there is no
relationship between the format of world.tex and the resulting output, try editing
world.tex and putting all the commands on a single line thus:

\documentstyle{article}\begin{document}Hello world!\end{document}

Run the file through steps 1–4 again and verify that the typeset output is the
same.

1.5 A large example

The rest of this chapter is a sort of overture to the main book. The idea is to
familiarise you with LATEX commands by showing you an example document that
exercises many LATEX features and show you the typeset output and the source file
side-by-side. The actual text of the example is meant to be read too — it contains
hints on how to avoid simple errors, and when to use some features.

All of the commands in the example are described in detail later in the book.
A good way to get started in LATEX is to use the structure of this example as a
template for your own documents. If you do not understand how a particular effect
was created, look at the corresponding part of the source file and then look up those
commands in the index to this book.

1.5.1 Preliminaries

The paragraphs in a LATEX file are separated by blank lines. Most LATEX commands
are introduced with a \ character. A few commands generate text directly, such as
the command \today which will insert the date of the run into your typeset output.

Some commands are declarations and do not actually produce any output text,
rather they redefine the way the text is to be produced. For instance, the declaration
\bf causes the following text to be set in a bold font.

Curly braces { and } are used to create groups. Any declarations made inside a
group will be forgotten at the end of the group, so the commands

2Of course there is a nasty chicken and egg problem here — how will you know how to print
the manual without reading it first? Answer: ask someone else who uses your LATEX system.

6 FIRST EXAMPLES

Hello world!

1

A large example 7

some {\bf bold} text
produces
some bold text

because the effect of the \bf declaration is reset at the end of the group.
Many commands take parameters which are placed in braces after the command

name. For instance the command \underline{A} produces A. Some commands
take more than one parameter. There are commands that take optional parameters
which may be omitted, in which case LATEX will take some default action. Optional
parameters are marked with brackets [and] instead of braces.

This book uses a special font to typeset fragments of LATEX code.

Text like this represents LATEX instructions that you can type in di-
rectly.

Text in italics represents a LATEX part-of-speech that you must re-
place with a specific name or piece of text.

For instance, elsewhere in this book you will be told that the command

\underline{text}

causes text to be typeset with underlining. You can type anything you like (includ-
ing other LATEX commands3) instead of text, but you must type the \underline
and the braces as shown.

Commands of the form

\begin{environment name} . . . \end{environment name}

define the start and end of environments and must be paired. Within an environ-
ment some special layout will be used to typeset your text. For instance, any text
between a \begin{center} and an \end{center} is centred on the page. (Note the
American spelling of center here.) Any declarations made within an environment
will be forgotten after the corresponding \end command, just as they would be at
the end of a group. Groups and environments may be nested.

All LATEX document files must have the same basic form as the world.tex file.
There must be exactly one \documentstyle{style}, one \begin{document} and
one \end{document} command in that order. The part of the document file before
the \begin{document} is called the preamble. No text is produced by the preamble,
and blank lines are ignored. Text generating commands are in fact illegal in the
preamble, which must include only declarations, such as the title of the document.
Some declarations may only appear in the preamble. Many documents (such as
world.tex) have empty preambles because the default formatting is acceptable.

Rather a lot of technical terms have been defined in this section. Chapter 2
discusses these in more detail. For now, if some of the terminology seems obscure
then it is best to simply plough on, using the example file to guide you and looking
up commands in the index as you meet them.

3Some commands may place restrictions on what other commands you may use inside their
parameters.

8 FIRST EXAMPLES

A LATEX document

Adrian Johnstone∗

June 1992

Abstract

This document contains examples of many LATEX features. It is
taken from Chapter 1 of ‘LATEX, concisely’.

1 Introduction

TEX is a computer program for typesetting papers and books. LATEX is
a package of macros that add features such as cross referencing, table of
contents generation and automatic compilation of bibliographies. It is de-
signed to feel rather like systems such as the Unix1 troff and VMS2 Runoff
packages.

Auxiliary programs help in making sorted bibliographies, indices and
glossaries. You should also find out if a spelling checker is available on your
computerr.

1.1 A subsection

LATEX provides sectioning commands for parts, chapters, sections, subsec-
tions, subsubsections and others. It will automatically keep track of section
numbers and generate a table of contents for you.

∗Computer Science Department, Royal Holloway, University of London
1Unix is a trademark of AT&T
2VMS is a trademark of Digital Equipment Co.

1

A large example 9

\documentstyle{article}

%This is a comment.
%A comment is everything after a % sign up to the end of line.

\setlength{\textheight}{160mm} %To fit Ellis Horwood
\setlength{\textwidth}{115mm} %To fit Ellis Horwood

\title{A \LaTeX\ document} \author{Adrian Johnstone% ignore eol
\thanks{Computer Science Department, Royal Holloway, University
of London}} \date{June 1992}

% End of preamble

\begin{document} %Start of real document
\maketitle

\begin{abstract}This document contains examples of many \LaTeX\
features. It is taken from Chapter 1 of ‘\LaTeX, {\em
concisely}’.\end{abstract}

\section{Introduction}

\TeX\ is a computer program for typesetting papers and books.
\LaTeX\ is a package of {\em macros} that add features such as
cross referencing, table of contents generation and automatic
compilation of bibliographies. It is designed to feel rather like
systems such as the Unix\footnote{Unix is a trademark of AT\&T}
{\tt troff} and VMS\footnote{VMS is a trademark of Digital
Equipment Co.} Runoff packages.

Auxiliary programs help in making sorted bibliographies, indices
and glossaries. You should also find out if a spelling checker is
available on your computerr.

\subsection{A subsection} \LaTeX\ provides {\em sectioning}
commands for parts, chapters, sections, subsections,
subsubsections and others. It will automatically keep track of
section numbers and generate a table of contents for you.

10 FIRST EXAMPLES

An unnumbered subsection

If you follow the sectioning command with a * then the number is sup-
pressed, and no table of contents entry is generated.

Many commands have *-forms that slightly modify their behaviour.

2 Things to watch when you are typing

Usually a LATEX document will mostly be straight text with only occasional
embedded formatting commands (this document has a very high proportion
of formatting commands because it is designed to show off many features).
However, even in straight text there are certain things you should watch for
because typeset text is not the same as normal computer printout.

• words are separated by one or more spaces, but LATEX makes its own
decisions as to how to space the output. So it doesn’t matter how
many spaces you type.

• paragraphs are separated by one or more blank lines.

• don’t use the keyboard double quote character ". Your keyboard has
single left quote ‘ and single right quote ’ keys. Reported speech is
usually surrounded by double quote marks “thus”. Reported speech
within reported speech, and the first novel use of a technical term
is usually surrounded by single quotes: “He said ‘don’t quote me on
that’ ”.

• TEX breaks lines by looking for interword spaces and sometimes by
hyphenating. You can make an unbreakable interword space with a
tie which is written ~ ensuring that the Mr in Mr Smith is never or-
phaned. You can disable line breaking altogether (including hyphen-
ation) by putting text in a box which will simply hang out into the margin.

• You have already seen examples of emphasized words typeset in italic.
Emphasis within emphasis is shown in Roman type. But don’t overdo
it.1

1This is a footnote to the emphasized text. Note the use of an italic correction to
place the footnote mark correctly.

2

A large example 11

\subsection*{An unnumbered subsection} If you follow the
sectioning command with a {\tt *} then the number is suppressed,
and no table of contents entry is generated.

Many commands have {\tt *-}forms that slightly modify their
behaviour.

\section{Things to watch when you are typing} Usually a \LaTeX\
document will mostly be straight text with only occasional
embedded formatting commands (this document has a very high
proportion of formatting commands because it is designed to show
off many features). However, even in straight text there are
certain things you should watch for because typeset text is not
the same as normal computer printout.

\begin{itemize}

\item words are separated by one or more spaces, but \LaTeX\
makes its own decisions as to how to space the output. So it
doesn’t matter how many spaces you type.

\item paragraphs are separated by one or more blank lines.

\item don’t use the keyboard double quote character {\tt "}. Your
keyboard has single left quote {\tt ‘} and single right quote
{\tt ’} keys. Reported speech is usually surrounded by double
quote marks ‘‘thus’’. Reported speech within reported speech, and
the first novel use of a technical term is usually surrounded by
single quotes: ‘‘He said ‘don’t quote me on that’\,’’.

\item \TeX\ breaks lines by looking for interword spaces and
sometimes by hyphenating. You can make an unbreakable interword
space with a {\em tie} which is written {\tt\~{}} ensuring that
the Mr in Mr~Smith is never orphaned. You can disable line
breaking altogether (including hyphenation) by putting text in a
box which \mbox{will simply hang out into the margin.}

\item You have already seen examples of {\em emphasized words}
typeset in italic. {\em Emphasis {\em within} emphasis is shown
in {\em Roman} type. But don’t overdo it.}\/\footnote{This is a
footnote to the emphasized text. Note the use of an italic
correction to place the footnote mark correctly.}
\end{itemize}

12 FIRST EXAMPLES

• although your keyboard probably has only one kind of dash, typeset
text requires four different kinds: the intra-word hyphen; a dash for
numeric ranges (17–25); a punctuation dash—which should not have
spaces round it—and the mathematical minus sign (17− 25).

• these keyboard characters are already reserved by LATEX and need
special treatment

$ % & \ { } ˆ ˜

3 Displays

The bulleted list in the previous section is one kind of display. You can
make numbered lists

1. first item

• and you can nest lists of different kinds

� as well as override the default tick mark

2. second item

Quotations may also be displayed by using indented paragraphs

‘Paragraph indentation is suppressed for short quotations’

There is another quotation environment for multiparagraph quotes.

Longer quotations (those with more than one paragraph) use
extra indentation . . .

. . . at the start of paragraphs.

4 Type styles and sizes

By default, LATEX sets type in a font called ‘roman’. There are seven type
styles that may be used with ordinary text—roman, bold, sans serif, slanted,
small caps and typewriter.

You can have tiny, scriptsize, footnotesize, small, normalsize, large, Large,

LARGE, huge and Huge text.

3

A large example 13

\begin{itemize}
\item although your keyboard probably has only one kind of dash,
typeset text requires four different kinds: the intra-word
hyphen; a dash for numeric ranges (17--25); a punctuation
dash---which should not have spaces round it---and the
mathematical minus sign ($17-25$).

\item these keyboard characters are already reserved by \LaTeX\
and need special treatment

\begin{center}
\# \$ \% \& \backslash \{ \} _ \^\ \~\
\end{center}
\end{itemize}

\section{Displays}

The bulleted list in the previous section is one kind of {\em
display}. You can make numbered lists \begin{enumerate} \item
first item \begin{itemize} \item and you can nest lists of
different kinds \item[\diamond] as well as override the default
tick mark \end{itemize} \item second item \end{enumerate}
Quotations may also be displayed by using indented paragraphs
\begin{quote} ‘Paragraph indentation is suppressed for short
quotations’ \end{quote} There is another quotation environment
for multiparagraph quotes. \begin{quotation} Longer quotations
(those with more than one paragraph) use extra indentation \ldots

\ldots at the start of paragraphs.

\end{quotation}
\section{Type styles and sizes}

By default, \LaTeX\ sets type in a font called ‘roman’. There are
seven type styles that may be used with ordinary text---roman,
{\bf bold}, {\sf sans serif}, {\sl slanted}, {\sc small caps} and
{\tt typewriter}.

You can have {\tiny tiny}, {\scriptsize scriptsize},
{\footnotesize footnotesize}, {\small small}, normalsize, {\large
large}, {\Large Large}, {\LARGE LARGE}, {\huge huge} and {\Huge
Huge} text.

14 FIRST EXAMPLES

5 Mathematics

Mathematical formulae can be in-text like x =
∑15
i=1 yi/yi+1 or displayed

x =
15∑
i=1

yi
yi+1

and the position of subscripts and superscripts will be tweaked as necessary.
This example shows the use of subscripts, superscripts and fractions. There
are other commands for building matrices and large brackets.

TEX knows about dozens of maths symbols. Here are just a few

ℵ < = 0 h̄ ℘ ı ` ∇ ∂
√

∀ ∃ ¬ \
> ⊥ ‖ 6 ♣ ♦ ♥ ♠ ′ ∅ ∞ | [\]

6 Figures, tables and pictures

LATEX has an easy to use table construction command. The table of maths
commands above is an example of its use. You can make tables float which
means that they will move to the top or bottom of a page of a page. The
table and figure environments make floats and allow captions to be en-
tered automatically into a list of figures or tables.

Finally, you can draw simple pictures like this

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

overlapping circles

A
r
t
?

�
�
�
�
�
�>

4

A large example 15

\section{Mathematics}

Mathematical formulae can be in-text like $x=\sum^{15}_{i=1}
y_i/y_{i+1}$ or displayed \[x=\sum^{15}_{i=1}
{{y_i}\over{y_{i+1}}}\] and the position of subscripts and
superscripts will be tweaked as necessary. This example shows the
use of subscripts, superscripts and fractions. There are other
commands for building matrices and large brackets.

\TeX\ knows about dozens of maths symbols. Here are just a few

\begin{center}\begin{tabular}{*{16}{c}}

\aleph & \Re & \Im & \mho & \hbar & \wp & \imath &
\jmath & ℓ & ∇ & ∂ & \surd & \forall
& \exists & \neg & \backslash\\
\top & \bot & $\|$ & \angle & \clubsuit & \diamondsuit
& \heartsuit & \spadesuit & \prime & \emptyset &
∞ & \vert & \flat & \natural & \sharp\\
\end{tabular}\end{center}
\section{Figures, tables and pictures}

\LaTeX\ has an easy to use table construction command. The table
of maths commands above is an example of its use. You can make
tables {\em float} which means that they will move to the top or
bottom of a page of a page. The {\tt table} and {\tt figure}
environments make floats and allow captions to be entered
automatically into a list of figures or tables.

Finally, you can draw simple pictures like this
\vspace*{1ex}
\begin{center}
\setlength{\unitlength}{1mm}
\fbox{
\begin{picture}(100,50)
\multiput(20,25)(5,0){13}{\circle{8}}
\put(43,40){\framebox{overlapping circles}}
\put(90,20){\shortstack{A\\r\\t\\?}}
\put(0,0){\vector(4,3){20}}
\end{picture}
}
\end{center}

2

Commands and variables

LATEX is a programming language, with commands, variables and control structures.
Fortunately, most of the time it is not necessary to actually program LATEX, it
being sufficient to use the predefined LATEX commands. Full blown programming is
described in Chapters 11 and 12: in this chapter the basics of LATEX syntax are set
down.

2.1 How to spot a command

A LATEX source file contains mainly straight text interspersed with control se-
quences. Whenever a blank line is encountered, LATEX starts a new paragraph.
Apart from that, and the ten special control characters listed below, all control
sequences begin with a backslash (\) character.

Some LATEX commands directly produce typeset text or space, such as the se-
quence \LaTeX which produces the LATEX logo. Many other sequences are decla-
rations which affect the way formatting proceeds without directly producing any
output text, for example \bf which causes type to be set in a bold font. LATEX
also maintains a set of named variables which hold the value of counters such as
the current page number, length parameters such as \textwidth, the width of the
text body on a page, and boxes which can hold typeset material such as a word or
a whole page.

2.1.1 Special characters

There are ten special characters used in both plain TEX and LATEX, and you must
be careful not to let these slip through when typing text. They are

\ % { } # $ ^ _ & ~

Several of these characters are rather common in typed text, especially % and &. If
you have to format text that has been prepared for another purpose, or by a typist
who is unaware of TEX’s idiosyncrasies, then it is worth doing a search and replace
for these characters using your editor.

You should replace all occurrences of % with \% and likewise for each of the other
characters, so that you get an ampersand & in the typeset output by typing \&.
The only exception to this is the \ character which is generated by \backslash.

18 COMMANDS AND VARIABLES

Be warned that the \\ command generates a line end, not a backslash! The ten
special characters have the following meanings:

\ is the escape character and is used to introduce command symbols and words.
% is thecomment character. It causes the rest of the line to be discarded.
{ and } are used to define groups, which will be discussed in the next section.
is the macro parameter character. Its use is described in Chapter 10.
$ is the maths mode character. LATEX has two main modes — text mode for

normal written paragraphs and mathematics mode for typesetting formulae. When
LATEX starts, it is in text mode. When it encounters a $ character, LATEX switches
to mathematics mode until it encounters another $, when it toggles back to text
mode. (Just looking for the $ signs in a TEX file will not be sufficient to tell you
when TEX is going in and out of maths mode because there are several other ways
of performing this switch-over.)

^ and _ are single character commands that cause the immediately following
text to be typeset as superscripts and subscripts accordingly. Their use is described
in section 8.2.

& is used as a tabulation character
~ is a tie. It is treated just like a space character except that LATEX will not

break a line at a tie. You should get into the habit of using ties between words that
should not be separated instead of spaces. In particular, always put a tie between
a title and a name, as in Mr~Smith.

2.1.2 Groups

Often it is convenient to group blocks of text together as a single unit. Braces (the
{ and } characters) are used to delimit such blocks, and the result is called a group.

Groups have two main uses. Firstly, many LATEX commands operate on the next
‘thing’ in the text. For instance the command \underline Apple produces Apple
because the capital A is the next thing after the command. It would be tedious to
underline a whole word by prefacing each character with an \underline command,
but if you put braces around Apple then the whole word becomes a group and is
used as the next ‘thing’ in sequence, hence \underline{Apple} produces Apple.

The second use of groups is to control the extent of declarations. Any decla-
rations or changes to variables that are made inside a group are forgotten at the
end of the group, and the original conditions restored. Technically, the scope of a
declaration is local to the group in which it is declared1. In this example there are
three nested groups, and at the beginning of each group a new typeface is selected.
The old type face is automatically reselected as a group is exited.

{\bf bold {\em emphasised {\rm roman text} text} text}
produces
bold emphasised roman text text text

1Actually there are a few variables that are global, such as the current page number, and their
values are not restored at the end of a group.

How to spot a command 19

2.1.3 Characters that are sometimes special

Immediately after some commands the three characters *, [and (are sometimes
significant, although away from commands they produce the expected output. For
instance, in the long example you will see that the command \subsection* gen-
erates a subsection heading without the number that would be printed using a
\subsection command. If you need to follow a command with one of these char-
acters then insert an empty group {} immediately after the command.

2.1.4 Control words and control symbols

The escape character \ introduces control sequences. These come in two kinds

� control words made up of the letters A..Z and a..z. TEX is case sensitive, so
\xyz is not the same command as \xYz.

� control symbols comprising a single non-alphabetic character

A control word is not allowed to have numbers in it, so \mycommand1 is read as the
command \mycommand followed by the character 1. Where a number is needed as
part of a command name, use roman numerals to give \mycommandi, \mycommandii
and so on.

Confusion over the rules governing space after control words and symbols often
gives rise to unexpected whitespace in TEX output. When TEX reads a control word
it throws away all following whitespace and starts processing again at the next non-
space character. If this was not done it would be impossible to typeset abc (using
{\bf a\rm b\bf c}) because the spaces needed to terminate the commands would
get into the output, producing a b c. On the other hand, since control symbols
are known to be single characters TEX does not consume space after a symbol, so
\% \% gives % % not %%. If you want space to appear immediately after a control
word use the command \ (a \ character followed by a space).

2.1.5 Keywords

TEX also recognises a small number of keywords after certain commands. The
complete list includes

� The dimensional units bp, cc, cm, dd, em, ex, in, mm, pc, pt, sp, mu
and true (section 11.3.2).

� The special skip values fil, fill and fill (section 11.4.2).

� The skip modifiers plus and minus (section 11.4).

� The font modifiers at and scaled (section 5.4.1).

� Arithmetic keywords by and = (section 11.2.4).

� Box modifiers width, depth, height, to and spread.

20 COMMANDS AND VARIABLES

It is important to remember that these words do not normally mean anything
to LATEX. If you type mm in normal text it will be printed as mm. It is only when
LATEX is expecting a dimension and has already read a number that it will interpret
mm as a keyword. That is why it does not matter that you do not at this stage know
the meaning of the TEX keywords — the chances of you accidentally typing them in
the relevant context are negligible.

2.1.6 Parameters

Some LATEX commands take parameters. The \underline{text} command is one
such case — it always takes a single parameter. Some commands take more than
one parameter, for instance \frac{a}{b} produces the fraction a

b .
There are commands which have optional parameters which are delimited using

the [and] brackets. For instance in maths mode \sqrt{x} gives simply
√
x.

Adding an optional argument gives a general root so \sqrt[n]{x} produces n
√
x.

A very few commands used for drawing pictures take coordinate parameters
delimited by parentheses (and). As for the [and * characters, LATEX only checks
for (characters immediately after a control word, so there must be no spaces between
the parameters and the command.

2.2 Using commands inside parameters

Usually, as soon as LATEX encounters a command it replaces it with its definition,
and continues this expansion process until a string of primitives is left, which are
then executed. However, there are times when the point in your document file at
which a command is written does not correspond to the point at which it is used.
An example is a command to change the contents of the page header. The changes
requested by the command will not actually be used until the next page is output.
Note that the sectioning commands such as \chapter and \section fall into this
category because they can be used to update the page header.

Very occasionally, it is necessary to tell LATEX to expand a command in a special
way when it appears in the parameter to another command that might be used
again later. There is a command \protect that may be placed in front of any
other command to warn LATEX that it may be used in this deferred way.

In fact, the vast majority of LATEX users go through life without ever needing
to use a \protect command (there are only 2 in the LATEX code for this book,
for instance) so I suggest that you wait until you have an incomprehensible error
message and then try \protecting the commands inside the parameter that is
causing the problem.

For those that want the whole story, the commands that may cause problems
are: any command that writes to an external file, such as the table of contents file or
the commands to write to the terminal; any command that affects the page heading;
any title page footnotes generated with \thanks and any command appearing in the
parameter to an @-expression in an array or tabular environment (see page 70).
A safe, although conservative, strategy is to place a \protect command before

Commands, declarations and environments 21

every command in the parameters to these commands except for length or counter
commands.

2.3 Commands, declarations and environments

Simple commands such as \LaTeX just output text — in this case the LATEX logo.
There is a large set of text-generating commands that access characters that do not
appear on the keyboard, such as \alpha α, \sharp] and \heartsuit ♥. Chap-
ter 5 contains tables describing these commands. Another simple text generating
command is \today, which typesets the date current at the time the document was
processed2.

However, not all command sequences directly affect the output. The typesetting
process is controlled by manystyle parameters, which select font type and size, page
size, paragraph spacing and so on. Many control sequences modify these parameters
without directly producing text output. For instance \bf selects a new font, but
prints nothing. Such commands are called declarations. Some declarations such as
the page width and height should be made at the beginning and remain in force
throughout the document. These declarations are usually made in the preamble,
i.e. before the \begin{document} command. Most declarations are local to their
group, and their effects will be forgotten at the end of the group when the old values
are restored.

An environment is a sort of super-group delimited by commands of the form

\begin{environment-name} environment-text \end{environment-name}

The \begin{environment-name} and the \end{environment-name} expand
into a set of declarations and commands that make wholesale temporary changes
to the current style. environment-text can be any chunk of LATEX text which
may itself contain environments so, like groups, environments may be nested. It is
possible to define your own environments using the commands described in Chap-
ter 10. Environments also define a new scope region, so any declarations made
within environment-text will be reset after the \end{environment-name} com-
mand.

Of course, every document must have at least one environment: the document
environment delimited by \begin{document} . . . \end{document}.

2.4 LATEX variables

LATEX keeps track of six different kinds of variables, which will be discussed in some
detail in Chapter 11. Each kind of variable is capable of storing information about
a different kind of information. You can declare registers to hold these different
kinds of data. The six kinds of register are

2This footnote contains a \today command from which you can see that the final copy for this
book was produced on November 22, 2007.

22 COMMANDS AND VARIABLES

1. counters, which hold integers in the range −2147483647 to +2147483647. The
present page number, and the section number are held in counters, so you
will understand that TEX can not easily typeset books that have more than
2,147,483,647 pages. This is not much of a restriction — a typical 1000 page
computer manual on my shelf is 4cm thick, so the smallest book that TEX
could not handle would be more than 85km thick.

2. lengths, which hold distance measurements. There is a length register called
\textwidth that defines the width of the text body on the page.

3. boxes, which hold rectangular pieces of typeset text. The most important
property of a box is that it is indivisible, so once some typeset words have
been put together in a box they cannot be broken up3. A common use of
boxes is therefore to override TEX’s hyphenation algorithm. A word put in
a box is unbreakable because boxes are indivisible. The second page of the
large example shows an example of text which has been boxed, and TEX gave
up trying to find a good line break and simply let it hang out into the right
margin. TEX uses two kinds of boxes to build pages. A horizontal box (or
hbox for short) is a one dimensional box that can only extend horizontally.
Loosely speaking, an hbox corresponds to a line of text. Unless you tell TEX
not to, it will break hboxes up into units about the width of a page, and then
stack them into vertical boxes (vboxes, or parboxes) which have depth as well
as width.

4. token lists, which hold strings of TEX commands. These are used internally
for special effects. For instance, there is a token list called \everypar which
holds a string of commands that are executed every time TEX starts a new
paragraph. Some legalistic documents require every paragraph to be num-
bered, and by adding numbering commands to the \everypar token list you
could get this effect automatically without having to explicitly number the
individual paragraphs.

5. skip registers, which hold inter-word and inter-line spaces. In TEX these spaces
are flexible in size and can shrink or expand as necessary to ensure even
spacing. In fact their operation is rather like little springs placed between the
words which act like rigid units. Each spring has a natural length which is its
preferred size, a shrinkability and a stretchability. In extreme cases, TEX will
expand springs more than is allowed by these values, but a warning message
will be issued.

6. maths skip registers. The spacing rules in maths mode are quite different to
the normal rules of typesetting, and so a special kind of spring is used.

A full discussion of these variables and how to manipulate them is deferred to
Chapter 11, although you will find occasional references to LATEX’s style parameters
in the intervening chapters.

3This is not strictly true since TEX does have an unboxing command.

3

Document styles

Document styles differentiate the look of one document from another. In essence
a style is a template into which your text will be fitted. The style defines fonts,
section headings, running titles and so on. Every document must have exactly one
parent style, but subsidiary style files may be read in to produce minor variations.

LATEX provides four standard styles article, report, book and letter, but the
‘look’ of all these styles is similar. The long example in Chapter 1 shows the basic
layout — default type size of 10pt, arabic page numbers in the footer, titles in large
bold font and so on. The letter style is rather different and will be described in
section 3.3, but article, report and book are closely related, the main differences
being:

� article runs the title, abstract and text without page breaks. report and
book use separate pages for the title and the abstract.

� article does not support chapters.

� book prints double sided pages by default and has a \part command for
breaking a long document into different parts.

The main style is specified as a parameter to the \documentstyle command
which should be the first command in a LATEX file. An optional parameter to
\documentstyle can be used to specify a comma separated list of subsidiary styles
to be read in when LATEX starts. This book was formatted using the standard book
style file, but I created a subsidiary style called eh which modifies the definitions of
section headings and page sizes to suit the Ellis Horwood house style. This book
has an index, so I also called up the makeidx style to define some useful commands
for index making. The first line of the source file is therefore

\documentstyle[eh,makeidx]{book}

3.1 How to find style files

Style files have names of the form style.sty and contain closely packed TEX com-
mands. Because they have to be read every time they are called in it is normal
practice to remove all the comments from a style file and as much white space as
possible. Naturally this makes them difficult to read, so usually a parallel file called
style.doc is kept with the original comments1.

1In fact even .doc files can be difficult to read, but see Chapter 12.

24 DOCUMENT STYLES

3.1.1 The inputs directory

Every TEX system has a reserved directory called the inputs directory where style
files are kept. Typically it will be something like /usr/local/lib/tex/inputs on
Unix, \tex\inputs on MS-DOS or TEX$DISK:[TEX.INPUTS] on VMS. TEX auto-
matically looks in this directory whenever it needs to read something in. Usually it
looks in the directory it was started from first, so you can also keep your own style
files locally, without disrupting the main system styles.

It is a good idea to list all the .sty files in your inputs directory so that you
get an idea of what styles are available to you. At the very least you should see
book.sty, article.sty, report.sty and letter.sty. You should also see files
with names like bk10.sty, bk11.sty and bk12.sty which are subsidiary styles for
book that define a range of font selection commands based on 10, 11 and 12pt type
respectively. If you cannot find these files then you are either looking in the wrong
place, or there is something seriously wrong with your LATEX installation.

Not all style files actually adjust the style. Many styles add extra commands to
LATEX. For instance the bezier style which you will find in your inputs directory
adds commands to plot curves by typesetting a series of overlapping full stops. Some
of these ‘extra’ commands will be described in the main part of this book and you
will be warned if you need to read in an extra style file. In Chapter 13 some useful
style files that are not presently part of the standard distribution will be described,
along with advice on how to obtain them.

3.2 Standard subsidiary style files

A variety of standard subsidiary styles are supplied with every LATEX system. Usu-
ally, you access these styles by putting their name in the optional parameter to
the \documentstyle command as shown above. The exceptions are the font size
selection options. By default, all the standard styles use 10pt characters as their
base size. The style options 11pt and 12pt override the default to select 11pt and
12pt characters. When these styles are found in the optional parameter, a file of the
form abrv11.sty is read in where abrv is bk for book, rep for report and art for
article. The standard subsidiary styles are summarised below. There may well be
other styles available to you, and you should ask for a copy of the documentation
or read the associated .doc file for further information.

11pt use 11pt type as default.

12pt use 12pt type as default.

draft insert a black bar at the end of any line that overhangs into the right margin.

twoside change margins for double sided printing (default in book).

twocolumn use twocolumn printing as default.

titlepage makes article use report style abstract and titlepage conventions,
with each on a separate page.

Letters 25

openbib produce open style bibliographies.

leqno put equation numbers on the left.

fleqn left align displayed mathematical formulae.

ifthen define the program control commands described in section 12.4.10.

bezier define the \bezier curve drawing command described in section 7.5.8.

3.3 Letters

The letter standard style provides a set of special commands that are not available
with the other standard styles. Many of the commands described elsewhere in this
book are unavailable in letter style, such as the sectioning and table of contents
commands.

A single LATEX source file can contain many letters, each defined within a letter
environment. An example letter, and its corresponding output is shown in Fig-
ures 3.1 and 3.2.

At the top of the file (usually before the \begin{document}) you must specify
your standard signature and address using the commands \signature{text} and
\address{text}. and these will be automatically inserted in each letter. You can
also insert a \makelabels command which will generate a sheet of address labels,
one for each letter in the file.

Each letter is enclosed by

\begin{letter}{addressee} . . . \end{letter}.

addressee contains the name and address of the recipient and will be used for the
address label and at the top left of the printed letter. You can use \\ commands
to start new lines within the addressee text.

The \opening{salutation} command prints the salutation on a line of its
own with suitable vertical spacing and is used to start the letter text. Some LATEX
installations have special letter styles that incorporate headed note paper. Usually
the heading is generated by the \opening command, so do not leave it out even if
you want a blank salutation.

The \closing{valediction} command prints valediction on a line of its own
and then appends your signature, leaving a space for you to sign your name.

After the \closing command you can use \ps{text}, \cc{text}, \encl{text}
to add a postscript, a list of other recipients (carbon copies) and a list of enclosures.

3.4 Page layout

A LATEX page is made up of the body, a header, a footer and left and right margins
as shown in Figure 3.3. The body is where the main part of the text goes, and
it may have one or two columns (Chapter 13 describes a style file that allows you
to have as many columns as you like, but this is not part of the standard LATEX
system.) The sizes of these regions are defined by a set of LATEX size parameters. By

26 DOCUMENT STYLES

Department of Computer Science
Royal Holloway, University of London
Egham Hill
Egham
Surrey
TW20 0EX
England

June 1992

Santa Claus
3, The Fairy Grotto
North Pole

Dear Sir,

Enclosed one Christmas present list, nicely typeset using LATEX. The
presents are in priority order: I would particularly like a new workstation,
as I’ve had the last one for three months and it is now obsolete. Hope you
and the reindeer are well.

Yours sincerely,

Adrian Johnstone
Email: adrian@cs.rhbnc.ac.uk

Last year’s list seemed to go astray judging by the rather poor response.
This year I have sent a copy to the Chief Elf just to make sure.

cc: Head of Elf workshop

encl: Present list

Figure 3.1 An example typeset letter

Page layout 27

\documentstyle{letter}
%
\signature{Adrian Johnstone\\
Email: {\tt adrian@cs.rhbnc.ac.uk}}
%
\address{Department of Computer Science\\
Royal Holloway, University of London\\Egham
Hill\\Egham\\Surrey\\TW20 0EX\\\sc England}
%
% These three commands do nothing in the standard style
%
\name{Dr A Johnstone} % return name
\telephone{} % sender’s telephone number
\location{Department of Computer Science} %sender’s department
%
\makelabels % make an address label
\begin{document}
\begin{letter}{Santa Claus\\
3, The Fairy Grotto\\
North Pole
}
\opening{Dear Sir,}
Enclosed one Christmas present list, nicely typeset using \LaTeX.
The presents are in priority order: I would particularly like a
new workstation, as I’ve had the last one for three months and it
is now obsolete. Hope you and the reindeer are well.
\closing{Yours sincerely,}
\ps{Last year’s list seemed to go astray judging by the rather
poor response. This year I have sent a copy to the Chief Elf just
to make sure.} %postscript
\cc{Head of Elf workshop} %carbon copy
\encl{Present list} %enclosure
\end{letter}
%
% You can put more letter environments here
%
\end{document}

Figure 3.2 Source code for letter

28 DOCUMENT STYLES

header

footer

body

Page boundary

left
margin

right
margin

Figure 3.3 LATEX page structure

default, TEX will produce output for American sized 8.5 × 11 inch paper with one
inch margins. If you are a European LATEX user this will probably be unsatisfactory
since A4 standard paper is considerably larger. You will find a full discussion of
how to change page layout in Chapter 11. For now, ask another user if your system
provides a style file called A4.sty. If it does not, try adding the lines shown in
Figure 3.4 to the start of your file before the \begin{document} command.

3.4.1 Single and double column printing

By default, text is set in a single column the same width as the page body. LATEX
will switch into two column typesetting if you issue a \twocolumn command or if
you use the [twocolumn] style option in which case LATEX will start typesetting
the document in two column mode. The complementary \onecolumn command
restores single column printing. Both of these commands cause the preceding text
to be output and a new page to be started.

In two column mode floats and footnotes will also be restricted to columns. You
can get a full page width banner over a two column page by using an optional
argument to \twocolumn:

Page layout 29

% quick and dirty A4 page sizes for LaTeX
\oddsidemargin=0mm\evensidemargin=0mm
\textwidth=149mm\textheight=237mm
\topmargin=-45pt\headheight=12truept\headsep=25pt
\footskip=37pt\footheight=12pt
\hoffset=5mm\voffset=8mm

Figure 3.4 A4 page size commands

style examples
arabic 1 2 10
roman i ii x
Roman I II X
alph a b j
Alph A B J

Table 3.1 Page numbering styles

\twocolumn[full-width text]

will start a new page and then typeset the full-width text at the top before
setting the succeeding text in two-column mode.

3.4.2 Vertical page alignment

When typesetting books the vertical spacing is usually adjusted so that full page
bodies are exactly the same length. In articles and other less formal documents it is
usual to leave the page body at its natural length. The commands \flushbottom
and \raggedbottom enable and disable adjustment of vertical spacing. The de-
fault in the book style and when the [twoside] document style option is in use is
\flushbottom.

3.4.3 Page numbering

By default, the page number will appear centred in the footer printed as an arabic
number. The \pagenumbering{numberstyle} command sets the printing style for
page numbers. numberstyle can be one of the styles shown in Table 3.1. Usually,
roman is used for the page numbers in the table of contents and other top matter
such as the preface, and arabic numbering is used in the main document.

3.4.4 Changing the header and footer

The contents of the header and footer are specified by the page style. The command
\pagestyle{style} changes the pagestyle for pages including the one containing
the \pagestyle command and subsequent pages to style. \thispagestyle{style}

30 DOCUMENT STYLES

style header footer
plain empty centred page number
empty empty empty
headings defined by document style empty
myheadings defined by \markboth and empty

\markright commands

Table 3.2 Page styles for modifying headers and footers

makes a temporary change to the style for the page containing the \thispagestyle
command only.

The four predefined page styles are listed in Table 3.2. If you want other com-
binations, such as running titles in the footer you will have to learn how to write
your own style files, a subject treated in Chapter 12.

The headings page style causes the standard styles to generate a running header
comprising the sectional unit name and (in books) the chapter name typeset in italic
capitals, along with the page number.

The default action of the myheadings style is the same as for the headings
style, but you can specify your own headings using the \markboth{right}{left}
and \markright{right} commands.

If you are using the twoside document option (the default in book style) then
the right argument specifies the header for odd numbered pages and the left

argument for even numbered pages. Documents prepared for single sided printing
use only the right heading. The first page of a document will be typeset with
an empty page, but you can use the titlepage environment to make an empty
titlepage, after which the ‘real’ first page will have a header. Chapters are also set
with an empty header on their first page.

The \mark... commands may require \protect commands in front of com-
mands used in their parameters.

There is a bug in LATEX that causes the \pagestyle{empty} command to misbe-
have when used in a document with the \maketitle command described on page 33.
If your first page has a number on, try putting the pagestyle{empty} command
immediately after the \maketitle command.

3.5 How TEX builds pages

Characters, lines, paragraphs and pages are the basic units with which LATEX deals.
All of these object fit into rectangular boxes of different sizes, and TEX spends most
of its time simply fitting boxes together into larger and larger boxes.

As TEX reads the source file it breaks lines up into words separated by whites-
pace. Whitespace is a string of one or more space, tab or newline characters, except
that a completely blank line marks the end of a paragraph. The actual amount of
space between words is ignored — a single space character means the same as ten
to TEX.

Controlling line breaking 31

TEX continues stringing these words together on one long line separated by
space markers until it has read an entire paragraph. It then adds indentation at the
beginning of the paragraph and chops the line up into segments roughly as wide as
the printed page. It does this first by attempting to break the line at a space. If no
suitable break can be found LATEX applies American hyphenation rules to try and
find a line break in the middle of a word2.

When the linebreaks have been set the lines are justified by stretching or shrink-
ing the interword space until all the lines are the same length. Each line is then
put into an hbox and subsequently is treated as an indivisible unit. The boxes are
stacked, separated by the interline space into a paragraph which is then put into a
vbox.

Parboxes for successive paragraphs are then stacked together, separated by the
interparagraph space, to make a page. When enough have accumulated, TEX looks
for a page break and then, if the \flushbottom declaration is in effect, it stretches
or shrinks the interline and interparagraph space until all the pages are the same
vertical height. The headline and footline are then added (usually containing at
least the page number) and the page is then written on the output file.

Although TEX’s automatic line and page breaking algorithms usually produce
beautiful results, there are occasions when manual intervention is required.

3.6 Controlling line breaking

The \\ command and its synonym \newline force a linebreak without justification
leaving a ragged right. The *-form * inhibits page breaking immediately after the
line. Both commands take an optional length argument which adds extra interline
space after the line, so that \\[2ex] leaves a double space before the next line.

By default LATEX will leave words hanging out into the right margin if it is unable
to find a good line break. A warning message beginning Overfull \hbox ... will
be printed. The \sloppy declaration will produce lines that have too much space
in them rather than overhanging, in which case an Underfull \hbox ... warning
will be given. The default operation can be restored with the \fussy declaration.
The sloppypar environment will typeset complete paragraphs in sloppy mode.

You can give hints to the line breaking algorithm with \linebreak[digit]
which encourages linebreaking at that point and \nolinebreak[digit] which dis-
courages linebreaking. The digit argument may take a value from 0 to 4 — if it is
absent then the default value of 4 is used. The larger the value the more strongly
the operation is encouraged. A value of 4 forces or completely avoids a line break.
(Hence \nolinebreak has the same effect as inserting a tie).

The paragraph indentation is inhibited if a \noindent command is the first
thing in the paragraph. A paragraph indent can be forced with an \indent where
it would otherwise be suppressed.

2English hyphenation rules are rather more strict, so to British eyes TEX has a tendency to
over-hyphenate, but most people are unaware of the difference

32 DOCUMENT STYLES

3.7 Controlling hyphenation

TEX’s hyphenation algorithm is one of its strengths, and it should rarely be neces-
sary to intervene. However, TEX may occasionally fail to hyphenate an unusual
compound word, and it may over-hyphenate if the text is being set in narrow
columns.

Hyphenation of a word may be disabled by putting it into a box, after which
it is treated as an indivisible unit by the line breaking algorithm. There are many
box making commands described in Chapter 11, but the simplest way to make an
indivisible box is with the command \mbox{text}. The text will be typeset as a
single unit, so the single word \mbox{antidisestablishmentarialism} will not
be hyphenated, but is likely to lead to Overfull \hbox ... errors!

The discretionary hyphen command \- may be used to show the places in a
word where hyphenation is allowed. It is used if TEX is failing to detect a valid
hyphenation point, which may happen if you use unusual compound words such as
chemical names. A word containing discretionary hyphens will only be hyphenated
at the discretionary points. It is also the case that TEX will not hyphenate words
that have control sequences such as accents embedded in them, or words that are
typeset using the \tt font.

\hyphenation{words} adds new word patterns to TEX’s hyphenation rules.
words is a list of words separated by spaces with each hyphenation point indicated
by a -. Be sure to include all reasonable hyphenations otherwise you may find that
sometimes when you use the word it generates a bad line break.

3.8 Controlling page breaking

A vertical break is forced with a \newpage command. If two column text is being
set then \newpage starts a new column. \clearpage always starts a new page,
leaving a blank column if necessary. I make a point of always using \clearpage to
start a new page, because you can get a surprise if you use \newpage and then later
on decide to switch to two column printing.

\cleardoublepage forces a start on a new odd-numbered page, leaving a blank
page if necessary. The \chapter command uses \cleardoublepage to ensure that
chapters start on a right-hand page. Multiple consecutive \clearpage or \newpage
commands will only cause a single page break. To get a series of blank pages
you must separate the page throw commands with some invisible text such as a ~
character.

The page breaking algorithm may be given hints with the \pagebreak[digit]
and \nopagebreak[digit] commands which work just like the \linebreak and
\nolinebreak commands described in the section 3.6.

The \samepage declaration disables page breaking altogether except where ex-
plicitly permitted by \pagebreak or \nopagebreak commands. Use \samepage
sparingly, and remember that it is a declaration, not a command like \nopagebreak,
so you must enclose the region of text to be kept on one page in braces or LATEX
will try and put the rest of your document on a single page.

4

Structuring a document

Punctuation is used within sentences and paragraphs to aid the reader by breaking
up long strings of words into comprehensible phrases. Well written prose has a
pleasing rhythm which is different from the colloquial, spoken word.

Technical documents need structure at a higher level as well. Literary works
often rely for their effect on surprising the reader with unusual twists of language.
Whilst textbooks and papers should not be full of clichés, successful presentation of
technical details relies more on reinforcement of ideas than literary fireworks. You
get the effect of reinforcement without repetition by structuring your document so
that the reader has some idea about what is coming next. So use chapter titles,
section headings and introductions to advertise topics in advance.

As well as helping readers as they go along, good section structure is vital for
books that are to be used for reference. Ideally, your reader should be able to look
at a table of contents and quickly home in on the part of the document that treats
a particular topic.

It is possible to go overboard with nested subsections. Chapters, sections and
subsections are usually more than enough for most documents. In this, as in most
matters of style, base your work on other people’s books and reports until you feel
confident enough to break the rules. Legalistic documents, such as programming
language definitions, sometimes justify deeper and more systematic structure, but
this is at the expense of readability. Try reading a programming language standard
like [ISO80, the ISO Pascal standard] and see if you agree.

4.1 The titlepage

LATEX will automatically build a titlepage when you issue the \maketitle com-
mand. This would normally be the first thing in your source file following the
\begin{document}. The exact form is specified by the style file: in book and
report styles the title will be on a separate page but in article the title is inserted
without page throws. The title and author will be set centred, with appropriate
vertical spacing and font sizing. The titling commands are demonstrated in the
large example at the end of Chapter 1.

Before issuing a \maketitle you must declare the title and the author, and
optionally, the date.

\title{text} declares text to be the title. You can use font and size chang-
ing commands within the text parameter as well as forcing line breaks with \\

34 STRUCTURING A DOCUMENT

commands.
\author{name1 \and name2 \and ...} declares the authors separated by \and

commands. The authors will be set in separate blocks of text side-by-side on the
page.

\date{text} inserts text as the date. If there is no \date declaration then the
current date is used. To suppress the date altogether, try \date{} (i.e. supply a
null argument to the \date command).

The \thanks{text} command produces a footnote to the title page which is
usually used for addresses, or to acknowledge funding.

4.1.1 Do-it-yourself titles

If you want complete control over the formatting of the titlepage then replace the
\maketitle command with a titlepage environment. This produces a single page
containing only the text specified within the environment (i.e. with blank headers
and footers) and then resets the page counter to one. You can put any normal
sequence of typesetting commands within the titlepage environment.

4.2 Abstracts

The abstract environment (available only in the article and report standard
styles) sets the enclosed text indented with the word Abstract centred above. In
a report, or an article with the [titlepage] option the abstract appears on a
separate page. The large example in Chapter 1 shows the abstract environment
in use.

4.3 Sectioning commands

LATEX provides a set of sectioning commands which generate section headings and,
optionally, make entries in a table of contents and update the running header. The
specific effect of these commands is defined in the style file, and not all commands
are available in all styles. In particular, letter does not provide any sectioning com-
mands at all. The seven standard commands are listed below. Note that sectioning
commands should be nested according to the ordering here, the only exception being
\part which is optional.

command depth
\part -1 (0 in article)
\chapter 0
\section 1
\subsection 2
\subsubsection 3
\paragraph 4
\subparagraph 5

Each level of sectioning command has an associated counter which is initialised
to zero every time the enclosing section number changes. By default, all sectioning

Making a table of contents 35

commands increment and print the section number before the heading. The exact
form of the section number is customisable in the style file, but the standard styles
simply separate the separate levels with a period and print the numbers in arabic.

If the command is followed by a * then the printing and incrementing of the
associated counter is suppressed. The table of contents entry and updating of the
running header are also suppressed. This is useful for subsidiary subheadings and
in documents such as a Curriculum Vitae where numbered headings would be too
fussy.

4.4 Making a table of contents

Most chapter-oriented documents and long articles benefit from a table of contents
to help the reader navigate around. The command \tableofcontents causes LATEX
to typeset a table of contents before continuing with your file. Normally this com-
mand would be found near the front of a document, after the title and abstract (if
any).

When you use a normal sectioning command (i.e. not one of the *-forms) an
entry is written on a separate output file with the same name as the main source
file but with a file type of .toc. The information written to the toc file actually
comprises LATEX commands describing the table of contents pages, that will be read
and executed the next time LATEX processes the parent file. That is to say, if you
have asked for table of contents generation, LATEX looks to see if a toc file already
exists and if so, processes it before continuing with the parent file. In any case it
creates a new toc file and writes commands to it whilst processing the main file.

This is a technique that LATEX uses extensively to carry information across runs.
TEX is a one pass system that looks at each line of your source file in sequence, so
it cannot in one operation scan your file and create a table of contents.

As a result, table of contents information (as well as cross referencing, bibliog-
raphy, indexing, glossary, list of figures and list of tables records) is always at least
one step behind. If you make a change to a LATEX document that may alter the
table of contents you will have to run LATEX at least twice for the document to
become self-consistent.

4.5 List of figures and list of tables

The \listoffigures and \listoftables commands work in the same way as
\tableofcontents except that the entries are produced by \caption commands
in table and figures (see section 7.3.3) rather than the sectioning commands as for
the table of contents. The information is written on .lof and .lot files respectively.

4.6 Adding entries to contents or tables files

Sometimes it is helpful to add lines to one of these files. The most common example
is when non-numbered sections are required with a table of contents (remember that
the *-form suppresses table of contents information). The command

36 STRUCTURING A DOCUMENT

\addcontentsline{file}{level}{text}

adds an entry to file (which may be toc, lof or lot). level is used to specify the
formatting of the entry and should be the name of one of the sectioning commands
such as chapter. If file is lot then level must be table, if lof then level

must be figure. entry forms the actual text, and corresponds to the parameter of
a sectioning or caption command. If you use a very long entry for text you may
overflow an internal buffer, causing TEX to report a TeX capacity exceeded error.

In the standard styles, contents entries comprise a section number and a section
title set on the left. The indentation of the section number is controlled by level,
and the number is set in a fixed size box. (You may find the space allowed for the
section number inadequate for chapters with many subsections, in which case see
Chapter 12.) To produce your own entries that align with those produced by the
sectioning commands, use

\addcontentsline{file}{level}
{\protect{\numberline{section-number}{section-title}}

4.7 Adding free text to contents or tables files

More general text (such as LATEX commands) can be added to a file using

\addtocontents{file}{text}

which simply writes text to the file specified as above. The text will be incorporated
into the document on the next LATEX pass.

Remember that since both the \addcontentsline and \addtocontents com-
mands write to an external file, some commands in text may need to be preceded
with a \protect command.

4.8 Making appendices

The declaration \appendix changes the way the top level section of a document
is numbered so that appendix sections are numbered alphabetically. \appendix
also resets the section and chapter counters back to zero and changes the chapter
unit name to Appendix. The effect of these changes is that after an \appendix
declaration any \chapter commands in the book and report styles or \section
commands in the article style will generate a heading of the form

Appendix A

and ‘numbering’ will continue from A.

4.9 Footnotes

A footnote is produced with the command \footnote[number]{text}. If the
optional argument is present then the note is numbered using it, otherwise the

Marginal notes 37

footnote counter is stepped and used instead. The number representation is de-
fined by the style file — in the standard styles arabic numerals are used.

Occasionally, a footnote will be requested so close to the bottom of a page
that there is insufficient space to typeset it. In such a case, the footnote will
automatically run on to the next page. There is a bug in LATEX that means that if a
page of floats, such as figures or table, appears on the page after a footnote begins,
the continuation of the footnote will not appear until the next text page. This rare
problem has to be fixed by reworking the text.

The \footnote command can only be used in normal text paragraphs — it can-
not be used inside a box for instance. For these situations, two other commands
are provided that allow ‘simulation’ of the normal footnote command.

\footnotemark[number]
inserts a footnote mark in the text exactly as for the \footnote
except that no actual footnote is produced.

\footnotetext[number]{text}
produces a footnote just like \footnote except that no footnote
mark is placed in the text.

4.10 Marginal notes

Marginal notes are similar to footnotes but are placed in the left or right margins, A note

like the one next to this paragraph.
The command \marginpar[lefttext]{righttext} makes a marginal note. In

[doublesided] documents the notes are placed in the outside margin — left for even
numbered (left hand) pages and right for odd (right hand) pages. For single sided
printing, marginal notes are placed on the right. If the optional argument is present
and the note is created in the left margin, then lefttext will be used for the note,
otherwise righttext will be used. By default, marginal notes are set in roman text:
I produced the note above with \marginpar{\fbox{\small\em A note}}.

The declaration \reversemarginpar reverses the normal ordering, so that even
page notes will appear on the right. \normalmarginpar restores the default be-
haviour.

The marginal note is placed so that it aligns vertically with the line containing
the \marginpar command. If there is a clash, later notes will be moved down and a
warning message will be issued. If you switch between the \normalmarginpar and
\reversemarginpar modes whilst marginal notes are being output, shifting may
fail, leaving notes overprinted.

4.11 Using multiple files

A long document takes a long time to process. Often it is convenient to split
the source file up and process just one section at a time, until all the parts are
satisfactory when they can be brought back together again. You can insert the
contents of another file in your master file with the command \input{filename}
which reads the text from filename before continuing with the parent file. If

38 STRUCTURING A DOCUMENT

filename has no file type then .tex will be appended. If the file cannot be found
then an error is issued and TEX prompts for another filename. (It is sometimes not
possible to get out of this prompting loop. If you get stuck like this, try typing nul
in response to the prompt and TEX will read in an empty file, effectively returning
you to the main file.)

4.11.1 Selective inclusion of files

More sophisticated file handling is possible using the include commands. The in-
dividual files are called into the parent file using \include{filename} commands
by analogy with \input. In the preamble, i.e. before the \begin{document} com-
mand, insert an \includeonly{filename1,filename2,...} command listing the
files that you want processed on this run.

At each subsequent \include{filename}, LATEX looks to see if filename is in
the list of files defined by the \includeonly command. If it is, then LATEX starts
a new page, includes the file and then starts another new page. If filename is
not found a warning message is issued and processing continues. If there is no
\includeonly command then all files are included. Since included files are always
surrounded by page breaks it is best to break the file at Chapter boundaries.

4.12 Writing a message during processing

Sometimes it is useful to type out messages to the user as a LATEX file is being
processed. The command \typeout{text} simply prints out text on the terminal
as LATEX is running. Commands in text are executed before being printed out, so
the use of formatting commands such as \it should be avoided, since in general they
will produce things that cannot be represented on a terminal. If you want to print
out a command name then precede the command with the command \protect.
Because LATEX will interpret text before printing it, a string of spaces in text will
be replaced by a single space in the output. The command \space forces a single
space to be printed, so a string of spaces can be obtained with a string of \space
commands. The command \thepage prints out the page number, so to get LATEX
to print

Present value printed by \thepage is 18

you could use

\typeout{Present value of \protect\thepage is
\space\space\space\space\space \thepage}

4.13 Varying output during a run

It can also be useful to get the user to type information in that can be used to vary
the output from a particular source file. A common requirement is to specify which
parts of a long document are to be processed.

Making an index 39

The command \typein[commandname]{text} prints text on the terminal as for
\typeout. The same constraints on the form of text apply. LATEX then waits for
the user to type a line on the terminal before proceeding. If the optional argument
is present, it must contain the name of a command (i.e. the first character must be
a backslash \). The line typed by the user is assigned to that command without any
interpretation and may be used subsequently to control the output. So the short
file

\documentstyle{article}
\begin{document}
\typein[\myname]{What is your name? }
\typein[\mystyle]{How would you like it printed? }
\mystyle\myname
\end{document}

when processed by LATEX produces the following dialogue:

What is your name?

\myname=Adrian
How would you like it printed?

\mystyle=\Large\bf
[1]

and typesets my name in large bold letters. If you just type a carriage return in
response to the style command the \mystyle will be defined to be null, so the name
will be printed in the default style.

4.14 Making an index

Every technical book should have an index, and there is no easy route to the con-
struction of a thorough and useful one. LATEX cannot help you decide which entries
to include and how exactly to format them, but it will keep track of index entries
and the pages they fall on for you using a mechanism similar to the table of con-
tents construction commands. There is one important difference between a table
of contents and an index, though, and that is that indices are usually sorted alpha-
betically, whereas a table of contents is invariably listed in page ascending order.
This make the use of an auxiliary program almost mandatory for index construction
because LATEX only makes a single pass over the source file and has no facilities for
sorting. This is fine for table of contents generation because the printed order is
the same as the order in which the entries are generated, but obviously inadequate
for an index.

The first piece of advice is to leave construction of the index until the rest of the
document is finished. Then the boring task of subject selection can be performed in
a single sitting. A good way to start deciding which subjects to place in the index is
to get a list of all the words in your document in alphabetical order and strike out

40 STRUCTURING A DOCUMENT

the ones that should definitely not be indexed, such as simple parts of speech. It is
quite easy to write a program that replaces every space character in your document
with a carriage return (a global search and replace using your text editor might
suffice) and the operating system sort utility can then be used to put the words in
ascending order and eliminate any duplicates. (If you are using MS-DOS you are
likely to find that the MS-DOS sort command is inadequate because it can only
handle files up to 64K byte in length. Many utility packages for MS-DOS provide
a better sort command).

Having decided on a set of entries you must mark the places in the text that
are to be indexed. Do not make the mistake of indexing every single occurrence
of the word. You should index the places where the item is defined and discussed
at length, not every cross reference. You may find that the same item is used in
several contexts, and this may justify several separate index sub-entries. As in all
such matters, have a look at the indices to books that you use and try to emulate
their practice.

4.14.1 Writing an index file

The LATEX index entries are collected on a file called name.idx by analogy with the
.toc file used for table of contents entries. The entries are only written if there
is a \makeindex command before the \begin{document}. LATEX will run faster if
index writing is suppressed by leaving out the \makeindex.

Wherever you want an index entry generated, add the command \index{text}
immediately after the word to be indexed. If you leave a space before the \index
command then a page break might intervene and generate an index entry that
was one page off. Each \index writes a single line to the .idx file of the form
\indexentry{text}{pagenumber} where text is the text from the \index com-
mand and pagenumber is the number of the page containing the \index command.
As for table of contents generation, several LATEX runs may be required to stabilise
the page numbers.

These basic LATEX commands are not sufficient to make a complete index for you.
Naturally, LATEX writes the .idx file in the order in which it finds the \indexentry
commands, so at the very least you need to sort the .idx file to provide an alpha-
betically ordered index.

4.14.2 The theindex environment

At the end of your document you can use typeset the index by surrounding it with

\begin{theindex} . . . \end{theindex}

This will typeset the word Index as for a chapter heading, and set double column
formatting. Within a theindex environment, the commands \item, \subitem and
\subsubitem are defined to start a new line with increasing amounts of indentation,
and should be used to introduce each item in the index. The command \indexspace
is intended to be used before the first item beginning with a new letter in the index,
marking off the different alphabetical blocks. The exact form of the theindex
environment is specified in the style file.

Making a glossary 41

4.14.3 How to turn an index file into an index

The contents of the .idx file is not directly usable in the index. However, if you
perform a sort on the index file, and then add the following commands to the end
of your document then you can get a rough and ready index:

\begin{theindex}
\newcommand{\indexentry}[2]{\item #1, #2}
\input{myfile.idx}
\end{theindex}

(Of course, in the above myfile.idx should be replaced with the name of the
sorted index file.) The \newcommand definition is explained in Chapter 10 — suffice
to say here that it will take each line of the .idx file and typeset the indexed item
followed by a comma and the page on which it occurs.

This cheap and cheerful index will need a good deal of tidying up. Firstly, an
\indexspace command should be inserted between each alphabetical block. More
importantly, multiple \index commands will appear as multiple adjacent index
entries and you should rearrange them to show a single entry with a list of pages.
Finally, real indices use hierarchy with sub-items refining the main entry.

There are several index making programs available that are designed to help
build LATEX indices. A popular one (makeindex or makeindx on MS-DOS systems)
described in Chapter 13, will automatically perform the housekeeping tasks such as
telescoping multiple entries. If you have such a program, use it rather than trying
to do the job yourself.

4.15 Making a glossary

The declaration \makeglossary when it appears in the preamble switches on the
creation of a glossary .glo file. The \glossary{text} command writes a line
to the .glo file of the form \glossaryentry{text}{pagenumber}, just like the
\indexentry command. You can use similar manual procedures to typeset the
glossary, but there is no glossary environment or special set of glossary formatting
commands.

4.16 Suppressing output files

The generation of the .toc, .lof, .lot, .idx, .glo and .aux files will be switched
off if you put a \nofiles command in the preamble. This means that table of con-
tents and indexing information will become out of date as you continue to update
the document file, but LATEX will run faster. Unless you have a very slow LATEX
system, it is best not to issue a \nofiles command. The.aux file holds any ref-
erences or citations you define (amongst other things) and is always generated by
the article, report and book standard styles. You will find more information on
cross referencing and bibliographic citation in Chapter 9.

5

Fonts and special symbols

LATEX can produce normal type in eleven basic type styles and twelve sizes as
well as a whole host of special symbols. It is particularly good at typesetting
mathematics, because TEX understands the rules of mathematical typography and
will automatically space formulae correctly. There are even special fonts which can
be used for drawing diagrams and pictures.

This chapter is in two main parts which describe how to access fonts from within
normal text mode and within maths mode. You will find commands for changing
type size and style as well as tables of font sizes for the standard document styles,
special accents for foreign languages, special punctuation symbols and mathematical
symbols. A full discussion of maths typesetting is delayed until Chapter 8 and the
picture drawing commands are described in Chapter 7.

You may find that there are TEX fonts on your system that are not part of
the standard LATEX font set. For instance, in my department the College shield is
available for use on letterheads, business cards and so on. You will find instructions
for accessing such fonts in section 5.4.

5.1 Normal text

In this context, ‘normal text’ means everything outside of maths mode, i.e. text that
is not enclosed by $... $, \(... \), \[... \] or inside one of the maths-mode
environments listed in Table 8.1.

5.1.1 Type styles

By default, LATEX sets type in a font called ‘roman’. There are seven type styles
shown in Figure 5.1 that may be used with ordinary text — roman, bold, sans serif,
slanted, italic, small caps and typewriter. Style changing declarations are often
embedded in braces so that at the end of a highlighted section the previous typestyle
is automatically reselected, so for example

This {\bf bold} word

produces

This bold word

44 FONTS AND SPECIAL SYMBOLS

\rm roman abc ABC 012 +?-
\bf bold abc ABC 012 +?-
\sf sans serif abc ABC 012 +?-
\it italic abc ABC 012 +?-
\sl slanted abc ABC 012 +?-
\sc small caps abc ABC 012 +?-
\tt typewriter abc ABC 012 +?-

Table 5.1 Type styles

The typewriter style is especially useful because it is non-proportionally spaced.
If you typeset a computer listing using \tt style then the spacing of the original
will be preserved because all of the characters are the same width, just like on a
typewriter or terminal. The other fonts areproportionally spaced so that an i takes
up less space than an m.

5.1.2 Emphasised text

Most text is set in roman, with occasional sections emphasised in italics. This
kind of emphasis can be used (sparingly please) to make a special point, or when
a new technical term is being introduced for the first time. Sometimes, emphasis
is required within an emphasised passage which is conventionally represented by
switching back into roman. There is a special declaration \em which switches into
italic if the current font is roman, and into roman if the current font is italic. Use
this declaration for all emphasis. In general the \rm and \it declarations should
rarely appear.

5.1.3 Ligatures

A ligature is two or more characters tied together into a single symbol. When text is
properly typeset, combinations of characters such as ff should appear as the single
symbol ff, so that riffraff becomes riffraff.

When TEX reads a source file it automatically looks for combinations of adjacent
letters that would be better set as a single unit. The exact combinations are a
property of the particular font in use and are supplied by the font designer. LATEX
is set up to look for the standard English ligatures listed in Table 5.2. Some other
ligatures that are used in foreign languages are available (see Table 5.6) but must
be explicitly asked for using the corresponding control sequence.

ff ff ff fi fi fi ffi ffi ffi fl fl fl ffl ffl ffl

Table 5.2 Automatically detected ligatures

Normal text 45

In practice you can often spot documents that have been typeset by human
printers because the ligatures are missing. This saves the typesetter time, and most
customers do not know any better. Should you wish to simulate this barbarous
practice, or to typeset an unusual word such as shelflife (which looks better as
shelflife) then insert an empty group between the letters forming the ligature as in

half{}life halflife.

5.1.4 Kerning

As well as actually replacing some letter combinations with ligatures, typesetters
change the spacing between certain letter combinations so that, for instance in the
word ‘odd’ the o and the d (which are both rather wide letters) are pushed apart,
whereas in the word ‘ox’ the x is pulled in to the o. This process, known as kerning,
keeps the visual density of words on the page even and makes your document more
pleasant to read. As with ligaturing, all the kerning information is specified by the
font designer and TEX automatically adjusts the spacing by looking for patterns in
the text. No special commands are required.

5.1.5 Dashes

Printed books use four kinds of dashes and careful LATEX users will distinguish
between them.

name typeset command usage example

hyphen - - compound words semi-precious
range dash – -- numeric range pp 16–24
punctuation dash — --- asides —or xyz—
minus sign − $-$ mathematics 3× 6− 2

Table 5.3 Dashes

Some English readers find TEX’s punctuation dash—which directly abuts neigh-
bouring words—a little obtrusive, so I put a narrow space on either side — like this.
You can make a narrow space with the command \, described in section 5.3.2.

5.1.6 Quote marks

A standard keyboard has three quote mark keys ‘ ’ and " . TEX produces ‘
’ and ” for these characters. Most typists use only the " character so that quoted
speech is printed ”like this” instead of “like this”. In general you should forget all
about the " key and just use ‘ and ’.

Single quotes are often used when a new technical term is being introduced.
Double quotes are most often used for reported speech, with single quotes for re-
ported speech within reported speech. LATEX uses the ligature mechanism to detect

46 FONTS AND SPECIAL SYMBOLS

two quotes next to each other so that ‘‘ yields “ not ‘‘. This causes a problem
when nesting reported speech. ‘‘He said ‘Do this’’’ produces “He said ‘Do
this”’ because the first two close quotes are merged into a double quote. As before,
the solution is use an empty group — ‘‘He said ‘Do this’{}’’ gives “He said
‘Do this’”.

5.1.7 Logos

The TEX and LATEX logos require unusual vertical spacing and may be produced
with the \LaTeX and \TeX commands (note the unusual capitalisation).

5.1.8 Type sizes

The \documentstyle declaration at the start of your source file specifies a font base
size for the typeset output. Character sizes are traditionally measured in points, of
which there are approximately 72 in one inch. In LATEX, the default size is usually
10pt, but the style may optionally provide other sizes. The standard document
styles support 10pt, 11pt and 12pt base sizes.

The document styles define ten size changing declarations that may be used to
scale your text from the base size. As long as you use these declarations then a
change from an 11pt to a 12pt base size will cause all fonts to scale in step with
each other. The size changing commands are named after the way in which LATEX
uses them. Table 5.4 shows the relative sizes obtained when using a 10pt base size.

\tiny abc ABC 012 +?-

\scriptsize abc ABC 012 +?-

\footnotesize abc ABC 012 +?-

\small abc ABC 012 +?-

\normalsize abc ABC 012 +?-
\large abc ABC 012 +?-
\Large abc ABC 012 +?-
\LARGE abc ABC 012 +?-
\huge abc ABC 012 +?-
\Huge abc ABC 012 +?-

Table 5.4 Size changing commands

Whenever you use a size changing command it resets the style to roman. Hence
to get large bold characters you must use \large\bf. You can not use size changing
commands in maths mode.

There is a new way of selecting fonts described in Chapter 13 that allows you
to modify font attributes individually, and also gives access to many more fonts. It
is not described in this chapter because this New Font Selection Scheme (NFSS) is
not yet part of the standard distribution.

Normal text 47

Naturally the exact font size corresponding to each of these depends on the base
document font size. For the standard styles (article, report and book) the actual
font sizes obtained are shown in Table 5.5.

Size command [10pt] [11pt] [12pt]

\tiny 5pt 6pt 6pt
\scriptsize 7pt 8pt 8pt
\footnotesize 8pt 9pt 10pt
\small 9pt 10pt 11pt
\normalsize 10pt 11pt 12pt
\large 12pt 12pt 14pt
\Large 14pt 14pt 17pt
\LARGE 17pt 17pt 20pt
\huge 20pt 20pt 25pt
\Huge 25pt 25pt 25pt

Table 5.5 Font sizes using standard styles

5.1.9 Special symbols and foreign characters

Some common symbols are not represented in the normal computer character sets
(such as the German ß). Others such as % are already reserved by LATEX. Table 5.6
lists special symbols that can be accessed when typing normal text, and the control
sequences that generate them. There are further table of maths-mode only symbols
below.

\# $ \$ % \% & \& _
{ \{ } \} ¿ ?’ ¡ !‘ £ \pounds
ø \o Ø \O l \l L \L ß \ss
† \dag ‡ \ddag § \S ¶ \P c© \copyright
å \aa ı \i \j Å \AA
œ \oe Œ \OE æ \ae Æ \AE

Table 5.6 Special symbols and foreign characters

5.1.10 Foreign accents

Accents are produced by typesetting punctuation-like symbols, backspacing and
typesetting the accented character. LATEX provides a set of commands to do this
such as \’e which generates the French e-acute é.

More generally, if the accent command is followed by a group then the accent
is placed centrally over the group. The only accent that normally requires this

48 FONTS AND SPECIAL SYMBOLS

facility is the tie which by definition must sit over more than one letter, so \t{oo}
generates �oo. The full set of accents is illustrated in Table 5.7. If you want to
produce an accented i or j then the dot on the normal version of the character must
be suppressed for which purpose the \i and \j commands, which produce ı and ,
are provided.

ò \‘o ó \’o õ \~o ô \^o o̧ \c o

ō \=o ȯ \.o o
¯

\b o o. \d o �oo \t{oo}

ő \H o ŏ \u o ö \"o ǒ \v o

Table 5.7 Foreign accents

5.2 Maths mode text

Maths mode is described in some detail in Chapter 8. In maths mode TEX com-
pletely ignores the spacing in the source file and typesets according to its own rules.
Many useful symbols are only available in maths mode. If you want these symbols
in a paragraph set in normal mode, then switch temporarily into maths mode us-
ing single dollar signs to delimit the maths-mode text. In what follows, the mode
changing commands are usually omitted.

5.2.1 Maths type styles

Most maths is set in a font called maths italic which is superficially like text italic,
but more widely spaced. There are two type styles that are only available in maths
mode —maths italic, and CALLIGRAPHIC. In addition, maths may be printed
in bold characters, and there are bold maths italic and bold calligraphic fonts for
this purpose.

The calligraphic (or script) style provides capital letters only. If you attempt to
typeset lowercase script, you will get bizarre results.

$\cal ABCDEFGHIJKLMNOPQRSTUVWXYZ$ produces
ABCDEFGHIJKLMNOPQRST UVWXYZ

Table 5.8 Calligraphic capitals

5.2.2 Bold maths

Bold maths can be switched on and off using the \boldmath and \unboldmath
declarations. Perhaps unexpectedly, they must be used in text mode, not in maths

Maths mode text 49

mode. Normal maths italic characters, Greek, calligraphic and most special symbols
will then be printed using bold characters. However, the following will always be
set in normal (unbold) maths fonts

1. subscripts and superscripts

2. the variable sized symbols shown in Table 5.17

3. large delimiters from Table 5.18 (Normal sized versions are printed bold).

4. the characters + : ; ! ? () []

Some of the symbols in Table 5.16 are constructed by printing smaller symbols
next to each other, such as \Longrightarrow =⇒ which is made up of = and ⇒.
In bold maths mode, the spacing of the characters should be changed to ensure a
neat join, but this does not always work.

5.2.3 Log-like functions

In maths mode, normal spacing is suppressed and each letter in a word is treated as
a separate symbol, so no kerning or ligaturing is applied. If you need to typeset a
function like sin(θ) and you use the obvious $sin(\theta)$ you will be disappointed
to see sin(θ) appearing in the output. There are in fact a series of predefined
functions listed in Table 5.9 that produce single words typeset in roman.

\arccos \cos \csc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \lg \ln \Pr \sup
\arctan \cot \det \hom \lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

Table 5.9 Log like functions

5.2.4 Maths accents

By analogy with the foreign accents listed in Table 5.7, LATEX provides a separate set
of accents for use in maths mode only shown in Table 5.10. Most of these reproduce
foreign accents over a maths italic letter, but a vector accent is also provided. The
difference between \hat and \widehat, and between \tilde and \widetilde is
that the wide versions of the accent will attempt to stretch themselves over a long
argument.

5.2.5 Greek characters

Upper and lower case Greek symbols may be accessed in maths mode. Table 5.11
shows the full set of letters. Note that several Greek capitals are the same as roman

50 FONTS AND SPECIAL SYMBOLS

x̆ \breve{x} x́ \acute{x} x̄ \bar{x} ẋ \dot{x}
x̌ \check{x} x̀ \grave{x} ~x \vec{x} ẍ \ddot{x}
x̂ \hat{x} x̃ \tilde{x} x̂yz \widehat{xyz} x̃yz \widetilde{xyz}

Table 5.10 Maths accents

capitals, and that some lowercase Greek letters have alternative forms. Upper-
case Greek is traditionally set using unslanted characters. Italic Greek capitals are
available via the \mit declaration.

α \alpha A A A A
β \beta B B B B
γ \gamma Γ \Gamma Γ \mit\Gamma
δ \delta ∆ \Delta ∆ \mit\Delta
ε \epsilon ε \varepsilon E E E E
ζ \zeta Z Z Z Z
η \eta H H H H
θ \theta ϑ \vartheta Θ \Theta Θ \mit\Theta
ι \iota I I I I
κ \kappa K K K K
λ \lambda Λ \Lambda Λ \mit\Lambda
µ \mu M M M M
ν \nu N N N N
ξ \xi Ξ \Xi Ξ \mit\Xi
o o O O O O
π \pi $ \varpi Π \Pi Π \mit\Pi
ρ \rho % \varrho P P P P
σ \sigma ς \varsigma Σ \Sigma Σ \mit\Sigma
τ \tau T T T T
υ \upsilon Υ \Upsilon Υ \mit\Upsilon
φ \phi ϕ \varphi Φ \Phi Φ \mit\Phi
χ \chi X X X X
ψ \psi Ψ \Psi Ψ \mit\Psi
ω \omega Ω \Omega Ω \mit\Omega

Table 5.11 Greek letters

5.2.6 Other mathematical symbols

A large set of operators, relations and delimiters are shown in Tables 5.12–5.18.
Each class of operators has a type which governs the spacing rules applied by LATEX
when typesetting formulae. The rules governing this spacing are described in Chap-

Leaving space in a document 51

ter 8, but for now note that the symbol \vert (|) is not the same as the relation
\mid or the delimiter |. All three commands produce the same character, but
surrounded by different amounts of space.

The delimiters and variable size operators listed in Tables 5.17 and 5.18 are
available in different sizes. Chapter 8 shows you how to get variable size symbols.

ℵ \aleph < \Re = \Im 0 \mho
h̄ \hbar ℘ \wp ı \imath \jmath
` \ell ∇ \nabla ∂ \partial

√
\surd

∀ \forall ∃ \exists ¬ \neg or \lnot \ \backslash
> \top ⊥ \bot ‖ \|or \Vert 6 \angle
♣ \clubsuit ♦ \diamondsuit ♥ \heartsuit ♠ \spadesuit
′ \prime ∅ \emptyset ∞ \infty | \vert
[\flat \ \natural] \sharp
2 \Box 3 \Diamond 4 \triangle

Table 5.12 Miscellaneous symbols of type ord

+ + − - / / ÷ \div
∗ \ast ? \star · \cdot × \times
◦ \circ © \bigcirc • \bullet � \odot
⊕ \oplus 	 \ominus ⊗ \otimes � \oslash
∩ \cap ∪ \cup u \sqcap t \sqcup
] \uplus / \triangleleft . \triangleright ± \pm
� \diamond 4 \bigtriangleup 5 \bigtriangledown ∓ \mp
� \lhd � \rhd � \unlhd � \unrhd
∨ \vee or \lor ∧ \wedge or \land \ \setminus o \wr
† \dagger ‡ \ddagger q \amalg

Table 5.13 Binary operations of type bin

5.3 Leaving space in a document

You can leave horizontal and vertical space with the commands \hspace{length}
and \vspace{length}. length can be any construction described in Section 11.3.

If an \hspace occurs at a line break, or a \vspace command occurs at a page
break, it is suppressed so as to avoid anomalous gaps at the start of lines and pages.
The *-forms of these commands \hspace* and \vspace* will always generate space
even if they fall at a break.

The command \par produces exactly the same effect as a blank line: it marks the
end of a paragraph. Immediately after a \par command or a blank line, you can use

52 FONTS AND SPECIAL SYMBOLS

< < > > = =
≤ \leq or \le ≥ \geq or \ge ≡ \equiv
≺ \prec � \succ ∼ \sim
� \preceq � \succeq ' \simeq
� \ll � \gg � \asymp
⊂ \subset ⊃ \supset ≈ \approx
⊆ \subseteq ⊇ \supseteq ∼= \cong
v \sqsubseteq w \sqsupseteq ./ \bowtie
∈ \in 3 \ni or \owns ∝ \propto
` \vdash a \dashv |= \models
^ \smile | \mid

.= \doteq
_ \frown ‖ \parallel ⊥ \perp

Table 5.14 Relations of type rel

6< \not< 6> \not> 6= \not= or \ne or \neq
6≤ \not\leq 6≥ \not\geq 6≡ \not\equiv
6≺ \not\prec 6� \not\succ 6∼ \not\sim
6� \not\preceq 6� \not\succeq 6' \not\simeq
6� \not\ll 6� \not\gg 6� \not\asymp
6⊂ \not\subset 6⊃ \not\supset 6≈ \not\approx
6⊆ \not\subseteq 6⊇ \not\supseteq 6∼= \not\cong
6v \not\sqsubseteq 6w \not\sqsupseteq 6./ \not\bowtie

Table 5.15 Negated relations of type rel

← \leftarrow or \gets ←− \longleftarrow ↑ \uparrow
⇐ \Leftarrow ⇐= \Longleftarrow ⇑ \Uparrow
→ \rightarrow or \to −→ \longrightarrow ↓ \downarrow
⇒ \Rightarrow =⇒ \Longrightarrow ⇓ \Downarrow
↔ \leftrightarrow ←→ \longleftrightarrow l \updownarrow
⇔ \Leftrightarrow ⇐⇒ \Longleftrightarrow m \Updownarrow
7→ \mapsto 7−→ \longmapsto ↗ \nearrow
←↩ \hookleftarrow ↪→ \hookrightarrow ↘ \searrow
↼ \leftharpoonup ⇀ \rightharpoonup ↙ \swarrow
↽ \leftharpoondown ⇁ \rightharpoondown ↖ \nwarrow
⇀↽ \rightleftharpoons ; \leadsto

Table 5.16 Arrows of type rel

Leaving space in a document 53

∑
\sum

⋂
\bigcap

⊙
\bigodot∏

\prod
⋃

\bigcup
⊗

\bigotimes∐
\coprod

⊔
\bigsqcup

⊕
\bigoplus∫

\int
∨

\bigvee
⊎

\biguplus∮
\oint

∧
\bigwedge

Table 5.17 Variable size operators of type op

(()) ↑ \uparrow
[[]] ↓ \downarrow
{ \{ } \} l \updownarrow
b \lfloor c \rfloor ⇑ \Uparrow
d \lceil e \rceil ⇓ \Downarrow
〈 \langle 〉 \rangle m \Updownarrow
/ / \ \backslash
| | ‖ \|

Table 5.18 Delimiters of types open and close

the special command \addvspace{length} which will ‘top-up’ the vertical space
to length. This command will only add space if necessary and many environments
add vertical space of their own, so the effect of an \addvspace command is to ensure
that at least length worth of vertical space will be left.

5.3.1 Standard vertical spaces

Each style file defines three vertical intervals that are used throughout the document
when setting displays out from their enclosing text, spacing paragraphs and so
on. The commands \bigskip, \medskip and \smallskip generate these standard
spaces, and should be used in preference to explicit lengths so as preserve the overall
look and feel of the document.

5.3.2 Standard horizontal spaces

A backslash followed by a space (in other words the control symbol ‘\ ’) produces an
interword space that may be broken just like an ordinary space. It is needed when
a space must be left after a control word because TEX eats all normal space after a
control word. Hence the many occurrences of the LATEX logo in this document are
typed as \LaTeX\ .

The following horizontal space making commands are available in maths mode

\, thin space

\: medium space

54 FONTS AND SPECIAL SYMBOLS

\; thick space
\! thin backspace
\quad a quad (1em)
\qquad a double quad (2em)

The thin space command \, and quad commands may also be used in text
mode. A common use is to space the quotation marks in nested reported speech
‘‘He said, ‘Do this’\,’’ produces “He said, ‘Do this’ ”.

5.3.3 Springs and leaders

There is a special command that can be used in the length parameter of the spacing
commands. A length of \fill means ‘as much as you need’ and is like inserting a
spring into a line. Items neighbouring a spring are pushed up against the margins,
so

left flushed text \hspace{\fill} right flushed text

produces

left flushed text right flushed text

Similarly, vertical \fills may be used to spread paragraphs vertically. If you
put two or more springs on a line you can get special spacing effects. These are
demonstrated in section 11.4.2.

The command \hfill is an abbreviation for \hspace{\fill}, and the com-
mands \dotfill and \hrulefill also produce springs, except that their position
is marked by a line of dots and an underline rule respectively:

left flushed text \dotfill right flushed text

left flushed text \hrulefill right flushed text

produces

left flushed text . right flushed text
left flushed text right flushed text

5.3.4 Space after full stops

Normally LATEX leaves a small space after a full stop. It would be undesirable to
have space after every full stop, since abbreviations such as U.S.A. would then be
spread out. Therefore the rule applied is: leave a space only if a full stop follows a
word beginning with a lowercase letter.

Most of the time this works well. There are occasions however when a sen-
tence ends with a capitalised word, and in such cases you must follow the full stop
with the command \@ which explicitly generates the end of sentence space, as in
She saw John Smith.\@

The \frenchspacing command completely suppresses all extra space after punc-
tuation. Default behaviour is restored with the \nonfrenchspacing declaration.

Accessing other TEX fonts 55

Name LATEX Sample
CMR10 Roman \rm abc ABC 123 ?!()
CMSL10 Slanted \sl abc ABC 123 ?!()
CMTI10 Text Italic \it abc ABC 123 ?!()
CMU10 Upright abc ABC 123 ?!()
CMB10 Bold abc ABC 123 ?!()
CMBX10 Bold Extended \bf abc ABC 123 ?!()
CMBXSL10 Bold Extended Slanted abc ABC 123 ?!()
CMBXTI10 Bold Extended Text Italic abc ABC 123 ?!()
CMCSC10 Caps and Small Caps \sc abc ABC 123 ?!()

CMDUNH10 Dunhill abc ABC 123 ?!()
CMSS10 Sans Serif \sf abc ABC 123 ?!()
CMSSI10 Sans Serif Italic abc ABC 123 ?!()
CMSSBX10 Sans Serif Bold Extended abc ABC 123 ?!()
CMTT10 Teletype \tt abc ABC 123 ?!()
CMSLTT10 Slanted Teletype abc ABC 123 ?!()

CMITT10 Italic Teletype abc ABC 123 ?!()

CMTCSC10 Teletype Caps and Small Caps abc ABC 123 ?!()

Table 5.19 Common Computer Modern fonts

5.3.5 Space after italics

Switching between italic and upright fonts can lead to ugly text if the last italic
character has an ascender, which may collide with the next word or punctuation
mark: ‘PS:’ should really be typeset as ‘PS :’. Every TEX italic font has a special
space value associated with it called the italic correction which you can typeset
using the command \/.

5.4 Accessing other TEX fonts

Although LATEX provides a large set of characters and symbols most TEX installa-
tions will have even more available in different fonts and sizes.

If you want to use these you must first tell LATEX about them with the command
\newfont{command}{fontdescription}. For instance, the section titles in this
book are set in a 12pt bold sans serif font which is not part of LATEX’s standard
repertoire. It is declared using \newfont{\sfb}{cmssbx10} after which

\sfb abc ABC 012 +?- produces abc ABC 012 +?-

You should be restrained in your use of ‘alien’ fonts, since there is no guaran-
tee that other LATEX users will have access to them. If you write documents for
distribution to other people, stick to the standard commands. However, most TEX
installations include the set of fonts shown in Figure 5.19 in various sizes.

56 FONTS AND SPECIAL SYMBOLS

cmr17:

abcdefg ABCDEFG 0123456 !?()
cmr10 magnified to 17pt:

abcdefg ABCDEFG 0123456 !?()

Figure 5.1 17pt characters

5.4.1 Font magnifications

Every TEX font has a design size which is its natural size on the page. Larger
characters are best obtained by using variants of the font with larger design sizes,
because the details of serifs and curves will in general vary slightly with the size to
produce a balanced composition.

Figure 5.1 shows sample characters from the CMR17 font which has a design
size of 17pt, and from the CMR10 font magnified to 17pt size. As you can see,
the CMR10 characters are slightly wider and heavier than the true 17pt characters.
This variation maintains print density and readability between different size fonts.
Always use the font with a design size nearest the size you need on the typeset
output.

If you must magnify a font because you do not have the necessary design sizes,
there are two ways to go about it: either by requesting a specific size (usually in
points) or by scaling the font by a magnification factor. Scaling is preferred, because
there are seven standard scaling factors which are predefined for you to match the
available font magnifications. If you specify an absolute size, you may miscalculate
and request a non-standard height which is not available.

Fonts are usually scaled by a factor of 1.2, with a base size of 10pt. A standard
set of sizes is then:

5.787 6.944 8.333 10 12 14.4 17.28 20.736 24.883 29.86 35.831 42.998 51.598

These are loosely referred to as 5pt, 7pt, 9pt and so on by rounding to the
nearest integer. In TEX parlance, each factor 1.2 magnification is a magstep, and
there are seven predefined commands \magstep0 – \magstep5 and \magstephalf
which apply scalings of 0, 1.2, 14.4 . . . 24.883, and in the case of \magstephalf
1.1. You use the commands when specifying the fonts. In Figure 5.1 the magnified
CMR10 font was declared as

\newfont{\bigcmr}{cmr10 scaled \magstep3}

to magnify 10pt characters up to 17.28pt. The word scaled here is a keyword (see
section 2.1.5) and has no leading \.

You can also request font magnification by absolute size: the same effect could
be achieved with

\newfont{\bigcmr}{cmr10 at 17.28pt}

Accessing other TEX fonts 57

The only problem with using absolute sizes is that it is easy to forget the decimal
places, and request a font that that has a non-standard size. TEX will proceed quite
happily, but when you come to run the DVI driver you may find that the font is
unavailable.

5.4.2 Accessing characters by number

Some fonts, such as the maths fonts, contain symbols rather than letters, and unless
someone has defined control sequences that access the individual characters you
may not be able to typeset them. If you can get a list of the characters and their
positions within the font you can use the \symbol command to access them. For
instance, the æ diphthong character is in fact character number 26 in the standard
alphabetic fonts, so you can typeset one either with the usual command \ae or with
\symbol{26}.

5.4.3 How to find out what fonts are available

Font information is stored in two sets of files: TEX font metric files which have a
file type of .tfm, and pixel files which have file types of either .pk, .pxl or .gf.
The pk format files are now standard and if your system is using either of the other
two formats you should consider switching over, because pk files are more space and
processing time efficient.

TEX itself only needs the .tfm files to run. These files list the size of bounding
box for every character in the font. Since TEX is really a program for putting boxes
together and does not need to know the pattern of ink to be found within each box,
the .tfm file is sufficient.

The DVI driver that produces the printer file clearly does need to know the
pattern of ink, and that information is held in the pixel files. The reason that
separate sets of files are maintained is that a single small .tfm file holds all the
information that TEX needs, whereas the pixel files can become very large, especially
when high resolution devices are used. This book was drafted using a normal laser
printer with manageably small pixel files, but the final copy was produced on a high
resolution phototypesetter that needs ten times as much file space to hold the pixel
files. To make matters worse, every magnification of a font requires a separate pixel
file, so it is not uncommon for the more obscure fonts to only be available in the
smaller magnifications.

The list of .tfm files tells you what fonts TEX will recognise, and the list of pixel
files tells you what magnifications are available for printing. On most systems,
there is a fonts directory parallel to the inputs directory (see page 24) which
contains the .tfm and pixel files. If you find that a font is not available at the
desired magnification it may be possible to make the necessary pixel files using the
METAFONT program. You will find more information on how to obtain unusual
fonts in Chapter 13.

6

Text displays

A piece of text that is typeset so as to stand out as a separate block from the main
text is called a display. They are used for lists, large quotations and for temporarily
overriding text justification. LATEX provides a series of environments for generating
different kinds of displays.

The center, flushleft and flushright environments change the justification,
so that instead of spreading the lines of text out to meet the two margins the text
lines are centred, given a ragged right or a ragged left. Some people prefer a ragged
right for letters, which looks a little less formal. The address box in the example
letter shown in Figure 3.1 has been set using a flushright environment to give a
ragged left.

There are three environments for indenting displays. They all leave a little
vertical space above and below the display body. Within a quote environment, the
margins are indented and the paragraph indentation is suppressed. The quotation
environment is very similar but uses normal paragraph indentation. It is intended
for longer, multiparagraph quotes. The verse environment is intended for type
setting verse. It indents, and sets a ragged right.

Lists may be constructed with three different environments. itemize constructs
bulleted lists, enumerate makes numbered lists and description uses text labels.
Within any of these three, the \item command is used to define the start of a new
list body.

Finally, text may be set ‘as-is’ without any interpretation of commands using
the verbatim and verbatim* environments. Even spacing is maintained within a
verbatim environment, which makes them especially useful for including computer
programs, where the indentation is often significant and must be maintained in the
typeset text. There is also an inline verbatim command called \verb which may be
used in the body of the text without introducing any vertical spacing.

6.1 Indented displays

Indentation is useful for far more than just quotations. The creative use of white
space in your document can make it pleasant to read, and indented paragraphs
reinforcing important points stand out well.

60 TEXT DISPLAYS

6.1.1 quote

A short quotation may be represented in the main text simply by putting quote
marks around it — “Be concise in your writing and talking, especially when giving
instructions to others.”. However, for long quotations this can often result in com-
plicated and difficult to read paragraphs. A display uses white space to break up
the text and make it easier to read. The quote environment indents paragraphs
and leaves a vertical gap

‘The less a thing can be proved, the angrier we get when we argue about
it.’

‘Money cannot buy happiness, but it can make you awfully comfortable
while you’re being miserable.’

6.1.2 quotation

If a quote contains several paragraphs then use the quotation environment which
preserves paragraph indentation and spacing.

I thought the following four would be enough, provided that I made
a firm and constant resolution not to fail in the observance of them.

The first was never to accept anything as true if I had not evident
knowledge of its being so; that is carefully avoid precipitancy and preju-
dice, and to embrace in my judgement only what presented itself to my
mind so clearly and distinctly that I had no occasion to doubt it. The
second, to divide each problem I examined into as many parts as was
feasible, and as was requisite for its better solution. The third, to direct
my thoughts in an orderly way; beginning with the simplest objects,
those most apt to be known, and ascending little by little, in steps as
it were, to the knowledge of the complex; and establishing an order in
thought even when the objects had no natural priority one to another.
And the last, to make throughout such complete enumerations and such
general surveys that I might be sure of leaving nothing out.

René Descartes, Discours de la méthode pour bien conduire sa
raison et chercher la vérité dans les sciences 1637

6.1.3 verse

The verse environment indents the margins and suppresses line justification leaving
a ragged right. You must mark the end of each line with a \\ command.

A king who was mad at the time,
Decreed limerick writing a crime;
But late in the night
All the poets would write
Verses without any rhyme or meter.

Non-justified displays 61

6.2 Non-justified displays

When TEX builds a paragraph it collects words together until it has enough to
almost fill a line, and then justifies the line. It does this by adjusting the interword
spacing, experimenting with hyphenating the last word, and adding one more word
until it finds the least bad layout.

Sometimes a non-justified paragraph is required in which case TEX simply gath-
ers words until the addition of one more would extend the line beyond the right
margin and then goes straight on to the next line. In general this will generate a
‘ragged right’ paragraph.

There are three LATEX environments that produce unjustified text

� flushleft which flushes text against the left margin thus giving a ragged
right,

� flushright which gives a ragged left (rarely required),

� center which centres the line by distributing the left over space equally be-
tween the right and left ends.

Their effects are illustrated in Table 6.1.

flushleft center flushright

Mary had a little lamb Mary had a little lamb Mary had a little lamb
She tied it to a pylon She tied it to a pylon She tied it to a pylon
10kV was all it took 10kV was all it took 10kV was all it took
To turn its wool to nylon To turn its wool to nylon To turn its wool to nylon

Table 6.1 Non-justified displays

6.3 List making displays

6.3.1 enumerate

A list of recommendations might be labelled in numerical order. The enumerate
environment illustrated in Figure 6.1 typesets numbered blocks marked with \item
commands. By default, the outermost display is numbered using arabic numer-
als and nested displays using parenthesised lower case letters, lower case roman
numerals and capitalised letters in that order.

You should be restrained in your use of nested lists as they quickly become hard
to follow. LATEX provides four levels of nested enumerate environments, which is
probably more than you should ever use.

62 TEXT DISPLAYS

1. First item of outermost list

(a) Start level 2

i. Start level 3
A. Start level 4
– Optional label

B. End level 4

(b) End of level 2

2. End of list

\begin{enumerate}
\item First item of outermost list
\begin{enumerate}
\item Start level 2
\begin{enumerate}
\item Start level 3
\begin{enumerate}
\item Start level 4
\item[--] Optional label
\item End level 4
\end{enumerate}
\end{enumerate}
\item End of level 2
\end{enumerate}
\item End of list
\end{enumerate}

Figure 6.1 Nested enumerate environments

You can use an optional argument on the \item command in an enumerate
environment to override the numeric label. Incrementing of the label counter is
suppressed in this case.

6.3.2 itemize

If you want to summarise a series of points you might

• write a series of punchy sentences

• put them in a list

• put a bullet before each item

This is exactly what an itemize environment does for you. The lines are intro-
duced with an \item command. An optional argument to the \item command lets
you specify another character to be used instead of the bullet. Popular alternatives
include

� \item[\diamond]

♦ \item[\diamondsuit]

. \item[\triangleright]

∗ \item[\ast]

? \item[\star]

◦ \item[\circ]

Verbatim displays 63

• First item of outermost list

– Start level 2

∗ Start level 3
· Start level 4
– Optional label
· End level 4

– End of level 2

• End of list

\begin{itemize}
\item First item of outermost list
\begin{itemize}
\item Start level 2
\begin{itemize}
\item Start level 3
\begin{itemize}
\item Start level 4
\item[--] Optional label
\item End level 4
\end{itemize}
\end{itemize}
\item End of level 2
\end{itemize}
\item End of list
\end{itemize}

Figure 6.2 Nested itemize environments

2 \item[\Box]

The standard markers are shown in Figure 6.2, which is equivalent to Figure 6.1
except that the enumerate environments have been replaced with itemize.

6.3.3 description

If you use the description environment you can specify a word as an item label,
which will then be typeset in \bf with a small following space:

itemize has a column of labels and inset paragraphs of text,

description starts labels at the left margin and the text picks up immediately
after the label.

6.4 Verbatim displays

LATEX’s interpretation of source text sometimes gets in the way. In particular, if you
want to accurately represent a computer program (like the examples in this book)
it would be convenient to completely disable all commands. The verbatim envi-
ronment typesets using the fixed spacing \tt font and preserves all line breaks and
space characters in the source. All commands are ignored until an \end{verbatim}
is encountered.

The verbatim* environment is identical to verbatim except that spaces are
typeset using the character. In fact, spaces are stripped from the ends of lines, so
the typeset text will not be an exact representation of the source text.

Often, it is useful to have some verbatim text in-line with normal text. Many
of the examples in this book are presented in this way. The command

64 TEXT DISPLAYS

The verbatim environment:

line1
line2 with trailing spaces

The verbatim* environment

line1
line2 with trailing spaces

Inline verbatim text:
inline verb test and
inline verb* test

The {\tt verbatim} environment:
\begin{verbatim}
line1
line2 with trailing spaces

\end{verbatim}

The {\tt verbatim*} environment
\begin{verbatim*}
line1
line2 with trailing spaces
\end{verbatim*}

Inline verbatim text:\\
\verb|inline verb test | and\\
\verb*|inline verb* test |

Figure 6.3 Verbatim commands and environments

\verbdelimiter-character text delimiter-character

looks at the character immediately following (the delimiter-character) and then
switches into verbatim mode until the next occurrence of that character. Naturally,
this means that the verbatim text may not contain the delimiter-character.
You may not use the * character as a delimiter. A popular convention is to use
| characters to delimit text because they stand out well in the source file. There
is also a \verb* command that works the same way as \verb, but which replaces
spaces with characters. The four verbatim commands are illustrated in Figure 6.3.

The verbatim environments can only cope with a few pages of text before they
overflow, which can be a problem if you want to include a long program listing. You
can split it up into several concatenated environments, but LATEX inserts a blank
line between two adjacent verbatim environments, upsetting the vertical spacing.
In Chapter 13 some replacement verbatim style files are described which solve
this problem, and allow a file to be included in verbatim mode, optionally with
automatic line number generation.

6.5 Problems with display spacing

Displays sometimes generate unexpected spacing. These are the rules:

1. All displays start on a new line (not a new paragraph unless, of course the
line before the display is blank or a \par has been issued).

2. The text following a display starts on a new line (not a new paragraph unless,
of course, the line after the display is blank or a \par has been issued).

Making new kinds of lists 65

3. If a right brace or some other \end command follows a display, then the
following text will be given a paragraph indentation, even though it is not the
start of a new paragraph. This can be suppressed with a \noindent command
at the start of the text.

4. If a text display finishes with a maths display (see Chapter 8) then extra verti-
cal space may be inserted. This situation should be avoided, but if necessary a
command of the form \vspace{-0.5cm} may be used to vertically backspace.

6.6 Making new kinds of lists

All of the environments described in this chapter are defined in terms of the un-
derlying list environment and its parameters which is described in Chapter 11.
You can define your own list making environments based around list using the
\newenvironment command described in Chapter 10.

7

Tables, figures and pictures

Typesetting tables is often the most taxing part of formatting a document, and
human typists and printers charge extra for such material. LATEX provides two
environments for tabular material — tabbing which simulates the behaviour of a
simple typewriter with tabulation stops and tabular which can produce complex
tables with frames and intercolumn lines.

Illustrations and tables are conventionally placed at the top of a page or on a
page of their own. These insertions are called ‘floats’ because a figure or table can
float away from the point at which it is referenced. LATEX has two float environments
figure and table and will automatically generate captions and numbers for these
as well as collating lists of tables and figures for insertion immediately after the
contents.

LATEX also has an environment for drawing pictures. The capabilities are rather
limited because the pictures are drawn using a predefined set of special symbol
characters, limiting you to certain line angles and thicknesses. As long as the
picture environment is good enough for your diagram, you benefit from having
the graphics integrated with the text and from the use of exactly the same fonts in
your diagram and in the text.

7.1 The tabbing environment

Within a tabbing environment you can set tab stops and then tabulate to them,
as well as indenting the left margin. The text of a tabbing environment comprises
a sequence of rows terminated by \\ or \kill commands. Within a row, columns
are separated by the tabulation commands that are described below. Each of these
column entries constitutes a separate scope region, so any declarations issued within
a tabbing environment will be lost at the next tabbing command or line end. You
must not nest tabbing environments. Figure 7.1 illustrates most of the features of
the tabbing environment which are described below.

7.1.1 Setting tabs

The \= command sets a tab stop. Tab stops are numbered in the order in which
they are set, which is not necessarily the sequence in which they appear across
the page since you can backspace using a negative \hspace command between tab
setting commands.

68 TABLES, FIGURES AND PICTURES

10 off bits £0.70
13 off bytes £5.60

£6.30

17.5% VAT £1.10
£7.40

\begin{tabbing}
Please supply:
000 off\= items \=\pounds10.00\kill
10 off\>bits\>\pounds0.70\\
13 off\>bytes\>\pounds5.60 \+\+\\
\pounds6.30\\[2ex]
17.5\% VAT \’\pounds1.10\\
\pounds7.40\\
\end{tabbing}

Figure 7.1 The tabbing environment

Often it is convenient to use a sample line to set the tab stops at the beginning
of a tabular environment without actually producing any output. If you finish a
line with a \kill instead of a \\ command then the output of that line is discarded
keeping the effects of any tab \= commands.

7.1.2 Moving between tabs

The \> moves the current position to the next tab stop. Unlike a typewriter, reverse
motion may sometimes result since as noted above, tab stops may be set in a non-left
to right order. In addition, if the text in a column overruns the next tab position,
a \> command will still move the current position to that tab stop even though the
text in the two columns will then be superimposed.

7.1.3 Indenting and outdenting

Normally a \\ or \kill command starts a new line, resetting the horizontal position
to the left text margin. Indenting means temporarily moving the left margin in one
tab position. Outdenting is the reverse process.

\+ indents the left margin one tab stop. It is equivalent to inserting one \>
command at the start of each subsequent row. Multiple \+ commands have a
cumulative effect.

\- outdents the left margin by one tab stop, cancelling the effect of one preceding
\+ command.

\< may be used at the beginning of a row only to generate a temporary outdent
of one stop for that line only.

7.1.4 Saving tab stop settings

The present tab setting may be saved using a \pushtabs command which also clears
all tab stops. The old settings are restored by a \poptabs command. These com-
mand may be nested but must appear in matching pairs within a single tabbing
environment. They cannot be used to save tab settings between tabbing environ-
ments.

The tabular environment 69

Country Closing l
market rates

Australia 2.4880–2.4920 0.2
Austria 20.70–20.73 -0.4
Belgium 60.47–60.70 -1.0

-1.2

\begin{tabular}
{l|r@{--}lr}
Country&
\multicolumn{2}{c}{Closing}&
\multicolumn{1}{c}{\updownarrow}\\
&\multicolumn{2}{c}{market rates}&\\
\hline
Australia&2.4880&2.4920&0.2\\
Austria&20.70&20.73&-0.4\\
Belgium&60.47&60.70&-1.0\\
\cline{4-4}
\multicolumn{3}{c}{~}&-1.2\\
\cline{4-4}
\end{tabular}

Figure 7.2 The tabular environment

7.1.5 Special alignment commands

The \‘ command must be the last tabbing command in a row before the \\ termi-
nator. The remaining text of the row is set flushright against the right margin.

The \’ command allows text to hang back into the last column. All of the
text between a preceding tabbing command and the \’ command is set flush right
against the preceding tab stop. A gap of width \tabbingsep is left between the end
of the flushright text and the actual tab stop. This operation is best understood
with reference to the example in Figure 7.1.

7.1.6 Accents in tabbing mode

The \’, \‘ and \= commands are usually used to produce accents. Within a tabbing
environment they are renamed \a’, \a‘ and \a= respectively. The \- command
also has another meaning — it is used to indicate a discretionary hyphen within a
paragraph (i.e. a point where a line break may be taken), but this has no meaning
within a tabbing environment because all lines must be explicitly terminated so no
alternative is needed.

7.2 The tabular environment

Tab stops are useful, but they are no substitute for a properly set table — compare
the quality of tables produced on a typewriter to those in books. Typically rules
are used to mark off parts of a table, and entries may be centred or flushed right
(especially in financial tables) as well as possibly spanning several columns.

The tabular environment provides many powerful facilities in an easy to use
format. An example that demonstrates most of the features is shown in Figure 7.2.

70 TABLES, FIGURES AND PICTURES

Each tabular environment produces a single box which must fit on a page. If
you need to maintain column widths across several pages, then try the tabbing
environment, or manually split your table into several tabular environments.

7.2.1 tabular environment parameters

There are two tabular environments:

\begin{tabular}[alignment]{columns} rows \end{tabular}

\begin{tabular*}{width}[alignment]{columns} rows \end{tabular*}

The two environments behave identically except that the *-form has a preset
width and the normal form adjusts itself to the width of the longest line of the
table. There must be stretchable space within the rows of tabular* environment
to allow the columns to expand.

The optional alignment parameters specify the vertical positioning of the re-
sulting box. The default is that the center of the box is aligned with the current
text line, [t] aligns with the top of the box so that the table hangs down below
line and [b] aligns with the bottom. If the table is set in a paragraph of its own
(as is usual) the parameter has no meaning.

7.2.2 Column formatting commands

The columns parameter comprises a number of column formatting commands each
of which specifies a single column in the table and its justification mode. Optionally,
fixed text may be inserted automatically between columns. The following may
appear within a columns argument

l a left aligned column

c a centred column

r a right justified column

| a vertical line running the full height of the table

p{width} a column of paragraphs set in a box of the given width.

@{text} arbitrary LATEX text that is used to replace the usual intercol-
umn space. Command appearing within an @-expression may need
a preceding \protect command.

7.2.3 Row formatting commands

Within the environment, the rows are separated by \\ commands and comprise
a sequence of column entries separated by & characters. The column entries form
separate scope regions, so declarations made within a column entry will be lost at
the next & or \\.

Blank fields are perfectly allowable, so a blank row in the table may be generated
with a run of blank fields: a tabular environment with three columns would require

Floats 71

a line of the form &&\\. If there are fewer & column separators in the row than
required by the column formatting parameter then LATEX will continue without
raising an error, but any trailing | commands in the column formatting parameter
will be lost. Too many & characters is an error, and the first excess & will be
converted to a \\ command and an error message issued.

7.2.4 Spanning multiple columns

Sometimes it is useful to be able to set a row item that spans several columns of
the main table. In Figure 7.2 the Closing and market rates fields span the two
numeric fields below them. This is achieved using a command of the form

\multicolumn{numbcols}{format}{text}

The text will be typeset in a box spanning the next numbcols columns. The
format command uses the column formatting commands described in section 7.2.2
to specify the layout of the multicolumn field. Any | commands in the main tabular
environment column formatting parameter will be suppressed in a \multicolumn
field, so the format parameter must reinstate them if necessary.

7.2.5 Placing horizontal rules

A full width line may be placed across the whole table with an \hline command.
The command must appear between or before or after rows of the table — it may
not appear before a \\ command for instance.

The sub-total lines in Figure 7.2 only span a single column. The command

\cline{startcolumn - endcolumn}

draws a horizontal rule spanning startcolumn to endcolumn inclusive. The - in the
parameter must appear. As with the \hline command, \cline may only appear
outside of any row specifications, as shown in Figure 7.2.

7.2.6 Adding extra vertical rules

Within a row specification, and within @-expressions, a \vline command can be
used to create a vertical rule the height of the row. The rule does not extend
across the entire table, but corresponding \vrule commands on successive rows
will match up. Normally, LATEX automatically adds intercolumn space, so that the
rule generated by \vrule will not align itself with rules created using | commands
in the column formatting parameter to the tabular environment. However, an
\hspace{\fill} spring command may be used to force the rule over to either end
of the row item.

7.3 Floats

LATEX provides two environments for floating bodies — table and figure. They
are essentially identical except that table uses captions of the form Table 1.3 and

72 TABLES, FIGURES AND PICTURES

make entries on the list of tables (.lot) file whilst figure uses Figure . . . and
makes entries on the list of figures (.lof) file. Each environment has a *-form that
makes floats span both columns in a [twocolumn] document.

\begin{figure}[location] text \end{figure}

\begin{figure*}[location] text \end{figure*}

\begin{table}[location] text \end{table}

\begin{table*}[location] text \end{table*}

The optional argument [location] governs the order in which LATEX attempts
to fit the float into the document:

h (here) at the position in the text where the environment appear. In
other words don’t float (unless there is insufficient space on the rest
of this page).

t (top) at the top of this or a following text page
b (bottom) at the bottom of this or a following page
p (page) on a separate page containing only floats

location can contain all four characters. The default is [tbp] which means
that floats will be tried at the top of the page and then at the bottom if there is
no space. If both these fail, LATEX will accumulate floats until there are enough to
make a page of floats.

7.3.1 Using the h command

When using the optional placement argument, be sure to give LATEX plenty of room
for manoeuvre. If you specify a series of [b] arguments in quick succession the
floats may be spread out over successive pages, so some of your illustrations might
end up a long way from where they are referenced in the text. It is a much better
idea to use an argument of [htbp], which allows LATEX to place the float at the
top of the page if it cannot make space at the point in the text where the float
environment appears. When a \clearpage or \cleardoublepage command (or the
end of the document) is encountered, all floats are immediately output regardless
of their placement options.

7.3.2 Problems with floats

The float mechanism does suffer from some bugs. If you have a large number of
floats outstanding LATEX can become confused and may put floats in the wrong order
or on pages before they are referenced. The vertical layout of your document can be
severely disrupted. The series of tables in Chapter 5 suffers from this problem and
I had to take special action to persuade LATEX to typeset them in the correct order.
There are two workarounds to the problem. Firstly, try putting a [htbp] option
on each float. LATEX will then place many floats inline in the text, avoiding the
build-up of unplaced floats that triggers the bug. If that fails, or produces output
that does not suit your layout requirements then try issuing \clearpage commands
to force output of floats.

Handling graphics 73

7.3.3 Captions

Within a float environment the command \caption[listtext]{text} generates a
caption using text. It also updates the current reference value (see page 104) to the
number of the float so that a subsequent \label command can be used to access
the figure or table number. The optional argument specifies the text to be used in
the list of tables or list of figures. If absent, the caption text is used.

7.4 Handling graphics

TEX produces beautiful typeset output, but has few facilities for including graphics.
This may be a historical defect — TEX was developed on large timesharing comput-
ers before personal computers and graphics workstations became so common. If
you need pictures in your documents you have four options

1. Leave a blank space and paste the picture in after printing.

2. Leave a blank space and use a special DVI driver to include the picture when
the document is printed. (This is just an electronic version of option 1.)

3. Let TEX build the picture out of dots, say by placing full stops.

4. Let TEX build the picture out of predefined characters, and supply a font that
includes graphics primitives such as lines and curves.

7.4.1 Picture inclusion

Option 1 at least has the virtue of generality. Using the DVI driver to perform
the same function presupposes that you have some way of preparing a drawing in
machine-readable form and that your DVI driver is sophisticated enough to allow
inclusion. There is a TEX command \special which allows DVI driver commands
to be embedded in the DVI file, and you should read the manual for your DVI driver
to see if suitable \special commands are available.

One disadvantage of both these options is that the fonts used for text within
a drawing package are unlikely to be the same as TEX’s fonts, leading to a visual
mismatch between the text and the labels in a diagram. In addition, there is no
universal standard for DVI driver commands. If you are intending to distribute
your document to other people so that they can print it out themselves, then you
had better avoid picture inclusion.

7.4.2 Pictures made up of dots

Building a picture out of dots is also general, and there is a macro package avail-
able called PICTEX that adopts this approach. In practice though this is far from
satisfactory. TEX was designed to perform sophisticated text-oriented placement of
relatively large character cells. It turns out that TEX usually only has to keep at
most one and a half pages of text in memory at a time, and in fact its internal mem-
ory is quite small. It is very easy to exceed TEX’s memory capacity when drawing

74 TABLES, FIGURES AND PICTURES

even moderately complicated pictures using dots. Many TEX installations include
a ‘big’ TEX which is a version of the TEX program recompiled with larger internal
memory, but you may well find that the PICTEX approach is still unbearably slow.
You will find advice on how to acquire PICTEX in Chapter 13.

7.4.3 Building pictures with special characters

LATEX has a set of fonts that include line segments at various angles, arrows, curves
and discs. They are accessed using special commands within a picture environ-
ment. Since the picture commands are limited to those graphical primitives repre-
sented in the special fonts, you can only draw simple objects. In particular, there
are only a small number of available line angles and circle sizes.

The advantage of this approach is that LATEX draws pictures by putting together
relatively large characters, and this is much faster and consumes less memory than
the same picture made up of dots.

7.5 The picture environment

A picture environment takes two parameters

\begin{picture}(width,height)(xoffset,yoffset)
putcommands

\end{picture}

Unusually, these parameters are delimited by parentheses. Such parameters
are coordinates and they only appear within a picture environment. A coordi-
nate is a comma-delimited pair of numbers with no explicit units. The coordinate
units are set by the present value of the length register \unitlength. The default
value is 1pt, but the entire picture can be scaled using a command of the form
\setlength{\unitlength}{2.5mm}

width and height are the x and y dimensions of the picture on the page as
multiples of \unitlength. Both numbers must be positive. The offset parameter
is optional (even though it is not enclosed in square brackets) and sets the origin of
the displayed picture. By default the bottom left corner will have coordinates (0,0).
Example pictures with source code may be found at the end of the large example
in Chapter 1 and in Figure 7.4 below.

Every graphics object has a reference point that is used to mark the position of
the whole object. For boxes the reference point is the lower left corner. For lines
and arrows, the reference point is the beginning of the line. For circles and discs
and ovals, the reference point is at the centre.

7.5.1 picture commands

The only commands that may appear within a picture environment are declara-
tions and put commands, which place graphics objects at specific coordinates. The
available graphics objects are described in the next section.

The picture environment 75

\put(coordinates){graphic-object}
places a single graphic-object with its reference point at the specified coor-
dinates.

\multiput(coordinates)(increments){repeat}{graphics-object}
puts repeat copies of graphics-objects starting at coordinates and off-
setting each copy by increments.

The thickness of lines drawn in a picture environment have two standard val-
ues. The \thicklines and \thinlines declarations choose between them. The
default is \thinlines. In addition, the thickness of horizontal and vertical lines
(which are drawn using TEX’s rule commands) can be set to an arbitrary size using
\linethickness{length}.

7.5.2 Graphics objects

LATEX can draw boxes, lines, vectors, circles and discs (filled circles). In addition
normal typeset text may be placed, although you must use a \parbox command to
define the width of any paragraphs since by default the text is set in a single line.

7.5.3 Lines and vectors

\line(slope){length} and \vector(slope){extent} draw lines and lines with
arrows (vectors). The slope values give the x and y steps for the line and must be
in the range −6−−+ 6 for \line and −4−−+ 4 for \vector. In addition, the x
and y fields must have a highest common divisor of 1, so (2,4) should be replaced by
(1,2). extent specifies the maximum horizontal length of the line, unless its x-step
is zero (i.e. a vertical line) in which case extent specifies the maximum vertical
extent.

The line segments used to draw sloping lines are 10pt long, so the shortest
sloping line that LATEX can draw is 10pt long. Lines do not need to be multiples of
10pt long because LATEX will overlap segments to get the correct length. If you ask
for a line that is too short, nothing will be drawn. This restriction does not apply
to horizontal and vertical lines because they are drawn using TEX’s rule commands
which can handle any length and thickness.

7.5.4 Circles and discs

\circle{extent} draws a circle of diameter extent times \unitlength. The refer-
ence point is the centre of the circle. The *-form \circle*{extent} draws a disc.
There are only a small set of available circle sizes going up to 40pt. The largest disc
available is 15pt.

7.5.5 Joining curves and lines

The graphic fonts contain quarter circle symbols, and the \circle command makes
a complete circle by setting four of these together. Quarter circles can also be used
to make a smooth transition between straight lines.

76 TABLES, FIGURES AND PICTURES

\oval(width,height)[part] draws the largest oval (that is a rectangle with
rounded corners) that can be contained in a rectangle of the specified width and
height. The rounded corners will be formed using the largest possible circle seg-
ments. In general, the oval will be smaller then the requested size unless exactly
the right sized circle segment is available.

The optional argument [part] can be used to limit the drawing to a half or
quarter oval and comprises one or two of the following letters: l left, r right, t top
and b bottom.

7.5.6 picture boxes

A picture box is a graphics object that can contain arbitrary LATEX text. They are
most commonly used for placing text labels in a picture.

\makebox(width,height)[position]{text}
\framebox(width,height)[position]{text}
\dashbox{dashlength}(width,height)[position]{text}

These commands all make a box of dimensions (width,height) with reference
point at the lower left corner. \framebox draws a solid box and \dashbox draws a
box made up of dashes dashlength long. dashlength should be a common factor
of width and height for tidy corners.

By default text is typeset horizontally and vertically centred. The optional po-
sition argument overrides this with one or two letters from: l flushleft, r flushright,
t force to the top of the box and b force to the bottom.

The text is typeset as a single line, so if you want a paragraph you must use
the \parbox command in the text parameter (see section 11.6). Note that if you
subsequently scale the picture by changing the value of \unitlength that the labels
will stay the same size.

A rectangular solid frame may be put round any graphics object with the com-
mand \frame{graphics-object}.

7.5.7 Vertically aligned text

Unfortunately, TEX is not able to rotate text, so unless you have a very unusual
set of fonts you will not be able to make text labels that read from top to bot-
tom. However, you can produce vertically aligned text, either by using a tabular
environment, or with the command

\shortstack[format]{rows}

which is almost an abbreviation for

\begin{tabular}[b]{format} rows \end{tabular}

The \shortstack command does not leave space around it (which a tabular
environment would). The command is illustrated in the large example in Chapter 1.

The picture environment 77

����

� ���

Figure 7.3 Sample Bezier curves

7.5.8 The bezier curve drawing command

Bezier curves are mathematical objects which can be used to draw sweeping curves
that have guaranteed start and end points. They are useful for reproducing freehand
drawings. LATEX has a subsidiary style option called bezier.sty that you can
incorporate into your documents in the usual way by supplying a [bezier] style
option to your \documentstyle command. The option defines one new command:

\bezier{count}(startx,starty)(controlx,controly)(finishx,finishy)

which draws a second-order Bezier curve between the points (startx,starty)
and (finishx,finishy) using a third point, (controlx,controly) to ‘pull’ the
line into a curve. In general, the curve will not pass through the third point. The
line will be marked with count dots spaced along its length.

Most people find it best to simply experiment with Bezier curves until they get
the effect they want — some examples are shown in Figure 7.3. In each case the
control point is marked with a � symbol.

7.5.9 Pictures within pictures

Typesetting pictures is time consuming. If you have a structure that is to be placed
repeatedly, or used in more than one picture then it is more efficient to save it in a
savebox (see section 11.6).

\savebox{boxname}(width,height)[position]{text} works in the same way
as the \makebox command above, but produces no output, placing the result in box
boxname which must have been previously declared using a \newsavebox command.
A subsequent \usebox{boxname} command retrieves the contents of boxname.

Although \savebox commands save time when a picture is to be used repeatedly
they do consume memory, which is rather limited in standard TEX implementations.
The space is reclaimed when the scope region containing the \savebox is exited.

Figure 7.4 shows an example picture that exercises many of the features of the
picture environment. The logic gates were drawn using Georg Horn’s TEXcad
program for MS-DOS which is described in Chapter 13, along with the Unix xfig
program, both of which can produce LATEX picture mode drawing commands ready

78 TABLES, FIGURES AND PICTURES

c
a
b
c carry

rr
bb
""
c

Figure 7.4 Example picture: logic gates

for inclusion in your document. The gates are designed to be used as \saveboxes:
Bezier curves are especially demanding of memory and processor time, and consid-
erable savings can be made if they are only constructed once.

The picture environment 79

\unitlength=1mm

\linethickness{0.4pt}

\newsavebox{\nore}

\savebox{\nore}(12,6){

\begin{picture}(12,6)

\bezier{60}(2,6)(7,6)(9,3)

\bezier{60}(2,0)(7,0)(9,3)

\bezier{50}(2,6)(4,3)(2,0)

\put(10.5,3){\line(1,0){1.5}}

\put(9.75,3){\circle{1.5}}

\put(0,5){\line(1,0){2.5}}

\put(0,1){\line(1,0){2.5}}

\end{picture}}

\newsavebox{\ande}

\savebox{\ande}(12,6){

\begin{picture}(12,6)

\put(0,1){\line(1,0){2}}

\put(5,0){\line(-1,0){3}}

\put(2,0){\line(0,1){6}}

\put(2,6){\line(1,0){3}}

\put(0,5){\line(1,0){2}}

\bezier{30}(5,0)(8,0)(8,3)

\bezier{30}(8,3)(8,6)(5,6)

\put(8,3){\line(1,0){4}}

\end{picture}}

\newsavebox{\ore}

\savebox{\ore}(12,6){

\begin{picture}(12,6)

\bezier{60}(2,6)(7,6)(9,3)

\bezier{60}(2,0)(7,0)(9,3)

\bezier{50}(2,6)(4,3)(2,0)

\put(9,3){\line(1,0){3}}

\put(0,5){\line(1,0){2.5}}

\put(0,1){\line(1,0){2.5}}

\end{picture}}

\begin{picture}(119,25)(0,100)

\put(10,120){\line(1,0){15}}

\put(25.00,115.00){\usebox{\ore}}

\put(10,116){\line(1,0){15}}

\put(25.00,103.00){\usebox{\ande}}

\put(10,112){\line(1,0){39}}

\put(21,108){\line(1,0){4}}

\put(17,104){\line(1,0){8}}

\put(49.00,111.00){\usebox{\ande}}

\put(37,118){\line(1,0){6}}

\put(43,118){\line(0,-1){2}}

\put(43,116){\line(1,0){6}}

\put(73.00,109.00){\usebox{\nore}}

\put(61,114){\line(1,0){12}}

\put(73,110){\line(-1,0){6}}

\put(67,110){\line(0,-1){4}}

\put(67,106){\line(-1,0){30}}

\put(85,112){\line(1,0){12}}

\put(6,120){\makebox(0,0)[cc]{\em a}}

\put(6,116){\makebox(0,0)[cc]{\em b}}

\put(6,112){\makebox(0,0)[cc]{\em c}}

\put(114,112){\makebox(0,0)[lc]

{\em carry}}

\put(21,120){\circle*{1}}

\put(17,116){\circle*{1}}

\put(21,108){\line(0,1){12}}

\put(17,104){\line(0,1){12}}

\put(97,112){\line(1,0){5}}

\put(102,109){\line(0,1){6}}

\put(102,115){\line(5,-3){5}}

\put(107,112){\line(-5,-3){5}}

\put(107.8,112){\circle{1.50}}

\put(108.50,112){\line(1,0){4.5}}

\end{picture}

\savebox{\nore{}} % to release memory

\savebox{\ande{}} % to release memory

\savebox{\ore{}} % to release memory

Figure 7.5 Example picture source code

8

Typesetting mathematics

Chapter 5 contains tables of maths mode characters including Greek, Calligraphic
and special symbols. This chapter describes commands for putting these characters
together into formulae.

Mathematics typesetting has its own set of rules and traditions. As well as
requiring a huge variety of symbols, the spacing of formulae obeys special rules.
TEX has a set of rules built in that is sufficient to cope with most engineering-level
mathematics, and allows you to take complete control where necessary. The LATEX
maths commands do not exploit the full power of the underlying TEX commands,
and if you are a professional mathematician or involved in typesetting particularly
complex formula then you should consider obtaining AMS-LATEX [Ame91], which
provides the AMS-TEX advanced maths commands in a LATEX style file. This
chapter only describes the native LATEX maths typesetting commands. For more
information on TEX and AMS-TEX see the TEXbook [Knu86a] and Michael Spivak’s
Joy of TEX. AMS-LATEX comes with its own manual as part of the distribution
package.

When TEX is in maths mode it enforces its own spacing rules, so spaces in
the input are simply discarded. Of course, spaces may still be required to delimit
commands, so don’t simply remove all space from your source file!

8.1 LATEX maths mode environments

There are six LATEX environments listed in Figure 8.1 that put TEX into maths
mode. When typing the names of these environments, remember that English
maths is American math and that LATEX uses American spellings here as elsewhere.

An in-text formula is a sequence of maths mode symbols embedded in an or-
dinary paragraph. Displayed formulae are on set their own lines, indented and
optionally numbered. The displaymath and equation environments produce one
line formulae, usually centred. If necessary, they will split a formula across lines. In
the equation environment, the equation number will be usually be typeset against
the right margin. The subsidiary style option [leqno] moves the equation numbers
to the left hand margin.

The array environment is just like the tabular environment described in Chap-
ter 7 but the lines and the text in any @-expressions are typeset in maths mode. All
the usual commands, including \multicolumn, \cline and \hline are available.

82 TYPESETTING MATHEMATICS

Name Short form use
math \(...\) or $...$ in-text formula
displaymath \[...\] or $$...$$ unnumbered displayed formula
equation numbered displayed formula
array matrix
eqnarray numbered multiline equations
eqnarray* nonnumbered multiline equations

Table 8.1 LATEX maths environments

Remember that the tabular and array environments yield a single box which can-
not be split across pages. You will have to manually divide large arrays, just as you
would large tables. It is possible to use an array as a component of an in-text for-
mula, if for instance you wanted to set an entire matrix as a superscript. Figure 8.1
on page 85 shows an example of the array environment.

When showing the derivation of a result it is conventional to align the equations
around the relation sign, optionally numbering the stages, which may be done with a
three column array environment. This is such a common construction that LATEX
provides the eqnarray environment as a shorthand. It is used just like a three
column array, column 1 for the left hand side, the centre column for the relation
and column three for the right hand side. An equation number is put on every line
unless it includes a \nonumber command. The eqnarray* environment is identical
to eqnarray except that all equation numbers are suppressed just as if every line
contained a \nonumber.

8.2 Subscripts, superscripts and stacks

Superscripts like this are produced with the ^ command. Subscripts like this are
produced with the _ command. As well as being vertically offset, subscripts and
superscripts are set in smaller type.

You can superscript superscripts to produce expressions like xy+12
which was

written as $x^{{y+1}^2}$. Note that the superscripts are strictly nested. Simply
putting two superscripts in a row, such as x^{y+1}^2 is an error. Supersuper-
scripts, and subsubscripts (not to say supersubscripts and subsuperscripts) are set
in even smaller type. However the size reduction stops there — further levels of
scripting will be set in the smallest type, otherwise you might need a magnifying
glass to read the result.

The \prime character ′ is designed to be used in superscripts, so x^\prime
produces x′.

\stackrel{top}{bottom} places top above bottom as a centrally placed super-
script. It is often used with relations, as in

x\stackrel{\alpha}{\longrightarrow}y which produces x α−→ y

Fractions and roots 83

8.3 Fractions and roots

A LATEX fraction is produced with \frac{numerator}{denominator}. The size of
the fraction will be adjusted for in-line formulae and displayed maths.

The command \sqrt[root]{formula} generates the nth root of formula. If the
optional argument is missing then the square root is printed

\sqrt[3]{x^2+y^2} gives 3
√
x2 + y2

\sqrt{x^2+y^2} gives
√
x2 + y2

8.4 plain TEX fraction-like commands

plain has a variety of commands for building fraction-like formulae, and these
are also available in LATEX. The plain commands use an infix rather than a pre-
fix notation, so the commands appear like operators rather than commands with
parameters.

The plain equivalent to \frac is \over, so

x \over y produces
x

y
,

which is the same as the output from \frac{x}{y}. The \atop command produces
a fraction with no fraction bar:

x \atop y makes
x

y
.

Finally, the binomial coefficients may be typeset using \choose which is just like
\atop except that the result is surrounded with parentheses:

x \choose y produces
(
x

y

)
.

Since these commands use an operator like notation you must use groups to nest
them.

8.5 Large delimiters

The delimiters shown in Table 5.18 will grow to surround any adjacent boxes when
prefaced by \left or \right. For instance

\[x=2\times (\sum^{15}_{i=1}
\frac{y_i}{y_{i+1}}) \] produces

x = 2× (
15∑
i=1

yi
yi+1

)

but

84 TYPESETTING MATHEMATICS

\[x=2\times\left(\sum^{15}_{i=1}
\frac{y_i}{y_{i+1}}\right)\] makes

x = 2×

(
15∑
i=1

yi
yi+1

)

The \left and \right commands must appear in pairs like \begin and \end,
but the actual delimiters need not be paired. A \left or a \right followed by a
full stop will typeset an invisible delimiter, fulfilling the requirement that delimiters
be matched. This feature is often used for building case formulae:

\[x=\left\{ \begin{array}{ll}1&\mbox{if $y>0$}\\
0&\mbox{if $y\le0$}\\

\end{array} \right. \]

produces

x =
{

1 if y > 0
0 if y ≤ 0

8.5.1 The plain TEX cases command

The kind of relation shown above is such a common construction that plain TEX
provides a special \cases command. This command is still available in LATEX,
which underlines the fact that many of the commands described in the TEXbook
may be used without modification in LATEX.

The plain command

\[x=\cases{1&\mbox{\rm if $y>0$}\cr
0&\mbox{\rm if $y\le0$}\cr}\]

produces

x =
{

1 if y > 0
0 if y ≤ 0

There may be as many lines in the case command as you like and the left brace
will expand as needed. Note that plain uses the \cr command where LATEX uses
\\. The fields are separated by & characters, as in LATEX.

8.6 Ellipsis

A sequence or repeating pattern is usually indicated by a trail of dots. . . This kind
of ellipsis in either text or maths mode can be produced by \ldots thus . . . When
you use ellipsis at the end of a sentence, you should ask for an inter-sentence space
with \@ immediately afterwards (see section 5.3.4).

In mathematical typesetting three other forms of ellipsis are sometimes required

\cdots produces a string of centred centred dots: · · ·

Over and underlining 85

P−1AP =

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

\[
P^{-1}AP=\left(
\begin{array}{cccc}
\lambda_1&0 &\cdots&0\\
0 &\lambda_2&\cdots&0\\
\vdots&\vdots &\ddots&\vdots\\
0 & 0 &\cdots&\lambda_n\\
\end{array}
\right)
\]

Figure 8.1 Use of ellipsis

\vdots gives a vertical row of dots:
...

\ddots makes a diagonal row of dots:
. . .

The most common application of these forms is in the description of large ma-
trices as shown in Figure 8.1.

8.7 Over and underlining

Over and underlining is to be discouraged in normal typeset text: use italic or bold
type for emphasis instead.

In maths mode you can overline a formula, as well as putting braces above and
below. Additionally, in maths and text mode you can underline text:

\underline{Don’t underline} produces Don’t underline

Read/$\overline{\rm Write}$ produces Read/Write

8.8 Over and under braces

Similar commands will place braces under and over formulae:

\overbrace{x_1+x_2+\cdots+x_{n-1}+x_{n}}
produces︷ ︸︸ ︷
x1 + x2 + · · ·+ xn−1 + xn

\underbrace{x_1+x_2+\cdots+x_{n-1}+x_{n}}
produces
x1 + x2 + · · ·+ xn−1 + xn︸ ︷︷ ︸

If you subscript or superscript a brace then you will get a centred label, so

86 TYPESETTING MATHEMATICS

\underbrace{x_1+x_2+\cdots+x_{n-1}+x_{n}}_x
produces
x1 + x2 + · · ·+ xn−1 + xn︸ ︷︷ ︸

x

8.9 Maths mode size styles

There are occasions when you might need to set a superscript in normal size text.
Within maths mode there are four basic style declarations which mainly affect the
size of text. The four styles, and their default uses are shown in Table 8.2, and they
may be used within maths mode to change the size of text.

\textstyle in-text formulae and items in the array environment
\displaystyle displayed formulae
\scriptstyle first level superscripts and subscripts
\scriptscriptstyle higher-level subscripts and superscripts

Table 8.2 Maths text styles

\textstyle and \displaystyle are almost identical, using the same size char-
acters in nearly all cases. However, \textstyle uses small versions of the symbols
shown in Table 5.17 (such as

∫
) and places subscripts and superscripts for things

like summation signs beside the operator as in
∑n
i=1. This is done so that in-text

formulae will not overlap adjoining lines. Displayed equations use the easier-to-read
large forms from Table 5.17 since the vertical spacing can be adjusted to suit.

As you might expect, \scriptstyle and \scriptscriptstyle produce the
small characters used for scripts and are analogous to the size changing commands
for normal text described in Table 5.4.

8.10 Using text mode inside maths mode

The best way to insert some normal text into a formula is to place it into an hbox
by using an \mbox command. TEX will automatically switch back into text mode
within the box, but modes may be nested and their is nothing to stop you re-entering
maths mode within the box. The LATEX case formula shown in section 8.5 above
illustrates this technique.

8.11 Mixing bold and unbold maths

Chapter 5 described the \boldmath and \unboldmath commands which may be
used to select heavy or normal weight maths characters. These declarations must
be used in text mode, so if you want to mix bold and unbold maths you can use an
\mbox command to nest into text mode, select the new character weight and then
enter a nested maths mode:

Maths font loading 87

right

left ord op bin rel open close punct inner
ord none thin med∗ thick∗ none none none thin∗

op thin thin thick∗ none none none thin∗

bin med∗ med∗ med∗ med∗

rel thick∗ thick∗ none thick∗ none none thick∗

open none none none none none none none
close none thin med∗ thick∗ none none none thin∗

punct thin∗ thin∗ thin∗ med∗ med∗ thin∗ thin∗

inner thin∗ thin med∗ thick∗ med∗ none thin∗ thin∗

∗ except in subscripts, where none is used instead

Table 8.3 Maths spacing rules

\[\mbox{\boldmath AM^{-1}} = (0,1,\lambda)\] gives

AM−1 = (0, 1, λ)

8.12 Maths font loading

To conserve space, LATEX only loads certain fonts when they are appear in the doc-
ument. In text mode, LATEX will quietly load any fonts it needs without bothering
you, but if you try and use an unloaded font in maths mode you will get one of the
following messages:

\scriptfont font-name is undefined

\scriptscriptfont font-name is undefined

\textfont font-name is undefined

If you get these messages, then insert the following command at the outermost level
of your document (i.e. not inside a group or environment): \load{size}{font}
where size is one of the size changing commands in Table 5.4 and font is one of
the font selectors in Table 5.1. The command must appear before the first use of
the font in maths mode — a good place for it would be in the preamble.

8.13 Spacing in maths mode

TEX uses a surprisingly simple set of rules to arrange the spacing within formulae.
The tables of maths mode symbols in Chapter 5 identify a type for each symbol
which will be one of

ord ordinary formulae

88 TYPESETTING MATHEMATICS

op enlargable operators

bin binary operators

rel relations

open opening delimiters

close closing delimiters

punct punctuation

inner a delimited formula

The result of a fraction command is of type inner, most other formulae are of type
ord.

Table 8.3, adapted from the TEXbook shows the space that TEX inserts between
two items of each type. The three spaces thin, med and thick refer to the space
commands listed in section 5.3.2.

It should now be clear why there are three control sequences that all generate
the | character on the page: sometimes a bar is used as a delimiter (the | command),
sometimes as a relation (\mid) and sometimes as an ordinary component (\vert).
You must select the correct sequence to get good spacing in your typeset output.

Sometimes TEX’s rules are too simple and you need to insert some extra space.
For instance, in the integral

∫
x dx, TEX has no way of knowing that there should be

a small space before the dx, so you must explicitly insert one with $\int x\,dx$.

9

Cross referencing and bibliographies

Most large documents contain internal cross references and references to other pa-
pers and books. Maintenance of cross references is a tedious clerical procedure, in
other words exactly the kind of thing that computers are good at. LATEX allows
you to insert a label at any point in a document. When a label is encountered, a
note of the page and section in which the label occurred is made on an auxiliary
file. Elsewhere in the document you may refer to the label, and the page or section
number will be automatically inserted for you.

As in contents generation, the information on the auxiliary file is always one
step behind because the information on the previous pass is inserted. If out-of-date
information has been used then at the end of the run LATEX issues the message

Label(s) may have changed. Rerun to get cross references right.

It is possible for several runs to be needed before the cross references stabilise,
so you must repeatedly run LATEX until the message goes away.

Bibliographic references such as [Lam86] can also be constructed automatically
by LATEX. You can either keep all the reference information with the source file, or
use external databases in association with the BIBTEX programme to build bibli-
ographies. If you write a lot of papers with bibliographies you will find that the
BIBTEX system can be used as the heart of a powerful on-line replacement for the
more traditional card-index of literature references.

9.1 Defining labels

The command \label{string} makes an entry in the .aux file containing string,
the page number on which this label was defined and the current reference value.
string is an arbitrary string of characters with no embedded spaces. Within a
document all label and bibliography strings must be unique or the error message

Label ‘string’ multiply defined

will be issued.
The reference value is set by the \refstepcounter command (see section 11.2.3).

The following commands change the reference value

90 CROSS REFERENCING AND BIBLIOGRAPHIES

� sectioning commands,

� the equation environment which sets the reference value to the equation’s
number,

� any theorem-like environment (of which equation is an example) defined using
a \newtheorem command (see section 10.3),

� the eqnarray environment which sets the reference value to the equation
number of the line in the array, unless a \nonumber command has been issued,

� \item commands in enumerate environments, which set the reference value
to the item number,

� \caption commands in figure and table environments which set the refer-
ence value to the figure or table number. Be sure to put \label commands
after the \caption command or inside the argument, since it is the \caption
command that changes the reference value, not the environment!

� direct use of the \refstepcounter command.

9.2 Referencing labels

The page number of a label is retrieved with \pageref{string} where string is
the same text string used in the \label command. The reference value of label is
retrieved using the \ref{string} command.

This is section~\ref{tag} on page~\pageref{tag}.
\label{tag}

produces

This is section 9.2 on page 90.

Note the use of the tie before the \ref command to stop line breaking.

9.3 Referencing citations

The command \cite{string} prints a citation. string must be defined in an
external bibliography (bbl) file created by BIBTEX or in a thebibliography envi-
ronment. string may not contain a comma. The exact form of the printed citation
depends on the bibliography style in use.

You can combine multiple citations by using a comma delimited list of strings
as in

\cite{latexbook,texbook}

which produces

[Lam86, Knu86a]

Defining citations using thebibliography 91

There should not be any spaces between the string arguments.
An optional argument to the cite command allows text to be included as part

of the printed citation.

\cite[the \LaTeX\ book]{latexbook}

produces

[Lam86, the LATEX book]

The command \nocite{string1,string2,...} causes the citations for string1,
string2,... to be added to the bibliography listing without a citation actually
appearing in the text.

9.4 Defining citations using thebibliography

The environment thebibliography is used when you want a document to be com-
pletely self contained rather than using BIBTEX and an external database file.

\begin{thebibliography}{longestlabel} citations \end{thebibliography}

acts like a list environment where each item is a single citation. longestlabel
is a text string used to specify the formatting of the list. It should be at least as
long as the longest item label in the list.

Each citation begins with the command \bibitem[biblabel]{string}. The
string is the citation key used by the matching \cite command. If the optional
argument biblabel is present, then it is used as the list label, otherwise a number
is used generated with the enumi counter. When a \cite command is used, the
label is inserted at the point of the citation.

9.5 Defining citations using an external database file

The \cite{string} command makes a note on the .aux file of string. These
entries can be read by an auxiliary program called BIBTEX that will extract the
relevant entries from a database file and write a bibliography file (of filetype bbl)
that contains a suitable thebibliography environment for insertion in the parent
document.

The command \bibliography{bibliographyfiles} makes a note in the .aux
file of bibliographyfiles which is a comma delimited list of external bibliography
database files. These files conventionally have the filetype .bib. Their format is
described below. The command also includes the most recent bbl file should contain
a thebibliography environment generated by the BIBTEX program.

9.6 Changing the style of automatically generated bibliographies

If you use the explicit thebibliography environment you can specify the ordering
of entries and their labels directly. BIBTEX uses a system of bibliography styles
analogous to the LATEX styles to specify the formatting and ordering of bibliography

92 CROSS REFERENCING AND BIBLIOGRAPHIES

>bib lbook

This is BibTeX, Version 0.99c

The top-level auxiliary file: LBOOK.aux

The style file: alpha.bst

Database file #1: adrian.bib

Figure 9.1 Screen output of the BIBTEX program

entries. You specify the style with a \bibliographystyle{style} command where
style may be

unsrt entries in order of appearance in the text and are labelled by
numbers, e.g.[12]

plain entries sorted alphabetically by author and labelled with numbers
abbrv entries sorted alphabetically by author and labelled with num-

bers, with some parts abbreviated
alpha entries sorted alphabetically by author and labelled with the first

three characters of the author’s name and the year of publication,
e.g. [Joh90]

9.7 Running BIBTEX

You must run LATEX on your document at least once to generate an .aux file. Your
source file should contain a \bibliographystyle command specifying one of the
styles above or a locally produced style. It must also contain a \bibliography
command specifying one or more bib files. The relevant commands for this book
which are used to produce the bibliography at the back are

\bibliographystyle{alpha}
\bibliography{adrian}

You run BIBTEX by issuing the command bibtex filename where filename is
the name of the parent document file. Figure 9.1 shows part of the BIBTEX screen
output when run on this book. Figure 9.2 shows part of the bbl file produced,
which is a single thebibliography environment ready for inclusion in the parent
file.

Note that every time you add or remove citations from your document you must
run BIBTEX again to regenerate the bibliography. I once had to shorten a paper for
publication and forgot to rerun BIBTEX with the result that the editor complained
that I had twice as many references as were actually cited in the text!

The format of bib files 93

\begin{thebibliography}{Lam86}

\bibitem[ISO80]{pascal:standard}
ISO.
\newblock {\em {Second DP 7185---Specification for the
Computer Programming Language Pascal}}.

\newblock International Standards Organisation, 1980.

\bibitem[Knu84]{texbook}
Donald~E. Knuth.
\newblock {\em {The \TeX book}}.
\newblock Addison Wesley, 1984.

\bibitem[Lam86]{latexbook}
L.~Lamport.
\newblock {\em {\LaTeX\ user’s guide \& reference manual}}.
\newblock Addison Wesley, 1986.

\end{thebibliography}

Figure 9.2 bbl file output of the BIBTEX program

9.8 The format of bib files

By way of a first example Figure 9.3 shows the bib file entries that were used to
produce the bibliography for this book.

All bibfile entries are of the form

@documenttype{string,fields}

documenttype specifies the type of the document which governs the kind of
information reproduced in the bibliography. For instance a journal article usually
has an entry for the month of publication, whereas a book would not. The available
document types are summarised in Table 9.1.

string is the text string used in the corresponding \cite commands.
fields is a comma delimited list of field entries, each of the form

fieldname = fieldtext

where fieldname may be selected from those in Table 9.2. For each document
type there is a set of required and a set of optional fields defined for the standard
styles. You will get an error message if you omit a required field. Optional fields
will be used if present, but may be omitted if inappropriate or if you do not have
the necessary information. Any other field types are ignored, so it is possible to put
arbitrary information into the bib file simply by using field names that are unused
by the style files. A popular choice is to add an abstract field to the entry.

94 CROSS REFERENCING AND BIBLIOGRAPHIES

@book{latexbook,
author="Lamport, L.",
title="{\LaTeX\ user’s guide \& reference manual}",
publisher = "Addison Wesley",
year="1986"}

@book{texbook,
author="Knuth, Donald E.",
title="{The \TeX book}",
publisher = "Addison Wesley",
year="1984"}

@book{pascal:standard,
author="ISO",
title="{Second DP 7185---Specification for the
Computer Programming Language Pascal}",
publisher = "International Standards Organisation",
year="1980"}

Figure 9.3 bib file format

article journal paper or magazine article
book published book
booklet as for book but without a publisher
inbook part of a book(typically a chapter)
incollection part of a book with its own title
inproceedings or conference conference paper
manual technical manual
mastersthesis
misc anything else
phdthesis
proceedings conference proceedings
techreport technical report
unpublished

Table 9.1 bib file document entry types

The format of bib files 95

address publisher’s address
annote annotation (not used by standard bibliography styles).
author author’s name(s). See section 9.8.2.
booktitle title of a book. See section 9.8.1.
chapter chapter number
edition book edition
editor editor’s name(s). See section 9.8.2.
howpublished for documents published inhouse, or in other unusual ways.
institution name of institutional publisher
journal journal name (may be abbreviated).
key sort field if no author or editor
month month of publication
note any additional information for insertion in the bibliography
number number of a journal or technical report
organization sponsoring organisation for a conference
pages list of page numbers or ranges
publisher publisher’s name
school University school
series name of an entire series of books
title See section 9.8.1
type type of a technical report
volume volume number
year year of publication

Table 9.2 BIBTEX field names

fieldtext is a text string containing no unbalanced { or } characters surrounded
by double quote characters (") or braces1.

9.8.1 Typing titles

Some bibliography styles capitalise titles, and some use lower case. In practice the
style will either print the title field exactly as it is written in the bib file or it will
force all but the first letter to lowercase. As a result, you should type titles exactly
as they would be if they were capitalised, and let the bibliography style decide
whether to use lower case.

9.8.2 Typing names

A bibliography style decides whether to use full first names or initials and whether
the second or first names should appear first. You must include as much information
as possible so do not use initials in the bib file unless you do not know the full name.

A BIBTEX author or editor field comprises a series of names separated by the
word and. If there are too many authors to appear in a conventional bibliography

1If the text string is a string of digits then the enclosing quotes or braces may be omitted.

96 CROSS REFERENCING AND BIBLIOGRAPHIES

the list is terminated by the words and others. The bibliography styles convert
this to et al.

A simple name is typed as it reads John Smith. If you include middle names
John James Smith then the bibliography style will usually initialise it if it is capi-
talised, otherwise it assumes that it is an auxiliary word and reproduces it in full, as
in John de Smith. This causes a problem with some names that comprise multiple
capitalised words as do some foreign names or double-barrelled names without a hy-
phen. In that case use the last name, first name convention — Smythe Thompson,
Reginald.

Braces may be used to enclose text that is to be treated literally, for instance a
name containing the word and or a comma which would otherwise be parsed using
the rules above. This is most likely to be a problem with commercial names such
as Sue, Grabbit and Run, Solicitors.

9.8.3 Abbreviations in the bib file

Abbreviations may be defined by the bibliography style or in the .bib file. An
abbreviation is a string of characters with no embedded spaces or any occurrence
of the following characters: " # % ’ () , = { }.

You define abbreviation using a pseudo document name of string, so the entry

@string{short = "replacement for a long string of authors"}

allows you to subsequently use an entry of the form

author=short

An abbreviation defined in the bibliography file takes precedence over one de-
fined in the style file.

9.9 Distributing bibliographies

If you send your document to other people you must either send them a copy of
your .bib files, or send them the output of the BIBTEX run. The best way to do
this is to use BIBTEX while you are writing your document, but then remove the
\bibliography command from the document file and insert the contents of the .bbl
file at the same point. This will ensure that anybody can just run your document
through LATEX even if they do not have, or do not know how to use BIBTEX.

10

Defining commands

LATEX allows you to define new commands as abbreviations for frequently used
command sequences, or even redefine existing commands so as to change LATEX’s
normal behaviour. This chapter shows how to define and redefine commands, envi-
ronments and theorem-like environments, which have clauses numbered in sequence
throughout a document.

10.1 Making new commands

The command

\newcommand{\commandname}{definition}
associates definition with the control sequence \commandname, so that every oc-
currence of \commandname will be replaced by the text definition, so for example

\newcommand{\th}{th}

defines a command \th that may be used in dates, so that

Wednesday 17\th\ October produces Wednesday 17th October.

Whenever you find a piece of text appearing frequently you should define a command
for it as an abbreviation.

When LATEX encounters a command that has been defined in this way, it re-
places it with the contents of the definition parameter. The outermost braces
are stripped off, so if you want to declare a local scope you must use another set of
braces within the parameter.

10.1.1 New commands with parameters

One, or several pieces of text may be supplied to a command when it is called. As for
predefined commands, the parameters are enclosed in braces (see section 2.1.6). An
optional argument to \newcommand specifies the number of parameters to expect.
Within the text of each command, the first parameter is represented by #1, the
second by #2 and so on.

\newcommand{\comb}[2]{$^{#1}$C$_{#2}$}

defines a command with two parameters, so that

\comb{4}{6} then produces 4C6

98 DEFINING COMMANDS

10.1.2 Redefining existing commands

It could be disastrous if you accidentally redefined an existing command. This is
easy to do since there are some commands that are internal to LATEX and are not
documented in this book. As a check against this, LATEX refuses to change the
definition of a command that already exists and issues an error message.

Sometimes you really do want to redefine an existing command, in which case
use the command

\renewcommand{\commandname}{definition}
which works exactly like \newcommand, except that \commandname must already
exist. You will find examples of command definition and redefinition in the next
two chapters

10.2 Environments

An environment is really a pair of commands, the \begin part which sets up new for-
matting parameters, and the \end part which restores previous behaviour. You can
define your own environments using \newenvironment and \renewenvironment:

\newenvironmnent{environment name}{begintext}{endtext}

defines a new environment. Most often new environments are modifications to
existing environments. For instance a document might require important warnings
to be set out as a display using bold type with the word warning centred above:

\newenvironment{warn}%
{\begin{quote}\begin{center}{\bf Warning}\end{center}\\[2ex]}%
{\end{quote}}
%
\begin{warn}
If you switch the machine off while the disk activity light is
on, you may suffer data loss or corruption. Wait for disk
activity to cease before removing power.
\end{warn}

produces

Warning

If you switch the machine off while the disk activity light is on,
you may suffer data loss or corruption. Wait for disk activity
to cease before removing power.

Note the use of the line terminated by %. You will recall from section 2.1.6 that
there must be no white space separating a command and its parameters. Normally
a new line is treated a whitespace, and so simply putting the parameters on separate
lines would generate an error. Terminating a line with a comment causes the rest
of the line including the newline to be discarded.

As before, use \renewenvironment to redefine an existing environment so as to
avoid accidental disruption of LATEX’s operation.

Counted environments 99

Proposition 1 The first proposition

Intervening text

Proposition 2 The second proposition

\newtheorem{prop}{Proposition}
\begin{prop}
The first proposition
\end{prop}
Intervening text
\begin{prop}
The second proposition
\end{prop}

Figure 10.1 Numbered environments (theorems)

10.3 Counted environments

There are environments such as equation that have an associated counter. Each
use of the environment increments the value of the counter1. You can declare a
counted environment using

\newtheorem{name}{caption}[enclosing-counter]

The behaviour of a numbered environment is illustrated in Figure 10.1. Each en-
vironment body is preceded by the title parameter and a number set in bold
type.

If the optional enclosing-counter parameter is present, then the theorem
counter will be reset to one each time the enclosing counter is stepped. This is
usually used to start a new sequence of theorem numbers for each chapter or sec-
tion. You will find more information on enclosed counters in section 11.2 in the
next chapter.

10.3.1 Sharing counters

A variant on the \newtheorem command may be used to make two environments
share the same counter:

\newtheorem{name}[shared-counter]{title}

In this case the optional parameter specifies an already defined numbered envi-
ronment. Both that environment and the new environment will share a counter, so
that they will be numbered in the same sequence.

1The LATEX book calls these ‘theorem-like environments’

11

LATEX style parameters

This chapter is about visual formatting, or the direct specification of text placement.
As has been stressed throughout, the whole point of LATEX is that you should write
your text without considering the layout on the page, using generic commands like
\section and \caption. The actual typescript for these commands is defined in
the style file, not in your document However, there will come a time when you wish
to change the standard style files. Fortunately, it is not always necessary to write
a complete new file because LATEX has a large number of style parameters that are
directly accessible to you from within a document, and you can use these to make
minor modifications to the layout.

A simple example is the command \labelitemi which is used to generate
the mark in an itemize environment. By default, \labelitemi is defined to be
\bullet, but this can be overridden with an optional parameter to the \item com-
mand within an itemize environment. If you need to do this more than once or
twice then you can instead redefine \labelitemi. I rather prefer diamonds (�) to
bullets, so in the preamble for most of my documents I say

\renewcommand{\labelitemi}{\diamond},

giving itemised lists like that on page 23.
You will recall from Chapter 2 that TEX has six kinds of registers. The first part

of this chapter is about the details of register operations and arithmetic. Following
that is a series of annotated diagrams that show you which parameters affect spacing
and layout for pages, lists, floats, marginal notes and so on. This chapter does not
describe LATEX programming or how to redefine formatted text items like section
headings and captions which require non-trivial modifications to the style file. The
next chapter analyses the contents of the standard styles, and with its help you will
be able to produce completely new style files, and exercise much of the full power
of the underlying TEX language.

11.1 LATEX variables revisited

In section 2.4 the six types of TEX variable were listed — counters, lengths, boxes,
token lists, skip registers and maths skip registers. Counters hold integers (whole
numbers), lengths hold distances, boxes hold typeset pieces of text that are snap-
shots of parts of a page, token lists hold strings of TEX commands and the two kinds
of skips hold the glue or springs that are used to pad out the words and lines on

102 LATEX STYLE PARAMETERS

a page. Very loosely speaking, skips correspond to the white space on the typeset
page.

TEX only has space for 256 registers of each class, and in LATEX many of these
are already in use, so you must be restrained in your use of counter and length
registers.

LATEX provides facilities for defining and manipulating counters, lengths and
boxes, and also allows you to insert glue, although not to declare glue registers. It
is possible to use the more arcane kinds of registers, such as token lists, since the
full set of TEX primitives is always available, but it is unwise to do this unless you
are a seasoned TEX programmer because it is easy to upset LATEX by going behind
its back. Some hints on TEX programming in its full glory will be found in the next
chapter, but serious aspiring programmers would be well advised to acquire some
of the books listed in the introduction to Chapter 12.

11.2 Counters

A counter is a register that holds a single integer. The page number and the
present chapter, section and subsection numbers are held in independent counters
called page, chapter, section and so on. Counters can exist in a hierarchy, that
is counter a might enclose counter b in which case b will be reset to zero every
time a is incremented. The LATEX \chapter and sectioning commands use this
facility to ensure that, say, the section number goes back to zero at the start of a
new chapter.

11.2.1 Declaring counters and printing their values

You can declare a new counter with the command

\newcounter{countername}[enclosing counter]

This creates a new counter called countername which must be a previously unde-
fined string of characters. The counter name is not a control word, so there must be
no leading \. Hence dayofmonth is a valid LATEX counter name but \dayofmonth
is not. The optional argument [enclosing counter] names an already defined
counter that encloses the new counter. Whenever the enclosing counter is stepped
countername will be zeroed.

When a counter is created, it is initialised to zero and LATEX automatically
defines a command named \thecountername which will print the contents of the
counter as an Arabic numeral.

The \thecountername command is in fact defined by LATEX to be an abbrevia-
tion for \arabic{countername}. \arabic is one of six counter printing commands,
and you can redefine \thecountername to use any of them:

\arabic{countername} arabic numerals

\roman{countername} lower case Roman numerals

\Roman{countername} upper case Roman numerals

Counters 103

\alph{countername} lower case letters a through z. The value must
be in the range 1–26.

\Alph{countername} upper case letters A through Z. The value must
be in the range 1–26.

\fnsymbol{countername} a symbol from the following sequence which
are used for footnotes on title pages. The value must be in the
range 1–9, and \fnsymbol may only be used in maths mode.

∗ † ‡ § ¶ ‖ ∗ ∗ † † ‡ ‡

11.2.2 More on page numbering

The \pagenumbering command simply redefines the command \thepage to change
the way the page counter is typeset. You can achieve more complicated effects by,
for example:

\renewcommand{\thepage}{\fbox{\Roman{page}}} \thepage

which produces

CIII

If you redefine one of the predefined counters like this, then the new definition
will be used by LATEX whenever it needs to print the counter too, so after executing
the \renewcommand{\thepage}... all the page numbers will be printed using a
boxed Roman numeral. Conventionally, the top matter of a book, such as the
preface and table of contents is numbered using lower case Roman numerals, and
Arabic page numbering starts at the first page of Chapter 1. You can get this sort of
effect by inserting \renewcommand{\thepage}{\roman{page}} at the start of your
document and then \renewcommand{\thepage}{\arabic{page} immediately after
the first \chapter command. The definition of \thepage used to produce a page
number is the one in effect just as the page is cut, so putting the \renewcommand
immediately after the \chapter command (which starts a new page) will ensure
that the previous page is correctly numbered.

11.2.3 LATEX commands to manipulate counter values

LATEX allows you to add (possibly negative) numbers to counters. More general
arithmetic (although not much more general) is possible using the TEX commands
described in the next section. The following commands may be used to change the
value of a counter

\setcounter{countername}{number}
set the value of countername to number

\addtocounter{countername}{number}
increment the value of countername by number

104 LATEX STYLE PARAMETERS

\stepcounter{countername}
increment countername by one and zero any counters that are en-
closed by it.

\refstepcounter{countername}
increment countername by one, zero any counters that are en-
closed by it and update the present reference value. The reference
value is a counter that is used by the \label command. When-
ever a \label command is encountered, LATEX makes a note of the
pagenumber and current reference value, so that you can refer to
them using the \ref and \pageref commands. The sectioning and
\caption commands set the reference value automatically. You
might use \refstepcounter in theorem and other environments
to give a reference number.

In the above commands number may either be a literal positive or negative integer
or \value{countername}, which returns the number held in countername in a form
usable by the printing commands. The name of a counter itself does not return its
value as in most programming languages, so \setcounter{mycounter}{chapter} is
an error and you must use \setcounter{mycounter}{\value{chapter}} instead.

Both literal numbers and \value commands may be preceded by + or - signs
to modify the sign. Each preceding - multiplies the number by −1, so +---+--6 is
the same as -6.

TEX understands decimal, octal, hexadecimal and ASCII literal numbers. The
following are all valid ways of loading the decimal number 7810 into mycounter:

\setcounter{mycounter}{78} %decimal
\setcounter{mycounter}{"4E} %hexadecimal
\setcounter{mycounter}{’116} %octal
\setcounter{mycounter}{‘N} %ASCII character
\setcounter{mycounter}{‘\N} %ASCII control symbol

As you might expect, octal constants must only contain the digits 0–7 and hex-
adecimal constants the digits 0–9 along with the letters A–F. The ASCII character
constants comprise a backquote character ‘ followed by either an ASCII character
or a control sequence made up of a \ followed by an ASCII character. This is nec-
essary because special characters like % would be given their special meaning unless
they are preceded by \, so

\setcounter{mycounter}{’%}

would be interpreted as most of a \setcounter command followed by a comment,
and TEX would look on the next line for the rest of the command.

11.2.4 TEX counter arithmetic commands

By using TEX commands you can multiply and divide the contents of counters as
well as just add and subtract. You need to refer to the counters as \value{counter}
rather than using the LATEX name directly, which TEX will not understand.

Lengths 105

\newcounter{mycounter}\themycounter\\
\setcounter{mycounter}{6}\themycounter\\
\setcounter{mycounter}{\value{page}}\themycounter\\
\addtocounter{mycounter}{-\value{page}}\themycounter\\

\value{mycounter} \value{page} \themycounter\\ %Horrible
\advance \value{mycounter} by -\value{page} \themycounter\\
\value{mycounter} = 6 \themycounter\\

\multiply \value{mycounter} by 2 \themycounter\\
\divide \value{mycounter} by 3 \themycounter\\
\divide \value{mycounter} by -5 \themycounter

0
6
105
0

105
0
6

12
4
0

Figure 11.1 LATEX and TEX counter arithmetic

You can assign values to a counter, add, multiply and divide using these com-
mands:

\value{counter} = number

assign number to counter

\advance \value{counter} by number

add number (which may be negative for subtraction) to counter.
\multiply \value{counter} by number

multiply counter by number. Be careful not to overflow the range
of a counter which is from −231 to +231, or ±2147483647.

\divide \value{counter} by number

divide counter by number. Since counters are integer variables,
only the integer part of the result is kept and the remainder is
discarded. Division by zero is, of course, illegal.

In fact the assignment symbol = and the keyword by are optional in the above, and
you may sometimes see TEX commands of the form

\value{mycounter}\value{anothercounter}

which copies the contents of anothercounter into mycounter. The wise TEX user
will realise that TEX source code can be difficult enough to read without resorting to
this kind of abbreviation, and I strongly advise you to always insert the keywords.

These commands and some of the LATEX commands are illustrated in Figure 11.1.
The output from this sequence of commands is shown on the right. Counter assign-
ment and addition are illustrated using both LATEX and TEX commands, followed
by multiplication and division.

11.3 Lengths

A length is a register that holds a distance value, such as \textwidth which specifies
the width of text on a page. Superficially a length looks like a counter but a length

106 LATEX STYLE PARAMETERS

is allowed to have a fractional part (i.e. it may be a real number) and literal lengths
must have an accompanying unit of measure.

11.3.1 Declaring length registers

You can make your own length registers with the \newlength{lengthregister}
command where lengthregister is a control word not previously defined. Note
that the name of a length register does have a preceding \, unlike the name of
counter. The value of the length register is initialised to zero when declared.

11.3.2 LATEX length register commands

The contents of a length register can be changed using the following commands
which are analogous to the counter changing commands

\setlength{lengthregister}{length}
sets the lengthregister to length

\addtolength{lengthregister}{length}
increments lengthregister by length

\settowidth{lengthregister}{text}
text is typeset on a a single line and then lengthregister is set
to the length of that line. No output is generated (i.e. the typeset
line is discarded).

The length parameter in the above commands may be either the name of an-
other length register, or a literal length.

A literal length is an optional sign followed by a positive or negative integer
followed by an optional decimal point (denoted by . or ,) and another positive
integer followed by a length unit chosen from the list shown in Table 11.1. Hence
72.27pt and 1in both represent the same distance. Lengths can be negative: when
used in spacing commands such as \hspace and \vspace positive lengths move to
the right or down the page, and negative lengths to the left or up the page.

The point and pica are typesetters’ units. A didot point dd is slightly larger
than an English point, and is used in some continental countries. The cc is thus
the European analogue of the pica.

The scaled point sp is TEX’s internal unit of measure, and mainly appears when
converting lengths to integer values for the purpose of loading into counters (see
section 11.5 below). TEX does not internally handle real numbers, and when a
length with a decimal point in it is read in it is multiplied up and stored as a 32-bit
two’s complement integer. This is done because, whilst 32-bit integer arithmetic is
reliably portable across different computers, real number arithmetic may produce
slightly different answers on different machines, and a fundamental design goal of
TEX was to produce identical typeset output on a variety of machines. The largest
distance that can be represented in TEX is 230 − 1sp or about 5.75 metres. The
smallest distance is 1sp, or about 0.01 wavelengths of light [Knu86a].

The rather strange units em and ex are font specific dimensions. Traditionally an
em is the width of a capital M and an ex the height of a lower case x. In practice,

Lengths 107

mm millimetre
cm centimetre
in inch

pt point (there are 72.27 points to the inch)
bp big point (there are 72 big points to the inch)
pc pica (one pica is 12pt)

dd didot point (1dd is 1238
1157pt)

cc cicero (there are 12cc in one dd)

sp scaled point (there are 65536sp in 1pt)

em roughly, the width of an M in the current font
ex roughly, the height of an x in the current font

Table 11.1 Length dimensional units

modern fonts do not necessarily conform to these conventions, but nevertheless
every TEX font will have these two associated lengths which are characteristic of
the vertical and horizontal spreads of the characters. Spacing parameters within the
text should usually be expressed in terms of the em and ex units so that they will
automatically adjust to changes in font. Heights (such as interparagraph spacing)
should be measured in exes and widths (such as paragraph indentation) measured
in ems.

11.3.3 TEX commands for manipulating lengths

All of the TEX arithmetic commands described in section 11.2.4 may be used with
length registers as well, with the proviso that literal lengths must have a unit of
measure, and may have a fractional part after the decimal point. The octal, hex-
adecimal and character constant notations may be used to represent integer lengths
too, so ‘Hbp is a valid length, equal to 1in since H is ASCII 72, and there are 72
bp to the inch.

The LATEX name of a length register is the same as the TEX name (unlike the
case with counters) so you can directly use the name and must not use the \value
command. Hence for counters

\newcounter{mycounter}\value{mycounter}=-16

but for lengths

\newlength{\mylength}\mylength=-16.00pt

Note that the length name has a leading \ and the literal length has a decimal
part and a unit.

108 LATEX STYLE PARAMETERS

As a final twist, it turns out that the numeric part of a number may be empty,
so you may see the following bizarre constructions in other people’s TEX code (but
please, never your own)

\mylength.in or even \mylength,in

These both set \mylength to zero points. The = keyword has been omitted, as
have both of the numeric parts of the literal number, so all that is left is a length
register name, a decimal point and a unit keyword.

11.4 Rubber lengths and skips

In TEX terminology, a skip or glue item is a stretchable distance that is used to space
out the typeset text. In the LATEX book, skips are called rubber lengths. Rubber
lengths have a natural length which is just like a dimension. Left to themselves,
skips will behave like spaces of their natural length. However, each skip also has a
shrinkability and an expandability. A rubber length is written as

dimension plus dimension minus dimension

so each skip is really three dimensions coupled together. In fact the plus and minus
clauses are both optional and if you leave them out then they default to 0pt.

The skip 23pt plus 5pt minus 1pt has a natural length of 23pt, but will
shrink to 22pt or expand to 28pt if necessary. The skip 23pt plus 1pt will expand
to 24pt but will not shrink at all. So really, a skip specifies a range of lengths with
a preferred value. The plus and minus symbols are keywords like pt and mm, and
like all keywords are only interpreted in certain contexts, in this case anywhere a
literal skip is expected.

The stretch and shrink values come into play when TEX is attempting to find
good line or page breaks. After splitting a paragraph up into lines of roughly the
same length TEX squeezes or pulls the words until the ends of the line meet the left
and right margins. Sometimes TEX cannot squeeze the glue sufficiently, in which
case you get an Overfull \hbox ... warning message and TEX lets the text hang
out into the right hand margin. If you ask for some unusual formatting you may
get into the situation where TEX cannot stretch the glue enough either, in which
case you get an Underfull \hbox... message. The typeset line will contain too
much whitespace, or be loose in printers’ parlance.

11.4.1 Using skips in LATEX

LATEX provides very little direct support for skips for the simple reason that the in-
terline and interword spacings should be a property of the style not the document.
If you want to insert some space, just use the horizontal and vertical spacing com-
mands such as \vspace and \bigskip described in section 5.3.2. You will probably
never need to define skip or maths skip registers and so LATEX does not provide any
commands to do so. I have discussed skips in some detail here because you will
need to understand them when you come to write your own style files.

Interchanging skips, lengths and counters 109

text \hspace{\fill}text\hspace{\fill}
text \hspace{\stretch{1}}text\hspace{\fill}
text \hspace{\stretch{1}}text\hspace{\stretch{1}}

text \hspace{\stretch{1}}text\hspace{\stretch{2}}
text \hspace{\stretch{1}}text\hspace{\stretch{3}}

Figure 11.2 Inserting spring commands

11.4.2 Infinitely stretchable glue

Sometimes it is useful to be able to tell TEX just to use as much glue as it needs.
There is a special dimension keyword fill which really means infinite. So a skip
of 0pt plus 1fill means insert a spring that can stretch to any length.

LATEX does provide predefined infinite skips. The command word \fill expands
to 0pt plus 1fill and may be used as a parameter to the \hspace and \vspace
commands. Fills left or right justify text, and text between two fills will be centred.

It turns out to be useful to have fills with different stretchabilities. The standard
stretchable value is denoted by \fill. The \stretch{multiplier} command gives
a fill with stretchability multiplier times that of a \fill, so that \stretch{1} is
a synonym for \fill. \stretch may be used to place text at an arbitrary position
between boundaries, by inserting springs with different stretchiness on either side.
The ratio of whitespace on each side of the text will be the ratio of the stretchiness
of the springs. These effects are illustrated in Figure 11.2 for horizontal spacing
using \hspace{\fill} commands, and similar vertical effect may be obtained with
\vspace{\fill} commands.

11.5 Interchanging skips, lengths and counters

A skip is three dimensions defining a range, and a dimension is really an integer
number of scaled points. You can supply a skip when TEX is just expecting a length,
and the expand and shrink values will simply be discarded. Similarly, you can supply
a length when TEX is expecting an integer and TEX will use the equivalent number
of scaled points. So,

\newlength{\mylength}\newcounter{mycounter}
\mylength=10pt plus 3pt minus 0pt
\value{mycounter}=\mylength

sets \mylength to 10pt, and mycounter to 655360, since there are 65536 scaled
points to the point. Computer scientists call this process coercion, and you will see
that a skip may be coerced to a length which may be coerced to a counter integer.

11.6 Boxes

A box is a register that can hold a piece of typeset text of arbitrary size. A single
character is represented as an indivisible box in TEX. There are three kinds of boxes

110 LATEX STYLE PARAMETERS

handled by LATEX — hboxes which can contain a single line of text, vboxes (also
known as parboxes) which can contain multiple lines broken up into paragraphs
and rules which are rectangular blobs of ink. Once LATEX has made a box, its
contents are treated as an indivisible unit thereafter, so a common use of boxes
is to inhibit line or page breaking. A strut is a special kind of rule that is zero
points wide and therefore invisible. However, it still has height and can therefore
be used as a fixed length spacer. The command \strut typesets a strut that is
exactly the height of the current font. In maths mode, the equivalent command is
\mathstrut. Struts are useful for placing rules correctly: for instance the commands
$\overline{a}bc\underline{d}$ produce the rather disappointing abcd, but by
inserting struts thus

$\overline{\mathstrut a}bc\overline{\mathstrut d}$

we get the much more pleasing
abcd

11.6.1 Hboxes

The LATEX hbox commands come in long and abbreviated forms:

\mbox{text}
puts text together into a box exactly wide enough to hold the
characters. No line breaks can occur within the box, thus disabling
hyphenation.

\makebox[width][position]{text}
puts text into a box of predefined width. If the optional arguments
are missing then \makebox is exactly the same as \mbox. If width
is present, then it specifies the horizontal extent of the box, which
may be greater or less than the space actually required for text.
By default the text will be centred in the box, overhanging the
sides if necessary. This can be overridden using the second optional
argument. [l] left aligns the text (‘flushleft’) and [r] right aligns
it (‘flushright’). The flushing is done by automatically inserting a
fill.

\fbox{text}
exactly as for \mbox except that a frame is added around text.

\framebox[width][position]{text}
exactly as for \makebox except that a frame is put around text.

11.6.2 Vboxes

In the LATEX book vboxes are called parboxes. They are generated automatically as
the output of the line breaking part of TEX, but you can make parboxes explicitly
with the \parbox command, and this is often useful when you want to group a
block of text together and then place it anywhere other than the left margin. The
example letter shown in Figure 3.1 has the address set in a block and placed on

Boxes 111

the right hand margin. This is done inside the letter style by putting my address
in a parbox, and then setting a fill and the parbox next to each other. The \fill
spring right-justifies the box, pushing it over to the right margin.

Parboxes are often used as parameters to commands that can only cope with
one dimensional lines of text, such as the text parameters to the picture mode
\framebox command. These commands do not ‘know’ the width of the line at the
time they are processed, so they can not cope with line break commands, because
they would not know where to restart the line. The whole point of a parbox is that
you are able to explicitly specify the linewidth to be used so that the line breaking
algorithm can work.

There are two parbox making commands:

\parbox[position]{width}{text}
typesets text into paragraphs with each line being width long.
Since the line breaking algorithm has to know in advance what the
width of a paragraph is, the width argument is mandatory here
unlike for hboxes. The optional position argument specifies the
vertical alignment of the box with the text line. If position is
absent then the centre of the box will line up with the text line.
[t] forces the top of the box to align with the text line so that the
box hangs down. [b] forces the bottom of the box up to the text
line so that the box sits above the line.

\begin{minipage}[position]{width} text \end{minipage}
specifies that text be set in a minipage environment which is a
sort of super parbox. It mimics the layout of a complete page with
indented paragraphs, footnotes and so on. The large example in
Chapter 1 was constructed using minipage. As you might expect
minipage requires an explicit width and an optional positioning
argument: the meanings of these arguments is the same as for the
\parbox command.

11.6.3 Rules

Rules are made with \rule[vshift]{width}{height} which produces a black rect-
angle of size width × height sitting on the text baseline. The optional vshift
argument (which may be positive or negative) specifies a vertical offset.

An interesting special case of a rule box is the \strut. A strut is a rule of zero
width which is therefore invisible. There are places where a \vspace command does
not work because LATEX is in the middle of typesetting a paragraph, and in these
cases a strut can be used to force the desired spacing.

11.6.4 Saveboxes

A box register is declared with \newsavebox{boxname} by analogy with \newlength
and \newcounter. There are two commands to put things in a savebox:

112 LATEX STYLE PARAMETERS

\sbox{boxname}{text}
typesets text as for an \mbox and places it in boxname. No text is
output to the page.

\savebox{boxname}[width][position]{text}
typesets text exactly as for the corresponding \makebox command
except that no output is produced, the result being placed in the
box register instead.

A \usebox{boxname} command recalls the text. There can be many \usebox
commands each typesetting a copy of the contents of boxname. Using saveboxes
speeds TEX up at the cost of some internal memory (which is really quite limited,
so don’t get carried away). Probably the most appropriate use of saveboxes is in
the picture environment, where complicated graphics objects may take a long time
to process as illustrated in Figure 7.4.

11.6.5 Specifying exact box placement

A raisebox is the same kind of one-dimensional hbox as an mbox, but it can be
moved above or below the line of text in which it sits. In addition, you can tell TEX
that it is higher or lower than necessary just to contain the text, and this can be
used to force vertical interline space.

\raisebox{length}[above][below]{text}
typesets text in an hbox and then displaces it vertically by length,
which may be negative. A positive length raises the box and a neg-
ative length lowers it. The optional above and below arguments
are used to insert struts which make the box appear to extend
above and below the text line by the specified amounts.

The glue and box commands described in this chapter can be used to construct
almost any text placement, but they require you to think in a rather specialised way.
If you really must have very exact spacing then try using the picture environment,
which allows you to specify co-ordinates directly. It is worth remembering that an
entire picture environment (and for that matter tabular and array environments
too) generate a single box, which may be used as an overlarge character in normal
typesetting. I once had to typeset some business cards, which required very careful
alignment of the text in a complicated pattern. After wrestling with boxes and glue
I admitted defeat and produced the right result using a picture environment with
no fuss. This kind of thing makes plain TEX purists tear their hair out though, so
keep quiet about it.

11.7 Parameter charts

The rest of this chapter lists the lengths and counters that you can manipulate
directly. Most of the length parameters are illustrated using diagrams that show
how LATEX builds pages.

Page style parameters 113

11.8 Page style parameters

Figure 11.3 shows the details of page construction. You know by now that each page
has a header, a footer, left and right margins and a text body. If you are using the
[twocolumn] document option or the \twocolumn command then the body will be
divided vertically into two equal halves. The text areas are shown here using dashed
boxes and the page boundary is marked with a solid line. Perhaps surprisingly, the
LATEX origin is not the top left of the page, but a point 1 inch in from the corner
vertically and horizontally.

When TEX builds a page it essentially works left to right and top to bottom.
As a result, most of the offsets are only specified with respect to the left and top
margins. There is no direct way of specifying the bottom of the page position for
instance, it being simply the sum of all the vertical offsets. If TEX ends up building
a page that is too big to be printed, then some of the text will simply be lost at the
DVI driver stage1. TEX itself will not attempt to truncate the text.

\hoffset and \voffset move the entire TEX page with respect to the printed
page. They can be negative, which allows you to have less than the 1 inch margins
which TEX usually supplies.

Working inwards from left to right, the \oddsidemargin and \evensidemargin
lengths specify the distance from the origin to the left edge of the text body. For
double sided printing these will be different for the left and right (even and odd)
pages, to allow for the binding. In single sided documents, all pages are right handed
(odd), so the value of \evensidemargin is irrelevant.

Marginal note placement can be in either the left or right margins depending
on the style file and whether any \reversemarginpar commands are in effect.
In each case, the notes are formatted by typesetting them in parboxes that are
\marginparwidth wide and them placing them \marginparsep away from the text
body. As a result, altering \oddsidemargin or \evensidemargin shifts all the text,
body and marginal notes together.

Marginal notes are usually vertically aligned with the point in the text body
where they are defined. However, they must be vertically separated by at least
\marginparpush, and they will be moved if necessary. A warning message is issued
whenever a marginal note moves. In single column mode, the text body will be
\textwidth wide and \textheight high. If two column typesetting is in force then
the width of each column will one half of \textwidth−\columnsep , and they will
be set \columnsep apart. A vertical rule of width \columnseprule will be typeset
between them. By default, \columnseprule is 0pt so the rule is invisible. A width
of 0.4pt will produce a rule of the width shown in the figure.

Working from top to bottom, the header and footer are typeset in hboxes of
width \textwidth and of height \headheight and \footheight respectively. If
you want multiline headers and footers, use a parbox of width \textwidth as a
parameter to the \markboth or \markright commands.

The header will be separated by at least \headsep from the text body. The
skips \topskip and \footskip are stretchable lengths.

1If you are unlucky, your DVI driver will get confused, but ideally it will just print the visible
part of the text.

114 LATEX STYLE PARAMETERS

column 1 column 2

header

footer

marginpar

marginpar
6

?

-�

?

6

6

?

marginpar

-�-�

?

6

?

6

-�

-�

?

6

?

6

?

6

-� -� -�

\footheight

\headheight

\marginparpush

1 inch + \voffset

\topmargin

\marginparsep\marginparsep \columnsep

\textwidth

\footskip

\textheight

\oddsidemargin or
\evensidemargin

\marginparwidth \marginparwidth\topskip \headsep

1 inch +
\hoffset

Page boundary

LATEX origin
@@I

?

6

\columnseprule���

Figure 11.3 Page parameters

Paragraph parameters 115

11.9 Paragraph parameters

Within a column, or the main text body in single column mode the spacings shown
in Figure 11.9 are used. The paragraphs are \linewidth wide. At the outermost
level in single column mode, \linewidth will be the same as \textwidth, but
every environment such as quote that indents the margins will reduce \linewidth
accordingly. The paragraphs are separated by \parskip. Since this is a skip (as
opposed to a length) the paragraphs may be pulled apart as necessary to balance
the page.

Within a paragraph, the baseline of each text line is separated vertically by
\baselineskip from its neighbours. The first paragraph after a heading is never
indented, but subsequent paragraphs will have a \parindent space inserted at
the beginning. Many people express surprise that LATEX does not indent the first
paragraph in a section, but this is standard typesetting practice as you will see if
you open any commercially typeset book2.

\footnoterule is a command (not a length) that draws the footnote separator.
You can use \renewcommand to define peculiar separators if you wish. When TEX
builds the page, it assumes that the footnote separator defined by \footnoterule
takes no vertical space, so you must compensate for the height of your separator by
inserting a negative space of exactly the right height to ensure that the footers for
pages with footnotes match the footer separation of normal pages. The footnotes
themselves are typeset in parboxes the same width as the text column separated
by skips of height \footnotesep. The running footnote number is maintained
in the counter footnote. As you might expect, the printed footnote number is
produced with \thefootnote, which you can redefine to get unusual numbering
conventions. Within a minipage environment, the counter mpfootnote and the
command \thempfootnote are used instead, so as to avoid disrupting the main run
of footnotes.

11.10 List style parameters

The list environment is LATEX’s central mechanism for producing indented struc-
tures and is used to define quote and quotation as well as the more obvious
itemize and enumerate:

\begin{list}{default-label}{declarations}
\item first body

\item second body

...

\end{list}

default-label is used to form the item labels in the absence of an optional
parameter to the \item command. The commands in declarations are executed

2I once had to prove this to my students by getting them to pick a book at random from my
shelves and check for themselves. They went away satisfied, and I did not bother to point out that
the book they had chosen had been typset in LATEX. . . Nevertheless, it is still true.

116 LATEX STYLE PARAMETERS

3.5 A section heading

footnote 1

footnote 2

-� \linewidth

\footnoterule

line 1

line 2

line 3

line 4

line 5

line 6

line 7

line 8

6

?

6

?
\parskip

\baseslineskip

\footnotesep

-�\parindent

?
6

Figure 11.4 Paragraph parameters

List style parameters 117

at the start of the environment to set up the indentation and font style. Before
calling declarations, LATEX executes the command \@listn where n is i, ii, iii
or iv increasing with list nesting. Roman numerals are used because arabic digits
may not appear in TEX control words. The \@listn commands are defined in the
style file.

The layout of a general list is shown in Figure 11.5. A list comprises a sequence
of labelled items each of which may have a multiparagraph body. The labels and
the bodies are indented, and normal paragraph indentation works within a body,
that is the first paragraph is not indented but subsequent ones are. Lists may be
nested to a maximum depth of five.

The indentation of the item bodies is specified by the parameters \leftmargin
and \rightmargin. In an itemize environment, labels are constructed by executing
the command \labelitemn where n is a roman number in the range i to iv. At the
outermost level, \labelitemi is used, at the first nested level \labelitemii is used
and so on. In other environments you can override the default label by redefining the
command \makelabel{labeltext} which is called by LATEX to typeset the labels.

The label will be typeset right flushed in an hbox of width \labelwidth. If the
label is wider then \labelwidth then the box will expand to exactly fit it. The left
hand edge of the label will always be at a point

\leftmargin − \labelwidth − \labelsep + \itemindent

in from the left hand margin of the enclosing text. Normally \itemindent is 0pt,
giving the kind of spacing shown for the first and second items in Figure 11.5.
However, if you do set \itemindent to a positive value, the label will shift right,
and the first line of the body will be indented to ensure that there is still \labelsep
worth of space between the label and the start of the text. Subsequent lines will be
indented as for a normal body. This effect is shown in the third item of the figure.

The fourth item in the figure shows that a similar indentation occurs if the label
is wider than \labelwidth: the \labelsep wide gap between the label and the
body will be maintained by indenting the first paragraph of the body.

The entire list will be separated by \topsep + \parskip worth of whitespace
from the preceding and following text. An extra space of \partopsep will be in-
serted if the list begins a paragraph, i.e. if it is preceded by a blank line or a \par
command. A gap of \itemsep + \parsep will be inserted between each item body,
and within an item body the paragraphs are separated by \parsep and indented
by \listparindent.

The details of the default parameters for each environment are set by the style
file. Some of the parameters are initialised within the \begin{environment name}
command, so you will need to adjust them within the environment.

A rather specialised list, the bibliography environment, uses the parameter
\bibindent to specify the indentation of long bibliography items when the openbib
style option is in use.

118 LATEX STYLE PARAMETERS

second item body

first item body

main text

following text

first label

second label

third label

6

?

6

?

6

?

6

?

-�

-�

-� \listparindent

first paragraph

second paragraph

\labelwidth

or natural width

\leftmargin
\rightmargin

\topsep + \parksip + \partopsep

\topsep + \parskip

\itemsep + \parsep

\itemsep + \parsep

6?
\parsep

-�

-�

\labelsep

-�

third item body

fourth item body

6

?
\itemsep + \parsep

\itemindent

An overlong label

-�
\labelsep

-�
\labelsep

Figure 11.5 List parameters

Float parameters 119

float 1

float 2

text

upper text

lower text

float [h]

float 1

float 2

float 3

float 4

6?

6?

6?

6

?
6

6?

6
?

6?

6

?

6
?

?

f

t

f1

f2

f3

f4

\floatsep

\textfloatsep

\intextsep

\intextsep

6?
\floatsep

6?
\floatsep

6?
\floatsep

Text with floats In-text float Page of floats
f/t ≤\topfraction Σfn ≥\floatpagefraction

Figure 11.6 Float parameters

11.11 Float parameters

Floats can appear in three different contexts: the in-text float made with an [h]
option, a page of floats forced with a [p] option or created automatically if there is
sufficient pending float material to fill a page, and the usual text-with-floats page
where the floats live at the top or bottom depending on whether a [t] or [b] option
was used. These three cases are illustrated in Figure 11.6.

Float placement can be a source of some dissatisfaction amongst LATEX users.
The [h] optional argument to the table and figure environments should create
an in-text float, i.e. a non-floating float. In practice, LATEX is quite fussy and will
in fact move a float unless there is plenty of space on the page.

11.11.1 Vertical float spacing

In-text floats are separated from the surrounding text by \intextsep, and you
might try reducing this to zero if you absolutely must force a float to appear inline.

Where a sequence of floats is output, either on a page of floats or on text with
floats page, a skip of \floatsep will be inserted between the floats. Since this space
is a skip, the gap may be stretched as necessary. Except for in-text floats, a skip of
\textfloatsep will be inserted between floats and adjacent text.

11.11.2 Limiting the number of floats on a page

A page of floats is allowed when there are enough floats in the queue to fill at least
\floatpagefraction of a page. Perhaps surprisingly, \floatpagefraction is a
command, so it is redefined using a command of the form

120 LATEX STYLE PARAMETERS

\renewcommand{\floatpagefraction}{.75}

The reason this parameter is a command and not a counter is that LATEX counters
can only hold integers, not fractions.

For a mixed text and float page, the counters topnumber and bottomnumber
specify the maximum number of floats that may appear at the top and bottom of
the page respectively. The counter totalnumber limits the total number of floats
that may appear on a page under any circumstances. A mixed page must have at
least \textfraction occupied by text. Like \floatpagefraction it is a command,
and must be redefined using \renewcommand.

11.11.3 Double page parameters

When two column formatting is in force (either after a \twocolumn command or
when the [twocolumn] style option is used) an alternate set of parameters is used.
The five parameters \dbltopfraction, \dblfloatpagefraction, dbltopnumber,
\dblfloatsep and \dbltextfloatsep perform the same functions for two column
text as the parameters \topfraction, \floatpagefraction and so on do for single
column printing.

11.12 Display maths parameters

Maths displays are created using the displaymath environment or the \[. . . \]
commands. Formulae in display maths environments are classified as either short
or long depending on whether they start to the right of the end of the last line
or not. Short formulae have \aboveshortdisplayskip inserted before them and
\belowshortdisplayskip above. Long formulae have \abovedisplayskip in-
serted before them and \belowdisplayskip below.

In the fleqn document option, \topsep is used for all inter-formulae spaces,
and \mathindent is use to indent formulae from the left margin.

11.13 Tabular and array parameters

The tabular environment and its maths-mode equivalent array are useful for gen-
eral typesetting as well as for tables because the output is a single box. Rather
complex superscripts may be built up for instance by using an array environment
to arrange items in a grid and then supply the entire environment as an argu-
ment to the ^ command. The parameters shown in Figure 11.7 must be changed
within the environment because they are reinitialised by the \begin{tabular} and
\begin{array} commands.

The default inter-row spacing may be stretched by redefining the command
\arraystretch. Its default value is 1, and increasing it moves rows apart whilst
decreasing it pushes them together. When multiple adjacent vertical or horizontal
lines are typeset they will be separated by \doublerulesep. Note that vertical
lines are broken across double horizontal lines since the vertical line only fills the
text part of a row. The actual width of horizontal and vertical lines is specified

Framebox parameters 121

6

?

- �- �

?6

\doublerulesep

\doublerulesep

\arraystretch

× normal strut

2× \tabcolsep

Figure 11.7 Tabular and array parameters

enclosed text

\fboxrule

\fboxsep

?

6

?

6

Figure 11.8 Frame parameters

by \arrayrulewidth. A value of 0.4pt will give lines like those in the figure. A
space of \tabcolsep (or \arraycolsep in an array environment) is appended and
prepended to all items in a row, so the default spacing is 2 × \tabcolsep will be
used between columns. This spacing is suppressed for columns with an @-expression
in their specification. In an eqnarray environment, extra vertical space specified
by the command \jot is added between rows.

11.14 Framebox parameters

The text in a framebox is set in an hbox exactly large enough to fit round the text.
A whitespace border of width \fboxsep is then placed around the box, and then
rules of width \fboxrule are drawn all the way round. These parameters are shown
in Figure 11.8.

11.15 Sectioning parameters

Each sectioning command has an associated depth, as listed in section 4.3. For
every sectioning command there is an associated counter of the same name and a

122 LATEX STYLE PARAMETERS

command to print it. So for the \subsection command, the present subsection
number is held in the subsection counter and the definition of \thesubsection
specifies the way it will be printed. Each counter is zeroed when its enclosing section
number is incremented. The sectioning commands below the level of \chapter will
print the section numbers down to the depth specified in the counter secnumdepth.
A good value for this parameter is 2, which will print headings of the form

chapter.section.subsection

but leave the number off for subsubsections and below.
Table of contents generation is controlled using the counter tocdepth which

specifies the maximum depth of section heading that will be listed in the table of
contents. Again, 2 is a good value to use.

11.16 Default parameter values

The large number of parameters listed in this chapter are all initialised in the style
file. The next chapter explains the contents of the standard style files, and shows
you where to find the initialisation code for the style parameters.

12

Writing a style file

This chapter is about the internal workings of LATEX. TEX itself is a complex and
subtle system, and the combined LATEX source code runs to some 11,000 lines, so a
single chapter is in no sense going to offer a complete guide to LATEX programming.
Instead, I shall concentrate on the structure of the standard style files and explain
enough about TEX’s commands to enable you to make simple modifications to the
existing styles. If you want to really get to grips with TEX programming, then
you should consider a copy of the TEXbook [Knu86a] a mandatory purchase. I
have also found A Beginner’s Book of TEX by Raymond Seroul and Silvio Levy a
useful reference [SL91]. You may be able to get a copy of the document A Gentle
Introduction to TEX by Michael Doob [Doo] from your supplier or system manager —
this is a freely available booklet that has been translated into several European
languages. Finally, TEX for the Beginner by Wynter Snow [Sno92] is particularly
suitable for LATEX users since it describes plain TEX but cross references to LATEX
features.

12.1 The LATEX format

Although LATEX is so large, it is all written in the TEX language which is readable by
humans (with some patience and training). The source code is always distributed
with a LATEX system, and it is heavily commented so in principle every aspect of
the system’s implementation can be understood by the persistent user.

It would be very inefficient for TEX to read in and process all 11,000 lines of the
LATEX macro package every time you started to process a document, so TEX has a
mechanism for reading pre-digested macros from a format file. A special version of
TEX called INITEX is used to create these format files1. The LATEX format is con-
structed from four files — lplain.tex, latex.tex, lfonts.tex and hyphen.tex.
lplain is the master file, so a new format file may be created by changing directory
to your inputs directory2 and then typing something like

initex lplain

At the end of rather a lot of processing, TEX will stop and issue a * prompt.
You should respond with \dump which is a special INITEX command that causes the

1Sometimes there is no separate initex program, but the normal TEX program is used with a
special switch. See Appendix A.

2See page 24.

124 WRITING A STYLE FILE

format file to be written out, and control to be returned to the operating system.
You should move the new format file to the place on your system where format files
are kept. This location is rather system specific, so consult the documentation for
your version of TEX. Normally you will never need to rebuild the LATEX format.

lplain.tex is a slightly modified version of plain.tex, the standard format
that Knuth wrote for everyday TEX use. Some commands are commented out,
and there are enough differences between lplain and plain to ensure that only
very simple plain documents will pass through LATEX unscathed. lplain reads in
and processes hyphen.tex, another file from the original TEX system that defines
American hyphenation patterns. In principle, you can replace hyphen.tex with a
file specific to your own language, but the construction of a new set of hyphenation
patterns is a non-trivial task. It is especially important for foreign languages, be-
cause TEX will not usually hyphenate a word that contains an accent command.
New patterns are available for German and some other European languages.

After processing the hyphenation patterns lplain goes on to read in lfonts.tex
in which all of the font changing commands such as \bf are associated with par-
ticular TEX fonts such as cmbx. If you look in lfonts.tex you will find that other
font styles such as \sfb (the bold sans-serif font used for section headings in
this book) and \tti (an italic teletype font) are defined, but commented out,
as many versions of TEX do not have enough internal memory to hold all of the
necessary definitions. If you want to use these fonts and you have a big TEX im-
plementation you could uncomment the definitions and rebuild the LATEX format.
However, this is a bad idea for two reasons — firstly you will have a non-standard
version of LATEX and so you might have difficulties exchanging documents with other
users, but more importantly because there is a completely new font selection scheme
available that offers much greater flexibility. You will find details of the new font
selection scheme (NFSS) and how to obtain it in the next chapter.

Right at the end, lplain calls in latex.tex, a large file which contains the vast
bulk of the LATEX system. This is the file you should read if you want to know how
a particular command is implemented.

12.2 How style files fit in

Some parts of LATEX are not fully defined in the main latex.tex file. These parts
include the full specification of the \section command and the details of float
processing. Every document must read in a file that completes these definitions
before processing begins, and that file is usually the primary style file, defined in a
\documentstyle like:

\documentstyle[11pt,bezier]{article}

LATEX expects a \documentstyle command to be the first thing in your file (apart
from comments and blank lines) and it processes it by, in this case, looking for and
processing a file called article.sty in the inputs directory. The optional argument
contains a comma separated list of items which may be the names of additional files,
or may be commands directly understood by the primary style file article. In this
case, 11pt is a command to the style file that indirectly causes it to read in the file

Internal and external commands 125

art11.sty which defines fonts for the 11pt version of article, and bezier is the
name of the file that defines the \bezier command described in section 7.5.8.

Files like bezier.sty are not dependant on any particular primary style and
really exist to add extra specialist commands to LATEX. Files like art11.sty are an
integral part of the article style, and are not useful on their own.

It is important to find out what styles are available to you, which you can do
by checking the inputs directory of your computer for filenames ending in .sty.
Style files are written in the TEX language, and there may be comments in the .sty
file that explain the functionality of the style. If there are none, try looking for a
file with the same name but a .doc filetype, which will be a more human friendly
version of the style.

12.3 Internal and external commands

If you look in a style file or in the LATEX source files you will see a large number of
@ signs. There is a convention that command words which are internal (or local)
to a style have an @ sign in the name, whereas command words that are available
for use in the document have only letters in their name. In fact TEX provides a
way of enforcing this convention, and it will normally refuse to even recognise a
command name with an @ in it in your document. This is to make sure that you do
not accidentally define a command that might conflict with one of LATEX’s internal
names, or accidentally misuse an internal command.

You can override this behaviour with the command \makeatletter which makes
the @ sign behave like a letter so that TEX will recognise it as a valid constituent of
a command name. The command \makeatother returns @ to its non-letter state,
restoring the default LATEX behaviour. You may occasionally find it useful to access
internal commands, but be sure to only switch the behaviour of the @ sign when
you need to as very peculiar errors can occur if you unintentionally use an internal
command.

Within style files, \makeatletter is automatically in force. \makeatother is
executed immediately after processing the last style file before handing control back
to your document file.

12.4 The rudiments of TEX programming

The TEX language was designed to be compact and easy to write as opposed to
easy to read. Most computer languages have a clearly visible structure featuring
keywords which have a fixed meaning, and this is a great help when trying to read
someone else’s code, as the keywords provide a ‘skeleton’ into which the program’s
actions fit. TEX, however, is a macro expansion language with very few keywords
and a large number of primitive commands that are not obviously distinguished
from user definitions, so the process of understanding a TEX program may involve
unravelling many layers of macro expansion to arrive at a long sequence of primitive
commands.

To add to the confusion, almost nothing in TEX need be what it seems. Even
the \ escape character can be changed (although it almost never is in LATEX), and

126 WRITING A STYLE FILE

in some contexts characters have different meanings. A trivial example of this is
the \verb command which turns off all TEX character interpretation between two
delimiter characters.

Fortunately, the kind of TEX programming found inside style files is usually
straightforward, and you will not run up against any real TEX trickery unless you
start reading latex.tex. This section explains the TEX commands that are used
in the standard styles, but should not be interpreted as a complete guide to TEX
programming.

12.4.1 TEX definitions

A TEX definition creates a new command. The LATEX commands \newcommand and
\renewcommand also perform this function, but they are rather inefficient because
they go to some lengths to catch errors. In addition, there are some circumstances
that require special features not provided to the LATEX user. As a result the style
files almost always use the underlying TEX definition commands.

12.4.2 \def and its variants

The command

\def\command{text}

associates text with \command as would a \newcommand{\command}{text} com-
mand. No check is made to see whether \command is already defined. The text

parameter must not contain a blank line or a \par command — that is the expan-
sion must not include the end of a paragraph. This rule catches the common error
of forgetting to append the closing brace to the {text} argument. When TEX sees
the end of a paragraph inside a definition it issues a Runaway argument? error
message.

In some circumstances it is necessary to define an expansion text which is more
than one paragraph long. In such cases, the \def command is prepended by \long,
so

\long\def\command {text with paragraph breaks}

can have arbitrary text in the expansion argument, but of course TEX will not be
able to catch any missing } errors.

There is another \def modifier that is used to restrict the context in which the
defined command may be used. If you precede the \def with \outer then the
new command will only be recognised by TEX when it is at its ‘outermost’ level of
processing. In particular, the macro will not be accepted in the arguments to any
other commands.

There are a few LATEX definitions that are global, that is they are remembered
throughout a document, as opposed to normal definitions which are forgotten at
the end of their enclosing group. You can create a global definition by prefacing
the \def command with \global. For those that do not like typing, there is also a
TEX primitive \gdef which is equivalent to \global\def.

The rudiments of TEX programming 127

The modifiers \long, \outer and \global can appear in any order and in any
combination before the \def command.

12.4.3 Definitions with parameters

The LATEX \newcommand and \renewcommand sequences allow commands with pa-
rameters to be defined by supplying an optional argument containing the number
of parameters to be used. The TEX \def command can have up to nine parameters
numbered #1 – #9. A command of the form

\def\mycommand#1#2#3{$#1=#3^#2$}

will typeset expressions of the form x = zy when called with \mycommand{x}{y}{z}.
You must request parameters in order: \def\mycommand#1#4 is an error because
parameters 2 and 3 must be used before parameter 4. However, parameters can
appear in the replacement text in any order and as many times as you like.

A particularly tricky aspect of TEX’s parameter definitions is the use of delimited
parameters. It is most important to ensure that there are no intervening characters
between the parameters in the definition, because if there are TEX will take them
as boundary characters for the macro expansion. These commands

\def\funnycommand#1=#2.#3..{Whole part #2, fractional part #3}
\funnycommand x=16.385..

produce

Whole part 16, fractional part 385

When TEX sees any characters appearing in the parameter list for a \def it remem-
bers them and uses them to divide up the text following a call to that macro. In this
case, TEX will take everything after the \funnycommand up to the first = sign as the
first parameter, everything from there to the first . as the second and everything up
to a pair of . characters as the third. This powerful feature allows TEX parameters
to be almost any piece of text, but can wreak havoc if you accidentally leave some
blanks between the #n parameter definitions. LATEX eschews such cleverness and
insists that all parameters are simply delimited by {} braces, which makes LATEX
code easier to read if less flexible.

12.4.4 Command assignments

The command \let\newcommand =\oldcommand gives \newcommand the same defi-
nition as \oldcommand. This more efficient than \def\newcommand{\oldcommand}
because it saves one level of macro expansion in the interpretation of \newcommand.

\newcommand is not always a synonym for \oldcommand because after a \let
command you can change the definition of \oldcommand but \newcommand will
retain the previous definition.

128 WRITING A STYLE FILE

12.4.5 Grouping

The usual way of making a group in TEX is with the {} braces. There are a pair
of commands \begingroup and \endgroup that have the same effect as { and }
but braces must be matched with braces, and \begingroup must be matched with
\endgroup. These two variants are an aid in error checking — LATEX environments
use the \begingroup . . . \endgroup pair and can therefore catch any unmatched
braces inside them.

There is a subtle problem with the definition of macros that are to be used
to sandwich other blocks of text. A macro definition may not contain unmatched
braces, because braces are also used to delimit the macro replacement text. The
only way to get unmatched braces into a macro definition is to use the special
commands \bgroup and \egroup which are alternative names for { and } (created
with \let commands) that may be used in macro definitions without TEX ‘noticing’
that they are really braces.

12.4.6 TEX control flow

Any programming language needs statements to change the flow of a control. TEX
has a mechanism for defining and using conditionals, and allows macros to call
themselves which enables code to be repeatedly executed.

12.4.7 TEX conditionals

A conditional statement has the following form

\ifcondition true-text \else false-text \fi

When TEX comes across a conditional, it evaluates condition and if it is true
the entire statement including the \if and the \fi is deleted and replaced with
true-text. If the condition is false then the statement is replaced with false-

text. It is important to realise that the conditional simply chooses between two
replacement texts: it does not in any sense execute either branch, and it does not
matter if the true-text or false-text are in themselves correct TEX sequences
as long as after replacement a well-formed TEX sequence results. In particular, the
true- and false-text can contain unbalanced braces. If the false-text is null,
then the entire \else false-text clause may be omitted.

A large number of different condition s are predefined. Some of them depend
on TEX features that we have not described so only a selection are listed here.

\ifoddnumber true-text \else false-text \fi
tests whether a literal number, a count register, a length interpreted
as scaled points or the natural length of a skip interpreted as scaled
points is odd.

\ifnum number rel number true-text \else false-text \fi
tests a relation between two numbers, which may be any mix of lit-
eral numbers, count registers, lengths interpreted as scaled points,
or the natural length of a skip interpreted as scaled points.

The rudiments of TEX programming 129

rel may be <, = or >=.

\ifdim number rel number true-text \else false-text \fi
tests a relation between two dimensions, which may be any mix of
literal lengths, length registers or the natural length of a skip.
rel may be <, = or >=.

\ifcasenumber text0 \or text1 \or . . . \else else-text \fi
Perform a multiway branch (a case statement) by looking at the
value of number and replacing the entire conditional statement with
the nth branch, textn. If the number is negative, or if it is greater
than the number of \or clauses then replace the conditional with
the else-text.

12.4.8 User defined conditionals

A common requirement is to have a switch which controls formatting. An example
from LATEX is the switch that controls whether two-column printing is in force.
The \twocolumn command and the {twocolumn} style option must set this switch,
and the \onecolumn command must reset it. One way to implement this might
be to reserve a counter register, assign an odd or even number to it and test it
with an \ifnum command. This is rather wasteful of resources, since an entire
numeric register is being used to hold a quantity which can have only two states (a
Boolean variable in computer science-speak) so TEX allows you to define your own
conditionals.

The command \newif\ifmyswitch defines three new control sequences

\myswitchtrue
which sets myswitch true

\myswitchfalse
which sets myswitch false

\ifmyswitch true-text \else false-text \fi
which tests the value of myswitch and replaces the entire condi-
tional statement with true-text or false-text accordingly.

12.4.9 TEX loops

TEX allows macro replacement texts to contain calls to themselves, which means
that a macro can be repeatedly evaluated. This self-reference is called recursion,
and it is an unfortunate fact of life that non-mathematicians seem to find recursion
difficult to understand, which is a great shame. The plain TEX format defines a
command that performs iteration in a more comprehensible fashion:

\loop pre-test-text \ifcondition post-test-text \repeat

TEX will process pre-test-text and then evaluate the condition. If it is true,
then post-test-text will be processed and the whole loop will be repeated. If the
condition is false then processing will continue with the text after the \repeat

130 WRITING A STYLE FILE

command. Note that the \if clause is not a fully formed conditional statement, but
just the \ifcondition part with no replacement texts or matching \fi command.

This command is retained in lplain.tex, and may be used in style files and
documents. LATEX also has some iteration and conditional commands of its own
that are described in the next section.

12.4.10 The LATEX ifthen style commands

If you include the [ifthen] document style option then the following two commands
will be defined:

\ifthenelse{test}{true-text}{false-text}
evaluate test and replace the entire command with either true-

text or false-text accordingly.

\whiledo{test}{while-text}
evaluate test and if it is true execute the while-text and restart
at the \whiledo command, otherwise continue with the command
after the \whiledo.

The test argument in these commands allows natural logical phrases to be con-
structed. The basic tests are

\equal{text1}{text2} All of the macros in text1 and text2 are ex-
panded and then the test returns true if the results are identical.

number rel number where rel may be < = or >

These simple tests may be combined into Boolean expressions using the commands
\and, \or, \not and brackets \(and \).

These LATEX constructions are far closer to the control statements found in con-
ventional procedural programming languages like C and Pascal than TEX’s macro-
like conditionals.

12.4.11 TEX modes

At the lowest level, TEX is a program for putting boxes together. At certain times
TEX will refuse to execute some commands. For instance the LATEX \\ end of line
command can only be used when a line has actually been built up, otherwise you get
the message There is no line to end here. TEX has six modes which govern
what actions are allowable at a particular point in the text. The modes are closely
related to the kinds of boxes that are being constructed, and you might find it
helpful to review the material in section 11.6 before reading further.

When TEX is building paragraphs, it first gathers all the characters together in
a long one-dimensional line. At this time TEX is in horizontal mode. If you are
collecting characters to go into an hbox, which will never be split up into lines (for
instance whilst processing the argument to an \mbox command) then TEX is in
restricted horizontal mode.

After a whole paragraph has been found, the long line built in horizontal mode
is divided up into lines of about the right width to fit on the page. TEX enters

An overview of article.sty 131

vertical mode and attempts to fit these boxes onto the page looking for good page
breaks. When TEX is making a vbox, as is the case during the construction of a
float or a tabular environment, it continues to pile up lines and will not look for
page breaks. This mode is called restricted vertical mode. It is restricted in the
same sense as restricted horizontal mode: restricted vertical mode ignores potential
page breaks and continues vertically; restricted horizontal mode ignore potential
line breaks and continues horizontally.

The last two TEX modes are both used for typesetting mathematics. Maths
mode is used to typeset in-line formulae found between $. . . $ signs, and display
maths mode is used for equation environments and display maths formulae found
between \[. . . \] commands.

By and large you will not need to keep track of these modes when using LATEX,
but it is sometimes necessary to engineer a mode change within a style file. The
command \par denotes the end of a paragraph (as does a blank line) and forces TEX
into vertical mode, as does any vertical spacing command. TEX returns to horizontal
mode whenever a character is typeset or when horizontal spacing commands are
encountered. Restricted horizontal mode is entered by using commands like \mbox
or \makebox, and restricted vertical mode is entered within floats, tabular and
array environments, and the picture environment.

12.4.12 Penalties

When TEX is looking for good line or page breaks it performs calculations that
compute the badness of the break. Having to hyphenate a word increases the badness
of the break, as does an excess of whitespace on a line. If life were simple it would
be possible to define absolute rules that would yield pleasingly balanced pages in
all cases. In reality, it is sometimes necessary to tweak the probability of a line
break occurring at a particular point. The command \penaltynumber inserts a
penalty which is a hint to the breaking algorithms this is a good or bad place to
make a break. A negative penalty number encourages a page or line break, and a
positive penalty discourages. TEX actually squares the penalty value before feeding
it into the breaking algorithms, so a penalty of 10 is much stronger than a penalty
of 2. The maximum value of a penalty is 10000 and the minimum value -10000. A
penalty of 0 does not affect the balance of the calculations, but it does allow line
breaking at a point where it would not otherwise occur which is especially useful in
long maths formulae.

The LATEX styles define a series of commands that are synonyms for standard
penalties, and there are some TEX primitive parameters that are used as penalty
values, such as \hyphenpenalty which is the penalty added in to a tentative line
break at a hyphenation point.

12.5 An overview of article.sty

The best way to learn to write a new style file is to learn how the standard styles
work. The three main standard styles (article, report and book) are internally
very similar. This section looks at each part of article.doc, the documentation

132 WRITING A STYLE FILE

file for the article style. You will find it useful to have a printout of article.doc
available as you read this section.

12.5.1 Initialisation and internal options

There is an internal LATEX command called \@options which is usually called near
the beginning of the style file. This command causes LATEX to process style options
by looking at each part of the comma delimited list in the optional parameter to
\documentstyle (if present) and for each one attempting to execute a command
of the form \ds@option where option is the name of the option. For example, a
command of the form

\documentstyle[twoside]{article}

calls up the article style and begins to process its contents.
When an \@option command is found LATEX will attempt to execute the internal

command \ds@twoside. Near the beginning of the article style file this command
is defined as

\def\ds@twoside{\@twosidetrue \@mparswitchtrue}

Executing this command sets two conditions which tell LATEX to use doublesided
printing (i.e. use both the \oddsidemargin and the \evensidemargin page param-
eters) and put marginal notes in the outside margin.

In my version of article.sty a [draft] option is defined with

\def\ds@draft{\overfullrule 5pt}

\overfullrule is a TEX primitive that draws a black rule box at the end of
any overfull hboxes. If you use the style option [draft] then LATEX will place a
5pt wide rule at the end of any overfull line, which makes them very easy to spot
on a draft print out. It is easy to redefine \ds@draft to insert the word draft in
the header or footer to ensure that a preliminary copy of your document does not
accidentally get released to a wider audience.

12.5.2 Undefined options

If you request an option for which no corresponding \ds@option command exists
in the primary style file, LATEX will search the inputs directory for a file of the name
option.sty and process that before continuing. If no such file exists, an error
message will be issued. Usually, TEX searches the directory in which it was started
before the inputs directory, so you can keep local copies of style files that will take
precedence over the system defaults.

12.5.3 Type size suboption processing

The font size options are treated specially because they contain numeric digits. Nor-
mally, TEX refuses to recognise non-alphabetic characters in command names, but
the document options mechanism requires us to define a command name \ds@11pt

An overview of article.sty 133

to handle the [11pt] option. It turns out that it is possible to persuade TEX to
accept these unusual command names, and there is an internal LATEX command
\@namedef which allows commands with any characters in the name to be defined.
It is used the same way as \newcommand except that a leading \ is automatically
supplied for the command name, so

\def\@ptsize{0} %initialise to 10pt
\@namedef{ds@11pt}{\def\@ptsize{1}} %change to 11pt
\@namedef{ds@12pt}{\def\@ptsize{2}} %change to 12pt

\input art1\@ptsize.sty

defines a command \@ptsize which will be used to supply the last digit of the file-
name for the font size subsidiary style file. By default, its value is 0, but a document
style option of [11pt] causes the command \ds@11pt to be executed which resets
it to 1. Subsequently the \input command reads in the file art1\ds@11pt.sty,
i.e. art11.sty. Of course, the \@options command must come before the \input
command to ensure that all options have been processed before the font file is read.

12.5.4 The typesize file

The three font size subsidiary style files all have the same form. The bulk of their
content is a series of dimension, skip, penalty and font definitions that specify the
size of a page, the base fonts to use and the line and page breaking behaviour. A
great deal of work has gone into the specification of these parameters, and it would
be wise to leave them alone unless you are a competent book designer. Most of
the file should be easily modifiable if you have understood the discussion of LATEX
lengths, counters and skips in the previous chapter.

Somewhat anomolously, all of the section commands used in article are defined
in the font size file. This is because the typeset headings must be declared when the
sectioning commands are created, and the spacings surrounding a section heading
must vary with the size of the font. The definition of sectioning commands will be
discussed in section 12.5.7 below.

12.5.5 Environments

When LATEX encounters a \begin{environment} command it starts a new group
which declares a new scope level, performs some housekeeping and then attempts
to execute the command \environment. If this command is undefined then LATEX
issues an Undefined environment error message. When LATEX reaches the corre-
sponding \end{environment} it executes the \endenvironment command.

Some environments like itemize are an integral part of the LATEX source code,
and some, such as quote are only defined in the style file so they do not ap-
pear in latex.tex. Many environments, including quote, quotation, verse and
description are defined in terms of the primitive list environment described in
section 11.10. In general, environments that are defined only in the style will have

134 WRITING A STYLE FILE

definitions for \environment and \endenvironment in the style file, whereas envi-
ronments that are built into LATEX will just have some parameters defined.

When the \begin command is processed, the internal command \@currenvir
is set to the environment name. This is checked by the \end command to make
sure that environment names are nested correctly. \@currenvir is initialised to
document to make sure that the document is terminated with an \end{document}
command.

LATEX users are often a little vague in the spacing of their source files. There is
a global conditional switch called @ignore which may be set using the command
\global\@ignoretrue that causes LATEX to throw blanks away, and it is sometimes
useful to include this call in the definition of your \endenvironment command to
consume any trailing whitespace after the corresponding \endenvironment com-
mand.

12.5.6 Enumerate and itemize

These environments are defined in latex.tex, but there are sets of commands and
counters defined that may be manipulated in the style file to change the printed
results. article supports up to four nested levels of enumerate and itemize.

Each level of enumeration has an associated counter enumi – enumiv. As is
usual with counters there are commands \theenumi – \theenumiv that are used to
print the counters out. In article, these commands use \arabic, \alph, \roman
and \Alph for increasing levels of nesting.

The label in an enumerate environment is actually produced with the commands
\labelenumi – \labelenumiv. The style file commands

\def\labelenumii{(\theenumii)}
\def\theenumii{\alph{enumii}}

produce labels of the form (c). These commands may be redefined in the style file
or indeed in the document, because they do not have @ signs in their names.

The itemize environment is more straightforward because there are no counters
to maintain. The style file defines four commands \labelitemi – \labelitemiv
which are used to typeset the labels. By default, \labelitemi is defined to be
\bullet.

12.5.7 Sectioning

The definition of the sectioning commands is split between the main style file and
the font size subsidiary file. Section commands usually call the internal LATEX
command

\@startsection{name}{level}{indentation}
{aboveskip}{belowskip}{commands}

which performs the following actions in order:

1. Insert a vertical skip of size aboveskip.

An overview of article.sty 135

2. Indent from the left margin by indentation.

3. Execute commands which typically set the font size and style for the section
title.

4. If the \name command is not followed by a * and level is ≤ the parameter
secnumdepth then print the section number using the command \thename
which must be defined in the style file. If a number is printed, increment the
counter name which must be defined in the style file.

5. Insert a vertical skip of size belowskip.

So, in general each section must be defined with

� a call to \@startsection,

� a counter,

� a counter printing command.

In article the counter definitions are in article.sty and the actual sectioning
commands are defined in art1n.sty. A typical set of definitions is

\def\subsection{\@startsection{subsection}{2}{\z@}{-3.25ex plus
-1ex minus .2ex}{1.5ex plus .2ex}{\normalsize\bf}

\newcounter{subsection}[section]
\def\thesubsection{\thesection.\arabic{subsection}}

The command \z@ used in the indentation parameter is actually an abbreviation
for 0pt. It saves space in TEX’s internal memory because only one token is needed.
Note that the subsection counter is enclosed by the section counter.

Also lurking in the subsidiary font style file is the definition of the \appendix
command. This simply resets the section and subsection counters and redefines
section number printing to use the \Alph style. The secnumdepth counter is also
initialised here to 3.

12.5.8 Table of contents, list of figures and list of tables

When table of contents generation is in effect the sectioning commands write a file
called name.toc. Each sectioning command outputs a line of the form

\contentsline{sectionname}{title}{pagenumber}

If the section is numbered (i.e. it was not a * form of the sectioning command
and the secnumdepth counter did not suppress the section number) then title

is written as \numberline{section number}{heading}, otherwise title will just
be the printed section heading. The \addcontentsline command may be used to
write lines of this format to the .toc file. The \listoffigures and \listoftables
commands enable similar mechanisms that produce .lof and .lot files which have
the same internal structure.

On the next LATEX pass, these files are read back in, and each

136 WRITING A STYLE FILE

\contentsline{sectionname}

is expanded to a command of the form \@sectionname{title}{pagenumber}. The
format of contents pages is therefore specified simply by defining \l@section,
\l@subsection, \l@figure and so on.

In article a contents entry comprises the title left justified (possibly with
an indentation), a dotted line across the page (called a leader by printers) and
pagenumber, right justified. The internal command

\@dottedtocline{level}{indent}{numwidth}{title}{pagenumber}

is used to generate the standard contents entries.
level is used to suppress the entry if its value is ≤ the tocdepth counter.

indent is the indentation for this contents item, numwidth is the width of the box
to contain the section number and title and pagenumber have the same meanings
as for the \l@sectionname command.

The style files also define the actual \tableofcontents command, which type-
sets the contents title, marks the page headers and then calls the internal command
\@starttoc command which performs the processing of the .toc file.

12.5.9 Index

The theindex environment sets up two column formatting and typesets the index
title. It also defines some useful skips and spaces. At the end of the environment
single column typesetting is restored and the page is cleared.

12.5.10 Floats

The float section of article begins by specifying values for the float parameters
described in the last chapter. Within a float environment the \caption command
is defined which keeps the figure and table numbers up to date. It calls the internal
command \@makecaption{floatnumber}{captiontext} which must be defined in
the style file to actually typeset the caption. In article \@makecaption is defined
using the \long\def command because its definition expands to more than one
paragraph.

The float mechanism in LATEX is quite general and other kinds of floats can be
defined in addition to the usual table and figure. As part of the set-up, some
useful internal commands are defined:

\fps@floatname
the default float placement parameter, set to tbp in the standard
styles.

\fnum@floatname
which typesets the caption introducer. In article, \fnum@float
is defined as Figure \thefigure

The report and book styles 137

12.5.11 Title and abstract

The title and abstract definitions are straightforward. Footnotes are redefined to
use the \fnsymbol printing sequence so that \thanks commands use the sequence
listed in section 11.2.1 rather than numbers. The authors’ names are set using
a tabular environment. An interesting trick is the redefinition of \@topnum (the
internal version of the \topnumber parameter) to zero to make sure that any floats
on the title page do not end up at the top, above the title.

12.5.12 Page styles

A page style is used to define the contents of the page header and footer. When
LATEX encounters a \pagestyle{style} command in your document it attempts to
execute a command \ps@style which must be defined in the style file. (In fact the
command \ps@empty and \ps@plain for the {empty} and {plain} page styles are
predefined in latex.tex, so do not need to be defined in the style.) The standard
styles define two further styles: {headings} which puts the pagenumber and the
section titles into the heading using uppercase italic letters, and {myheadings}
which has the same initial effect but whose headers can be reprogrammed with the
\markright and \markboth commands (see section 3.4.4).

The \ps@style command must define the following four commands: \@oddfoot,
\@evenfoot, \@oddhead and \@evenhead. These commands are called by the page
builder to actually typeset the head and foot of odd (right hand) and even (left
hand) pages. In the standard styles, the footers are empty and the headers are
constructed using the \rightmark and \leftmark commands that are defined by
the LATEX \markboth and \markright commands.

The sectioning commands call \@startsection as described above. One of the
housekeeping functions performed by \@startsection is to call a command called
\namemark where name is the name of the section (chapter, section, subsection
and so on). If the command does not exist, LATEX continues but you can define a
command such as \sectionmark to get the section name and number into a running
header.

12.5.13 Initialisation

The final part of article.sty sets up defaults for some LATEX parameters. Arabic
page numbering, a plain page style with no page headers and single column printing
are specified. Usually \raggedbottom typesetting is used unless twosided printing
as been selected in which case \flushbottom printing is necessary so that the both
sides of a sheet will line up.

12.6 The report and book styles

The report and book styles are very similar to article, differing mainly in their
handling of title pages and abstract, and in their default initialisations. book handles
the declarations for the part section rather differently. Almost all of the above
discussion applies equally well to these other two styles.

138 WRITING A STYLE FILE

12.7 The letter style

The letter style is significantly different to the others, and is interesting in that
it shows how little needs to be defined to make a working style file. The first thing
to note is that there are no separate subsidiary style files to handle the different
font commands. Instead, the font changing options are all handled directly within
letter.sty using the usual \ds@option mechanism. The reason that the other
styles split these commands off is the very limited amount of memory LATEX has
available for macro definitions. Having to hold a full set of definitions for all three
sizes in the article style would strain TEX’s capacity, so article only reads in the
ones that it needs, but the letter style is much smaller so there is sufficient space
for all the definitions. In addition, letter writers rarely define large sets of private
commands, which again reduces the demands on macro memory.

Floats are not supported in letters, but LATEX will complain if the float param-
eters are not defined in the style, so an arbitrary set of parameters must appear.

The letter commands are defined after the float parameters. The letter.doc
file supplies instructions for customising these commands to local requirements. If
you have a typeset heading for your letters that replaces the company notepaper,
call it up as part of the definition of \opening.

letter defines a special page style called {firstpage} that is automatically
set for the first page of a letter. This is usually used to insert telephone and fax
numbers in the footer for page 1. Subsequent pages use {plain}, which is defined
to put a page number in the bottom of the footer. An unusual skip of 0pt plus
0.00006fil is defined for the top of the first page, which moves a short letter
towards the center of the page. Some people dislike this visual effect when headed
A4 notepaper is in use because it leaves a large blank space under the header.

The rest of letter is fairly conventional and the discussion of article above
applies.

12.8 A few special effects

The problem with the standard styles is that they are rather, well, standard. Many
books and papers have been typeset with them, and you might wish to make your
documents look a little different. However, before wading in and changing every-
thing look carefully at real typeset books and always try to follow, or even copy,
the styles used there. The availability of cheap word processing and desktop pub-
lishing systems has resulted in a mass of cheap and nasty books and documents. If
you are reading a book like this, it is likely that you have technical expertise with
computers, but remember that technical knowledge does not necessarily assist the
task of artistic design.

There are many useful style files available for free that implement new commands
and commonly requested visual formatting tricks. You will find details on how to
obtain these files in the next chapter. The following sections illustrate a few simple
effects that I use in the style files for this and other books.

A few special effects 139

12.8.1 Globally disabling hyphenation

When typesetting posters that use very large type, or narrow column text with
less than 30 characters on a line TEX’s usually excellent hyphenation can become
intrusive. The command \hyphenpenalty is used to insert a penalty at every
hyphenation point on a line, and hyphenation may be switched off by setting it to
infinity (10000) with the command \hyphenpenalty=10000.

12.8.2 Turning off leaders

The dotted lines used across a contents page are considered to be a little old
fashioned by some publishers. One way to disable them is to rewrite all of the
\l@sectionname commands that are used to typeset the contents entry, but a
useful trick is to increase the internal parameter \@dotsep which defines the dot
separation to \textwidth. This ensures that no dots ever appear, because the first
dot is guaranteed to be outside of the text body.

12.8.3 Defining chapter-like units

The preface and forward of a book are typeset as individual mini-chapters. These
commands define a \preface command will produce a chapter headed Preface and
make an entry in the table of contents file:

\def\preface{\chapter*{\huge\sfb Preface}
\@mkboth{}{}
\addcontentsline{toc}{chapter}{Preface}}

12.8.4 Changing float captions

The standard float caption comprises the float name and number followed by a
colon and the text parameter from the \caption command. These commands
make captions like those in this book: the float name and number in bold sans-serif
with no trailing colon. They are simple modifications of the commands copied from
the standard styles.

%
% take the colon out of the captions
%
\long\def\@makecaption#1#2{
\vskip 10pt
\setbox\@tempboxa\hbox{{\bf #1} #2}
\ifdim \wd\@tempboxa >\hsize \unhbox\@tempboxa\par \else \hbox
to\hsize{\hfil\box\@tempboxa\hfil}
\fi}
%
% Make caption introducers bold sans-serif
%
\def\fnum@figure{\sfb Figure \thefigure}

140 WRITING A STYLE FILE

\def\fnum@table{\sfb Table \thetable}

12.8.5 Changing contents entries

In the contents pages for this book chapter headings are typeset in bold sans-serif.
This is done by copying the standard style’s \l@chapter command which is used
to typeset the entry and adding a font changing command:

%
% Make contents entries for \chapter bold sand serif
%
\def\l@chapter#1#2{\addpenalty{-\@highpenalty}%

\vskip 1.0em plus\p@
\@tempdima 1.5em
\begingroup
\parindent \z@ \rightskip \@pnumwidth
\parfillskip -\@pnumwidth
\sfb % change font
\leavevmode
\advance\leftskip\@tempdima
\hskip -\leftskip

#1\nobreak\hfil \nobreak\hbox to\@pnumwidth{\hss #2}\par
\penalty\@highpenalty

\endgroup}

12.8.6 How to make section headings hang back

Many modern books use wide pages with section headings that hang back into
the left hand margin. You can get this effect by manipulating TEX’s primitive
\leftskip and \rightskip lengths within the section command. The standard
styles define sectioning commands as

\def\section{\@startsection {section}{1}{\z@}%
{-3.5ex plus-1ex minus -.2ex}%
{2.3ex plus.2ex}{\reset@font\Large\bf}}

The final parameter to the \@startsection command is a set of declarations that
are executed immediately before the section title is typeset, as described in sec-
tion 12.5.7. Now the \leftskip and \rightskip registers are skip values that are
automatically inserted at the start and end of every line, so if the commands

\leftskip=-2cm
\rightskip=0pt plus 1fil

are added immediately before the \reset@font command then the section title will
outdent 2cm, and a spring will be placed on the right.

13

LATEX past, present and future

This chapter is about the LATEX add-ons and variants that have been developed
and placed in the public domain by various public spirited individuals. It is in the
nature of the subject that this information will go out of date rather quickly, so it
would be unwise to treat this material as authoritative.

The generosity shown by computer people in making so much of their work freely
available is a remarkable phenomenon, probably unmatched in any other sphere of
professional activity. Armed with the information in the last chapter, you may write
your own style files that would be useful to the wider community and this presents
a marvellous opportunity to give back, and even gain a little fame. In section 13.2
there is some advice on how to obtain those style files which are not part of the
standard distribution. If you get files from a network archive, you can also upload
your own contributions which will then become available for all to share.

13.1 TEX and LATEX history

The TEX project began in 1977 when Knuth received proofs for the second edition of
his Art of Computer Programming [Knu69]. The new edition had been phototypeset
using computers rather than hand set, and the mathematics spacing in particular
was very poor. Knuth resolved to produce a typesetting system that would produce
documents to the finest standards. The new system was also designed to be machine
independent, both in terms of the host computer and the target phototypesetting
machine. An early version (TEX78) was replaced by the present TEX system in about
1982, and the definitive description of the system, Knuth’s TEXbook [Knu86a] was
first published in 1984.

A freely available typesetting system needs freely available fonts to go with it,
and Knuth also created the METAFONT system for designing characters. METAFONT

is a programming language that can be used to describe the free-flowing curves
from which typefaces may be constructed. Nearly all of the characters in this book
are from the Computer Modern (CM) fonts designed by Knuth and drawn using
METAFONT.

The TEX and METAFONT programs are written in a style Knuth calls ‘literate
programming’. The idea is to intermingle a typeset description of the program with
the actual computer programming language code into a single document that is
both the program and the description of the program. This new programming style
is called WEB and has been applied to most of the main computer programming

142 LATEX PAST, PRESENT AND FUTURE

languages. A WEB file may be processed by TEX to produce a beautiful document,
or it may be processed to produce just the computer language source code which
can then be compiled in the normal way.

Knuth published a series of five volumes which comprise the user manuals for
TEX using the plain format [Knu86a], METAFONT[Knu86c], the WEB source code for
the two programs [Knu86b, Knu86d] and a description of the design and METAFONT

source code for the CM fonts [Knu86e]. TEX and its relations are fascinating tools
because they attempt to embody the art of good aesthetic design as well as the tech-
nical details. It turns out to be straightforward to design a new font in METAFONT,
but extremely difficult to design an attractive and readable one. The more one
uses TEX the more respect one gains for the generations of typographers who have
evolved our present fonts and book styles.

TEX was quickly taken up by academics and others in the USA. In particular, the
American Mathematical Society (AMS) was closely involved in the development of
TEX and continues to support its development. A macro package called AMS-TEX
was developed by Michael Spivak [Spi86] and is widely used by mathematicians.
AMS-TEX provides new fonts and many new commands in the plain TEX style.
Section 13.5 describes a fusion of AMS-TEX and LATEX which you can obtain for
free.

Leslie Lamport’s LATEX system [Lam86] was generally available by the mid-
1980’s. Many versions of latex.tex have been released, so you should check the
date at the top of your latex.tex file. The version described in this book is
Version 2.09, dated 18 March 1992. Versions with numbers prior to 2.09 are now
completely obsolete, and versions of 2.09 dated before 1991 may not work with all
of the extensions described in this chapter.

LATEX seems to be more dominant in Europe, probably because it became avail-
able just as TEX was becoming popular in Europe, whereas American users who
had been using plain for some years tended to stick with it.

13.1.1 TEX version 3

The growing international use of TEX led to a small upgrade which allows fonts
from other systems, to be used more easily. The original version of TEX made
certain assumptions about which character number in a font corresponded to which
symbol. For the standard alphabetic characters this is not a real restriction, but
there is no universal standard for the numbering of mathematical symbols, and
every font supplier has their own ordering. Knuth introduced the idea of a virtual
font that maps a foreign font into TEX’s scheme. At the same time, support for
some foreign language features was improved and the hyphenation algorithm given
a little more flexibility. Most users will not notice any difference between the old
and new versions of TEX, except that a version 3 TEX format must set some new
parameters, or the hyphenation will become over enthusiastic. If you find that your
documents is clearly over hyphenated then you have a version mismatch. The most
common symptom is that plural words are hyphenated at the end. If your version
of LATEX does this then you should complain bitterly to your supplier or system
manager. At the time of writing, TEX 3.0 has been around long enough to have

How to get add-ons 143

supplanted most earlier versions, so you are unlikely to see this problem. Versions
of LATEX dated after the beginning of 1992 will work correctly with TEX 3.0 and the
files described in this chapter.

13.2 How to get add-ons

Nearly all TEX systems include a copy of the standard LATEX system as described
in this book, but the extensions and style files described in the rest of this chapter
have to be acquired from other sources. If you work in a University or for a large
company, you may have access to computers connected to the world-wide Internet,
and by far the easiest way of getting additional materials is through the network.
Ideally, you need access to email, file transfers through ftp and the Internet news
system.

If you cannot access the Internet, then try contacting your TEX supplier or join
one of the User groups listed in section 13.11, who should be able to supply the
necessary files. The rest of this section is for people that do have Internet access.

Many people find the Internet rather overwhelming at a first acquaintance. I
strongly recommend that you get a copy of the document Zen and the Art of the
Internet: A Beginner’s guide to the Internet by Brendan P. Kehoe [Keh92], which is
full of useful advice and information about Internet services. Copies of the booklet
may be found in most large Internet archives, and since the booklet is written using
TEX you should be able to format it and print it out. Of course, if you need this
booklet you will need the help of a more experienced net user to retrieve it from
the network. . .

The best way to navigate the Internet is to learn how to use the Archie network
database system. Archie is a collection of computers spread around the world that
know of about 1000 anonymous ftp archives. Every night Archie asks some of the
archive sites about any new files they have acquired, and over the course of a week
or two the entire database is updated in a rolling program. You can ask Archie to
tell you where particular files are held, and you will quickly find the nearest archive
site to you. You access Archie by telneting to an Archie site and logging in as
archie.

If you do have access to the Internet News service, then you should subscribe to
the conference comp.text.tex which carries a high volume of traffic on TEX mat-
ters. Around 30% of the messages concern LATEX. There are several large reposito-
ries of TEX material on the Internet, and most of them allow access via mail servers
and FTP. In the United Kingdom the major site is tex.ac.uk (134.151.40.18)
which allows anonymous ftp and has a mail server address texserver@tex.ac.uk.
In the USA, ymir.claremont.edu (134.173.4.23) allows anonymous ftp and
mail service through MAILSERV@ymir.claremont.edu. In Germany, the machine
rusinfo.rus.uni-stuttgart.de (129.69.1.12) allows anonymous ftp. This ma-
chine will have the latest versions of the Mainz extensions described in section 13.7,
as well as the latest versions of emTEX, which is widely considered to be the best
TEX implementation for the IBM-PC. This machine also holds hyphenation patterns
for European languages.

144 LATEX PAST, PRESENT AND FUTURE

13.3 Useful extensions and auxiliary programs

The sections that follow describe two variants of LATEX — International LATEX and
AMS-LATEX — as well as style files and programs that I have found useful. This
is not a complete guide. There are over 350 style files in the Internet TEX archive
and space does not allow more than a small sample to be described. However, the
Mainz extensions subsume many of the earlier style files, so you should concentrate
on getting these items first.

13.4 International LATEX

The LATEX style files are written for American English users. Words like Chapter
and Appendix are written into the definitions of the sectioning commands, and the
\today macro uses an American format date. International LATEX (ILATEX), written
by Joachim Schrod, defines a series of macros like \chaptername and \appedixname
whose default values correspond to the standard English names used in this book,
but which can be redefined in a document to convert it to say, French or German,
without rewriting the original style file. Previously a plethora of individual styles
have been written to support European language variants of the standard styles.
The ideas in ILATEX have been incorporated into the latest versions of LATEX 2.09,
so you may already have the necessary files. Check your article.doc file for
internationalisation comments to find out.

13.5 AMS-LATEX

AMS-LATEX version 1.1 was released in August 1991 and represents an ambitious
attempt to combine the extra mathematical typesetting capabilities of AMS-TEX
with LATEX. It uses the new font selection scheme discussed below and provides
an [amstex] document style option that defines a host of new commands which
amongst other things improves the spacing of LATEX’s maths accents, multiple in-
tegral signs, roots and continued fractions, allows multi-line subscripts and super-
scripts and provides extremely flexible equation numbering and alignment. AMS-
LATEX fixes many of the criticisms of LATEX maths display handling, especially the
rather restricted equation labelling facilities. The bad news is that AMS-LATEX
is very large, and will almost certainly require a big TEX implementation to run
satisfactorily. AMS-LATEX comes with a manual that describes the new commands.

13.6 Beyond LATEX 2.09

LATEX has continued to evolve throughout the 1980’s and recently Lamport has
agreed that an upgraded version will be produced by a team which he will chair,
but led by Frank Mittelbach and Rainer Schöpf of Mainz University in Germany.
Mittelbach and Schöpf have originated a powerful set of extensions to LATEX 2.09,
most notably the new font selection scheme used in AMS-LATEX, and are thus well
qualified to take over the maintenance of LATEX. This work has now evolved into

The Mainz extensions to LATEX 2.09 145

the LATEX 3.0 project which hopes to add functionality to LATEX but perhaps more
importantly systematise and document the internal structure and provide a new
interface for style file writers. At the time of writing, test versions of key parts
of LATEX 3.0 have been demonstrated, but a general release is not expected for at
least two years. It will take time for the new system, which will differ in many
small respects from the existing LATEX to spread, so LATEX 2.09 is likely to be in
widespread use until at least the mid-1990’s.

13.7 The Mainz extensions to LATEX 2.09

The good news is that the main new functions (as opposed to the new style file
interface) of LATEX 3.0 are available now and can be used with LATEX 2.09. There
are six extension packages:

New font selection scheme
this extends LATEX’s font selection mechanism to support any available font
equally, and makes font family, size and style commands independent of each
other, so that for instance font size can be changed without automatically
resetting to \rm.

Enhanced tabular and array environment
extra column formatting commands are added to allow font changing decla-
rations to be automatically inserted and more flexible \parbox formatting

Enhanced multicolumn output
allows three or more column typesetting with automatic balancing of the
heights of the columns, and changes in column layout for a single page

Multicolumn footnotes on the right
gathers together footnotes in a multicolumn environment and places them
under the rightmost column

Theorem styles
Enhances theorem environments to use a theorem style which by analogy with
the LATEX page style programs the layout of a theorem.

New verbatim implementation
The LATEX theorem environment has a finite capacity (of about five pages in
the standard sized TEX). This new implementation can cope with arbitrarily
long verbatim sections, and adds a command to read in a file in verbatim
mode.

A feature of these extensions is that they have been written in a way that gives
the user hooks into the internal structure. For instance the new verbatim style
calls a command at the beginning of each line, and by redefining this command the
user can achieve special effects, such as adding a line number to each line of an
included file. LATEX itself has many such hooks, but they are undocumented and
unstructured, so it is very difficult to use them. A major goal of LATEX 3.0 is to
provide hooks like this in a consistent fashion.

146 LATEX PAST, PRESENT AND FUTURE

13.8 Other useful style files

Apart from the Mainz files, I find these styles to be indispensible:

ukdate.sty redefines the \today command to print dates in the form

Tuesday 7th July 1992.

Also defines commands \st, \nd, \rd and \th to typeset the suffices, and
\dayofweek.

A4.sty resets the page size to A4 using margins that keep the text legible by
restricting the number of characters on a line to about 70. A \Widemargins
command opens up the margins even more to allow reasonable size marginal
notes.

EPIC enhances the LATEX picture environment with many new commands includ-
ing \dottedline, \dashline and \drawline which draws lines between a
sequence of coordinate pairs without needing explicit slope calculations.

fancyheadings.sty adds commands for headings with a left, centre and right part
which may be underlined, and may extend over the margins. Allows you to
have different headings on chapter pages.

boxedminipage.sty adds the boxedminipage environment which is identical to
minipage except that a box is drawn around the outside. Many of the figures
in this book use boxedminipage to highlight the source code.

breakcit.sty The standard \cite command produces a typeset citation that can
not be broken across lines. This can be a real problem if you make use
of citation commands that include multiple references. breakcite redefines
\cite so that line breaking is allowed.

13.9 Useful auxiliary programs

delatex If you pass a LATEX document through a spelling checker it will throw
up many ‘unknown’ words which are in fact LATEX commands. delatex goes
through your file and removes all of the LATEX commands so that you should
be left with just your text which can then be safely spell checked. delatex is
also useful for producing versions of your file for text-only environments such
as computer bulletin boards.

makeindex LATEX has only rather rudimentary facilities for typesetting indices. The
makeindex (or makeindx on MS-DOS systems) comprises a style file that
defines index making commands, and a program that takes the output of the
LATEX \index commands and sorts it and formats it ready for inclusion during
the next run, performing the same kind of functions for indexing as BIBTEX
does for citation. makeindx has its own syntax which may be used in the
\index command parameter: A ! character is used to mark a sub-entry and

Using other fonts 147

an @ character may be used to separate the sort key and the actual text of
the index entry.

tgrind is a TEX version of the vgrind pretty printer program found on many Unix
system. It understands C, Pascal, FORTRAN and many other languages,
and will typeset keywords in bold, comments in italics, strings in teletype and
so on. It is quite easy to extend tgrind to cope with new languages. The
original release of tgrind was for plain TEX only: as well as the main tgrind
package you will need a copy of tgrind.sty which is a LATEX version of the
formatting macros.

TEXcad and xfig The picture environment is very tiresome to use if the position of
every object must be calculated and typed in. TEXcad is a mouse or keyboard
driven program for IBM-PC compatibles that allows you to draw a picture on
the screen and then save it as a complete LATEX picture environment, ready
for inclusion in your file. TEXcad can also read most pictures in, which means
you can use a text editor to modify a picture and then make some more
visual changes with the mouse. A recent version of the program supports the
\bezier command and a new version for X-windows is in development. Most
of the figures in this book were drawn with TEXcad.

xfig is a well known drawing program for computers running the X-windows
system. A converter program transfig can translate from xfig’s native data
format to LATEX picture mode, but not the other way.

Converters from word processors to LATEX Converting from an existing word proces-
sor format to LATEX is unlikely to ever be automatic, so you should treat these
programs as tools to perform most of the housekeeping, not the last word in
conversion.

program source format

wp2latex Word perfect
wd2latex MS-Word
pcwtex PC-Write
RUNOFF-to-TeX Runoff
tr2latex troff

13.10 Using other fonts

There is no reason why TEX should be limited to the cmr series fonts. Essentially,
TEX can use any fonts for which .tfm files are available. This includes Postscript
fonts and native fonts for some laser printers, as well as any font which has been
produced with METAFONT. Making use of such fonts within LATEX requires more
work. The NFSS font scheme makes it straightforward to access these alien fonts
from with LATEX, but it turns out that ligatures and maths characters have different
\symbol codes in the postscript world from the cmr fonts. The extensions in TEX 3.0
offer a mechanism for harmonising these font families, but at the time of writing the

148 LATEX PAST, PRESENT AND FUTURE

necessary changes to LATEX have not been made. Many people prefer the Postscript
fonts to the Computer Modern family, so this situation may well be remedied soon.

13.11 User groups

The best way to get the most out of a complex system like TEX is to join a user
group and benefit from the expertise of others, as well as keeping up to date with
developments in the TEX world. The TEX Users Group (TUG) is the main inter-
national group. They publish a journal called TUGboat and market various TEX
related packages and services. They may be contacted at

TEX Users Group
P.O. Box 9506
Providence, RI 02940
USA

Electronic mail for TUG may be sent to TUG@Math.AMS.com

There are many thriving national groups. In the United Kingdom, ukTEXug
meets every few months and produces a newsletter called Baskerville. They may
be contacted through

Geeti Granger
Text Processing Department
John Wiley and Sons Ltd.
Baffins Lane
Chichester
West Sussex
PO19 1UD

Electronic mail enquiries may be addressed to uktug-enquiries@tex.ac.uk: please
remember to include your postal address if you want membership details.

Other national groups include Dante in Germany, Gutenberg in France and
the NTG for Dutch speaking users. There are also groups in Japan, Scandinavia,
Mexico and Eastern Europe. TUG should be able to tell you about user group
activity in your area.

A

Hints on running LATEX

A.1 Getting LATEX

Although LATEX and TEX are in the public domain, individual implementations
may not be. Commercial versions of the system are available from several vendors:
contact TUG at the address given at the end of the last chapter for details.

Public domain versions are available for Unix, VMS, MS-DOS, TOPS-20, Mac-
intosh, the Atari and the Amiga. The servers listed in the last chapter are a good
place to start looking, but please remember that TEX is a very large system and
observe good network etiquette when downloading.

A.2 How to run LATEX

Every LATEX system should include a copy of the Local Guide that has instructions
for your particular implementation. This file is called local.tex and will be found
in your inputs directory. Unfortunately, in the vast majority of installations this
document is not updated from Lamport’s original text, which is specific to the
Ultrix (DEC Unix) implementation at SRI. There is a surprising amount of variation
between different implementations, so I can only offer some hints that might apply
to you. The best thing is to get hold of the manuals for your system, or ask someone
else who knows how to drive it.

On most systems LATEX is run by issuing the command latex filename to the
operating system. Failing that, try tex &lplain filename which starts raw TEX
with the lplain format.

There is a special version of TEX called INITEX that is used for building new
format files. Instructions for building a new LATEX format may be found on page 123.
The command to start INITEX is usually just initex, but on the emTEX IBM PC
implementation it is called by typing tex -i.

There is wide variation in the design and naming of DVI drivers, and you should
consult the documentation or another user. Assuming that you are trying to pro-
duce output for a Postscript printer, try dvi filename first, failing that try dvi2ps
filename. On some Unix systems the command lpr -d filename will directly
print a .dvi file without any need to explicitly run the DVI driver.

Even when you have worked out how to start the DVI driver you should still ask
to see the manual as many DVI drivers can do useful things like including graphics,
printing two pages side by side and so on.

150 HINTS ON RUNNING LATEX

There is similar wide variation in DVI previewers. If you have a workstation
running the X-windows system try xdvi filename. If you have a VMS workstation
running the VWS windowing system try dvidis filename. On MS-DOS, dviscr
filename might help.

Printing commands are so varied that it is unlikely that your particular command
corresponds to any of these, but on Unix try lpr -d filename.dvi or lpr -l
filename.ps if you have a postscript file produced by a DVI driver. On VMS try
lprint filename.ps or print/form=tex filename.ps. On some MS-DOS systems
spr filename.ps works, and on others you should simply copy the contents of the
print file directly to the printer with copy printfile prn. You should use copy
rather than the regular print command because graphics files may contain binary
information that will be truncated by print.

B

Error messages

Simple errors can cause TEX to generate intimidating error messages. In point of
fact, if you get an error message from TEX that you fully understand you should
count yourself lucky. However you do always get at least a message and the line
number at which TEX ran into trouble, and this is usually close to the cause of
the problem. However, TEX also regurgitates the definition of the macro that is
currently being processed. If you wrote the macro yourself then it might be useful
to be given all this, but LATEX macros are often very complex, and you may well be
presented with several lines of complete gobledegook. In general it best to ignore
nearly all of this.

Most errors arise from simple spelling mistakes. For instance, if you incorrectly
capitalise \LaTeX you will get an error message similar to

! Undefined control sequence
1.12 \Latex
?

This tells you that TEX encountered a control word not in its symbol table at
line 12 of the outermost file being processed.

Probably the next most common error is to use a maths mode command in text
mode. In this case TEX inserts an extra $ before the command in question. Of
course this may not be very helpful. TEX also stops and tells you what it’s done

! Missing $ inserted
1.14 ... $

\alpha
?

B.1 Responding to errors

Normally when TEX detects an error it will stop after issuing the error message and
prompt with a ? If you type a carriage return TEX will then continue until it finds
another error. Sometimes TEX will get stuck on a single error, and then you should
type an X which forces TEX to exit.

If you type H then TEX will try to help you with a longer error message.
If you type R at the prompt then TEX enters batchmode when it will run non-

stop even if it finds errors. You can get the same effect by inserting a \batchmode
command in your file. Remember that the screen output is always copied to the

152 ERROR MESSAGES

.log file, so you can peruse the errors afterwards. If you type Q (for quiet) then
TEX enters batchmode but only sends further messages to the log file

Some implementations of TEX allow you to type an E which will then start up a
text editor with the cursor at the point of the error. You can then make corrections
and exit the error after which TEX will continue processing.

B.2 Warnings

Some LATEX messages are warnings, and do not cause TEX to halt and prompt
for instructions. The most common ones are the Overfull \hbox type messages
that every TEX user quickly becomes familiar with. You will also be warned if you
reference an undefined label or citation, multiply define a label, try to plot an oval
that is too small, or if a marginal note has to be shifted so as to avoid overlapping
another note.

B.3 Error messages

This section gives a complete list of the errors reported by LATEX version 2.09, with
advice on how to correct them. Also listed here are some of TEX’s more common
error messages that you may occasionally see. There are some messages that are
not in this list, but they will arise from some catastrophe so deep inside LATEX that
an explanation of the message’s meaning is unlikely to help you.

In such circumstances, first fix any preceding errors (because knock-on errors
are common) and then if it still doesn’t go away look carefully at your file in the
vicinity of the message line number. You may wish to take a copy of the offending
document file and remove parts of it until the error disappears, which will give you
some idea of what is causing it. Almost certainly a little thought will reveal the
error to be a simple typing mistake, and looking at the file for a few minutes can be
quicker than slicing it up methodically chasing bugs. Remember the old joke about
the engineer who had a flat tyre, and swapped all the wheels round to make sure it
wasn’t a bug in the suspension. . .

Bad \line or \vector argument
You have asked for a slope which is not available on the LATEX line drawing
font.

Bad math environment delimiter
You have unbalanced braces or maths mode delimiters.

Bad use of \\
You have tried to end a line when TEX is in vertical mode within a center,
flushleft or flushright environment.

\begin{environment1} ended by \end{environment2}
You have unbalanced environment delimiters, or a misspelt environment name.

Can be used only in preamble
The highlighted command must appear before the \begin{document}

Error messages 153

Command name ’\name’ already used
You have used a \new. . . command to define a name that already exists. Use
\renew. . . instead, or choose another name. Note that defining an environ-
ment environmentname creates internal commands called \environmentname
and \endenvironmentname.

Counter too large
One of the \alph, \Alph or \fnsymbol counter printing commands have been
passed a counter with too large a number. Could be triggered by a large
number of \thanks commands or a very long enumerate list.

Double subscript
subscripts must be nested: use x_{y_z} not x_y_z

Double superscript
superscripts must be nested: use x^{y^z} not x^y^z

Environment environmentname undefined
Perhaps you can’t spell the environment name.

Extra alignment tab has been changed to \cr
There are more & separated fields in a row of an array or tabular environment
than you declared in the column formatting parameter.

Extra }, or forgotten $
You have badly nested braces or maths mode characters.

Float(s) lost
The output routine has detected that you requested a float from inside a
parbox or minipage environment. Since the error is only detected when floats
are output, no useful indication can be given of where the error occurred and
you will have to scan your file to find the offending table environment, figure
environment or \marginpar command.

Font name not loaded: Not enough room left
You have asked for more fonts than TEX can cope with. Process the document
in separate parts using \includeonly or reduce the number of fonts.

I can’t find file name. Please type another input file name
TEX cannot find your main file, a style file or a file that you have \input or
\included. You can type in a new file name, or on some operating systems
you can type cntrl-C to stop TEX. There are systems (MS-DOS amongst
them) that will keep asking you this question until you give it the name of a
real file. If you respond null, press return and then type a cntrl-C you will
usually get to TEX’s interactive prompt from which you can type X to stop
TEX.

Illegal character in array arg
Check the column formatting parameters listed in section 7.2.2.

154 ERROR MESSAGES

Illegal parameter number in definition of newcommand

You have used a # sign inside the definition of a command incorrectly, or
attempted to nest command definitions.

Misplaced alignment tab character &
An ampersand & has appeared outside of an array or tabular environment.

Missing \begin{document}
Printing commands were found before the begin{document}. Only declara-
tions and spaces are allowed in the preamble.

Missing @-exp in array arg
You have an @ column formatting parameter with no following expression in
braces.

Missing p-arg in array arg
You have an p column formatting parameter with no following expression in
braces.

Missing $ inserted
You used a maths mode command without entering maths mode first. Re-
member that most of the non-alphanumeric symbols in Chapter 5 are maths
mode commands.

No such counter
Perhaps you can’t spell the counter name, or perhaps you have defined the
counter in an \included file.

Not in outer par mode
You have a float defining command in maths mode, or in a parbox or minipage
environment.

Paragraph ended before object was complete
You have tried to pass more than one paragraph to a parameter of a normal
(not \long) definition.

\pushtabs and \poptabs don’t match
You have unbalanced commands within a single tabbing environment. You
cannot save tab setting across tabbing environments — every \pushtabs must
have a matching \poptabs before the \end{tabbing} command.

\scriptfont font-name is undefined
You have tried to use an unusual font in maths mode with issuing a \load
command first. See page 87.

\scriptscriptfont font-name is undefined
You have tried to use an unusual font in maths mode with issuing a \load
command first. See page 87.

Error messages 155

Something’s wrong--perhaps a missing \item
You have misused a list environment or one of the many environments de-
fined in terms of it. A completely empty quote environment will trigger this
error.

\textfont font-name is undefined
You have tried to use an unusual font in maths mode with issuing a \load
command first. See page 87.

Tab overflow
You have tried to set more than about 12 tab stops.

TeX capacity exceeded, sorry
Probably there is a simple error in your file that caused TEX to run out of
room, such as defining a recursive command. You might really have run out
of room if you have a large picture environment (the sequence of pictures in
Chapter 11 is enough to break a normal sized TEX), or if you have a very long
verbatim environment. If you really need more space, ask if there is a big
TEX implementation available and try that instead. If the problem does not
go away, you probably have a typing error, and you may have trouble finding
it (sorry).

There’s no line here to end
You have tried to end a line when TEX is in vertical mode. If you need to
force a line end, say after an optional argument to an \item command try
using ~\\ which adds one line comprising an invisible space. If you just want
some more space, use a \vspace command instead.

This may be a LaTeX bug
Probably LATEX has become disoriented after being asked to continue from
another error. If this is the first error message to appear, then congratulations,
your name may eventually appear in latex.bug.

Too deeply nested
You have more than four nested lists (in the standard styles). Some styles
may allow more.

Too many unprocessed floats
LATEX has been probably been inhibited from outputting floats because the
combination of float parameters (section 11.11) and float placement commands
have conspired together. This error may also occur if you have more than
about 18 \marginpar commands on a page.

Undefined control sequence
perhaps you can’t spell the name of a command, or you have tried to use an
\item or \caption command outside of the a figure or table environment.

Undefined tab position
You need to define some more tabs positions, or modify your tabbing com-
mands.

156 ERROR MESSAGES

You can’t use ‘macro parameter character #’ in name mode
A # character appeared in normal text. Use \# instead.

\< in mid line
\< may only appear at the beginning of a line.

B.4 Warning messages

Warning messages do not cause TEX to stop, and in some cases you will be happy
to ignore them. However, it is a good idea to check the log file before you send
your paper off to the editor because an embarrassing warning about a non-existent
citation may have scrolled past whilst you were not concentrating.

The majority of warning messages you see will be Overfull \hbox ... mes-
sages that can be tiresome to clear up because an overrun of a few points can
sometimes be difficult to see on a printed proof. Try using the [draft] document
style option to place a large bar next to the offending lines. Please don’t get into
the habit of ignoring overfull box messages. A wobbly right margin is a sure sign
of a LATEX user who needs more pride in his work1.

Citation key on page pagenumber undefined
You need to run BIBTEX to get your references up to date

Float larger than \textheight
You have an overlong figure or table environment.

Label key multiply defined
You have used the same label more than once

Label(s) may have changed. Rerun to get cross-references right
Since LATEX uses a two pass system to build references (see page 35) multiple
runs may be needed before the labels settle down.

Marginpar on page pagenumber moved
Two marginal notes would have overlapped but have been moved apart.

No font typeface in this size, using newfont

Some fonts, such as \tt\tiny are not defined so another will be substituted.

Oval too small
The oval specified has been drawn, but looks bad because the circular corners
overlap.

Overfull \hbox ...
TEX could not find a good linebreak, and has been forced to leave some text
hanging out into the margin.

1As are right quotes appearing at the start of quotations (leave that double-quote key alone),
italics running into neighbouring roman type (use an italic correction) and interword hyphens
being used for punctuation.

Warning messages 157

Overfull \vbox ...
TEX could not find a good pagebreak, and has been forced to leave some text
running off the bottom of the page.

Reference key on page pagenumber undefined
You have \ref or \pagerefed a label that does not exist.

Underfull \hbox ...
By using consecutive \\ commands or the \linebreak command you have
persuaded TEX to typeset consecutive vertical spaces. If you need extra ver-
tical space, use the optional argument to \\ or a \vspace command.

Underfull \vbox ...TEX has made a page with large spaces between the para-
graphs and section headings. Try rearranging your text, or give TEX some
hints with a \pagebreak command.

command in maths mode
You have used an illegal maths mode command.

Bibliography

[Ame91] American Mathematical Society. AMS-LATEX Version 1.1 User’s Guide,
August 1991.

[Doo] Michael Doob. A Gentle Introduction to TEX. University of Manitoba,
version 1.0.

[ISO80] ISO. Second DP 7185—Specification for the Computer Programming Lan-
guage Pascal. International Standards Organisation, 1980.

[Keh92] Brendan P. Kehoe. Zen and the Art of the Internet, A beginner’s guide
to the Internet. Widener University, first edition, January 1992.

[Knu69] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison Wesley, 1969.

[Knu86a] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting.
Addison Wesley, 1986.

[Knu86b] Donald E. Knuth. TEX: the program, volume B of Computers and Type-
setting. Addison Wesley, 1986.

[Knu86c] Donald E. Knuth. The METAFONTbook, volume C of Computers and
Typesetting. Addison Wesley, 1986.

[Knu86d] Donald E. Knuth. METAFONT: the program, volume D of Computers and
Typesetting. Addison Wesley, 1986.

[Knu86e] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers
and Typesetting. Addison Wesley, 1986.

[Lam86] L. Lamport. LATEX user’s guide & reference manual. Addison Wesley,
1986.

[SL91] Raymond Seroul and Silvio Levy. A Beginner’s Book of TEX. Springer-
Verlag, 1991.

[Sno92] Wynter Snow. TEX for the Beginner. Addison-Wesley, 1992.

[Spi86] Michael D. Spivak. The Joy of TEX. The American Mathematical Society,
1986.

Index

\!, 54
(macro paramater character), 17
$ (maths mode character), 17
% (comment character), 17
& (tabbing separator), 17
\’, 69
\(, 43, 130
(, after commands, 19
\), 43, 130
*, after commands, 19
\+, 68
\,, 53
\-, 32, 68
- (inter-word hyphen), 45
– (range dash), 45
— (punctuation dash), 45
\/, 55
\:, 53
\;, 54
\<, 68
=, 19, 105
\=, 67
\>, 68
@ characters in command names, 125
\@, 54, 84
@-expression, 70
\@currenvir, 134
\@dotsep, 139
\@dottedtocline, 136
\@evenfoot, 137
\@evenhead, 137
\@list, 117
\@makecaption, 136
\@namedef, 133
\@oddfoot, 137
\@oddhead, 137
\@options, 132

\@ptsize, 133
\@startsection, 134, 135, 137, 140
\@starttoc, 136
\@topnum, 137
\[, 43
[parameter separator, 7
[, after commands, 19
& tabular separator, 70
\], 43
] parameter separator, 7
^ (superscript character), 17
_(subscript character), 17
\‘, 69
~ (tie character), 17
11pt style, 24
12pt style, 24

abbrv bibliography style, 92
\abovedisplayskip, 120
\aboveshortdisplayskip, 120
abstract environment, 34
accents

foreign, 47
maths, 49
text mode, 47

accents in tabbing environment, 69
\addcontentsline, 36, 135
\address, 25
\addtocontents, 36
\addtocounter, 103
\addtolength, 106
\addvspace, 53
\advance, 105
Alph numbering style, 29
\Alph, 103, 134, 135
\alph, 103, 134
alph numbering style, 29
alpha bibliography style, 92

Index 161

American spelling, 81
AMS-LATEX, 81, 144
AMS-TEX, 81
\and, 130
appendices, 36
\appendix, 36, 135
\arabic, 102
arabic numbering style, 29
Archie, 143
array environment, 81
\arraycolsep, 121
\arrayrulewidth, 121
\arraystretch, 120
article standard style, 131
article style, 23
book style, 23
letter style, 23
report style, 23
ASCII character constants, 104
at, 19
\atop, 83
\author, 34
aux file, 41, 89

b float alignment character, 72
badness, of a break, 131
\baselineskip, 115
\begin, 21, 98, 133
\begingroup, 128
\belowdisplayskip, 120
\belowshortdisplayskip, 120
bezier style, 25
Bezier curves, 77
\bf, 44
\bgroup, 128
bib file, 93
\bibindent, 117
\bibitem, 91
bibliographies, 89

citation, 90
external database files, 91

\bibliographystyle, 92
BIBTEX, 89, 92
\bigskip, 53
binomial coefficient, 83

blank line (paragraph separator), 5,
17, 30

body, 25
bold maths, 86
\boldmath, 48, 86
article style, 2
book style, 2
letter style, 2
report style, 2
boxes, 17, 22, 75, 109
bp (dimensional unit), 19, 106
braces, 85
brackets (in maths typesetting), 83
bugs

display spacing problems, 64
empty pagestyle, 30
float placement, 72
overflowing verbatim, 64
split footnote, 37

by, 19

\cal, 48
calligraphic font, 48
\caption, 35, 73, 136, 139
captions, 73

modifying, 139
case formulae, 84
\cases, 84
\cc, 25
cc (dimensional unit), 19, 106
\cdots, 84
center environment, 61
\chapter, 34
\choose, 83
\circle, 75
circles, 75
citation, 90
\cite, 90
\cleardoublepage, 32
\clearpage, 32
\cline, 71
\closing, 25
cm (dimensional unit), 19, 106
coercion, 109
\columnsep, 113
\columnseprule, 113

162 Index

command syntax, 17
commands, 21

deferred expansion, 20
defining your own, 97
inside parameters, 20
internal and external, 125

comments, 18
Computer Modern fonts, 55
computer religion

plain users, 2
conditional statements, 128
\contentsline, 135
control symbol, 19
control word, 19

digits not allowed, 19
space after, 19

coordinates, 74
counted environments, 99
counters, 17, 22, 99, 102

declaring, 102
manipulating, 103
printing, 102

cross referencing, 89
Curriculum Vitae, 35

\dashbox, 76
dashes, 45
\date, 34
\dblfloatpagefraction, 120
\dblfloatsep, 120
\dbltextfloatsep, 120
\dbltopfraction, 120
dd (dimensional unit), 19, 106
\ddots, 85
decimal numbers, 104
declarations, 5, 17, 21
\def, 126, 136
definitions, 126
delatex, 146
delimiters, 83
depth, 19
description environment, 63
discs, 75
display maths mode, 131
displaymath environment, 81
displays, 59

indented, 59
list making, 61
making new lists, 65
non-justified, 61
verbatim, 63

\displaystyle, 86
\divide, 105
doc file, 23
document style

11pt, 24
12pt, 24
article, 2, 23
bezier, 25
book, 2, 23
draft, 24
fleqn, 25
ifthen, 25
leqno, 25
letter, 2, 23
openbib, 25
report, 2, 23
titlepage, 24
twocolumn, 24
twoside, 24

document styles, 23
\documentstyle, 7, 23, 77, 124, 132
\dotfill, 54
double column output, 28
double spacing, 31
\doublerulesep, 120
draft style, 24
\ds@, 132
\ds@11pt, 132
\ds@draft, 132
\ds@twoside, 132
\dump, 123
DVI driver, 57

options, 5
running, 4

\egroup, 128
ellipsis, 84
em (dimensional unit), 19, 106
emphasised text, 44
\encl, 25
\end, 21, 98, 133

Index 163

\endgroup, 128
enumerate environment, 61
environments, 7, 21

abstract, 34
array, 81
center, 61
description, 63
displaymath, 81
enumerate, 61
eqnarray, 81
equation, 81
flushleft, 61
flushright, 61
itemize, 62
letter, 25
list, 115
math, 81
minipage, 111
picture, 74
quotation, 60
quote, 60
sloppypar, 31
tabbing, 67
tabular, 69
thebibliography, 90
theindex, 40
titlepage, 30, 34
verbatim, 63
verse, 60
counted, 99
form new scope region, 21
nested, 21

eqnarray environment, 81
\equal, 130
equation environment, 81
Error messages, 151
escape character, 5, 17
\evensidemargin, 113, 132
\everypar, 22
ex (dimensional unit), 19, 106

\fbox, 110
\fboxrule, 121
\fboxsep, 121
\fi, 128
fil, fill and filll, 19

file inclusion, 37
\fill, 54, 109
fleqn style, 25
\floatpagefraction, 119
floats, 67, 71

captions, 73
modifying captions, 139

\floatsep, 119
\flushbottom, 29, 31, 137
flushleft environment, 61
flushright environment, 61
fmt file, 124
\fnsymbol, 103, 137
\fnum@, 136
\fnum@float, 136
font

accessing, 55
actual size, 56
Computer Modern, 55
design size, 56
location, 57
magnification, 56
metric file, 57
scaling, 56

footer, 25, 31
changing, 29

\footheight, 113
\footnote, 36
\footnotemark, 37
\footnoterule, 115
footnotes, 36
\footnotesep, 115
\footnotesize, 46
\footnotetext, 37
\footskip, 113
foreign accents, 47
foreign characters, 47
format

rmTeX format, 123
formatting commands, 1
Forward, 139
\fps@, 136
\frac, 83
fractions, 83
\frame, 76
\framebox, 76, 110, 111

164 Index

\frenchspacing, 54
\fussy, 31

\gdef, 126
gf file, 57
glo file, 41
\global, 126
global variables, 18
\glossary, 41
glossary construction, 41
\glossaryentry, 41
glue, 108
graphics, 73

reference point, 74
Greek characters, 49
groups, 5, 18, 128

h float alignment character, 72
hbox, 22, 31, 110
header, 25, 31

changing, 29
\headheight, 113
headings page style, 30
\headsep, 113
height, 19
Hello World!, 3
hexadecimal numbers, 104
\hfill, 54
history, 141
\hoffset, 113
horizontal mode, 130
horizontal spaces, 53
\hrulefill, 54
\hspace, 51, 109
\Huge, 46
\huge, 46
hyphen.tex, 123
hyphenation, 31

controlling, 32
globally disabling, 139

\hyphenation, 32
hyphenation patterns, 124
\hyphenpenalty, 131, 139

idx file, 40
\if, 128
\ifcase, 129

\ifdim, 129
\ifnum, 128
\ifodd, 128
ifthen style, 25
\ifthenelse, 130
ILATEX, 144
illustrations, 67
in (dimensional unit), 19, 106
\include, 38
\includeonly, 38
including other files, 37
\indent, 31
indenting, 68
index

cheap and cheerful, 41
programs, 41

\index, 40
index construction, 39
\indexentry, 40
indexing

rough and ready, 41
\indexspace, 40
INITEX, 123
\input, 37, 133
inputs directory, 24
internal commands, 125
Internet, 143
\intextsep, 119
\it, 44
italic correction, 55
\item, 40, 62, 115
\itemindent, 117
itemize environment, 62
\itemsep, 117
iteration, 129

\jot, 121
justification, 31, 61

kerning, 45
keywords, 19

context sensitivity, 20
\kill, 67

\l@chapter, 140
\l@figure, 136
\l@section, 136

Index 165

\l@subsection, 136
label

referencing, 90
\label, 89
\labelenumi, 134
\labelitem, 117
\labelitemi, 101, 134
labels, 89
\labelsep, 117
\labelwidth, 117
\LARGE, 46
\Large, 46
\large, 46
latex.tex, 123
leaders, 54

disabling, 139
\left, 83
\leftmargin, 117
\leftmark, 137
\leftskip, 140
lengths, 17, 22, 105

declaration, 106
manipulation, 106

leqno style, 25
\let, 127
letter

example, 26
letter environment, 25
letters, 25
lfonts.tex, 123
ligature, 44

disabling, 45
\line, 75
line breaking, 31
line thickness

in picture environment, 75
\linebreak, 31
lines, 75

sloping, 75
\linethickness, 75
\linewidth, 115
list environment, 115
list of figures, 35

adding entries, 35
list of tables, 35

adding entries, 35

\listoffigures, 35, 135
\listoftables, 35, 135
\listparindent, 117
lists, 65
literal lengths, 106
literal numbers, 104
lof file, 35
log file, 4
log like functions in maths mode, 49
logo

LATEX, 46
TEX, 46

\long, 126, 136
\loop, 129
loops, 129
lot file, 35
lplain.fmt, 124
lplain.tex, 123

macro expansion, 1
macros, 1
\magstep0, 56
\magstephalf, 56
Mainz extensions, 144, 145
\makeatletter, 125
\makeatother, 125
\makebox, 76, 110
\makeglossary, 41
makeidx style, 23
\makeindex, 40
makeindex, 146
\makelabel, 117
\makelabels, 25
\maketitle, 33
marginal notes, 37
\marginpar, 37
\marginparpush, 113
\marginparsep, 113
\marginparwidth, 113
margins, 25
\markboth, 30, 113, 137
\markright, 30, 113, 137
math environment, 81
\mathindent, 120
maths

bold font, 86

166 Index

delimiters, 83
environments, 81
font sizes, 86
loading fonts, 87
spacing, 81
using text mode within maths mode,

86
maths bold font, 48
maths italic font, 48
maths mode, 18, 81, 131
maths mode accents, 49
maths mode text, 48
maths skips, 22
maths spacing rules, 88
maths symbol type, 87
maths symbols, 50
\mathstrut, 110
\mbox, 32, 86, 110
\medskip, 53
messages to the user, 38
METAFONT, 57, 141
minipage environment, 111
minus, 19, 108
mm (dimensional unit), 19, 106
MS-DOS

location of inputs directory, 24
mu (dimensional unit), 19
\multicolumn, 71
multiple files, 37
\multiply, 105
\multiput, 75
myheadings page style, 30

nesting
pictures, 77

New Font Selection Scheme, 46, 145
\newcommand, 97, 133
\newcounter, 102
\newenvironment, 98
\newfont, 55
\newif, 129
newline, 30
\newline, 31
\newpage, 32
News, 143
\newsavebox, 77

\newtheorem, 99
NFSS, 46, 124, 145
\nofiles, 41
\noindent, 31
\nolinebreak, 31
non-proportional spacing, 44
\nonfrenchspacing, 54
\nonumber, 82
\nopagebreak, 32
\normalmarginpar, 37
\normalsize, 46
\not, 130
numbering

Alph, 29
Roman, 29
alph, 29
arabic, 29
roman, 29

\numberline, 36, 135

octal numbers, 104
\oddsidemargin, 113, 132
\onecolumn, 28
openbib style, 25
\opening, 25, 138
\or, 130
origin, 113
outdenting, 68
\outer, 126
\oval, 75
\over, 83
\overbrace, 85
\overfullrule, 132
\overline, 85
overlining, 85

p float alignment character, 72
page

construction, 30
layout, 25
origin, 113
size

A4, 28
default, 28

style, 29
page breaking, 31

Index 167

controlling, 32
page numbering style, 103
\pagebreak, 32
\pagenumbering, 29, 103
\pageref, 90
\pagestyle, 29, 137
\par, 51, 117
paragraph, 31
\paragraph, 34
paragraph indentation, 31
parameters

commands inside, 20
coordinate, 20
mandatory, 7, 20
optional, 7, 20

parbox, 22, 31, 110
\parbox, 75, 76, 111
\parindent, 115
\parskip, 115, 117
\part, 34
\partopsep, 117
Pascal, 33
pc (dimensional unit), 19, 106
\penalty, 131
pica, 106
PICTEX, 73
picture environment, 74
pictures, 67, 73
pk file, 57
plain TEX

compatibility with LATEX, 2
plain TEX, 1
plain bibliography style, 92
plus, 19, 108
point, 106
\poptabs, 68
preamble, 7

illegal commands, 7
mandatory commands, 7

Preface, 139
\preface, 139
\prime, 82
primitives,TEX, 1
printing, 4
programming, 125
pronunciation

LATEX, 3
TEX, 3

proportional spacing, 44
\protect, 20, 38
\ps, 25
\ps@, 137
\ps@empty, 137
\ps@plain, 137
pt (dimensional unit), 19, 106
\pushtabs, 68
\put, 75
pxl file, 57

\qquad, 54
\quad, 54
quotation environment, 60
quote environment, 60
quote marks, 45

\raggedbottom, 29, 137
\raisebox, 112
reading in from the keyboard, 38
\ref, 90
reference point, 74
reference value, 73, 90
\refstepcounter, 104
registers

256 in each class, 102
boxes, 22
counters, 22, 102
lengths, 22, 105
maths skips, 22
skips, 22, 108
token lists, 22

\renewcommand, 98
\renewenvironment, 98
\repeat, 129
\reset@font, 140
restricted horizontal mode, 130
restricted vertical mode, 131
\reversemarginpar, 37, 113
\right, 83
\rightmargin, 117
\rightmark, 137
\rightskip, 140
\rm, 44

168 Index

Roman numbering style, 29
\Roman, 102
\roman, 102, 134
roman numbering style, 29
roots, 83
rubber lengths, 108
rules, 69, 71, 110
running LATEX, 149

\samepage, 32
\savebox, 77, 112
\sbox, 112
\sc, 44
scaled, 19
scope, 18
\scriptscriptstyle, 86
\scriptsize, 46
\scriptstyle, 86
\section, 34
section headings

moving to the left, 140
sectioning commands, 34
\sectionmark, 137
\setcounter, 103
\setlength, 106
\settowidth, 106
\sf, 44
\sfb, 124
\shortstack, 76
\signature, 25
single column output, 28
size (of type), 46
skips, 22, 108
\sl, 44
sloping lines, 75
\sloppy, 31
sloppyparenvironment, 31
\small, 46
\smallskip, 53
sp (dimensional unit), 19
space, 30

after full stops, 54
after italics, 55
in maths mode, 87
unexpected in output, 19

\space, 38

spacing in document, 51
\special, 73
special characters, 17
special symbols, 47
spread, 19
spring, 54
springs, 109
\sqrt, 83
\stackrel, 82
stacks, 82
\stepcounter, 104
\stretch, 109
\strut, 110
style

article, 23
book, 23
letter, 23
page, 29
page numbering, 103
report, 23
standard, 23

sty file, 23
style file, 2

how to locate, 23
style files, 124
style parameters, 21, 101
\subitem, 40
\subparagraph, 34
subscripts, 82
\subsection, 34
subsidiary style files, 23, 24
\subsubitem, 40
\subsubsection, 34
superscripts, 82
suppressing output files, 41
\symbol, 57

t float alignment character, 72
tab, 30
tabbing environment, 67
\tabbingsep, 69
\tabcolsep, 121
table

alignment, 70
table of contents, 35

adding entries, 35

Index 169

changing format, 140
\tableofcontents, 35
tables

placing horizontal rules, 71
placing vertical rules, 71
spanning multiple columns in, 71
spreading over several pages, 70

tabs
accents in tabbing environment,

69
moving between, 68
saving and restoring, 68
setting, 67

tabular environment, 69
template, 23
TEX, plain format, 1
TEX history, 141
TEX version 3, 142
TEXcad, 77, 147
text

emphasised, 44
maths mode, 48
normal, 43

text editor, 1
search and replace, 17

text mode, 18
\textfloatsep, 119
\textfraction, 120
\textheight, 113
\textstyle, 86
\textwidth, 105, 113, 139
tfm file, 57
tgrind, 147
\thanks, 34, 137
\the, 102
thebibliographyenvironment, 90
\theenumi, 134
\thefootnote, 115
theindex environment, 40
\thempfootnote, 115
theorems, 99
\thicklines, 75
\thinlines, 75
\thispagestyle, 30
tie (unbreakable space), 18
\tiny, 46

\title, 33
title page, 33

designing your own, 34
titlepage

titlepage environment, 30
titlepage environment, 34
titlepage style, 24
to, 19
toc file, 35
token lists, 22
\topnumber, 137
\topsep, 117, 120
\topskip, 113
true, 19
\tt, 44
\tti, 124
two column

full page width banner, 28
\twocolumn, 28, 113, 120
twocolumn style, 24
twoside style, 24
type sizes, 46
\typein, 39
\typeout, 38

\unboldmath, 48, 86
\underbrace, 85
\underline, 85
underlining, 85
\unitlength, 74
Unix

location of inputs directory, 24
unsrt bibliography style, 92
\usebox, 77, 112
User Groups, 148

\value, 104
variables, see registers, 101
vbox, 22, 31, 110
\vdots, 85
\vector, 75
vectors, 75
\verb, 64, 126
verbatim environment, 63
verse environment, 60
vertical mode, 131

170 Index

vertical spaces, 53
vgrind, 147
virtual font, 142
visual formatting, 2, 101
VMS

location of inputs directory, 24
\voffset, 113
\vspace, 51, 109

web, 141
\whiledo, 130
whitespace, 30

unexpected in output, 19
width, 19
word processor, 1

converting to LATEX, 147
writing messages to the screen, 38

xfig, 77, 147

\z@, 135
zealot, 3

