
Software Language Engineering

Adrian Johnstone

0 Course structure

The course material is divided into six parts. Each part has its own chapter in the
course book Software Language Engineering; we shall study each chapter for one or
two weeks in this order:

Weeks Chapter Topic

1 1 Formalising language
2–3 2 Rewriting systems
4–5 3 Structural Operational Semantics
6–7 4 Syntax specification and analysis
8–9 5 Attribute evaluation
10 6 Pragmatics and case studies
11 Consolidation and revision

Course sessions

This is a 15 credit course, taught over eleven weeks, with 44 hours of programmed
sessions

Monday 13.00-13.50 Lecture slot A
Tuesday 9.00–9.50 Lecture slot B
Thursday 9.00–9.50 Laboratory
Thursday 10.00–10.50 Project development

Full engagement and submissions for all assessments including the exam and the
project is required

Assessment comprises 50% exam and 50% individual project

Learning resources

Software Language Engineering

Adrian Johnstone

Edition: January 2021

▶ Text book

▶ ART software

▶ Laboratory scripts and follow on questions

▶ Slides

▶ Pre-recorded videos

▶ Machine generated transcripts

▶ Exercises

▶ Dummy exam and past papers

▶ Recordings of lecture sessions

Lab and project sessions are not recorded

Week by week – lectures and labs

Week Book Lecture topic Lab topic
chap

1 1 Formalising language Languages for 3D design
2 2 Rewriting systems Music and imaging languages
3 2 Rewriting systems termTool
4 3 Structural Operational Semantics eSOS 1
5 3 Structural Operational Semantics eSOS 2
6 4 Syntax specification and analysis OSBRD
7 4 Syntax specification and analysis MGLL and lexicalisation
8 5 Attribute evaluation Mini 1
9 5 Attribute evaluation Mini 2
10 6 Case studies and the industrial context Double project slot
11 Contingency, consolidation and revision Double project slot

Week by week – the project

Week Activity

1 Experiments with JavaFX 3D
2 Experiments with Java MIDI and simple image processing
3 Choice of domain and identification of domain features
4 Design of internal syntax
5 eSOS interpretation

End of first section: submission due at end of week 7

6 Design of external syntax
7 External to internal syntax parsing
8 Attribute evaluator for control flow
9 Attribute evaluator for scope and types
10 Example programs and testing

End of second section: submission due at end of week 11

11 Finish write up

Project marking criteria

The project is a substantial piece of work, worth 50% of the marks on a final year
module. Within that 50%, the marking scheme is:
▶ Part one worth 35%

▶ 5% Planned list of domain specific features with Java examples
▶ 5% Internal syntax specification
▶ 25% eSOS interpreter

▶ Part two worth 65%
▶ 10% external syntax parser generating internal syntax trees
▶ 25% attribute based interpreter
▶ 10% example domain specific programs
▶ 20% write up

Some students merely submit a version of one of my examples with some minor
improvements; that is not enough to earn a pass.

The examination

The exam format changed in 2021 to be directly aligned with the style of the project
deliverables.

Before 2021, there was typically a standalone question for each topic. In the new
format, an informal specification of a small language is given, and you are required to
construct specifications in various styles for that small language.

An example paper in this style is available on the Moodle page. Model answers will
not be made available for that example paper, or for past papers.

Past papers from before 2021 are still worth working through since the broad
intellectual content of the course has not changed.

How much work?

Lots, or lots and lots, depending on how clever you are

This is from the QAA document Academic credit in higher education in England — an
introduction:

The amount of learning indicated by a credit value is based on an estimate using the idea of notional
hours of learning. The number of notional hours of learning provides a rough guide to how long it will
take a typical student, on average, to achieve the learning outcomes (what you will know, understand
and be able to do having successfully completed the learning) specified for the module or programme.

The estimate of notional hours of learning doesn’t just include formal classes, but estimates the
amount of time spent in preparation for these classes, along with private or independent reading and
study, plus revision and the completion of course-work required on the module.

Within the UK, one credit represents 10 notional hours of learning. Institutions use this guide as a basis
for setting the credit value of a module or programme before it is offered to students. For example, a
module that is estimated to involve 150 notional hours of learning will be assigned 15 credits.

Time management

Exams begin in 15 weeks time

A typical student hoping for a mid-range result will need to budget 150 hours, as per the
previous slide. If you want to improve your current grade average then you should budget more
hours

So that is an average of ten hours per week, including the four weeks of the vacation

(Which makes sense if we assume a 40 hour working week, and that you are doing four courses
simultaneously)

We have four contact hours per week, thus a total of 44 contact hours leaving 106 for your
private study. The project is designed to give structure to your private study, with a weekly
programme of activities that will require you to engage with that week’s lecture and laboratory
topics.

Your feedback on this module and its materials is always welcome: email to
a.johnstone@rhul.ac.uk.

Now let’s begin.

Gottlob Frege 1848–1925
https://en.wikipedia.org/wiki/Gottlob_Frege

https://en.wikipedia.org/wiki/Gottlob_Frege

1 Formalisation

A formal system is a set of consistent rules that are susceptible to mechanisation.
Formal systems typically have configurations which we move between according to the rules.

Board games such as Chess, Go and Draughts are all formal systems, and in fact we might think

of formalisation as making a game which models a problem domain. Mechanisation does not

necessarily mean that judgement becomes superfluous: to win we must choose the best move.

Section Topic

1A It’s languages all the way down
1B Utility and power in languages and their processors
1C What do we mean by formal?
1D Conway’s Game of Life
1E The reduction model: Euclid’s Greatest Common Divisor

1A It’s languages all the way down

In A Brief History of Time, Stephen Hawking wrote:

A well-known scientist (some say it was Bertrand Russell) once gave a public lecture on
astronomy. He described how the earth orbits around the sun and how the sun, in turn, orbits
around the centre of a vast collection of stars called our galaxy.
At the end of the lecture, a little old lady at the back of the room got up and said:“What you
have told us is rubbish. The world is really a flat plate supported on the back of a giant
tortoise.”
The scientist gave a superior smile before replying, “What is the tortoise standing on?” “You’re
very clever, young man, very clever,” said the old lady. “But it’s turtles all the way down!”

This infinite regression conundrum appears in many forms throughout history - see
https://en.wikipedia.org/wiki/Turtles_all_the_way_down for further discussion.

Our topic is programming languages (not metaphysics) but we have own version of the
conundrum.

https://en.wikipedia.org/wiki/Turtles_all_the_way_down

The Java translation stack

To run a Java program we:

1. Translate the human-friendly Java source code into instructions for a
pseudo-computer called the Java Virtual Machine using the javac compiler

2. Interpret the JVM instructions using the java JVM interpreter.

The JVM interpreter is itself a program, not an actual computer. The JVM has its
own source code, and might even be written in Java. . .

Let’s assume that it is written in C. Then the JVM source code will have been
translated into the instructions for some real computer by a C compiler.

How do the instructions for the physical computer get executed? (Or, where do the
turtles stop?)

Real computers, automatic and manual

7

255

201

0

0

1

2

3

2n-1

?
6

?
6

?
6

...

DISK CPU

RAM

. . . Worksheet

Calculator

i
��ZZ

L
L�

�

The essence of computing

The human computer uses a four function calculator and a worksheet with formulae,
jumps and boxes into which the computed results of formulae may be written.
The automatic computer has a memory into which both the computed results of
formulae and a representation of jumps and of the formulae themselves, along with a
central processor which can execute the calculator’s functions and keep track of where
we are in the program using a special variable called the Program Counter (PC).
Let’s define these six instructions which capture the notions of typing a number into
the calculator, jumps, and specifying one of the four functions the calculator provides.

Action and code Syntax Effect on configuration
Set value 1 set dst, k mc(dst)← k, PC ← PC + 1
Branch if equal 2 beq k src1 src2 if src1 = src2 then PC ← k else PC ← PC + 1
Addition 3 add dst, src1, src2 mc(dst)← mc(src1) +mc(src2), PC ← PC + 1
Subtraction 4 sub dst, src1, src2 mc(dst)← mc(src1)−mc(src2), PC ← PC + 1
Multiplication 5 mul dst, src1, src2 mc(dst)← mc(src1)×mc(src2), PC ← PC + 1
Division 6 div dst, src1, src2 mc(dst)← mc(src1) / mc(src2), PC ← PC + 1

Programs

The automatic computer’s memory is a sequence of pigeonholes, each of which can
hold a number which may be changed during the program’s execution. The sequence
number for each pigeonhole is called it’s address and never changes.
We can represent programs as sequences of numbers held within the pigeonholes. For
instance, here is Java (or C) fragment and its six-instruction-code program

a = 3; c = b = 2; while (a != 0) { c = c * b; a-- };

200: 1, 100, 0 // set location 100 to constant 0

203: 1, 101, 1 // set location 101 to constant 1

206: 1, 102, 3 // set variable a to 3

209: 1, 103, 2 // set variable b to 2

212: 1, 104, 2 // set variable c to 2

215: 2, 231, 102, 100 // branch if a=0 to location 231

219: 5, 104, 104, 103 // multiply b by c and store in c

223: 4, 102, 102, 101 // subtract 1 from 1 and store in a

227: 2, 215, 100, 100 // branch always to location 215 (since 0 = 0)

231: // The rest of the program...

Is the six-instruction computer sufficient?

I claim informally that this six instruction computer can execute any Java program.

Logic operations such as a && b may be implemented by using constant zero to
represent false, and any other value to represent true. We then use subtraction and
branching instructions to compute the elements of the logic operation’s truth table.

Shifts may be achieved by multiplying or dividing by two.

Array accesses need nasty trickery. Since all of our instructions have constant addresses
built into them, when we compute an array access such as x[y*2] = 7; we need to
calculate the address of the requested array element and then write that address into
the set instruction 1, ?, 7. This is self modifying code which was once common, but
is now thoroughly deprecated because it makes programs very hard to read, and also
disrupts the smooth execution of instructions on modern pipelined architectures.

Are all six instructions necessary?

It is not hard to implement multiplication and division using only addition and
subtraction, and in fact most computers sold before the mid-1980s did not have
hardware multipliers or dividers.

We do not need the set instruction since zero is the identity under addition and
subtraction, so instead of set x, k we could write sub x, k, zero where zero is
the address of a location containing a constant zero (such as location 100 in the earlier
example)

More interestingly, we do not need the add instruction either since

a+ b = a− (−b) = a− (0− b)

So, assuming that we have a spare location tmp available, we can replace every
occurrence of add x, a, b with the sequence sub tmp, zero, b; sub x, a, tmp.
Now we only have subtraction and branching left.

Cheap computing

If resources were very scarce (perhaps we are a 1940s computing pioneer) or if we
enjoy intellectual parlour games, we can go one step further and make the program
counter appear as one of the pigeonholes in our memory.

This would allow calculations to directly write the address of the next instruction to be
executed into the program counter and so we do not even need a branch instruction.
Now we have a single-instruction computer: everything is a subtraction.

Many early computers were bit serial. That means that, say, a 16-bit subtraction was
computed one bit at a time, working across the operands from least significant to most
significant bit.

I know how to make such a CPU using only 30 switching elements and some one bit
memories, but that is a story for another module.

Expensive computing

These minimal computers are fun to design, but not much fun to program. Broadly
speaking, the first forty years of computer architecture research focused on closing the
so-called semantic gap between human-friendly high-level programming languages, and
the low level machine code by adding new, expressive hardware instructions.

An important part of those developments was the use of addressing modes that
allowed, for instance, an entire array index calculation to be performed during the
fetching of an instruction’s operands – the constant address of our instruction sets was
expanded to allow quite baroque expressions.

In the mid-1980s a revolution occurred. Called Reduced Instruction Set (RISC)
architecture (though I think Reduced Addressing Mode (RAMP) would have been a
more accurate acronym), this new style eschewed any feature which made it hard to
pipeline operations. Examples include MIPS and ARM: the only pre-RISC architecture
being commercially developed is the Intel ISA x86 line.

Languages all the way down... with the hardware as a base case

As computer scientists we know that the solution to recursive conundrums like the
turtle model of reality is to have a base case

A hardware instruction set like the ones we have just discussed forms the base case for
our stack of translations. Computer architecture research is about finding the best
base case. The definitive textbook is Hennessy and Patterson1 but that is a story for a
different module.

What we have seen, though, is that we can expand and contract the capabilities of the
hardware without losing generality, and that we can translate programs from, say, our
six instruction architecture to our four, two or one instruction architectures, easily and
without changing the upper translation layers at all.

1https://www.elsevier.com/books/computer-architecture/hennessy/978-0-12-811905-1

https://www.elsevier.com/books/computer-architecture/hennessy/978-0-12-811905-1

Bertrand Russell 1872–1970
https://en.wikipedia.org/wiki/Bertrand_Russell

https://en.wikipedia.org/wiki/Bertrand_Russell

1B Utility and power in languages and their processors

We now have a suspicion that our programming languages might somehow all be the
same, in that we can translate between them. If that is so (and we shall return to that
question later), why are there so many languages? I think there are four main drivers.

Culture Human (natural) languages seem to develop alongside cultures - groups of
people working and living together share a common language which over time
can develop into a separate dialect. ANSI C, ANSI C++ and even Java might
be seen as derivatives of the original C.

Commerce Sometimes manufacturers attempt to lock customers in with proprietary
languages. This was common in the early years, and still happens at the fringe:
for example Nvidia’s CUDA libraries require their hardware.

Coolness Fashion can dominate decisions - programmers love the latest cool thing,
especially if it is not completely different to what they already know.

Conciseness Verbose programs are tiring programs, and much of programming language
history can be seen as the pursuit of elegant notations to express complex
notions. Of course, extremely concise notations can be tiring too (which is
perhaps why many folk are put off mathematics).

Reuse encourages layering

New software products are built on the foundations of existing systems, since ab initio
implementation of, say, network protocols, encryption standards and graphics systems in
machine code would be immensely costly.

This reuse might be in the form of libraries for use with an existing language, or it might
involve a complete new Domain Specific Language (DSL)

For instance, a game engine might have its own scripting language. The script interpreter
could be written in one architecture’s machine code, but then it would only run on that
architecture. A portable script engine could be written in Java. Now we have an interpreted
language being executed by a program written in Java, which is itself being interpreted. . .

That game might also save configuration data in XML, access a database using SQL, use
HTML5 graphics in the browser, and have a manual written (like these slides) in a typesetting
systems such as LATEX.

We have an entire ecosystem of interacting DSLs

Internal and external DSLs

Libraries such as the Java FX graphics subsystem or the Java MIDI synthesizer offer a well
defined set of capabilities that address specific domains - graphics and music-making in these
cases.

We can think of each library as a Domain Specific Language in which the features are presented
as method calls to Java objects, and we can build applications by writing Java programs that
string together lots of calls to these libraries with general purpose Java control flow code.

Alternatively, we could make up a new syntax with its own control flow and data declarations,
and hide all the (sometimes verbose) details of the Java scaffolding.

The first approach – a library called from a general purpose language - is sometimes called an
internal DSL. The full-fat version with its own syntax and processor is called an external DSL.

We can view the external DSL as being a wrapper around the underlying internal DSL: the
purpose of the external DSL’s special language is to provide concise and sometimes cool ways
of specifying applications.

The DSL maintenance trap

I left out one common source of new languages in the first slide: ego.

Programming languages are fascinating artifacts, and many programmers have explored
creating their own language. The Python and C++ languages emerged from experiments by
individuals.

Reasoning about the interaction of language features is hard, especially when trying to extend
an existing design.

Sometimes a hot-shot programmer within an organisation is a bit bored and decides to pressure
management to allow a new DSL to be developed in which to encode their business processes.

Management wants to retain their expensive hot shot programmer who is thus allowed to build
something, usually using tools and techniques that were optimised for 1970s architectures with
tiny memories, and with a sticky mess of glue logic to paper over the cracks.

Eighteen months later the hot-shot programmer leaves anyway, and the company is left with an
opaque system at the heart of their business that other programmers are frightened to meddle
with.

The DSL maintenance solution

There is another way

This course will teach you how to specify languages and their processors with concise
very-high-level notations that allow you to:

▶ experiment with, and reason about, the interactions of language features,

▶ provide clear specifications to the engineers that have to maintain your work after
you have moved on, and

▶ as a bonus, allow complete language interpreters to be generated automatically
from your specifications which you can use for testing, and which might be fast
enough for production use.

We hope for concise, complete and directly executable language specifications

Alfred North Whitehead 1861–1947
https://en.wikipedia.org/wiki/Alfred_North_Whitehead

https://en.wikipedia.org/wiki /Alfred_North_Whitehead

1C What do we mean by formal?

The history of science across the twentieth century is one of increasingly rigorous
mathematical modelling.

In Physics we have the development of the Bohr atomic model, leading to quantum
theory, Quantum Electrodynamics and the standard model of particle physics.

In Biology we have the development of chemical bond modeling leading to the
elucidation of the structure of DNA and molecular biology.

In the future, medicine will increasingly be based on the application of statistical
machine learning techniques to the unravelling of biochemical pathways, and their
impact on the organism leading to new understanding of disease and opportunities for
therapeutic intervention.

Formalising mathematics

Mathematics itself is a discipline that benefits from mathematical analysis. Up until suprisingly
recently, all mathematics was expressed in prose which is hard to analyse. For instance, the
now universally-understood symbol for equality = was only introduced in the mid-sixteenth
century, during the reign of the English Queen Elizabeth I, and it was a further 150–200 years
before it’s use became universal.

As mathematical language moved from (rather fuzzily defined) words to symbols, some people
began to wonder whether mathematics is in fact anything more than the manipulation of
symbols.

The so-called formalist school of thought has it that all we have are strings of symbols which
can be manipulated according to certain rules. The idea is that mathematical statements are
simply syntactic forms which have no meaning unless they are given a semantics.

Philosophers of mathematics do not all agree. You can read about some of the debates here
https://en.wikipedia.org/wiki/Formalism_(philosophy_of_mathematics)

https://en.wikipedia.org/wiki/Formalism_(philosophy_of_mathematics)

Formalising the notion of computation

Attempts to define computational tasks as well-defined procedures are very old. We shall study
Euclid’s 2,300 year old Greatest Common Divisor algorithm in a later section. Attempts to
actually automate computation (as opposed to designing aids to for human computers) date to
Babbage’s multiple implementations of the Method of Differences, beginning 200 years ago.

Limits to computation became a topic of great interest in the 1920’s. Hilbert, one of the most
prominent of the formalists, set a challenge in 1928 called the Entscheidungsproblem or
decision problem. One interpretation of this problem is that it asks whether there are
statements in a logic that cannot be deduced from the axioms by any algorithm.

To answer the question, a formal model of ‘algorithm’ was needed. Alonzo Church’s 1935
λ-calculus and Turing’s 1936 Turing machine are equivalent minimalist models of computation
which were used to show that undecidable decision problems exist.

More at https://en.wikipedia.org/wiki/Entscheidungsproblem

https://en.wikipedia.org/wiki/Entscheidungsproblem

Programming languages and the Entscheidungsproblem

So, a Turing machine is a formal game with a configuration and transition rules that, according
to the Church-Turing thesis, can perform any computation that a more complex device can. We
could view it as an abstraction of our real computers, though of course it predates their design.

A key result of Turing’s is that there exist Universal Turing Machines which can simulate any
other Turing machine. They work by essentially reading in a description of the machine to be
simulated, and then interpreting the input under those rules.

Many authorities believe that this notion directly inspired Von Neumann description of
computers. Others recognise its significance, but believe that pragmatic, engineered
stored-program computers developed independently of these theoretical formalisms – certainly
Maurice Wilkes told me over dinner one night that his team knew nothing of Turing’s
formalisms.

Whatever the truth, it is the formal proof of existence of UTMs that ‘explains’ our insight that
programming languages equipped with basic flow control are equivalent, in that one can be
translated into another, or simulated in another.

More at https://en.wikipedia.org/wiki/Universal_Turing_machine

https://en.wikipedia.org/wiki/Universal_Turing_machine

Alan Turing 1912–1954
https://en.wikipedia.org/wiki/Alan_Turing

https://en.wikipedia.org/wiki/Alan_Turing

1D Conway’s Game of Life, formalised

Conway’s Game of Life (CGL) was popularised by Martin Gardner in the October 1970
edition of Scientific American

It is a game with no ‘players’. The board is ordinary square ruled graph paper. Each
square on the paper may be filled or it may be empty.

The game proceeds in generations: an entire board is evaluated, and the rules of the
game specify which squares will switch from filled to empty, which from empty to
filled, and which will stay the same.

There is no end point: the generations continue to evolve without limit, although they
may converge to constant or repeating patterns that will never develop new behaviour.

CGL is interesting because a set of very simple rules generates complex, semi stable
populations. It is an example of emergent behaviour

Cellular automata

CGL is an example of a cellular automaton. We’ll now give some more precise
technical language for talking about such automata.

A cellular automaton is a formal system comprising a set Γ of cells, each of which must
be labeled with an element from a finite set of states Σ, and a transition rule which
specifies the evolution of the cell labels in discrete time steps Γ0, Γ1, . . . called
generations.

It can be useful to think of Γ as having structure, in the sense that some cells are
‘adjacent’, and for the transition rule to be a function over a ‘neighbourhood’
f (p1, p2, . . . , pk) with signature f : Σ× Σ× . . .× Σ→ Σ where the pk are the
elements of the neighbourhood.

The CGL transition rule

The blue paragraph on the previous slide is woolly: we have not explained how the
neighbourhoods are defined or used, and as a result we could not automatically generate an
implementation.

In CGL, the cells in Γ are arranged as an unbounded two-dimensional rectangular array; Σ is
the set {0, 1} and the transition rule defines the new state σ′ of a cell in terms of the its
existing state σ and the population P as the sum of the states of its eight-connected
neighbours according to this function:

σ′ =

 1, σ = 0,P = 3 (birth)
0, σ = 1,P < 2 ∨ P > 3 (death through loneliness or overcrowding)
σ, otherwise (stasis)

This rule induces a transition relation: the set {(Γi , Γj)} such that the transition rule can
construct Γj from Γi .

The CGL transition relation is a function because only one new board can be generated from
each Γi . Contrast that with, say, chess in which there may be hundreds of moves from each
position.

Neighbourhoods

The transition rule is still woolly: what is the meaning of eight-connected neighbours?
Geometrically, we mean that given the plane tesselated by rectangles, the
8C-neighbours of cell C are the eight cells that touch C , including four that only touch
at their corners.

So if we are looking at the cell at coordinates (x , y), then we want to count the total
population of the cells at locations (x-1,y-1), (x,y-1), (x+1,y-1), (x-1,y), (x+1,y),
(x-1,y+1), (x,y+1), (x+1,y+1)

A more concise way of saying this is

Px ,y = |Γx ,y |

where

Γx ,y = {(x + i , y + j)
∣∣ (x , y) ∈ Γ,−1 ≤ i , j ≤ 1, (i ̸= 0 ∧ j ̸= 0), (x + i , y + j) ∈ Γ}

Translation to Java

Substituting Γx,y into the expression for Px,y , we have

Px,y = |{(x + i , y + j)
∣∣ (x , y) ∈ Γ,−1 ≤ i , j ≤ 1, (i ̸= 0 ∧ j ̸= 0), (x + i , y + j) ∈ Γ}|

and here is a fairly direct translation from the formal language of set theory, to a formal
language of programs (using Java in this case).

1 int P(x,y) {
2 int ret = 0;
3 for (i = =1, i <= 1, i++)
4 for (j= =1, j <= 1, j++)
5 if (i != 0 && j != 0) ret += gammaCellState(x + i, y + j);
6 return ret;
7 }
8

9 int gammaCellState(x,y) {
10 if (/* The cell (x,y) is in Gamma */)
11 return 1;
12 return 0;
13 }

Some CGL patterns

Block: ■■
■■ Beehive:

■■
■ ■
■■

Blinker: ■■■ →
■
■
■
→ ■■■ →

■
■
■
→ . . .

The glider:
□□□□□□□
□□□□□□□
□□□□□□□
□■■■□□□
□□□■□□□
□□■□□□□
□□□□□□□

→

□□□□□□□
□□□□□□□
□□■□□□□
□□■■□□□
□■□■□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□□□□□
□□■■□□□
□■□■□□□
□□□■□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□□□□□
□□■■□□□
□□□■■□□
□□■□□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□□□□□
□□■■■□□
□□□□■□□
□□□■□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□■□□□
□□□■■□□
□□■□■□□
□□□□□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□■■□□
□□■□■□□
□□□□■□□
□□□□□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□■■□□
□□□□■■□
□□□■□□□
□□□□□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□■■■□
□□□□□■□
□□□□■□□
□□□□□□□
□□□□□□□
□□□□□□□

Näıve implementation of CGL using an array

So far, our gammaCellState() function remains undefined. It depends on the representation
we use for the Life board.

An obvious, though flawed, way to implement Conway’s Game of Life is to use a two
dimensional array of Boolean values or integers. Section 1.7.3 of the book gives a full
implementation that you should study.

Here are some weaknesses of the array-based approach

▶ The size of an array is fixed at the time it is created

▶ The number of calls per generation-transition to the population function P is the number
of cells in the array. This means that the computational demand is O(XY) where X and
Y are the board has X × Y cells.

▶ Arrays have edges because the allowed values of x and y have finite bounds. However,
our transition function is defined over the integers, and so we do not know what to do if
the neighbourhood function wants to look up an element that is outside of the array. This
this implementation is incorrect. Consider two gliders that fly outside of the finite bounds
before colliding and sending a fragment back in: our implementation will diverge from the
formal definition.

A set based implementation without ‘edges’

Life grids are often sparsely populated. We would like an implementation where the
processing times is O(|L|) where L is the set of cells that are live.

We also want an implementation that avoids the finite bounds of the array. Of course,
all real computer memories are finite so eventually we shall run out of memory, but we
can do much better then the array representation.

In general, cellular automata can have multiple states, not just ‘filled’ and ‘empty’, so
let us represent one generation of an automaton in the plane as a set of triples
Γi = {(x , y , σ)} with σ ∈ Σ, the set of possible states. We choose a particular element
of Σ to be the ‘background’ and omit those triples from our representation of Γi

For CGL, this reduces to representing the state of the board with the set of coordinate
pairs of each live cell. You will find an implementation in this style in the book, which
you should study. We extract an element from the current Γ, then check its
8-connected neighbours to see if it should live, and if any neighbour births occur.

Using a visited set to avoid recomputations

We can go further. The set based implementation computes Γi+1 by extracting each
element (x , y) from Γi and checking its eight connected neighbours for two purposes:

1. To decide if P(x , y) is in the range 2− 4 in which case (x , y) is entered into Γi+1

2. To check the eight connected neighbours of cell (x , y) to see if they are not in Γi
and if so, if their neighbour population is 3 in which case a new cell is ‘born’.

Now, an empty cell can be a neighbour of up to eight filled cells, and step 2 will be
executed for each of those filled neighbours

We can save this computation by keeping a set C of ‘checked’ cells and only executing
step 2 on cells that are not in C . You will find a full implementation in the book.

This is an example of the technique called memoisation in some sources, in which we
cache the result of calculations that might otherwise be performed multiple times.

How is this relevant to programming language design and implementation?

There are two lessons from this section.

Firstly, thinking about things in an abstract way can reveal insights. By moving away
from a geometric understanding, and instead representing each CGL configuration
(generation) as a set of tuples we were able to find implementations that were more
efficient in both time and space.

Secondly, the idea of a system that has configurations which we step between under
the control of a transition relation is a widely applicable formal notion that is
susceptible to mechanisation.

We can use the transition relation idea to think about automata, such as the
deterministic and nondeterministic finite automata that are studied in the first year of
most computer science degrees, as well as network protocols and other more complex
patterns of behaviour.

Programming languages as transition relations

There is a sense in which a programming language, such as Java, defines a transition relation
between configurations of a computer.

We think about these configurations as the combined state of all of the mutable memory
elements of the computer by which all of the main RAM memory, the complete state of the
disks, the program counter and every other mutable memory element within the system - its a
bit like an enormous CGL board with one cell for each memory bit.
As we execute lines of a Java program, the machine configuration changes, and in fact since
our configuration includes all of the mutable memory elements, the evolving sequence of
configuration completely defines the behaviour of the machine.
The Java transition relation includes (Ci ,Cj) iff Ci is a machine configuration generatable by
some Java program, and Cj may be reached from Ci by executing one Java ‘step’ – say the
evaluation of a single operator.

If a program is completely sequential, then there is only ever at most one successor
configuration available, that is the transition relation is a partial function. For a concurrent
program or a non-deterministic sequential program, then there may be multiple successors. So
sequential programs have transition functions as does CGL, and concurrent programs look more
like chess with multiple possible ‘moves’ to multiple possible successor configurations.

John Horton Conway 1937–2020
https://en.wikipedia.org/wiki/John_Horton_Conway

https://en.wikipedia.org/wiki/John_Horton_Conway

1E The rewrite model: Euclid’s Greatest Common Divisor

In volume 2 of his magnum opus The Art of Computer Programming, Donald Knuth
calls Euclid’s Greatest Common Divisor the granddaddy of all algorithms, because it is
the oldest nontrivial algorithm that has survived to the present day.

The algorithm appears in Book VII of Euclid of Alexandria’s Elements which was
probably written around 2,300 years ago. It is not clear if Euclid collected previous
results, or originated them, and in fact it is not entirely clearly that Euclid was a real
person... but Elements set a pattern for formal presentation of mathematical
arguments that still is widely used today.

For our purposes, it has the great merit of being the shortest program I know of that
actually does something useful and has non-sequential control flow. We shall use it as
a running example.

The text of Elements

https://www.claymath.org/library/historical/euclid/files/elem.7.2.html

https://www.claymath.org/library/historical/euclid/files/elem.7.2.html

The GCD algorithm as a program

1 a := input();
2 b := input();
3

4 while a != b
5 if a > b
6 a := a = b;
7 else
8 b := b = a;
9

10 output(a);

GCD in Java

1 import java.util.Scanner;
2

3 public class GCD {
4 public static void main(String[] args) {
5 int a, b;
6 Scanner input = new Scanner(System.in);
7

8 a = input.nextInt();
9 b = input.nextInt();

10

11 input.close();
12

13 while (a != b)
14 if (a > b)
15 a = a = b;
16 else
17 b = b = a;
18

19 System.out.println(a);
20 }
21 }

The fixed-code-and-program-counter interpretation

When we are developing software, we
write code, load it into a development
environment such as Eclipse and then
run it to see if its behaviour matches our
expectations. Here is a screenshot of the
Java CGD program being run under the
debugger within Eclipse.

We have the Java code, the input [9, 6]
(in green) and the state of the store with
variables a and b, both presently mapped
to the value 3. The program has stopped
just before executing the output state-
ment line 19 of the code window has a
small pointer arrow on the left hand side
and is highlighted.

Rewriting – another way to think about program execution

Here is a short program.

1 output(3);
2 output(10+2+4);

The first thing the program does is output the value 3. We can represent this by constructing

an output list [3] and then discarding the first line of the program (since we do not need it

again). There is a sense in which the tuple

⟨"output(3); output(10+2+4);", []⟩

means the same thing as

⟨"output(10+2+4);", [3]⟩

because the externally visible effect of starting with an empty output and executing lines 1 and

2 above is the same as starting with the output [3] and only executing line 2. We can represent

each step of a program’s execution by a pair comprising the current output and a rewritten

program that represents only what remains to be done.

1 output(10+2+4); [3]

Now we have to evaluate the expression 10+2+4 before we can execute the next output
statement. In detail, the computer can only execute one arithmetic operator at a time; let us
choose to execute 10+2, and rewrite it to the result 12.

1 output(12+4); [3]

Now we do the other arithmetic operation: 12+4 is rewritten to 16.

1 output(16); [3]

Finally we can execute the output statement, and add 16 onto the end of the output list.

1 [3, 16]

Rewriting vs. using a program counter

The standard approach – using an unchanging program and a Program Counter that points to
the next instruction to be executed – is efficient and effective, and basis of almost all hardware
implementations of computers.

The rewriting approach is much more amenable to mathematical analysis. This is because
when we want to, say, prove that a program terminates, we can use proof by induction on the
length of the program. Induction proofs typically need some measure that is increasing or
decreasing built into the induction hypothesis.

A closely related technique is structural induction in which we show that the effect of a nested
structure (perhaps nested control flow in Java) is the union of the effects of its component
parts.

We are not going to be proving program properties on this course. However we are going to
build syntax analysers and interpreters compositionally, for which rewriting can support clear,
uncluttered reasoning, producing short, maintainable specifications and for which structural
induction proofs could, in principle, be constructed.

A reduction semantics for linear code is straightforward, but we need to think carefully about
loops. One approach is to use this program identity

1 while booleanExpression do statement;

is always the same as

1 if booleanExpression { statement; while booleanExpression do statement; }

We have effectively unpacked the first iteration of the loop and are handling it directly with an
if statement followed by a new copy of the while loop which will compute any further
iterations. When we have completed all of the iterations we shall encounter a term like

1 if false { statement; while booleanExpression do statement; }

which rewrites to the empty subterm. This device, then, allows us to treat while loops using

only if statements.

A rewrite evaluation of GCD with input [6, 9]

Procedural programs typically have input, output and variables. We use lists of values to
represent the input and output, as we have already seen. These lists are called semantic
entities, and their rôle is to leep track of side-effects of the program whilst it is being rewritten
away.

To represent the variables, we can use a map. A map is a set of bindings. In Java we assign,
say, 6 to variable a by writing a = 6;. When we come to reduce that piece of code, we create
a binding a 7→ 6 in the store, giving the set of bindings {a 7→ 6}
A rewrite configuration is a tuple comprising the program term to be rewritten and all of the
semantic entities with their current values. The set of semantic entities is fixed for a given
programming language. For a purely functional programming language, there are no semantic
entities because program rewriting is all that they allow.

For our GCD program, configurations will be of the form ⟨α, σ, β, θ⟩ to represent the input,
store, output and program term, respectively.

The 36 following steps completely execute GCD for inputs 6 and 9. Each step roughly
corresponds to one machine instruction.

Start of trace

Initialise variables from input

⟨[6, 9], {}, [], a:=input(); b:=input(); while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[9], {a 7→ 6}, [], b:=input(); while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
Rewrite using while p s → if p { s ; while p s }
⟨[], {a 7→ 6, b 7→ 9}, [], while a!=b if a>b a:=a=b; else b:=b=a;output(a);⟩
Evaluate a ̸= b with store {a 7→ 6, b 7→ 9}
⟨[], {a 7→ 6, b 7→ 9}, [],

if a!=b { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
⟨[], {a 7→ 6, b 7→ 9}, [],

if 6!=b{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
⟨[], {a 7→ 6, b 7→ 9}, [],

if 6!=9{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
⟨[], {a 7→ 6, b 7→ 9}, [],

if true { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; }output(a);⟩
Evaluate a > b with store {a 7→ 6, b 7→ 9}
⟨[], {a 7→ 6, b 7→ 9}, [],

if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 9}, [], if 6>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[], {a 7→ 6, b 7→ 9}, [], if 6>9 a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[], {a 7→ 6, b 7→ 9}, [], if false a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
Evaluate b − a with store {a 7→ 6, b 7→ 9}
⟨[], {a 7→ 6, b 7→ 9}, [], b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[], {a 7→ 6, b 7→ 9}, [], b:=b=6; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[], {a 7→ 6, b 7→ 9}, [], b:=9=6; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[], {a 7→ 6, b 7→ 9}, [], b:=3; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
Rewrite using while p s → if p { s ; while p s }
⟨[], {a 7→ 6, b 7→ 3}, [], while a!=b if a>b a:=a=b; else b:=b=a;output(a);⟩
Evaluate a ̸= b with store {a 7→ 6, b 7→ 3}
⟨[], {a 7→ 6, b 7→ 3}, [],

if a!=b { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
⟨[], {a 7→ 6, b 7→ 3}, [],

if 6!=b{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
⟨[], {a 7→ 6, b 7→ 3}, [],

if 6!=3{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
⟨[], {a 7→ 6, b 7→ 3}, [],

if true { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
Evaluate a > b with store {a 7→ 6, b 7→ 3}
⟨[], {a 7→ 6, b 7→ 3}, [], if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[], {a 7→ 6, b 7→ 3}, [], if 6>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[], {a 7→ 6, b 7→ 3}, [], if 6>3 a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[], {a 7→ 6, b 7→ 3}, [], if true a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
Evaluate a− b with store {a 7→ 6, b 7→ 3}
⟨[], {a 7→ 6, b 7→ 3}, [], a:=a=b; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 3}, [], a:=a=3; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[], {a 7→ 6, b 7→ 3}, [], a:=6=3; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
⟨[], {a 7→ 6, b 7→ 3}, [], a:=3; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩
Rewrite using while p s → if p { s ; while p s }
⟨[], {a 7→ 3, b 7→ 3}, [], while a!=b if a>b a:=a=b; else b:=b=a;output(a);⟩
Evaluate a ̸= b with store {a 7→ 3, b 7→ 3}
⟨[], {a 7→ 3, b 7→ 3}, [],

if a!=b { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
⟨[], {a 7→ 3, b 7→ 3}, [],

if 3!=b{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
⟨[], {a 7→ 3, b 7→ 3}, [],

if 3!=3{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
⟨[], {a 7→ 3, b 7→ 3}, [],

if false { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩
⟨[], {a 7→ 3, b 7→ 3}, [], output(a);⟩
Evaluate output
⟨[], {a 7→ 3, b 7→ 3}, [], output(3);⟩
Empty term indicates normal (successful) termination
⟨[], {a 7→ 3, b 7→ 3}, [3], ⟩
End of trace

Euclid of Alexandria (perhaps) 2300-2200 years ago?
https://en.wikipedia.org/wiki/Euclid

https://en.wikipedia.org/wiki/Euclid

2 Rewriting systems - concepts and terminology

Rewriting is central to much of this course.

In this section we are going to develop the terminology of rewriting systems for both strings

and tree-like terms, and see how the choice of rewriting strategy affects the results.

Section Topic

2A Transition relations and abstract rewriting
2B String rewriting
2C Term rewriting
2D Rewriting strategies
2E Implementing terms in Java
2F Types and operations: the ARTValue system

2A Transition relations and abstract rewriting

In this section we are going to develop some technical language and some graphical
techniques for thinking about and specifying the application of rewriting under
relations to programming language specification.

Our relations will be used to define valid rewrites on both strings and trees.

We shall use string rewriting to develop external syntax parsers for our languages
which will check that a user’s program is well formed, and then output a tree like
representation of the structure of the string in what we call the internal syntax of the
language. In some places these trees are called parse trees or abstract syntax trees,
both terms that I rather dislike.

We shall then use tree rewriting to transform those internal syntax trees into (usually)
simpler forms, modelling execution of the program by recording side-effects in semantic
entities.

Relations

A binary relation ⊙ between two sets P and Q is a set of ordered pairs (p, q) where
p ∈ P and q ∈ Q; hence ⊙ is a subset of the cartesian product P × Q

P is called the domain of ⊙ and Q is the codomain

We often write x ⊙ y to mean (x , y) ∈ ⊙. Hence the familiar Java notation x > y
which returns true iff x is greater than y , that is (x , y) is in greater-than, >. By
extension, you will see the notation xRy to mean that x is related to y under R

If P and Q are the same set, then we say that the ⊙ is a relation over P. These kinds
of relations are sometimes called homogeneous. Our rewriting relations will be
homogenous relations

Operations over relations

Since relations are just sets, the usual set operations may be applied to them, so for
instance:

the union of two relations R and S written R ∪ S is {(x , y) | xRy ∨ xSy} with identity ∅
the intersection of R and S, R ∩ S is {(x , y) | xRy ∧ xSy} with identity X × Y

The composition of R and S, written R ◦ S is {(x , z) | xRy ∧ ySz}

The converse of R, written R−1 is {(x , y) ∈ X × Y | yRx}
Other names for the converse relation include the transpose and the inverse relation

Properties of relations R between domain X and codomain Y

A relation R over X and Y is:

injective or left unique if ∀x , z ∈ X ,∀y ∈ Y , if xRy ∧ zRy then x = z

functional or right unique if ∀x ∈ X , ∀y , z ∈ Y , if xRz ∧ yRz then y = z

If the domain X and the codomain Y are specified, then R can also be

surjective, onto or right total if ∀y ∈ Y , there exists an x ∈ X such that xRy

serial or left total if ∀x ∈ X , there exists a y ∈ Y such that xRy

A function is a binary relation that is functional and serial

An injection is a function that is injective

An surjection is a function that is surjective

An bijection is a function that is injective and surjective

Homogeneous relations over a set X

Where the domain and codomain of R are the same (that is R is homogeneous), then
R may have these properties

reflexive ∀x ∈ X , xRx

symmetric ∀x , y ∈ X , if xRy then yRx

antisymmetric ∀x , y ∈ X , if xRy ∧ yRx then x = y

transitive ∀x , y ∈ X , if xRy ∧ yRz then xRz

An equivalence relation is a relation that is reflexive, symmetric and transitive

Equivalence relations are often written x ∼R y or just x ∼ y if the context is clear

The identity relation is {(x , x) | x ∈ X}

Closures of homogeneous relations

If given an arbitrary homogeneous relation R over X then we can derive these relations
from it. The:

reflexive closure R= is the smallest reflexive relation over X
that includes R

transitive closure R∗ is the smallest transitive relation over X
that includes R

The graph of a relation

A graph is completely characterised by its set of edges, and each edge is completely
characterised by its start and end point. Hence a graph is just a set of ordered pairs.
Hence, it is clear that graphs and relations are really the same thing.

We have three ‘natural’ ways to represent a relation: as a set of arrows between set
elements, as an adjacency matrix and as a set of ordered pairs. So these three
representations are all of the same underlying relation:

codomain

domain a b c d

a 1
b 1
c 1 1
d

{(a, a), (b, c), (c , a), (c , b)}

Transition systems and abstract rewriting systems

A unlabeled transition system is a pair (S ,→) where S is a set of states and → is a
relation over S . We think of the transition system as defining paths through the
relation’s graph which may be traced out by following individual transitions.

An abstract rewriting system (ARS) is a pair (A,→) where A is a set of objects to be
rewritten and → is a relation over A. We think of the ARS as defining a sequence of
rewrites of some initial object.

Clearly transition systems and abstract rewriting systems are the same thing in terms
of the underlying mathematics: the distinction is really only whether we think about a
system of states that is being traversed, or an object that is being mutated.
Sometimes it is convenient to switch between these two interpretations when
considering a single system

Normal forms and termination

In a rewriting system, an object a ∈ A is rewritable if there exists some b ∈ A such
that a→ b. If an object is not rewritable then it is called a normal form.

Now, let’s think about sequences of rewrites, or equivalently tracing out a series of
transitions. We write x

∗→ y to denote ‘zero or more’ steps of the transition/rewrite

relation2. In fact
∗→ is itself a relation: it is the reflexive-transitive closure of the

underlying relation →.

If we have cycles in the relation graph, then we have the potential for never-ending
sequences. In many applications this is undesirable since it means that rewriting would
not terminate. However, useful programs exist that do not terminate (web servers for
instance) so reasoning about termination within the rewrite relation can require care.

2This use of ∗ to represent zero or many applications of something is usually called a Kleene-star
after the logician Stephen Kleene. You may recognise its use as a wildcard in Un*x and Windows
command line file name specifications

Normal termination and stuck transitions

Often we wish to distinguish between well formed paths and ‘bad’ paths. To do that we
may provide a set of terminating or accepting states which mark the end of valid paths.

When defining programming languages, we usually expect the final configuration of a
rewrite to be either a value such as a number, or a special word that indicates that
program execution has been exhausted. In our systems we use the word done but skip
is a traditional alternative in semantics work, and the Python language provides pass.

So, for many practical language processors we specify some set of values and done as
the accepting states. We shall describe the ART value system (which informally
speaking is a set of pre-defined types, literals and builtin operations) in a later lecture.

If our system reaches a state with no out-edges that is not in the accepting set, then
we say that the system is stuck

Confluence

In a debugged language specification, programs should never get stuck. The
appearance of a stuck state x means that we arrived somewhere we didn’t intend since
we haven’t given any rules for progressing from x , and x is not a terminating state. In
practice, this usually means that we have either forgotten to handle one of our cases,
or we wrote nonsense somewhere and sent our system off into an unintended place.

Let us assume, then, that stuck states never appear. What else could go wrong? Well
relations are rather general things, and it is perfectly possible for a state/object x to
have paths out of it that lead to two different terminating states. If we are using
rewrite systems to model programs, then that situation would suggest that there might
be more than one outcome of a program – a most unhappy situation.

A system is called confluent if, given x
∗→ v and x

∗→ w there exists z such that v
∗→ z

and w
∗→ z . Clearly confluence is a desirable property. Unfortunately confluence is

undecidable in general.

Keeping things simple

On this course, we are going to model sequential programs only. Modeling concurrent
systems using these techniques is viable, but technically more difficult.

Moreover, our systems are going to mostly eschew non-standard termination, by which
I mean that arbitrary jumps and goto statements will not be allowed. Again, they can
be modeled but with some difficulty.

To achieve this simplicity, we are going to (a) use deterministic transition systems in
which there is at most one transition out of any state, and (b) insist on structural
descriptions where the specification of semantics exploits the tree-like structure of the
internal syntax representation emitted by our parsers.

Once you have completed this course you will be able to move on to more
sophisticated features of real programming languages, such as multi-threading, data
level concurrency and arbitrary jumps. Suggestions for further reading will be provided.

Alonzo Church 1903–1995
https://en.wikipedia.org/wiki/Alonzo_Church

https://en.wikipedia.org/wiki/Alonzo_Church

2B String rewriting

Let us think about manipulating character strings using rewriting.

Actually this is quite a familiar idea – after all we all spend a lot of time in text editors
changing text and that is just rewriting. Of course, we haven’t defined a formal rewrite
relation: we’re relying on the human to use their skill and judgement to knock the text
into the desired form.

Let’s concentrate on one simple sub-problem, and think about it formally.

Upper-casing of a piece of text involves locating all instances of lower case letters in
the range a to z and rewriting them into their corresponding upper case character in

the range A to Z .

Rules for upper casing

The uppercasing relation x
U1→ y for strings of length 1 has these 26 pairs

{(a,A), (b,B), . . . , (z ,Z)}

which we could also write as

a
U1→ A, b

U1→ B, . . . , z
U1→ Z

This is a good start, but we want to change all of the characters in a string of arbitrary
length, and this rewrite relation only modifies strings of length 1 containing a single
lower case character. All other strings are normal forms under this rewrite.

Rule schemas

Now we are faced with a significant problem. We cannot reasonably be expected to
write out a separate rewrite rule for every possible case: that would entail writing

something of the form x
U→ y for every string containing lower case alphabetic

characters. Even if we limited ourselves to strings of length 5, there would be 265 such
rewrite rules, which is 11,881,376 separate rewrite rules. (Or is it 265 − 1?)

A rule schema is a shorthand for a set of rewrite rules. A schema contains variables
which in this case are placeholders for arbitrary bits of string. We shall use variables α
and β to represent substrings of any length, including the empty string which has

length zero. This allows us to write out the more useful relation
U→ as follows

αaβ
U→ αAβ, αbβ

U→ αBβ, . . . , αzβ
U→ αZβ

Mathematically, this is just an abbreviated recipe for the infinite set of rewrite rules
that handle the individual strings.

More subtle rewrites

Consider this rewrite scheme which is superficially similar to the upper-casing schema

αaβ
U→ βAα, αbβ

U→ βBα, . . . , αzβ
U→ βZα

The modification here is that α and β are swapped over on the right hand sides, so the
effect of the rewrite is to both to convert lower to upper case letters, and to swap over
the ends of the string using the position of the lower case letter as a pivot.

Can you see that actually this is a rather hard rewrite system to reason about?
Consider the string AxyZ . This has two lower case letters, and so two rewrites will be
induced. But depending on the order we perform the rewrites, we get different results:

AxyZ → yZXA→ ZXAY

AxyZ → ZYAx → XZYA

Thus we can see that this relation is non-confluent, which we want to avoid!

Avoiding implicit equality tests

This innocuous looking rewrite scheme has a hidden constraint:

αaα
U→ αAα

The left hand side of the rewrite αaα will only match strings in which the letter a has
identical strings on each side, such as xyaxy and zzazz . The point is that by using α
twice in a pattern we implicitly demand that both instances match the same substring.

In general this extra equality test can create a fixed overhead on real implementations
of term rewriting. One way of avoiding the overhead is require each variable in an open
expression to be only used once, and that is the approach we shall take in this course.

Avoiding contiguous variables

Here is another rewrite schema that is mathematically perfectly acceptable but which can
cause real term rewriting implementations indigestion (and thus should perhaps be avoided):

αβa
U→ αAβ

Now this is interesting because the left hard expression αβa will match any string ending with
an a, and for strings of length greater than one there are multiple ways to do the matching.
Consider the string xya. The concatenation of α and β can match the prefix xy in these three
ways, leading to three rewrites (so the rewrite relation is not a function):

α β Rewrite
xy ϵ xyA
x y aAy
ϵ xy Axy

Here we have used epsilon ϵ to represent the empty string in the variable columns

Matching, binding and substituting

An expression with variables in it is called an open expression . A substutution is used to ‘fill
in’ the variables. An expression whose variables have all been substituted (that is an expression
with no variables in it) is called a closed expression. A pattern can be either a closed or open
expression.

In rewriting, the expression to the left of the rewrite symbol is in a match context and the
expression to the right is in a s substitute context:

match-pattern→ substitute-pattern

One way to think about this is that we are given some input string which we then attempt to
fit the match-pattern to. Literals must match exactly, and pattern variables are then fitted into
the remaining substrings to create a set of bindings as shown in the table on the previous slide.
We then create the rewritten results by taking the substitute-pattern and generating all of the
strings that we can make by replacing variables with their bound values.

John Barkley Rosser Sr. 1907–1989
https://en.wikipedia.org/wiki/J._Barkley_Rosser

https://en.wikipedia.org/wiki/J._Barkley_Rosser

2C Term rewriting

We are now going to consider how to represent programs inside the computer, leading
to the notion of tree-like terms.

We shall then extend our notions of constants, variables, patterns and substitutions to
terms, and look at one limited form of pattern matching, giving pseudo-code
algorithms for matching and substition.

In later sections we shall look at concrete implementations of this form of pattern
matching, examining both mutable and immutable representations; the first using the
Java API functions and the second using a hand crafted hash-coded representation
based on arrays of integers.

Infix syntax

Programs often contain expressions such as

17/(4 + (x/2))

They have a well-defined syntax: for instance 4) ∗ (x + 2) is not a syntactically well
formed expression because of the orphaned opening parenthesis.

This particular way of writing expressions follows the style that we learn in school
which makes use of infix operators like + and / to represent the operations of addition
and division; they are called infix because are written in between the things they
operate on. Expressions can nest and we understand that evaluation of an expression
proceeds from the innermost bracket: to compute 17/(4 + (x/2)) we first need to
divide the value of x by 2, then add 4, and then divide the result into 17.

Infix notation does not extent comfortably operations with more than two arguments
(although consider the C and Java p?e1:e2 conditional operator).

Prefix and postfix syntax

The choice of infix notation is just that: an arbitrary choice, and we could have
decided to use a different syntax to specify the same sequence of operations, such as

divide(17, add(4, divide(x, 2)))

We call this form a prefix syntax because each operation is written in front of the
(parenthesized) list of arguments that it is to operate on.
Yet another form, often called Reverse Polish Notation enumerates the arguments and
then specifies the operation:

x,2,divide,4,add,17,divide

This format has the advantage that the operations are encountered in the order in
which they are to be executed, and so no parentheses are required. That is a
significant advantage, but many of us who grew up with infix notation find these sorts
of expression hard to read.
All three of these forms are formally equivalent in that we can unambiguously convert
between then without losing any information, and in fact it is easy to write a computer
program to perform that conversion.

Internal syntax style

As language implementors and specifiers, we are mostly concerned with internal syntax— that
is, how to represent programs compactly within the computer. We would like a general
notation which is quite regular and thus does not require us to switch between different styles
of writing what are essentially similar things. We should like to be able to easily transform
programs so that if we chose, we could rewrite an expression such as 3 + (5− (10/2)) into its
evaluation which is 3.

The prefix style is both familiar from mathematics and programming, and easy to manipulate
inside the computer so we shall use that style almost exclusively to describe entire programs,
and not just expressions. For instance the program fragment

x = 2; while (x < 5) { y = y * y; x++; }
might be written

seq(assign(x,2), while(greaterThan(x,5), seq(assign(y, mul(y, y)), assign(x, add(x, 1)))))

Here, a sequence of statements X; Y in Java is represented by seq(X, Y) and an assignment
such as x = 2; by assign(x, 2)

Prefix notation and trees

Prefix notation has the great merit of uniformity: the
wide variety of syntactic styles which are use to im-
prove program readability for humans is replaced by a
single notation that requires us to firstly specify what
we are going to do, say add, and then give a comma-
delimited parenthesised list of arguments that we are
going to operate on.
The heavily nested parentheses can make this a rather
hard-to-read notation although careful use of inden-
tation is helpful. Sometimes, for small expressions at
least, it can be helpful to use a tree diagram to see
the expression. For instance 17/(4+(x/2)), which we
would write divide(17, add(4, divide(x, 2)))

can be drawn as this tree

divide

17 add

4 divide

x 2

Terms

We call the components of a prefix expression terms. Syntactically, we can define
terms using an inductive (recursive) set of rules like this.

1. A symbol such 1 , π or := is a term.

2. A symbol followed by a parenthesized list of terms is a term.

We are very permissive about what constitutes a symbol. When thinking about
computer based tools, the name of a symbol can be any sequence of characters, not
just the usual alphanumeric identifiers, numbers and punctuation symbols of
conventional programming languages. The only characters we need to be careful of are
the parentheses (and) and the comma , because they are used in the definition of
terms: we say they are meta symbols. If we do want a parenthesis or a comma within
a symbol, we usually write it with a preceding back-slash \(. Of course, we have now
added another meta-symbol, so if we want a back-slash in a symbol name we have to
write it as \\.

The recursive nature of terms

Rule one on the previous slide defines terms made up of single symbols. Rule 2 is
recursive, and this allows us to construct terms of arbitrary depth by building one upon
another.

Just as every subtree of a tree is itself a tree, every subterm of a term is itself a term.
We shall exploit this observation in our implementation of immutable terms.

The arity of a term is the number of terms within its parentheses. Terms from rule 1
have no parentheses: they are arity-zero. Equivalently, the arity is the number of
children a term symbol has in its tree representation. Rule 1 terms have no children
and so are the leaves of a term tree.

Term patterns

As with string rewriting, a term pattern is a term which may contain term variables. A
term which has no term variables in it is called a closed term. Pattern matching is the
process of comparing a closed term to a pattern to decide if they match and if they do,
constructing a table of term variables showing what they represent. The relationship
between a term variable and its corresponding subterm is called a binding ; a set of
bindings is called an environment.
A pattern term may be arbitrarily deep, but in the version of pattern matching that we
shall use term variables will always be the labels of leaf nodes. We shall also restrict
ourselves to matching patterns against closed terms. It is easy to imagine more
baroque pattern matching operations, but this will be sufficient for our style of
semantics specification.
A further important restriction is that a term variable X may only appear at most once
within a pattern. Again, one could imagine a version of pattern matching in which the
appearance of two instances of a term variable X meant that they must each match
the same subtree, but we shall not allow this.

Matching of terms

The sepia coloured closed term is to be matched
against the blue pattern. Some of the leaves of
the pattern term may be coloured red: these are
nodes labeled with term variables. We perform
the matching by recursively traversing both trees
in tandem. If we arrive at a node which is blue in
the pattern but for which the label does not match
the label of the corresponding sepia node, then the
pattern match fails. If we arrive at a node which
is red in the pattern then we have found a term
variable-labeled pattern node: we create a binding
between that term variable and the corresponding
sepia node (which of course represents the entire
subtree rooted at that node). Otherwise we de-
scend into the children and continue the recursive
traversal.

seq

done output

6

seq

done X

Notation for the matching operation

We shall write θ ▷ π for the operation of matching closed term θ against pattern π.

The result of such a pattern match is either failure represented by ⊥, or a set of
bindings. So:

seq(done, output(6)) ▷ seq(done, X) returns {X 7→ output(6)}

seq(done, output(6)) ▷ seq(done, output(Y)) returns {Y 7→ 6}

seq(done, output(6)) ▷ seq(X , done) returns ⊥ because output(6) does not match
done.

An important special case of pattern matching uses a pattern which is itself a closed
term: in such a case, the pattern matcher will return an empty environment if the two
terms are identical, or ⊥ if they differ.

Pseudo-code for term matching

1 match(M: set of term variables, E: environment, t: term, p: term)
2 returns environment OR bottom
3 if label(p) in M then add p |=> t to E
4 else if label(p) != label(t) then return bottom
5 else for ct in children(t), cp in children(p) do add match(E, ct, cp) to E
6 return E

Note that our unusual syntax for p in q, r in s do stands for sequential pairwise
traversal of the two lists t and p. We initiate a pattern match by calling match(M, {},
t, p) where M is the set of term variables in the pattern, t and p are the root nodes of
the term and pattern trees respectively and {} is an empty environment.

Substitution of terms

Pattern matching is a way to extract subtrees (subterms) from within closed terms.
The bindings will associate term variable names with these subterms, which will
themselves be closed (i.e. they will not contain nodes labeled with term variables).
Pattern substitution is the process by which we stitch subterms into a pattern to create
a new closed term by substituting the bound subterms for term variables in the pattern
We shall write

π ◁ ρ

for the operation of replacing term variables in pattern π with their bound terms from
the environment ρ. The result of such a substitution is a closed term; it is an error for
π to contain a term variable that is not bound in ρ. So

plus(X, 10) ◁ {X 7→ 6}

returns
plus(6, 10)

Pseudo-code for term substitution

Here is a recursive function to perform substitution

1 substitute(M: set of term variables, E: environment, t: term) returns term
2 if label(t) in M then return E.get(label(t)).deepCopy()
3 else {
4 ret = t.shallowCopy()
5 for ct in children(t)
6 t.addChild(substitute(M, E, ct)
7 return ret
8 }

Some simple rewrites

In our implementation, we usually use the ⇝ symbol for unconditional rewrites. (We
shall encounter conditional rewrites and inductively defined rewrites in section 3; we
usually use symbols such as rightarrow and ⇒ for these conditional rewrites.)

We also distinguish between constant symbols and variables by using a leading
underscore for variable names.

Following those conventions, and using our prefix-style internal syntax, we can express
the while-expansion trick as:

while(predicate, body) ⇝ if(predicate, seq(body, while(predicate, body)))

Note the use of the seq() binary operator to sequence elements together.

What about our two instruction code, for which we wanted to convert x+y into x-
(0-y)? Well in prefix style that rewrite can be expressed as:

add(x, y) ⇝ sub(x, sub(0, y))

Haskell Curry 1900–1992
https://en.wikipedia.org/wiki/Haskell_Curry

https://en.wikipedia.org/wiki/Haskell_Curry

2D Rewriting strategies

Let’s assume that we have a set of rewrite rules. Now, formally, rewrites are defined
over the whole of the term to be matched, which is equivalent to saying that rewrites
can only be performed at the root term.

When people think about rewriting, though, they often think about local
transformations that can be applied deep in the tree.

It turns out that it is possible to write rules which have the effect of, say, finding the
deepest instance of an operation and rewriting it into a different one. But using pure
rewriting, this can get quite messy and the traversal rules can obscure the underlying
simplicity of the specification.

We sometimes, therefore, imagine an outer traversal machine which is walking the
term in some well-defined order, stopping at each node and trying to apply the rules.
The traversal machine implements a rewriting strategy

Subsetting rules and using phased strategies to manage termination

Practical applications of term rewriting often involve rules which are badly behaved, at
least from a mathematical point of view. For instance, we might want to, in different
contexts, both multiply-out a ∗ (b + c) to a ∗ b + a ∗ c and factorise x ∗ y + x ∗ z to
x ∗ (y + z). However these two operations obviously are in tension with each other: if
fact they are effectively inverse with rules

mul(X , add(Y ,Z))→ add(mul(X ,Y),mul(X ,Z))

add(mul(X ,Y),mul(X ,Z))→ mul(X , add(Y ,Z))

This is obviously nonterminating. A practical solution is to put these rules into
different subsets (sometimes called modules) and the use a strategy that applies these
rules appropriately in separate phases.

Subsetting rules and using phased strategies to manage confluence

Similar approaches can help with confluence. Recall our earlier string rewriting
example:

αaβ
U→ βAα, αbβ

U→ βBα, . . . , αzβ
U→ βZα

When applied to the string AxyZ , depending on the order we perform the to rewrites,
we get different results:

AxyZ → yZXA→ ZXAY

AxyZ → ZYAx → XZYA

Here again we can effectively specify the order of application of rules by putting them
into different subsets, and using them in two separate phases.

Expressions naturally need inside out evaluation

Consider an arithmetic expression such as

15 + x ∗ y

Conventionally, the tree for such an expression has the highest
priority operations at the lowest part of the tree, thus we would
represent this as

root(+(15,*(x,y)))

If we wanted to evaluate this, we would first rewrite x and
y to the values in those variables, then we would rewrite the
∗ subtree to the product of those values, and then we would
rewrite the + subtree to the sum of 15 and the product.

The rewriting needs to proceed outwards from the innermost
bracket

Simple Java class for binary term constructors

Here is a minimalist Java class for representing terms of fixed arity 2 which we shall
use to remind ourselves of the three natural traversal orders

1 class StringTree
2 {
3 private StringTree leftChild;
4 private StringTree rightChild;
5 private String payload;
6 ...
7 }

Preorder traversal

1 void printPreorder()
2 {
3 System.out.println(payload);
4 if (leftChild != null) leftChild.printPreorder();
5 if (rightChild != null) rightChild.printPreorder();
6 }

root

+

15

*

x

y

Inorder traversal

1 void printInorder()
2 {
3 if (leftChild != null) leftChild.printInorder();
4 System.out.println(payload);
5 if (rightChild != null) rightChild.printInorder();
6 }

15

+

x

*

y

root

Postorder traversal

1 void printPostorder()
2 {
3 if (leftChild != null) leftChild.printPostorder();
4 if (rightChild != null) rightChild.printPostorder();
5 System.out.println(payload);
6 }

15

x

y

*

+

root

Sibling order

Pre-order is sometimes called top down and post-order bottom up. I am not keen on
these terms as they both demand a traversal from the root to the leaves and back up
again, and the top-down/bottom-up labels obscure that reality.

In more detail, the traversals we have described might better be called left-preorder,
left-inorder and left-postorder because they visit the childen in left to right order.

We could just as easily have visited the children in right-to-left order, leading to
right-preorder and so on.

The pre- and post- definitions extend naturally to arities greater than two since they
simply require an action as we recurse into a node (preorder) or immediately before
exiting (postorder).
Inorder traversals for arities other than two require more care. Should an arity one
node be printed out at all? The usual convention is that we get k − 1 printouts for k
children, which is useful for, say, comma delimited lists.

Incomplete traversals

For expressions, a postorder application of arithmetic evaluation rewrites is convenient
and will reduce an entire expression in one phase.

However, for some applications, we can abort a phase as soon as some condition is
met. For instance, if we want to test for the existence of a certain node, we can use a
one shot strategy which returns as soon as locate an instance of that node.

A more subtle example might abort if no applicable rewrites are found amongst a set
of sibling nodes, or more plausibly continue running a phase until that condition arises.

Real systems

The engineering of term rewriting tools that allow complex strategy definition is a
current research area. The Stratego system implements a so-called calculus of
rewriting strategies, where strategy primitives may be combined to produce very
complex control flows. You can read about Stratego at
http://www.metaborg.org/en/latest/source/langdev/meta/lang/stratego

An alternative approach is discussed in this paper:
https://dl.acm.org/doi/10.1145/941566.941568

An encouraging formal basis for embedding strategies in pure rewriting is described at
https://arxiv.org/abs/1705.08632

(Note that you may need to be on campus, or to have tunneled in with the College’s
VPN to access some of these sources.)

http://www.metaborg.org/en/latest/source/langdev/meta/lang/stratego
https://dl.acm.org/doi/10.1145/941566.941568
https://arxiv.org/abs/1705.08632

Mosses Schonfinkel 1888–1942
https://en.wikipedia.org/wiki/Moses_Schonfinkel

https://en.wikipedia.org/wiki/Moses_Schonfinkel

2E Implementing terms

Näıve implementations of rewriting systems can be very slow. Good implementations of
rewriting systems are usually just plain slow. So rewriting based interpreters are usually for
prototyping. However, on a modern machine, sometimes a rewrite interpreter is fast enough for
basic scripting languages.

A subsidiary problem is that rewrite interpretations of programs are very wasteful of memory.
Unlike a conventional implementation, in which the static program is traversed via a program
counter, a rewrite interpreter continuously makes new trees, and of course each tree is itself a
rather inefficient representation of a program compared to the tight binary encodings used for
conventional programs.

On the other hand, modern computers provide gargantuan memories compared to those of, say,
the 1970s, and the formal advantages of the rewriting approach in terms of
correctness-by-construction and conciseness are not to be lightly dismissed.

This section is about building efficient infrastructure implementations for rewriting systems
that we shall use in later sections to build language interpreters.

Näıve term representation

From a user’s perspective, a term is simply a tree in which the nodes are labeled with a piece
of text. Most terms have arity less than three, and by using scaffolding nodes labeled andAlso
we can handle higher arities.

A straightforward implementation of terms, then, might involve a binary tree class such as

1 class Term
2 {
3 private Term leftChild;
4 private Term rightChild;
5 private String symbolString;
6

7 void printPreorder() {
8 System.out.println(symbolString);
9 if (leftChild != null) leftChild.printPreorder();

10 if (rightChild != null) rightChild.printPreorder();
11 }
12 }

Better term representation

Limiting the user to a binary tree is workable, but represents an uncomfortable constraint, and
it clutters the internal syntax as well as requiring extra rewriting steps. There is a nice trick
which allows us to use what are effectively binary tree nodes internally but which present as
variable arity trees externally.

1 class Term
2 {
3 private Term child;
4 private Term sibling;
5 private String symbolString;
6

7 void printPreorder() {
8 System.out.println(symbolString);
9 if (child != null) child.printPreorder();

10 if (sibling != null) sibling.printPreorder();
11 }
12 }

The immense cost of term rewriting

A term rewriting interpreter, such as the eSOS system that we shall study in Section 3,
constructs vast numbers of term trees during the execution of even small programs.

In a staightforward implementation this involves the creation of vast numbers of small
tree nodes, and potentially a lot of work for the garbage collector.

However we see a lot of repetition in the trees. Firstly, most of the tree is made up of
constructors which are drawn from the set of internal syntax elements, which will be
very small compared to the number of term nodes. So, we should map the set of tree
labels onto the naturals and label term nodes with a single integer rather than a
reference to a string in memory which is represented over and over again. We can
perform this mapping by building a HashMap<String, Integer> to map from strings
to naturals and a HashMap<Integer, String> to perform the reverse mapping.

DAGs and immutable terms

We also see the same subtrees appearing over and over again. Every time an if
statement is evaluated we might expect to see a terms like if(true, 2, 3) and
if(true, 2, 3) appearing and then being rewritten to the substitution for either 2

or 3. Similarly, we may find subtrees such as int32(1) and int32(0) appearing
over and over again, sometimes within the same large tree.

A key idea, then, is to cache terms and to represent the forest of trees that we are
working on as a forest of Directed Acyclic Graphs (DAGs) with subtrees being shared
wherever possible.

A necessary corollary is that shared terms must be immutable. If we have one internal
representation for two instances of a topologically identical subtree, then any changes
to the internal representation would be expressed in both instances.

Hash tables of terms: the term is its hash table address

If we simply store every subtree we ever see, and link to it if it is required again, then we get a
much more compact representation. We also get very fast term equality testing.

The problem is that we need to be able to quickly find an old subtree, or decide that it has not
been cached and so create a new one.

A good way to do this is to use a hash table; each unique subtree (term) then is mapped onto
a natural number by a hash function which is then used as an address into a table of terms.

How much memory does each unique subtree take in this case? Well the label of the root of
the subtree is one natural number, and then we need one natural number for each child.

It is very often the case that our terms are fixed arity: for instance internal syntax node
ifThenElse(P, T, F) will always have arity three. In other cases, such as collection data
types (set, map and so on) the arity is variable.

For fixed arity nodes, we need a map from node labels to aritiesm and then 1 + arity naturals
per node. For variable arity nodes, we need to store the arity in the node so we need 2 + arity
naturals.

Aspects of ART’s implementation

ART includes a class ITerms which implements immutable terms using hash maps.
ITerms is an abstract class which defines all of the user accessible public methods and
maintains a separate hash table for strings. ITerms also implements various pattern
matching and substitution operations, as well as containing subclasses that implement
the value system that we shall discuss in the next section.

The intention is that an ITerms application (such as the eSOS system) can be built
using Java or C in one of two modes that I call API and Pool; and Pool can be used
for direct hardware implementations.

In API style, the host language’s hash table implementation is used, with each unique
term being represented by an object. This is easy to engineer but slow.

In Pool style (almost) no objects are used – instead blocks of memory are allocated as
large arrays of int and the terms are represented as contiguous subsequences within
those arrays. Allocation is fast because there is no garbage collection so we just
increment the free boundary at each allocation.

The CWI ATerm datatype

The ideas underpinning ART’s term rewriter originate with the ASF+SDF system built
by Mark van den Brand and others under Paul Klint’s leadership at CWI Amsterdam in
the 1980s and 1990s (https://dl.acm.org/doi/10.1145/567097.567099)

The core datastructure is the annotated term which has a low level type system built
in, and is designed for information interchange between applications with maximal
term sharing . It was used for communications between applications (much as XML is
used today) and for efficient term rewriting in ASF+SDF and Stratego
(https://research.tue.nl/en/publications/efficient-annotated-terms)

https://dl.acm.org/doi/10.1145/567097.567099
https://research.tue.nl/en/publications/efficient-annotated-terms

Stephen Kleene 1909–1994
https://en.wikipedia.org/wiki/Stephen_Cole_Kleene

https://en.wikipedia.org/wiki/Stephen_Cole_Kleene

2F Types and operations: the ARTValue system

Programs compute values using control-flow compositions over builtin operations.

At machine level, values are simply bit strings with no more semantics than that. If the
program counter is addressing a bit string, then that bit-string will be treated as an
instruction and brought into the processor for execution.

On nearly all commercially available computers3, the operands for the instruction are
themselves just bit strings with no type information at all. The instruction itself
contains implicit type information: for instance there will be separate addition
instructions for integer and floating point operands. If we accidentally ask a floating
point add instructon to fetch its operands from the wrong part of memory, it will
cheerfully generate a new floating point number anyway.

3There were experiments in the 1970s into so-called capabilities architectures which tagged memory
with datatyping information. Recently, security concerns have brought some of these ideas back into
the research agenda. (https://en.wikipedia.org/wiki/Capability-based_addressing)

https://en.wikipedia.org/wiki/Capability-based_addressing

The rise of typing in programming languages

The earliest compilers (such as the original FORTRAN system) projected the
underlying hardware constraints into the high-level program. For instance the ICT
1500 FORTRAN compiler that I learnt to program with disallowed so-called
mixed-mode arithmetic, that is an operation that involved an integer and a floating
point operand. In Java the integer would be coerced to a float or double when
necessary before performing the operation.

The language Algol-60 (which is the mother-lode for most modern languages)
introduced the idea of block structure and our now familiar control flow statements.

In the 1960s languages began to be equipped with user defined types constructed
from, primitive types and a variety of aggregation mechanisms such as Pascal’s tt
record and C’s struct. These languages usually also provided heap based allocation
allowing dynamic data structures to be created at run time.

A readable and scholarly survey from 1972 by Tony Hoare is available here:
http://www.informatik.uni-bremen.de/agbkb/lehre/programmiersprachen/

artikel/hoare-data-structuring.pdf

http://www.informatik.uni-bremen.de/agbkb/lehre/programmiersprachen/artikel/hoare-data-structuring.pdf
http://www.informatik.uni-bremen.de/agbkb/lehre/programmiersprachen/artikel/hoare-data-structuring.pdf

Typeful programming

Equipping data with user-specifiable type information significantly increases
programmer productivity since it enables nonsensical operations to be detected. A
strongly typed system will not allow, for instance, a character value to be divided by a
real number.

More significantly, in some systems we can use typing and subrange typing to generate
frameworks of correctness checking. For instance, in a 3D CAD system we might want
to catch programmer errors such as adding a length to an area. Most likely these
would both be fundamentally implemented as real numbers, but they represent
physically heterogeneous and incompatible quantities.

There is a school of thought, perhaps typified by some Haskell programmers, that
believes that system design should proceed from a type analysis of the problem,
through the definition of necessary function signatures and then finally coding of
function bodies. This approach, which is rather algebraic in nature, comes naturally to
some folk and feels alien to others.

Coercion vs conversion

Implicit coercion can be a programmer convenience, but can cause unpleasant bugs.
The alternative is to require explicit conversions using casts or conversion functions
such as toString, parseInt and collection constructors.

Here is the classic coercion nasty surprise which has caught me more than once:

System.out.println(1/3 + 2.1);

Discouragingly, this prints out 2.1 because the division has higher priority and is
performed as integer division before the result (zero) is coerced to a double and added
to 2.1.

One of the most complete implicit conversion regimes is to be found in LISP family
languages, in particular Scheme, whose numeric tower attempts to replicate the
conventional mathematical hierarchy of numbers, in both exact and rounding styles.

https://groups.csail.mit.edu/mac/ftpdir/scheme-7.4/doc-html/scheme_5.html

https://groups.csail.mit.edu/mac/ftpdir/scheme-7.4/doc-html/scheme_5.html

Strong and weak typing

A strongly typed language will never allow a nonsensical operation. A weakly typed
language will allow nonsensical operations, which may cause the program to fail and
may also be a security risk.

For instance, in C a void* pointer has no type, and can be cast to a pointer to any
type (even code in a gcc compiled program!) To make matters worse, C also allows
pointer arithmetic, so that an address can be offset.

Strong type checking must include collection extents. Even simple array updates can
be sufficient to wreck a program, or wreak havoc with system security if bounds are
not checked. Buffer overrun exploits are a well known source of security failures.
https://en.wikipedia.org/wiki/Morris_worm

The Rust programming language
https://en.wikipedia.org/wiki/Rust_(programming_language) probably
represents the current state of the art in strongly typed safe languages.

https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Rust_(programming_language)

Static and dynamic typing

There is sometimes confusion between the strong/weak typing axis and the static/dynamic
axis. In reality they are completely orthogonal: strongly typed dynamic languages like Python
exist, as do weakly typed static languages (such as any assembler).

Fully dynamic typing requires all values to carry their type with them, that is a value at run
time is an ordered pair (type, data). This naturally incurs an overhead, both in space and in
runtime performance since type checks must be executed interleaved with the operations
specified by the program.

As a general rule, the more dynamic a language is, the more flexible it is from a user
perspective, but probably the lower its performance.

In a fully static language, all checks are performed at compile time. This means that any
data-dependent type properties, such deciding which form of addition to perform, must be
independent of the runtime data.

In reality, most languages sit somewhere on spectrum. Consider array bounds, for instance. In
Pascal, they are checked at compile time which means that arrays have a fixed size. In Java
arrays are allocated at run time which means that bounds checks must be performed
dynamically. However the base type is fixed at compile time.

Name equivalence vs structural equivalence

How should type correctness be defined? What does it mean for two types to have equal
properties? In languages in the Pascal tradition, the name of the type is all that is used to
decide equivalence – so called name equivalence. This is useful because Pascal supports
subrange types which define an interval over the integers and sometimes one wishes to have
two type-incompatible subranges which actually have the same bounds. In additon it allows us
to distinguish between an ordered pair which is a cartesian coordinate and an ordered pair
which represents, say, the start and end times of a lecture.

Structural equivalence allows types with the same ‘shape’ to be equivalent, so our two kinds of
ordered pair would be valid in either context.

Duck typing extends structural equivalence to dynamic object oriented programs in that a
object is type compatible as long as it supports method calls which are actually made to it in a
particular run of a program. This implies that type compatibility is a function of the particular
data inputs. This is very flexible, but perhaps dangerous. Reflection allows Java to be
technically duck typed though the language does not encourage that practice.

Name equivalence, statically typed languages tend to be safe but tiresomely rigid requiring
special case code to be written for mixed type computations. Duck typing is flexible leading to
compact code which may induce nasty surprises.

ART’s types

ART provides a fixed set of atomic (in the sense of having no internal structure) types
and a fixed set of collection types from which richer structures may be constructed.

Primitive types

bottom, // failure
done, // terminal for program terms
empty, // uninitialised data
boolean, // boolean type
char, // character type
intAP, int32, // integer types - AP means arbitrary precision (BigNum)
realAP, real64, // real types

Collection types

list, tuple, array, string, map, mapOrdered, set

ART’s operations

ART provides a fixed set of operations, any of which may be implemented into a type

comparisons gt, lt, ge, le, eq, ne
logic and bitwise not, and, or, xor, cnd
shift and rotate lsh, rsh, ash, rol, rolc, ror, rorc
arithmetic neg, add, sub, mul, div, mod, exp
collection size (returns 1 for atomic types) cardinality
lists prepend, append, head, tail
sets and maps
insert, delete, update, contains, union, intersection, difference

network and disk resources open, input, output, flush, close
user backend hook for Domain Specific Languages user

Dynamic type checking of ART values

The ART value system uses a simple form of dynamic type checking. We may wish to model
dynamic languages, and so having a fully dynamic type systems is essentially the only option.
We can, however, add rules to our language specification that cause types to be checked before
program execution: the so-called static semantics of the language. If our type system was
static, then it is very hard to see how we could comfortably model all aspects of dynamic type
checking.

The implementation uses a simple inheritance trick to handle the dynamic type checking.
When you call a builtin function such as add(10.4, 3.0) ART looks at the type of the left
operand (10.4) and attempts to call method add() in type class real64. All type classes
are subclasses of Value, and Value has a method in it for every operation. The methods in
Value uniformly issue the error message

value type typename does not provide operation operation

Hence, an attempt to, say perform a logical and operation on a string will generate an
interpretation-time error.

This yields an extremely compact yet flexible value system. However operations and types can
only be added by extending and recompiling the Value classes.

The V3 and V4 ART value systems

There have been two versions the value system called, perhaps confusingly, V3 and V4.
(The value system and term rewriting were only added to ART in its third version.)

In V3, variable names are inferred, built in operations have names such as addOp(x,y),
type predicates have names such as isInt(x) and operations may only appear on the
right hand side of a ▷ operator. The operations implement automatic coercions via a
Scheme-like numeric tower; hence there are supertypes such as number available.

In V4, the value system was simplified and flattened, so there are no implicit coercions
at all. The rationale is that, as with the dynamic vs static typing problem, a system
that automatically coerces cannot easily model a system that does not. Since ART is
used to model languages, we need a very plain value system with no ‘cleverness’ – that
should instead be implemented in the eSOS rules.

Operations now have names like add, variable names must have a leading underscore
and operations can appear in any substitution context. Individual values are
represented as two level subtrees: int32(24) and so types can be checked directly
with clauses such as X |> int32(), sp we don’t need operations such as isInt

Atomic types

Atomic types in programming languages begin with various sizes of integers and
floating point numbers, whose behaviour is a direct expression of the underlying
machine code instructions.

Whilst integer arithmetic is usually compatible across architectures up to word length,
real number arithmetic has only been fully standardised in the 1980s, and it is still the
case that some machines have multiple floating point modes.

Character sets have been another fertile source of incomatibility between architectures.
Early machines often used six-bit character sets which were compact, but often had no
provision for lower case letters. The 7-bit ASCII code became very widely distributed
during the microcmputer boom of the late 1970s and 1980s, but many important
glyphs including currency signs for sterling (and the Euro, which had not been invented
when ASCII was defined) were missing. Java and later systems use Unicode which
allows for an essentially unbounded set of glyphs.

Enumeration types

An enumeration is a mapping from a set of symbols onto the naturals.

The idea was popularised by Pascal, and subseqently added to C where previously the
preprocessor was used to define symbolic constants.

A weakness of enumerations in most statically typed languages is that the alphanumeric form
of the enumeration element is discarded, and so when printed an enumeration value only
appears as the associated natural number. In interpreters, the symbol table is available at
runtime, so the alphanumeric values can be retrieved.

Java introduced enums as (almost) first class objects, with associated toString() and
value() methods that allowed programs to interrogate the enumeration as if it were a map.
There are still limitations though, and if you do not statically know all the members of an enum

then using a class which mimics enum functionality with a Map might be useful. However one
then cannot exploit switch statements since their labels must evaluate to compile time
constants.

A closely related idea is the definition of individual constant integers which then become,
effectively, enumerations with only one element. Again, Java allowed a more dynamic flavour of
constants with its final keyword: in Java a constant is a write-once variable.

Subrange types

An oddity of the original BCPL and C languages which has been inherited by later
designs such as Java is that array indices are always based at zero. Now, an array is
effectively an implementation of a partial function from an interval of the naturals to
some domain.

Why should that interval always be based at zero? Well, it reflects the underlying
hardware implementation in which array index expressions represent the offset from
some array base address. However, high level lamnguages are intended to be, well, high
level and hiding hardware quirks is an important part of that principle.

Pascal family languages provide declarations of the form

myArray: ARRAY[13..25] of int;

which allow both the lower and the upper bound to be specified. The compiler can
easily generate code for accesses to myArray by subtracting 13× sizeof(int) from the
index expression before using it as an offset. Subranges can also be used as first class
types.

Dimensions

Physicists and engineers are taught to perform dimensional analysis on formulae to ensure that
results come from combining values of the right kind. For instance an area is measured in L2

where L is the local unit of length. It is an error to add an area (with kind L2) to a volume
with kind L3. Similarly, time, cost and length are all one dimensional measures, but adding a
time value to a sterling price cannot make sense.

Expressing these constraints using conventional type systems can be rather clumsy, and there
have been many attempts over the years to add a natural syntax to programming languages to
handle this notion, notably in Ada and the Boost libraries for C++. Probably the most mature
example today is the F# ‘units of measure’ feature

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/

units-of-measure

developed by Andrew Kennedy (now at Facebook), who talks about their applications in this
video:

https://channel9.msdn.com/Blogs/Charles/Andrew-Kennedy-F-Units-of-Measure.

Adding non-general but application specific units of measure is a very useful feature in Domain
Specific Languages, where Volume and Area could be resrved type keywords, with their own
resolution algorithm.

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure
https://channel9.msdn.com/Blogs/Charles/Andrew-Kennedy-F-Units-of-Measure

Polymorphism through overloading and named arguments

In a statically typed language, verbose code may be needed to handle type-rich
programs. In a language such as C, the signature of a function includes the name, and
the type of the arguments and must be specified at compile time.

In C++ and Java, the signature of a function may be overloaded so that a family of
functions with the same name but different parameter lists may be created.

This facility is particularly useful for constructors, where we want to have default
behaviour for many parameters, but also allow the user to have access to the full fat
constructor in which initial values for all public fields may be specified concisely.

For complex classes, the number of constructors can become very large (in detail 2k for
k arguments) and in any case the usual implementation involves an extra call. Named
arguments allow a function call to specify some subset of the functions parameters,
with defaults being used for unnamed arguments. Python and OpenSCAD provides
this feature.

Polymorphism through flexible arities

Often, especially with collection data types, we should like to pass an arbitrary
sequence of values to a function. C introduced variadic functions whose paramater list
has one or more conventional typed parameters followed by the notation ... to
indicate an open sequence of arguments.

The implementation in C is ugly and unsafe: essentially the user is able to directly walk
the functions data which is stored on the stack in a stack frame. By continuing to walk
the stack, functions can gain access to the data for enclsoing functions.

The Java implementation is both conceptually simpler and safer. The arguments
corresponding to the ... section are loaded into an array which is then delivered to
the function as a single argument.

A more radical approach is taken by ML, in which formally all functions take one
argument which is a tuple. This provides a very clean solution.

Polymorphsim through inheritance

In dynamic languages, values carry their types, and functions can branch dependent on
the actual type supplied at runtime. This can allow a large set of signatures to be
implemented with one piece of code.

A half way house is to allow types to have supertypes, just as integers have supertype
number in the Scheme numerical tower, but to allow the use to specify these
relationships. Object oriented languages naturally provide this sort of polymorphism.

In the earliest OO languages such as Smalltalk, a single inheritance hierarchy is
created. C++ allows multiple inheritance, but that brings with it the risk of type
ambiguity - the so-called diamond of death. Java interfaces were a technical response
to this limitation.

Polymorphism through parameterised types

A more difficult kind of polymorphism arises in the context of collection data types
such as sets, maps and lists. We should like to have a single container type which can
adapt to whatever kinds of values are put into it. In an interpreted environment with
dynamic typing where all values carry their types with them this is quite easy. In a
statically typed language, much more machinery is required.

The main solution is to allow some form of type variable, that is an argument to a type
or even a first class variable (as in ML) capable of recording a type.

Java originally had no such feature, but type parameterisation via the ⟨ and ⟩ brackets
was introduced at version 1.5. The implementation is constrained, though, by the JVM
which has no simple facility for type representation at run time (so-called type erasure)
and as a consequence, you cannot declare an array of generic types in Java.

Andrew Kennedy at Microsoft designed the equivalent facility in C#, and that is well
behaved.

Professor Sir Tony Hoare 1934–
https://en.wikipedia.org/wiki/Tony_Hoare

https://en.wikipedia.org/wiki/Tony_Hoare

The emporer’s old clothes:
https://dl.acm.org/doi/pdf/10.1145/358549.358561

3 Structural Operational Semantics

SOS is a formal game that models a computer’s operation as conditional term rewriting
Section Topic

3A Conditional term rewriting
3B Recursive inference rules
3C Expression nesting and congruence rules
3D The store and program variables
3E Control flow
3F Big step semantics

3A Conditional term rewriting

We now have most of the machinery we need to construct our formal semantics game

We know how to decompose and compose terms (trees) to give the general effects
that we used to evaluate GCD at the end of the first section.

There is one major gap though, and that is the selection of sub-phrases to rewrite.

The ordering of these selections is important: for instance we know that (x − y)− z is
not in general the same as x − (y − z) so the order in which we formally evaluate the
subtractions will affect the final result.

In this section we are going to learn how to control the application of rewrites so as to
mimic the sequential execution of a program.

Configurations

When modeling a programming language, we begin by deciding on the configurations
of that language

A configuration is a tuple of terms comprising at least a program term θ, and possibly
including a store term σ, an environment ρ, an output stream ϕ, a data input stream δ
and some signals ν.

Notice how the Greek letters for each semantic entity have some mnemonic relationship to their rôle.

Note that in this rewriting world everything is a term, so the tupling operation itself is
a term tuple(,). To avoid clutter, we often write tuple(x,y) using angle brackets as
⟨x , y⟩ but that is just a syntactic convention.

In our first examples we shall use configurations of the limited form ⟨θ, ϕ⟩ comprising a
program term θ and an output term ϕ. We shall refer to the current configuration as
⟨Θ,Φ⟩ (using the capitalised versions of those greek letters).

Semantics by enumeration

For very simple languages, it might be practical to define their semantics by
enumeration. Consider a language add02 which allows a single expression to be
output, and limits that expression to a single addition over numbers in the range 0–2.
using configurations ⟨θ, ϕ⟩ there are only nine possible programs that can be written in
this language each of which we could evaluate directly using these nine rules:

⟨output(add(0, 0)), []⟩ → ⟨done, [0]⟩
⟨output(add(0, 1)), []⟩ → ⟨done, [1]⟩
⟨output(add(0, 2)), []⟩ → ⟨done, [2]⟩
⟨output(add(1, 0)), []⟩ → ⟨done, [1]⟩
⟨output(add(1, 1)), []⟩ → ⟨done, [2]⟩
⟨output(add(1, 2)), []⟩ → ⟨done, [3]⟩
⟨output(add(2, 0)), []⟩ → ⟨done, [2]⟩
⟨output(add(2, 1)), []⟩ → ⟨done, [3]⟩
⟨output(add(2, 2)), []⟩ → ⟨done, [4]⟩

A schema for add02

This is, of course, a tiny language and we are effectively trying to define a lookup table
which captures the languages complete semantics.

Enumeration is clearly not a very practical approach. What we need to do is to be able
to express the pattern of additions more concisely. Recall that we call rules that have
term variables in them rule schemas because they are really a compact way of
generating a (possibly infinite) set of real rules.

In pseudo code, we might say something like this:

1 let x, y, z and p be term variables
2 if the current configuration matches output(add(x,y)) with current output p and
3 x is bound to an integer in the range 0=2 and
4 y is bound to an integer in the range 0=2 and
5 z is bound to the result of adding x and y together then
6 return done with output set to p followed by z
7 else return fail

Conditional rewriting expressed using operators

More concisely, using the notations we have developed (and assuming the existence if a
function is012() that returns a boolean, we might say

if ρ1 = (⟨Θ,Φ⟩ ▷ ⟨output(plus(X,Y)), ϕ⟩)

and is012(X) ▷ True

and is012(Y) ▷ True

and ρ2 = ((add(X ,Y) ◁ ρ1) ▷ Z)

then ⟨ done, append(ϕ, Z)⟩ else ⊥

Here we are not just substituting whenever we see a match as in Section 2. In this
example we are matching, then testing some conditions, and only substituting if those
condition tests succeed. This is conditional rewriting.

Built in functions

We have also introduced an important new mechanism here: built in functions that
take terms and return terms. In ART, these functions have names prefaced by two
underscores.

We can think of these as pre-existing mathematical functions whose definition is
obvious, or if we are writing an interpreter then we might think of these as lookup
tables, or calls to very small programs that compute results.

The important thing is that we must believe that there is a pure rewriting definition for
each function.

If we want to use ART to try out our rules, then we can use any of the operations and
types discussed at the end of Section 2. That naturally means that we must also follow
the typing conventions and constraints described there, so that (for instance) integer
100 is represented by the term int32(100), but the ART front end can automatically
generate those forms from simple constants, so we can (for instance) write add(3,4)

and it will generate the term add(int32(3), int32(4))

Inference rules

Even our formal version of the rule schema is rather a lot of writing. It will turn out
that usually several of these rule schemas will be used together in a way that
corresponds to inference in a logical system, and we use a special form of syntax that
allows us to show derivations in that logical system as trees of rule schemas. A general
inference rule looks like this:

C1 C2 . . . Cn

⟨θ, ϕ⟩ → ⟨θ′, ϕ′⟩
The elements above the line (the Ci) are called conditions (or sometimes premises).
The single transition below the line is called the conclusion. You might read an
inference rule in this style as:

if you have a configuration ⟨θ, ϕ⟩,
and C1 succeeds and C2 succeeds and . . . and Cn succeeds
then transition to new configuration ⟨θ′, ϕ′⟩

Round the clock and recursion

In SOS, one reads these inference rules by checking that the current configuration
matches the left hand side of the conclusion, then by checking the conditions, and if
everything succeeds rewriting the current configuration into the right hand side of the
conclusion. We sometimes refer to this rather operational view of logical inference as
‘reading round the clock’.

Conditions may also be simple matches against the return value of a function, in which
case they are called side conditions.

Most importantly, conditions can themselves be transitions, and this implies that the
matching process can recursively descends into the subterms of the top level term
whilst we check to see if a transition is allowed.

A function call can appear in any substitution context, that is on the left of a ◁
operator, and this can reduce the number of variables and side conditions in a rule

Inference rules in detail

The detailed inference rule representation of our schema is

(is012(X) ◁ ρ1) ▷ True (is012(Y) ◁ ρ1) ▷ True ρ2 = ((add(X,Y) ◁ ρ1) ▷ Z)

ρ1 = (⟨Θ,Φ⟩ ▷ ⟨output(plus(X,Y)), ϕ⟩)→ ⟨ done, append(ϕ,Z)⟩ ◁ (ρ2 ∪ ρ1)

We have been careful here to represent all of the pattern matching and substitution
operations explicitly.

The variables in the above rule are Θ, Φ, ϕ,X ,Y and Z . We develop two sets of
bindings ρ1 and ρ2, and at bottom right we substitute both into the right hand side of
the conclusion.

Note that each rule has its own set of term variables even if the same term variable
name is used in multiple rules (that is, the scope of a variable is its enclosing rule)

Abbreviated rules

It turns out that we only really need a single local environment ρ which has bindings
added into it as we perform pattern matches.

This works because we are not allowed to bind variables more than once in a rule.
Thus we can also be sure that the first time (in the round-the-clock sense) that we
meet a term variable it is being used in a match context to create a binding; and that
any subsequent appearances of a term variable must be substitution contexts. The
ART tool checks that variables meet this constraint and will issue an error message if
you breach it.

We also know that the left hand side of the conclusion is always matched against the
current configuration ⟨Θ,Φ⟩. This allows us to abbreviate our inference rule to:

is012(X) ▷ True is012(Y) ▷ True add(X ,Y) ▷ Z

⟨output(plus(X,Y)), ϕ⟩ → ⟨ done, append(ϕ,Z)⟩

and this is the style that we shall use in future

Examples in ART

We shall now look at a sequence of examples using the ART tool, building in
complexity.

At each stage we shall show the ART-style elided input along with the fully fleshed out
and typeset rules, along with some example rewrite sequences.

The ART front end allows us to write constants like this True, False, 123, 123.4

which will be expanded into an appropriate typed term. You can also write { a=b }
for a map, [x,y] for a list and so on. Finally, you can elide references to configuration
elements that are unchanged across a rule

The front end generates a file called ARTSpecification.tex each time it runs, and
this can be processed by LATEX to produce the expanded typeset version of the rules

Most of the following examples can be found in the slelabs/esos directory

Here is a rule (not a rule schema!) that will increment 3 to 4, but nothing else...

increment(3) -> 4

⟨increment(int32(3))⟩ → ⟨ int32(4)⟩
[R1]

** !try 3 <increment(__int32(3))>

Step 1

Rewrite call 1 <increment(__int32(3))>, ->

[R1] --- <increment(__int32(3))> -> <__int32(4)>

[R1] rewrites to <__int32(4)>

Normal termination on <__int32(4)> after 1 step and 1 call to rewrite()

Now let’s look at the same rule, but try (and fail) to increment 4

increment(3) -> 4

⟨increment(int32(3))⟩ → ⟨ int32(4)⟩
[R1]

** !try 3 <increment(__int32(4))>

Step 1

Rewrite call 1 <increment(__int32(4))>, ->

[R1] --- <increment(__int32(3))> -> <__int32(4)>

[R1] Theta match failed: seek another rule

Stuck on <increment(__int32(4))> after 1 step and 1 call to rewrite()

We can generalise the rule to a rule schema by using variables (prefixed by in the
ART source) along with the builtin function add(,) and thus increment any integer

increment(_X) -> __add(_X,1)

⟨increment(X)⟩ → ⟨ add(X , int32(1))⟩
[R1]

** !try 3 <increment(__int32(4))>

Step 1

Rewrite call 1 <increment(__int32(4))>, ->

[R1] --- <increment(_X)> -> <__add(_X, __int32(1))>

[R1] rewrites to <__int32(5)>

Normal termination on <__int32(5)> after 1 step and 1 call to rewrite()

However we must work harder if we want to handle nuumbers other than integers,
because no automatic coercions are applied.

increment(_X) -> __add(_X,1)

⟨increment(X)⟩ → ⟨ add(X , int32(1))⟩
[R1]

** !try 3 <increment(__real64(5.5))>

Step 1

Rewrite call 1 <increment(__real64(5.5))>, ->

[R1] --- <increment(_X)> -> <__add(_X, __int32(1))>

!! Function error: __add(__real64,__int32) - operands must be of same type

[R1] rewrites to <__empty>

Normal termination on <__empty> after 1 step and 1 call to rewrite()

We can suppress the fatal library error with a side condition to check the type of the
operand by matching against the term int32()

_X |> __int32(_)

increment(_X) -> __add(_X, 1)

X ▷ int32()

⟨increment(X)⟩ → ⟨ add(X , int32(1))⟩
[R1]

** !try 3 <increment(__real64(5.5))>

Step 1

Rewrite call 1 <increment(__real64(5.5))>, ->

[R1] _X |> __int32(_) --- <increment(_X)> -> <__add(_X, __int32(1))>

Stuck on <increment(__real64(5.5))> after 1 step and 1 call to rewrite()

Now the computation sticks rather than generating an empty result (which is better!)

We add an extra rule to handle real number increments

-integerInc _X |> __int32(_) --- increment(_X) -> __add(_X, 1)

-realInc _X |> __real64(_) --- increment(_X) -> __add(_X, 1.0)

X ▷ int32()

⟨increment(X)⟩ → ⟨ add(X , int32(1))⟩
[integerInc]

X ▷ real64()

⟨increment(X)⟩ → ⟨ add(X , real64(1.0))⟩
[realInc]

** !try 3 <increment(__real64(5.5))>

Step 1

Rewrite call 1 <increment(__real64(5.5))>, ->

[integerInc] _X |> __int32(_) --- <increment(_X)> -> <__add(_X, __int32(1))>

[realInc] _X |> __real64(_) --- <increment(_X)> -> <__add(_X, __real64(1.0))>

[realInc] rewrites to <__real64(6.5)>

Normal termination on <__real64(6.5)> after 1 step and 1 call to rewrite()

ART’s eSOS trace levels

eSOS rewrites are initiated in ART with the !try directive.

!try optional-level input-term transition optional-test-term

optional-level is an integer that specifies the amount of tracing information supplied: each
level includes all output from its lower levels. If omitted, then level 3 is assumed.

0 – silent
1 – final result
2 – top level rewrites
3 – all rewrites
4 – conditions
5 – bindings

optional-test-term is compared to the final configuration with the result logged for testing

X ▷ int32()

⟨increment(X)⟩ → ⟨ add(X , int32(1))⟩
[integerInc]

X ▷ real64()

⟨increment(X)⟩ → ⟨ add(X , real64(1.0))⟩
[realInc]

** !try 5 <increment(__real64(5.5))>

Step 1

Rewrite call 1 <increment(__real64(5.5))>, ->

[integerInc] _X |> __int32(_) --- <increment(_X)> -> <__add(_X, __int32(1))>

[integerInc] bindings after Theta match { _X=__real64(5.5) }

[integerInc].SC1 _X |> __int32(_)

[integerInc].SC1 failed: seek another rule

[realInc] _X |> __real64(_) --- <increment(_X)> -> <__add(_X, __real64(1.0))>

[realInc] bindings after Theta match { _X=__real64(5.5) }

[realInc].SC1 _X |> __real64(_)

[realInc] bindings after condition{ _X=__real64(5.5) }

[realInc] rewrites to <__real64(6.5)>

Normal termination on <__real64(6.5)> after 1 step and 1 call to rewrite()}

Gordon Plotkin 1946–
https://en.wikipedia.org/wiki/Gordon_Plotkin

https://en.wikipedia.org/wiki/Gordon_Plotkin

3B Recursive inference rules

So far we have only used conditions to filter the application of a rule by ensuring that
different types are handled appropriately.

We have also used the builtin function add(,) to perform addition efficiently outside
of the rewriting system, and seen that there are in fact separate add(,) functions
for the int32 and real64 types.

As well as simple matches, we are allowed to put transitions above the line. As part of
the checking process, the rewriter will recursively call itself on a conditional transition,
and that way we can descend into the tree, and handle nested operations.

We shall explore this capability by designing rules to handle nested addition.

Addition, and compound addition

Here is a rule to perform integer addition over a pair of numbers

X ▷ int32() Y ▷ int32()

⟨add(X ,Y)⟩ → ⟨ add(X ,Y)⟩
[R1]

** !try 3 <add(__int32(3), __int32(4))>

Step 1

Rewrite call 1 <add(__int32(3), __int32(4))>, ->

[R1] _X |> __int32(_) _Y |> __int32(_) --- <add(_X, _Y)> -> <__add(_X, _Y)>

[R1] rewrites to <__int32(7)>

Normal termination on <__int32(7)> after 1 step and 1 call to rewrite()

This rule can only handle two numeric operands, and does not work with nested
operations. If we write !try add(add(3,4),5) -> we get stuck

X ▷ int32() Y ▷ int32()

⟨add(X ,Y)⟩ → ⟨ add(X ,Y)⟩
[R1]

** !try 5 <add(add(__int32(3), __int32(4)), __int32(5))>

Step 1

Rewrite call 1 <add(add(__int32(3), __int32(4)), __int32(5))>, ->

[R1] _X |> __int32(_) _Y |> __int32(_) --- <add(_X, _Y)> -> <__add(_X, _Y)>

[R1] bindings after Theta match { _X=add(__int32(3), __int32(4)), _Y=__int32(5) }

[R1].SC1 _X |> __int32(_)

[R1].SC1 failed: seek another rule

Stuck on <add(add(__int32(3), __int32(4)), __int32(5))>

after 1 step and 1 call to rewrite()

So the problem is that X is not bound to an integer: we need to evaluate the
subexpression to an integer before we can proceed

Here are two rules that work together to handle nested expressions. The first rule handles
operands which are both integers. The second rule handles nested expressions, by recursively
call itself. The first rule is the inductive base case.

-add _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z

add(_X,_Y) -> _Z

-addExpr _E1 -> _V1 _E2 -> _V2

add(_E1, _E2) -> add(_V1, _V2)

X ▷ int32() Y ▷ int32() add(X ,Y) ▷ Z

⟨add(X ,Y)⟩ → ⟨Z ⟩
[add]

⟨E1⟩ → ⟨V1⟩ ⟨E2⟩ → ⟨V2⟩
⟨add(E1,E2)⟩ → ⟨add(V1,V2)⟩

[addExpr]

When presented with a compound expression, the second rule will call itself repeatedly until the

base case can take over. Note that in eSOS, the order of the rules is (unhappily) significant.

First we shall demonstrate that the base case still works with !try 4 add(3,4) ->

X ▷ int32() Y ▷ int32() add(X ,Y) ▷ Z

⟨add(X ,Y)⟩ → ⟨Z ⟩
[add]

⟨E1⟩ → ⟨V1⟩ ⟨E2⟩ → ⟨V2⟩
⟨add(E1,E2)⟩ → ⟨add(V1,V2)⟩

[addExpr]

** !try 4 <add(__int32(3), __int32(4))>

Step 1

Rewrite call 1 <add(__int32(3), __int32(4))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC2 _Y |> __int32(_)

[add].SC3 __add(_X, _Y) |> _Z

[add] rewrites to <__int32(7)>

Normal termination on <__int32(7)> after 1 step and 1 call to rewrite()

Note that this is a level 4 trace so the individual condition evaluations are listed

Now a compound: !try 4 add(add(3,4),5) ->

** !try 4 <add(add(__int32(3), __int32(4)), __int32(5))>

Step 1

Rewrite call 1 <add(add(__int32(3), __int32(4)), __int32(5))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC1 failed: seek another rule

[addExpr] <_E1> -> <_V1> <_E2> -> <_V2> --- <add(_E1, _E2)> -> <add(_V1, _V2)>

[addExpr].C1 <_E1> -> <_V1>

Rewrite call 2 <add(__int32(3), __int32(4))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC2 _Y |> __int32(_)

[add].SC3 __add(_X, _Y) |> _Z

[add] rewrites to <__int32(7)>

[addExpr].C2 <_E2> -> <_V2>

No rewrite required as already terminating state<__int32(5)>

[addExpr] rewrites to <add(__int32(7), __int32(5))>

Step 2

Rewrite call 3 <add(__int32(7), __int32(5))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC2 _Y |> __int32(_)

[add].SC3 __add(_X, _Y) |> _Z

[add] rewrites to <__int32(12)>

Normal termination on <__int32(12)> after 2 steps and 3 calls to rewrite()

The expression is evaluated in two steps, each roughly corresponding to one execution of a
machine code instruction: integer ADD in this case

A step is a top level rewrite which causes the actual program to change. There may be many
other rewrites required to decide whether a step can take place

The second step simply applies the old [add] rule to an expression over integers and has a trace
that is similar to the previous example but with values 7 and 5

** !try 4 <add(add(__int32(3), __int32(4)), __int32(5))>

...

Step 2

Rewrite call 3 <add(__int32(7), __int32(5))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC2 _Y |> __int32(_)

[add].SC3 __add(_X, _Y) |> _Z

[add] rewrites to <__int32(12)>

Normal termination on <__int32(12)> after 2 steps and 3 calls to rewrite()

The first step is more interesting: it first attempts to use the [add] rule and then [addexpr].

** !try 4 <add(add(__int32(3), __int32(4)), __int32(5))>

Step 1

Rewrite call 1 <add(add(__int32(3), __int32(4)), __int32(5))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC1 failed: seek another rule

[addExpr] <_E1> -> <_V1> <_E2> -> <_V2> --- <add(_E1, _E2)> -> <add(_V1, _V2)>

[addExpr].C1 <_E1> -> <_V1>

Rewrite call 2 <add(__int32(3), __int32(4))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC2 _Y |> __int32(_)

[add].SC3 __add(_X, _Y) |> _Z

[add] rewrites to <__int32(7)>

[addExpr].C2 <_E2> -> <_V2>

No rewrite required as already terminating state<__int32(5)>

[addExpr] rewrites to <add(__int32(7), __int32(5))>

...

Normal termination on <__int32(12)> after 2 steps and 3 calls to rewrite()

Condition [addexpr].C1 is a transition and this induces a new call to the rewrite() function.

Since it is a recursive call, the trace indents the trace to show a sub-rewrite. Only top level

rewrites make steps.

On the previous slide, condition [addexpr].C2 did not induce a recursive call because it was
already a value and nested rewriting always stops when we reach a value. This example has
compound additions on both the left and right operands, so we get two nested rewrites
!try 3 add(add(3,4),add(5,6)) ->

** !try 3 <add(add(__int32(3), __int32(4)), add(__int32(5), __int32(6)))>

Step 1

Rewrite call 1 <add(add(__int32(3), __int32(4)), add(__int32(5), __int32(6)))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[addExpr] <_E1> -> <_V1> <_E2> -> <_V2> --- <add(_E1, _E2)> -> <add(_V1, _V2)>

Rewrite call 2 <add(__int32(3), __int32(4))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add] rewrites to <__int32(7)>

Rewrite call 3 <add(__int32(5), __int32(6))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add] rewrites to <__int32(11)>

[addExpr] rewrites to <add(__int32(7), __int32(11))>

Step 2

Rewrite call 4 <add(__int32(7), __int32(11))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add] rewrites to <__int32(18)>

Normal termination on <__int32(18)> after 2 steps and 4 calls to rewrite()

Note that this is a level 3 trace so that we only see the calls to rewrite() and not the individual
conditions

As we nest more deeply, we get extra steps: remember one step is required per machine
operation. !try 3 add(add(3,add(4,5)),6) ->

** !try 3 <add(add(__int32(3), add(__int32(4), __int32(5))), __int32(6))>

Step 1

Rewrite call 1 <add(add(__int32(3), add(__int32(..), __int32(..))), __int32(6))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[addExpr] <_E1> -> <_V1> <_E2> -> <_V2> --- <add(_E1, _E2)> -> <add(_V1, _V2)>

Rewrite call 2 <add(__int32(3), add(__int32(4), __int32(5)))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[addExpr] <_E1> -> <_V1> <_E2> -> <_V2> --- <add(_E1, _E2)> -> <add(_V1, _V2)>

No rewrite required as already terminating state<__int32(3)>

Rewrite call 3 <add(__int32(4), __int32(5))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add] rewrites to <__int32(9)>

[addExpr] rewrites to <add(__int32(3), __int32(9))>

No rewrite required as already terminating state<__int32(6)>

[addExpr] rewrites to <add(add(__int32(3), __int32(9)), __int32(6))>

Step 2

Rewrite call 4 <add(add(__int32(3), __int32(9)), __int32(6))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[addExpr] <_E1> -> <_V1> <_E2> -> <_V2> --- <add(_E1, _E2)> -> <add(_V1, _V2)>

Rewrite call 5 <add(__int32(3), __int32(9))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add] rewrites to <__int32(12)>

No rewrite required as already terminating state<__int32(6)>

[addExpr] rewrites to <add(__int32(12), __int32(6))>

Step 3

Rewrite call 6 <add(__int32(12), __int32(6))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add] rewrites to <__int32(18)>

Normal termination on <__int32(18)> after 3 steps and 6 calls to rewrite()

Compact traces

We can see that traces quickly become quite dense. Once you have understood the
principles of recursive rules, it might be helpful to switch to level 2 traces which just
show the outcomes of the rewrites

!try 2 add(add(3,add(4,5)),6) ->

** !try 2 <add(add(__int32(3), add(__int32(4), __int32(5))), __int32(6))>

Step 1

[addExpr] rewrites to <add(add(__int32(3), __int32(9)), __int32(6))>

Step 2

[addExpr] rewrites to <add(__int32(12), __int32(6))>

Step 3

[add] rewrites to <__int32(18)>

Normal termination on <__int32(18)> after 3 steps and 6 calls to rewrite()

Peter Mosses 1948 –
https://en.wikipedia.org/wiki/Peter_Mosses

https://en.wikipedia.org/wiki/Peter_Mosses

3C Expression nesting and congruence rules

The two-rule version of addition works in ART, but presents some mathematical discomfort.
The problem is that, whilst the eSOS interpreter does indeed process conditions left-to-right
across a rule, from a mathematical point of view we should really be trying all possible
orderings.

If the two arguments to a subtraction have side effects, then the order of evaluation affects the
output. Consider, for instance, an expression containing post-increment operators such as
(a + 1) − (a++ + 1) which in prefix form is sub(add(a,1),add(postInc(a),1))

The contents of variable a are being manipulated on the fly during expression evaluations.
Assume that before the expression is evaluated, a is bound to 2.

If the right hand addition is performed first, it yields 3 and a is set to 3 before evaluating the
left hand addition. The overall expression then yields 1, since (3 + 1)− 3 = 1

If the left hand addition is performed first, it yields 3 and the value of a remains at 2. The
overall expression then yields 0, since 3− (2 + 1) = 0. In either case, a ends up as 3.

The outcome is dependent on evaluation order: our two-rule specification style is then
non-confluent

The three-rule style for binary operators

The solution is to use three rules which together enforce an evaluation ordering. We retain the base
rule for evaluating actual numbers, but then have a rule that forces left evaluation first, and a rule that
then performs right evaluation. These two are called congruence rules.

-add _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z

add(_X,_Y) -> _Z

-addRight _n |> __int32(_) _E2 -> _I2 --- add(_n, _E2) -> add(_n, _I2)

-addLeft _E1 -> _I1 --- add(_E1, _E2) -> add(_I1, _E2)

X ▷ int32() Y ▷ int32() add(X ,Y) ▷ Z

⟨add(X ,Y)⟩ → ⟨Z⟩ [add]

n ▷ int32() ⟨E2⟩ → ⟨I2⟩
⟨add(n,E2)⟩ → ⟨add(n, I2)⟩

[addRight]

⟨E1⟩ → ⟨I1⟩
⟨add(E1,E2)⟩ → ⟨add(I1,E2)⟩

[addLeft]

** !try 4 <add(add(__int32(3), __int32(4)), add(__int32(4), __int32(5)))>

Step 1

Rewrite call 1 <add(add(__int32(3), __int32(4)), add(__int32(4), __int32(5)))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC1 failed: seek another rule

[addRight] _n |> __int32(_) <_E2> -> <_I2> --- <add(_n, _E2)> -> <add(_n, _I2)>

[addRight].SC1 _n |> __int32(_)

[addRight].SC1 failed: seek another rule

[addLeft] <_E1> -> <_I1> --- <add(_E1, _E2)> -> <add(_I1, _E2)>

[addLeft].C1 <_E1> -> <_I1>

Rewrite call 2 <add(__int32(3), __int32(4))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC2 _Y |> __int32(_)

[add].SC3 __add(_X, _Y) |> _Z

[add] rewrites to <__int32(7)>

[addLeft] rewrites to <add(__int32(7), add(__int32(4), __int32(5)))>

Step 2

Rewrite call 3 <add(__int32(7), add(__int32(4), __int32(5)))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC2 _Y |> __int32(_)

[add].SC2 failed: seek another rule

[addRight] _n |> __int32(_) <_E2> -> <_I2> --- <add(_n, _E2)> -> <add(_n, _I2)>

[addRight].SC1 _n |> __int32(_)

[addRight].C2 <_E2> -> <_I2>

Rewrite call 4 <add(__int32(4), __int32(5))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC2 _Y |> __int32(_)

[add].SC3 __add(_X, _Y) |> _Z

[add] rewrites to <__int32(9)>

[addRight] rewrites to <add(__int32(7), __int32(9))>

Step 3

Rewrite call 5 <add(__int32(7), __int32(9))>, ->

[add] _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z --- <add(_X, _Y)> -> <_Z>

[add].SC1 _X |> __int32(_)

[add].SC2 _Y |> __int32(_)

[add].SC3 __add(_X, _Y) |> _Z

[add] rewrites to <__int32(16)>

Normal termination on <__int32(16)> after 3 steps and 5 calls to rewrite()

Or more compactly...

** !try 2 <add(add(__int32(3), __int32(4)), add(__int32(4), __int32(5)))>

Step 1

[addLeft] rewrites to <add(__int32(7), add(__int32(4), __int32(5)))>

Step 2

[addRight] rewrites to <add(__int32(7), __int32(9))>

Step 3

[add] rewrites to <__int32(16)>

Normal termination on <__int32(16)> after 3 steps and 5 calls to rewrite()

Christopher Strachey 1916–1975
https://en.wikipedia.org/wiki/Christopher_Strachey

https://en.wikipedia.org/wiki/Christopher_Strachey

3D The store, program variables, output and simple sequencing

Imperative, procedural programs rely on mutable variables and implicit sequencing
from one statement to another. We also want to be able to observe program effects by
sending them to some output.

Variable s which change their contents and program outputs are examples of side
effects and we use semantic entities to capture their state as the rewriting process
proceeds.

A natural structure to represent mutable variables is a store which is a set of bindings
from variable names to values. We use a map type which is traditionally called sigma
(σ).

For output, we use a list called phi (ϕ)

Assignment of an integer to a variable

-assign

_n |> __int32(_) __put(_sig, _X, _n) |> _sig1

assign(_X, _n), _sig -> __done, _sig1

n ▷ int32() put(σ,X , n) ▷ σ1

⟨assign(X , n), σ⟩ → ⟨ done, σ1⟩
[assign]

** !try 3 <assign(tmp, __int32(32)), {}>

Step 1

Rewrite call 1 <assign(tmp, __int32(32)), {}>, ->

[assign] _n |> __int32(_) __put(_sig, _X, _n) |> _sig1 ---

<assign(_X, _n), _sig> -> <__done, _sig1>

[assign] rewrites to <__done, {tmp=__int32(32)}>

Normal termination on <__done, {tmp=__int32(32)}> after 1 step and 1 call to rewrite()

Assignment resolution

-assign _n |> __int32(_) __put(_sig, _X, _n) |> _sig1

assign(_X, _n), _sig -> __done, _sig1

-assignResolve _E, _sig -> _I, _sigP

assign(_X,_E), _sig -> assign(_X, _I), _sigP

n ▷ int32() put(σ,X , n) ▷ σ1

⟨assign(X , n), σ⟩ → ⟨ done, σ1⟩
[assign]

⟨E , σ⟩ → ⟨I , σ′⟩
⟨assign(X ,E), σ⟩ → ⟨assign(X , I), σ′⟩

[assignResolve]

** !try 2 <assign(a, add(__int32(3), __int32(4))), {}>

Step 1

[assignResolve] rewrites to <assign(a, __int32(7)), {}>

Step 2

[assign] rewrites to <__done, {a=__int32(7)}>

Normal termination on <__done, {a=__int32(7)}> after 2 steps and 3 calls to rewrite()

Sequencing

-sequenceDone ---

seq(__done, _C) -> _C

-sequence _C1 -> _C1P

seq(_C1, _C2) -> seq(_C1P, _C2)

⟨seq(done,C)⟩ → ⟨C ⟩
[sequenceDone]

⟨C1⟩ → ⟨C1
′⟩

⟨seq(C1,C2)⟩ → ⟨seq(C1
′,C2)⟩

[sequence]

** !try 3 <seq(__done, __int32(7))>

Step 1

Rewrite call 1 <seq(__done, __int32(7))>, ->

[sequenceDone] --- <seq(__done, _C)> -> <_C>

[sequenceDone] rewrites to <__int32(7)>

Normal termination on <__int32(7)> after 1 step and 1 call to rewrite()

Sequenced store operations using previous rules

tmp1 := 32; tmp2 := 64; tmp1 := 128;

!try 2 seq(seq(assign(tmp1, 32),assign(tmp2, 64)),assign(tmp1,128)), __map() ->

** !try 2 <seq(seq(assign(tmp1, __int32(32)), assign(tmp2, __int32(64))), assign(tmp1, __int32(128))), {}>

Step 1

[sequence] rewrites to <seq(seq(__done, assign(tmp2, __int32(..))), assign(tmp1, __int32(128))),

{tmp1=__int32(32)}>

Step 2

[sequence] rewrites to <seq(assign(tmp2, __int32(64)), assign(tmp1, __int32(128))),

{tmp1=__int32(32)}>

Step 3

[sequence] rewrites to <seq(__done, assign(tmp1, __int32(128))),

{tmp2=__int32(64), tmp1=__int32(32)}>

Step 4

[sequenceDone] rewrites to <assign(tmp1, __int32(128)),

{tmp2=__int32(64), tmp1=__int32(32)}>

Step 5

[assign] rewrites to <__done,

{tmp2=__int32(64), tmp1=__int32(128)}>

Normal termination on <__done, {tmp2=__int32(64), tmp1=__int32(128)}>

after 5 steps and 9 calls to rewrite()

Dereferencing a variable

-deref

__get(_sig, _R) |> _Z

deref(_R),_sig -> _Z, _sig

get(σ,R) ▷ Z

⟨deref(R), σ⟩ → ⟨Z , σ⟩
[deref]

-

Step 3

Rewrite call 4 <assign(b, deref(a)), {a=__int32(3)}>, ->

[assign] _n |> __int32(_) __put(_sig, _X, _n) |> _sig1 --- <assign(_X, _n), _sig> -> <__done, _sig1>

[assignResolve] <_E, _sig> -> <_I, _sigP> --- <assign(_X, _E), _sig> -> <assign(_X, _I), _sigP>

Rewrite call 5 <deref(a), {a=__int32(3)}>, ->

[deref] __get(_sig, _R) |> _Z --- <deref(_R), _sig> -> <_Z, _sig>

[deref] rewrites to <__int32(3), {a=__int32(3)}>

[assignResolve] rewrites to <assign(b, __int32(3)), {a=__int32(3)}>

Output

-output _x,_phi1 ->_y,_phi2

output(_x),_phi1 -> __done, __append(_phi2,_y)

⟨x , ϕ1⟩ → ⟨y , ϕ2⟩
⟨output(x), ϕ1⟩ → ⟨ done, append(ϕ2, y)⟩

[output]

** !try 3 <seq(output(__int32(4)), output(__int32(5))), []>

Step 1

Rewrite call 1 <seq(output(__int32(4)), output(__int32(5))), []>, ->

[sequenceDone] --- <seq(__done, _C), _phi> -> <_C, _phi>

[sequenceDone] Theta match failed: seek another rule

[sequence] <_C1, _phi1> -> <_C1P, _phi2> --- <seq(_C1, _C2), _phi1> -> <seq(_C1P, _C2), _phi2>

Rewrite call 2 <output(__int32(4)), []>, ->

[output] <_x, _phi1> -> <_y, _phi2> --- <output(_x), _phi1> -> <__done, __append(_phi2, _y)>

No rewrite required as already terminating state<__int32(4), []>

[output] rewrites to <__done, [__int32(4)]>

[sequence] rewrites to <seq(__done, output(__int32(5))), [__int32(4)]>

Step 2

Rewrite call 3 <seq(__done, output(__int32(5))), [__int32(4)]>, ->

[sequenceDone] --- <seq(__done, _C), _phi> -> <_C, _phi>

[sequenceDone] rewrites to <output(__int32(5)), [__int32(4)]>

Step 3

Rewrite call 4 <output(__int32(5)), [__int32(4)]>, ->

[output] <_x, _phi1> -> <_y, _phi2> --- <output(_x), _phi1> -> <__done, __append(_phi2, _y)>

No rewrite required as already terminating state<__int32(5), [__int32(4)]>

[output] rewrites to <__done, [__int32(4), __int32(5)]>

Normal termination on <__done, [__int32(4), __int32(5)]> after 3 steps and 4 calls to rewrite()

Peter Landin 1930–2009
https://en.wikipedia.org/wiki/Peter_Landin

https://en.wikipedia.org/wiki/Peter_Landin

3E Control flow

Early programming languages provided control flow commands that mirrored the underlying
hardware: unconditional jumping to a labeled statement (GOTO L), and conditional branching
to a labeled statement (IF predicate GOTO L).

During the 1960s it became increasingly clear that unrestricted control flow changes (so-called
spaghetti programming) reduced the comprehensibility of programs. In 1968 Edsger Dijkstra
wrote his famous letter Go to statement considered harmful to the editor of Communications of
the ACM which you can read at https://dl.acm.org/doi/10.1145/362929.362947

Java is one of the first languages to outlaw GOTO altogether (in detail, Java has syntax for
GOTO but the static semantics are to generate an error message!) Instead, we program using
control flow structures which have a single predecessor statement and a single successor
statement. These so-called D-structures (after Dijkstra) can nest. We are still allowed break

and continue statements because they do not breach the single-predecessor/successor rule.

D-structures fit nicely with a reduction model of execution because they rewrite way in a nicely
nested fashion. GOTO requires copying of chunks of program which breaches the structural
constraint.

https://dl.acm.org/doi/10.1145/362929.362947

if-then-else

-ifTrue ---

if(True, _C1, _C2),_sig -> _C1, _sig

-ifFalse ---

if(False, _C1, _C2),_sig -> _C2,_sig

-ifResolve _E, _sig ->_EP, _sigP

if(_E,_C1,_C2),_sig -> if(_EP, _C1, _C2), _sigP

⟨if(boolean(True),C1,C2), σ⟩ → ⟨C1, σ⟩
[ifTrue]

⟨if(boolean(False),C1,C2), σ⟩ → ⟨C2, σ⟩
[ifFalse]

⟨E , σ⟩ → ⟨E ′, σ′⟩
⟨if(E ,C1,C2), σ⟩ → ⟨if(E ′,C1,C2), σ

′⟩
[ifResolve]

** !try 3 <if(gt(__int32(3), __int32(4)), __int32(1), __int32(0)), {}>

Step 1

Rewrite call 1 <if(gt(__int32(3), __int32(4)), __int32(1), __int32(0)), {}>, ->

[ifTrue] --- <if(__boolean(True), _C1, _C2), _sig> -> <_C1, _sig>

[ifTrue] Theta match failed: seek another rule

[ifFalse] --- <if(__boolean(False), _C1, _C2), _sig> -> <_C2, _sig>

[ifFalse] Theta match failed: seek another rule

[ifResolve] <_E, _sig> -> <_EP, _sigP> --- <if(_E, _C1, _C2), _sig> -> <if(_EP, _C1, _C2), _sigP>

Rewrite call 2 <gt(__int32(3), __int32(4)), {}>, ->

[gt] _n1 |> __int32(_) _n2 |> __int32(_) --- <gt(_n1, _n2), _sig> -> <__gt(_n1, _n2), _sig>

[gt] rewrites to <__boolean(False), {}>

[ifResolve] rewrites to <if(__boolean(False), __int32(1), __int32(0)), {}>

Step 2

Rewrite call 3 <if(__boolean(False), __int32(1), __int32(0)), {}>, ->

[ifTrue] --- <if(__boolean(True), _C1, _C2), _sig> -> <_C1, _sig>

[ifTrue] Theta match failed: seek another rule

[ifFalse] --- <if(__boolean(False), _C1, _C2), _sig> -> <_C2, _sig>

[ifFalse] rewrites to <__int32(0), {}>

Normal termination on <__int32(0), {}> after 2 steps and 3 calls to rewrite()

** !try 3 <if(gt(__int32(4), __int32(3)), __int32(1), __int32(0)), {}>

Step 1

Rewrite call 1 <if(gt(__int32(4), __int32(3)), __int32(1), __int32(0)), {}>, ->

[ifTrue] --- <if(__boolean(True), _C1, _C2), _sig> -> <_C1, _sig>

[ifTrue] Theta match failed: seek another rule

[ifFalse] --- <if(__boolean(False), _C1, _C2), _sig> -> <_C2, _sig>

[ifFalse] Theta match failed: seek another rule

[ifResolve] <_E, _sig> -> <_EP, _sigP> --- <if(_E, _C1, _C2), _sig> -> <if(_EP, _C1, _C2), _sigP>

Rewrite call 2 <gt(__int32(4), __int32(3)), {}>, ->

[gt] _n1 |> __int32(_) _n2 |> __int32(_) --- <gt(_n1, _n2), _sig> -> <__gt(_n1, _n2), _sig>

[gt] rewrites to <__boolean(True), {}>

[ifResolve] rewrites to <if(__boolean(True), __int32(1), __int32(0)), {}>

Step 2

Rewrite call 3 <if(__boolean(True), __int32(1), __int32(0)), {}>, ->

[ifTrue] --- <if(__boolean(True), _C1, _C2), _sig> -> <_C1, _sig>

[ifTrue] rewrites to <__int32(1), {}>

Normal termination on <__int32(1), {}> after 2 steps and 3 calls to rewrite()

while-do

We unwrap while-do into if-then using the rewrite trick we described earlier. This translates
into a simple unconditonal rewrite rule

-while

while(_E, _C),_sig -> if(_E, seq(_C, while(_E,_C)), __done), _sig

⟨while(E ,C), σ⟩ → ⟨if(E , seq(C ,while(E ,C)), done), σ⟩
[while]

Now, by their nature, traces from while-do loops can be rather long.

** !try 2 <seq(assign(a, __int32(2)), while(gt(deref(a), __int32(0)),

assign(a, sub(deref(a), __int32(1))))), {}>

Step 1

[sequence] rewrites to <seq(__done, while(gt(deref(..), __int32(..)),

assign(a, sub(.., ..)))), {a=__int32(2)}>

Step 2

[sequenceDone] rewrites to <while(gt(deref(a), __int32(0)),

assign(a, sub(deref(..), __int32(..)))), {a=__int32(2)}>

Step 3

[while] rewrites to <if(gt(deref(a), __int32(0)), seq(assign(a, sub(.., ..)),

while(gt(.., ..), assign(.., ..))), __done), {a=__int32(2)}>

Step 4

[ifResolve] rewrites to <if(gt(__int32(2), __int32(0)),

seq(assign(a, sub(.., ..)), while(gt(.., ..), assign(.., ..))), __done), {a=__int32(2)}>

Step 5

[ifResolve] rewrites to <if(__boolean(True), seq(assign(a, sub(.., ..)),

while(gt(.., ..), assign(.., ..))), __done), {a=__int32(2)}>

Step 6

[ifTrue] rewrites to <seq(assign(a, sub(deref(..), __int32(..))),

while(gt(deref(..), __int32(..)), assign(a, sub(.., ..)))), {a=__int32(2)}>

Step 7

[sequence] rewrites to <seq(assign(a, sub(__int32(..), __int32(..))),

while(gt(deref(..), __int32(..)), assign(a, sub(.., ..)))), {a=__int32(2)}>

Step 8

[sequence] rewrites to <seq(assign(a, __int32(1)), while(gt(deref(..), __int32(..)),

assign(a, sub(.., ..)))), {a=__int32(2)}>

Step 9

[sequence] rewrites to <seq(__done, while(gt(deref(..), __int32(..)),

assign(a, sub(.., ..)))), {a=__int32(1)}>

Step 10

[sequenceDone] rewrites to <while(gt(deref(a), __int32(0)),

assign(a, sub(deref(..), __int32(..)))), {a=__int32(1)}>

Step 11

[while] rewrites to <if(gt(deref(a), __int32(0)), seq(assign(a, sub(.., ..)),

while(gt(.., ..), assign(.., ..))), __done), {a=__int32(1)}>

Step 12

[ifResolve] rewrites to <if(gt(__int32(1), __int32(0)),

seq(assign(a, sub(.., ..)), while(gt(.., ..), assign(.., ..))), __done), {a=__int32(1)}>

Step 13

[ifResolve] rewrites to <if(__boolean(True), seq(assign(a, sub(.., ..)),

while(gt(.., ..), assign(.., ..))), __done), {a=__int32(1)}>

Step 14

[ifTrue] rewrites to <seq(assign(a, sub(deref(..), __int32(..))),

while(gt(deref(..), __int32(..)), assign(a, sub(.., ..)))), {a=__int32(1)}>

Step 15

[sequence] rewrites to <seq(assign(a, sub(__int32(..), __int32(..))),

while(gt(deref(..), __int32(..)), assign(a, sub(.., ..)))), {a=__int32(1)}>

Step 16

[sequence] rewrites to <seq(assign(a, __int32(0)),

while(gt(deref(..), __int32(..)), assign(a, sub(.., ..)))), {a=__int32(1)}>

Step 17

[sequence] rewrites to <seq(__done, while(gt(deref(..), __int32(..)),

assign(a, sub(.., ..)))), {a=__int32(0)}>

Step 18

[sequenceDone] rewrites to <while(gt(deref(a), __int32(0)),

assign(a, sub(deref(..), __int32(..)))), {a=__int32(0)}>

Step 19

[while] rewrites to <if(gt(deref(a), __int32(0)),

seq(assign(a, sub(.., ..)), while(gt(.., ..), assign(.., ..))), __done), {a=__int32(0)}>

Step 20

[ifResolve] rewrites to <if(gt(__int32(0), __int32(0)),

seq(assign(a, sub(.., ..)), while(gt(.., ..), assign(.., ..))), __done), {a=__int32(0)}>

Step 21

[ifResolve] rewrites to <if(__boolean(False),

seq(assign(a, sub(.., ..)), while(gt(.., ..), assign(.., ..))), __done), {a=__int32(0)}>

Step 22

[ifFalse] rewrites to <__done, {a=__int32(0)}>

Normal termination on <__done, {a=__int32(0)}> after 22 steps and 44 calls to rewrite()

Other structures

We have seen how to do selection and iteration using if-then and while-do, and in fact
while-do only needs a simple rewrite.

Other control flow statements that we should consider include the switch statement (also
known as a case statement), for loops, do-while, repeat-until and the break and
continue early-exit jumps.

Now, it turns out that structures can be implemented in terms of our basic if-then rewrite
rule, and thus we could rewrite using the same approach as with while-do.

Try it

Adriaan van Wijngaarden 1916–1987
https://en.wikipedia.org/wiki/Adriaan_van_Wijngaarden

https://en.wikipedia.org/wiki/Adriaan_van_Wijngaarden

3F Big step semantics

n1 ▷ int32() n2 ▷ int32()

⟨sub(n1, n2), σ⟩ → ⟨ sub(n1, n2), σ⟩
[sub]

n ▷ int32() ⟨E2, σ⟩ → ⟨I2, σ′⟩
⟨sub(n,E2), σ⟩ → ⟨sub(n, I2), σ′⟩

[subRight]

⟨E1, σ⟩ → ⟨I1, σ′⟩
⟨sub(E1,E2), σ⟩ → ⟨sub(I1,E2), σ

′⟩
[subLeft]

get(σ,R) ▷ Z

⟨deref(R), σ⟩ → ⟨Z , σ⟩
[deref]

n1 ▷ int32() n2 ▷ int32()

⟨gt(n1, n2), σ⟩ → ⟨ gt(n1, n2), σ⟩
[gt]

n ▷ int32() ⟨E2, σ⟩ → ⟨I2, σ′⟩
⟨gt(n,E2), σ⟩ → ⟨gt(n, I2), σ′⟩

[gtRight]

⟨E1, σ⟩ → ⟨I1, σ′⟩
⟨gt(E1,E2), σ⟩ → ⟨gt(I1,E2), σ

′⟩
[gtLeft]

⟨if(boolean(True),C1,C2), σ⟩ → ⟨C1, σ⟩
[ifTrue]

⟨if(boolean(False),C1,C2), σ⟩ → ⟨C2, σ⟩
[ifFalse]

⟨E , σ⟩ → ⟨E ′, σ′⟩
⟨if(E ,C1,C2), σ⟩ → ⟨if(E ′,C1,C2), σ

′⟩
[ifResolve]

n1 ▷ int32() n2 ▷ int32()

⟨ne(n1, n2), σ⟩ → ⟨ ne(n1, n2), σ⟩
[ne]

n ▷ int32() ⟨E2, σ⟩ → ⟨I2, σ′⟩
⟨ne(n,E2), σ⟩ → ⟨ne(n, I2), σ′⟩

[neRight]

⟨E1, σ⟩ → ⟨I1, σ′⟩
⟨ne(E1,E2), σ⟩ → ⟨ne(I1,E2), σ

′⟩
[neLeft]

⟨seq(done,C), σ⟩ → ⟨C , σ⟩
[sequenceDone]

⟨C1, σ⟩ → ⟨C1
′, σ′⟩

⟨seq(C1,C2), σ⟩ → ⟨seq(C1
′,C2), σ

′⟩
[sequence]

⟨while(E ,C), σ⟩ → ⟨if(E , seq(C ,while(E ,C)), done), σ⟩
[while]

n ▷ int32()

⟨assign(X , n), σ⟩ → ⟨ done, put(σ,X , n)⟩
[assign]

⟨E , σ⟩ → ⟨I , σ′⟩
⟨assign(X ,E), σ⟩ → ⟨assign(X , I), σ′⟩

[assignResolve]

Dana Scott 1932–
https://en.wikipedia.org/wiki/Dana_Scott

https://en.wikipedia.org/wiki/Dana_Scott

4 Syntax specification and analysis

Section Topic

4A Internal and external syntax
4B Limited but easy parsing: Ordered Singleton Backtrack Recursive Descent
4C From strings to tokens - lexicalisation
4D The space of parsing algorithms
4E Generalised context free parsing
4F Generalised context free and regular lexical analysis

4A Internal and external syntax

We can identify four main parts of a language processor

1. The front end (F) translates from external syntax to internal syntax

2. The back end (B) translates from internal syntax to target syntax

3. The middle end (M) translates from internal syntax to internal syntax, transforming the
program in some way

4. The execution end (X) executes the program, consuming data and generating the
program’s effects

There are at least three representations of the user program in use here: external (E), internal
(I) and target (T). In the case of javac, the Java compiler, syntax E is the Java language
itself, syntax T is Java byte code and syntax I is a property of the particular java compiler
implementation. Some compiler toolkits, for instance the gcc toolchain, have multiple internal
syntaxes, each optimised for a particular task.

In this section we focus on the design and specification of the front end

Middle end first

As programmers, it is natural for us to focus on the external ‘look’ of a language, but on this
course you have been strongly encouraged to take a ‘feature-first’ approach in which we identify
the underlying semantic notions before constructing a human-comfortable external notation.

In our model, we use a strictly unambiguous prefix-form to describe program terms inside the
compiler. Terms are trees, and we can thus capture the compositional, hierarchical structure of
programs directly

The emphasis on one form for each language feature eases interpreter and compiler
implementation, allowing us to generate code or interpret actions as a single flat case analysis.

I call this the middle end first design strategy

Thinking about programs and their transformations

A nest of prefix function instances is not the only way to think about program texts.

Alternatives include

1. three-address code (3A) which looks a little like an idealised assembly language

2. Static Single Assignment (SSA) form which is a control-flow graph based representation
in which variables are never redefined

3. Continuation Passing Style (CPS) in which each operation is represented as a function
which includes as a parameter the rest of the program term to be executed.

However, it turns out that CPS is naturally expressible as nested functions; SSA is a subset of
CPS and 3A can be transformed to SSA. So our internal syntax has broad utility, although the
way different researchers think about what is encoded into internal syntax differs.

These issues are very important for the writers of optimising compilers, where many important
transformation algorithms can be expressed elegantly in SSA and CPS. However, we are
focusing solely on interpreters, which have only a vestigial middle-end.

Syntax for humans

Designing a comfortable and expressive programming syntax is hard, and there are no clear
rules.

Most programming language design appeal strongly to notations with which the users may
already be familiar, including arithmetic operators that we learn at school, basic English
language words to describe conditionals and loops, and in particular existing widely used
languages. As such, programming language syntax development is probably best viewed as an
evolutionary process.

There is always a tension between conciseness for the experienced used and clarity for the
neophyte: consider Algol-68’s two equivalent notations for if statements:

if a=b then s1() else s2 fi

(a=b | s1() | s2)

There is also always a tension between enumeration and orthogonality.
Layout is critical to understanding too – especially when trying to comprehend deeply nested
structures

Resources for thinking about syntax

One of the most interesting places to read about the zoo of programming notations is the
Rosetta Code site at http://rosettacode.org/wiki/Rosetta_Code which attempts to
show implementations of standard programs in as many languages as possible (at the time of
writing, just over 800).

Another good way to escape the cultural blinkers that we all seem to acquire from our first
attempts at programming is to look at deliberately unhelpful languages, many of which are
designed as parodies or satires on conventional languages. You can read more at
https://en.wikipedia.org/wiki/Esoteric_programming_language 4 and
https://esolangs.org

Some of these attempts contain useful ideas that challenge our fundamental notions. I
particularly like the Whitespace programming language in which all semantically meaningfull
programs are entirely composed of whitespace, and the printable characters are treated as
comments. Though obviously satirical in intent, this allows Whitespace programs to be
embedded within conventional programs.

4Trigger alert: some bad language may be encountered on these esoteric language pages

http://rosettacode.org/wiki/Rosetta_Code
https://en.wikipedia.org/wiki/Esoteric_programming_language
https://esolangs.org

Taming the syntax monster

The front ends for early languages, including FORTRAN, were essentially written in an ad hoc
way, and it shows. To this day, FORTRAN syntax presents a non-trivial challenge for many
front end toolsets. At the time of writing, FORTRAN registers as the 23rd most used
programming language world-wide (above ADA, Lisp, Scala, Lua and Haskell) so the difficulty
of processing FORTRAN source code is of practical importance. For instance, the Met Office
UK weather model comprises around one million lines of FORTRAN.

John Backus, who led the FORTRAN effort said that the compiler required 18 person-years of
effort to create: much of that was consumed by middle end code improvers.

FORTRAN has some interesting syntactic quirks: for instance all spaces may be omitted from
a FORTRAN program without channging its meaning. At the time, this seemed like a desirable
feature. As the Sun FORTRAN reference manual purportedly said: Consistently separating
words by spaces became a general custom about the tenth century A. D., and lasted until
about 1957, when FORTRAN abandoned the practice.

Another ‘good’ idea which was not used in many other languages was association of type with
particular identifier names. In FORTRAN, variables beginning with I through N are by default
integer. Other identifiers have type real. A declaration can override this, leading to the old joke
that with FORTRAN, God is real unless declared integer.

Backus and Naur and their notation

In 1958 a meeting was held at ETH Zurich between European computer scientists and some
prominent American programming language experts (including Backus) to discuss proposals for
a new International Algebraic Language which developed into the proposal for Algol-58.

Algol-58 is noted more for its influence on later languages than for widespread takeup. It
introduced the concept of block structure, used := for assignment. The languages immediate
successor, Algol-60, was a huge success and is the direct ancestor of most of the block
structured languages we use today.

Backus became interested in developing a systematic approach to external syntax analysis as a
way of reducing front end implementation to a clerical process. He developed Backus Normal
Form to describe Algol-58’s external syntax.

BNF was revised and expanded by Peter Naur, and at the suggestion of Donald Knuth, the
notation is now known as Backus-Naur Form (BNF).

Mathematical games for lexicalisation and parsing

The original motivation for BNF was to provide a concise and precise specification of the
allowable Algol programs.

Once that had been achieved, there was an explosion of research into algorithms that could
take a BNF specification and automatically generate a program which could perform syntax
analysis.

The formal roots of this work liek in the work of Axel Thue (1863–1922) who investigated
string rewriting systems as part of early efforts to formalise mathematics and enable automated
theorem proving – what we now call a String Rewriting System was historically called a
semi-Thue system.

Backus was aware of work in linguistics, in which theoreticians such as Noam Chomsky had
been investigating mathematical models of natural (human) speech, and the equivalence of
Algol’s BNF to formal grammars was soon noted.

Formal grammars

A formal grammar constitutes a convenient way to describe string rewriting in a way that
emphasises the compositional structure of phrases. It is inspired by the informal grammars used
to teach the structure of human languages.

A formal grammar is a 4-tuple < N,T ,S ,P > with S ∈ N and N ∩ T = ∅. N is a finite set of
nonterminal symbols. T is a finite set of terminal symbols. S ∈ N is a distinguished member of
N called the start symbol. P is a set of productions which in their most general form are
rewrite rules from a nonempty string in (N ∪ T)+ to a possibly empty string in (N ∪ T)∗.

We use a set of conventions to avoid having to repeatedly write the same definitions. In most
of the formal grammar literature, lower case letters a . . . g denote terminals, lower case letters
u . . . z denote (possibly empty) strings of terminals, upper case letters denote nonterminals and
Greek letters α . . . δ denote strings over both terminals and nonterminals.

The empty string (of length zero) is denoted by ϵ

Symbols are simply atomic mathematical objects. Typically we think of symbols as either being
individual letters, or as being tokens which may represent families of substrings.

Generating sentences

We can think of a grammar as a language generating device which operates by starting with
just the start symbol S and then rewriting strings over (N ∪ T) until all of the nonterminals
have been removed.

A sentential form is a (possibly empty) string in (N ∪ T)∗ A sentential form containing no
nonterminals is called a sentence – it will thus be a member of T ∗. The set of sentences
generated by a formal grammar Γ is the language of that grammar, L(Γ).

The rewriting relation defined by the productions is in a slightly different form to the ones that
we looked at in the string rewriting part of Section 2 in that with a grammar, we look for
occurrences of a production left hand side anywhere in the sentential form whereas in Section
2, the left hand side of a rewrite had to match the entire string. Technically, then, the rewrite
relation from a production such as β → δ has to be extended to the string rewrite αβγ → αδγ
to express the notion that can have arbitrary strings of elements from N ∪ T on either side of
the rewrite site.

The Chomsky hierarchy

In 1956 Noam Chomsky published the paper Three models for the description of language in
which he gave hierarchy of grammar types whose associated languages nest.

We can define this hierarchy using constraints on the form of productions in a formal grammar.

Type Languages Automaton Constraints
Type-0 Recursively enumerable Turing machine γ → δ, γ ̸= ϵ
Type-1 Context sensitive Linear bounded ND Turing machine αAβ → αγβ, γ ̸= ϵ
Type-2 Context free ND push down automaton A→ α
Type-3 Regular Finite state automaton A→ a,A→ aB

Type-4 Lookup table Finite map A→ u

The Type-4 (lookup table) languages are not usually included in the Chomsky hierarchy, but I
find it useful to have the extra level. For instance, the add012 language that I used to
introduce the semantics section was a Type-4 language

BNF specifications generate Type-2 (context free) languages, and BNF can be thought of as
an external syntax for Context Free Grammars

Derivation steps and context free derivations

For the remainder of this course, we shall assume that all of our formal grammars are
Context Free unless otherwise noted

In formal grammar terminology, a single rewrite step is called a derivation step and is written
⇒. A complete derivation sequence (or just a derivation) might be written

S ⇒ aXYc ⇒ aYc ⇒ abc

if we had context free productions S → aXYc,X → ϵ,Y → b

We use the symbol
∗⇒ to represent a sequence of zero or more derivation steps, and

+⇒ to
represent a sequence of one or more derivation steps. So, for instance, in the example above
abc is in the language and hence S

∗⇒ abc. We can also say that

L(N,T ,S ,P) = {u | S ∗⇒ u, u ∈ T ∗}

Derivation trees

If we represent a CF derivation step as a tree whose root is labeled with the left hand side
nonterminal, and whose children are the right hand side elements, then the derivation sequence
induces a tree, which for this example is S(a,X (),Y (b), c)

Note that the order in which we expand the X and Y nonterminals does not affect this tree, so
the tree in fact represents the two derivation sequences

S ⇒ aXYc ⇒ aYc ⇒ abc(expand X first)

S ⇒ aXYc ⇒ aXbc ⇒ abc(expand Y first)

It turns out that for CF grammars, the rewrites are always confluent so we need never be
concerned about the rewrite order, and the derivation tree thus captures all of the available
information. Without loss of generality, we choose to only consider leftmost derivations in
which the leftmost nonterminal is expanded at each derivation step.

Properties of derivation trees

Since all derivations must start with the start symbol, derivation trees will always have a root
node labeled with the start symbol.

Terminals are symbols that cannot appear on the right hand side of a production, and so
cannot have children in the derivation tree. Hence terminals in the derivation tree will appear
as labels on leaf nodes.

Internal nodes of the tree correspond to nonterminals that will at some point in the derivation
have been rewritten, hence nonterminals will appear as the labels of internal nodes in the tree.

Productions of the form X → ϵ are represented by trees of the form X (ϵ)

The yield of a derivation tree is the sequence of leaf node labels in left to right order. For any
derivation of string u in grammar Γ, the yield of the corresponding derivation tree after deletion
of ϵ instances is u

Unit productions, epsilon-free grammars and uselessness

A unit production is of the form X → Y with X ,Y ∈ N.

An epsilon free grammar is one which has no rules of the form X → ϵ. There exists an
ϵ-removal algorithm which will derive an epsilon-free Γ′ from any grammar Γ with a new rule
S → ϵ needing to be added if S

∗⇒ ϵ.

The grammar formalism does not preclude having elements in X ∈ N for which there are no
productions but such an X would be useless. Clearly any production Y → αXβ would also be
useless in that any sentential form it generated would be stuck since there is no way to expand
the instance of X into terminals.

A more subtle form of useless nonterminal is an X for which the only production is X → XX .
This will generate an infinite set of sentential forms but cannot generate any sentences. By
extension, productions of the form Y → αXβ would also be useless.

We can see that it is possible to build entire codependent sets of productions which are useless.
A grammar which has no useless rules in it is said to be sanitised

Finite and infinite languages

A nonterminal Z (and by extension its enclosing grammar) is directly recursive if the grammar

includes a rule of the form Z → αZβ and it is recursive if Z
∗⇒ γZδ.

Z is left recursive if γ
∗⇒ ϵ and right recursive if δ

∗⇒ ϵ. A nonterminal Y depends on X iff the
grammar X

∗⇒ Y .

If a grammar is not recursive, then a nonterminal can only appear at most once in any
derivation. Since N is a finite set, that means that the language of a non-recursive grammar
must be finite. Thus the only way we can specify infinite languages is with recursive
nonterminals.

The grammar

S → D S → D(A) A→ S A→ A,S D → a D → b . . .

generates the infinite language of terms over single letter internal syntax names. The grammar
is context free but not regular from which we see that languages with nested brackets cannot
be specified using regular grammars (and thus not by regular expressions) – the slogan version
is regular expressions can’t count

Ambiguity and grammar equivalence

Two grammars Γ and Γ′ are equivalent if L(Γ) = L(Gamma′)

It is in general undecidable whether two context free grammars are equivalent. Hence asking
for ‘the’ grammar for Java is incompetent. There are several grammars available, and we
cannot be sure that they are equivalent. This is rather uncomfortable.

A grammar Γ is ambiguous is there exists some u ∈ L(Γ) such that is more than one derivation

sequence S
∗⇒ u, and thus two or more distinct derivation trees for u. This situation is

common in real applications: the standard formulation of if - then - else is ambiguous.

It is in general undecidable whether a context free grammar is ambiguous. This is rather
uncomfortable.

Semantics and derivation trees

In both natural linguistics and formal language
theory the meaning of a phrase is attached to the
composition of the derivation tree. In English, many
jokes rely on ambiguity (sometimes unintention-
ally as with the advert for a headache remedy here).

In formal languages (and especially the term based
languages that we use as internal syntax) the
meaning of the program is usually assumed to be
a pre-order composition of the actions associated
with each derivation tree node.

Generators, recognisers and parsers

A generating procedure for a context free grammar Γ is a procedure for enumerating L(Γ).
Since in general the language is infinite, it will not always terminate. Essentially we need to
generate sentential foms, and then output the ones that have no nonterminals in them (the
sentences). The order in which we generate sentential forms affects the result: if we go depth
first then the exploration will be limited to sentential forms of leftmost recursive nonterminals.
Hence we usually generate the sentential forms breadth first.

A general context free recogniser for Γ is a function R(Γ, t ∈ T ∗) : boolean which returns true
iff t ∈ L(Γ)

A general context free parser for Γ is a function R(Γ, t ∈ T ∗) : Set of Derivation Tree which
returns the (possibly infinite) set of derivations for t in L(Γ).

A parser for Γ is a function R(Γ, t ∈ T ∗) : DerivationTree which returns one derivation tree for
t ∈ L′(Γ) ⊆ L(Γ). Note that this implies that some elements of L(Γ) may not be recognised
(that is no tree is returned for a valid member of the language) and that, further, for
ambiguous elements t ∈ L(Γ), at most one derivation tree will be returned. Very, very few
production parsers used for real language processors are general. This is rather uncomfortable.

Alphabets, whitespace, and the benefits of lexicalisation

The alphabet of a grammar is simply the set T , that is the elements of the strings in L(Γ).
When we are looking at theoretical properties of grammars we do not usually pay much
attention to the alphabet: the elements are just atomic mathematical objects. However in real
languages, both natural and formal, it can be useful to lexicalise the character level strings into
strings over tokens which have associated sets of lexemes, which are the actual textual
substrings.

In free format programming languages such as Java it is conventional to split the input at any
point where whitespace or a comment might be inserted. We then end up with lexemes such as
import, temp, 123 and so on, and each class of lexemes is given its own token: so all integers

are represented by a single token int , all identifiers by id and so on. Keywords are usually
(but not always) each given a unique token. This globbing together of substrings in the
character input can significantly reduce the size of a context free grammar, and speeds up many
of the internal processes of real parsers by allowing us to, for instance, immediately distinguish
the Pascal keywords do and downto without needing to scan the input character string.

Lexicalisation also allows us to throw away white space and comments before parsing begins,
reducing the size of the grammar and speedingup parsing.

Why context free parsing?

Almost all production language systems perform non-general lexicalisation using regular
specifications, and context free specification of non-general parsers. This is initially surprising
since many features of real programming languages cannot be expressed using context free
rules, and even the context free parts cannot all be handled by these ‘broken’ parsers.

In particular, even simple type checking in languages with declarations cannot be specified
using context free grammars. Just as ‘regular languages can’t count’, context free languages
cannot check long-range properties of a string (the productions do not use context). So we
cannot, within the grammar itself, discover that the Java fragment { String str; . . . ; str = str /
10.0;} is invalid (because we cannot divide a string by a real).

As we shall see later, this culture has grown our of the hardware limitations of the 1960s and
1970s-era computers that were current when compilers for languages such as Pascal and C
were being developed. Today we can use polynomial-time and space general lexers and context
free parsers. However we are unlikely to ever make use of context sensitive parsing because in
general that requires exponential time. (And in addition, grammars turn out not to be a very
comfortable notation for specifying type systems.)

The traditional Lex/Yacc style external to internal syntax pipeline

Character
based

external
form

Lexical
analysis

Uni-
parser

Single
tokenisation Derivation

rewrite

Single
derivation tree

RDT
term

Regular
expressions

Context free
grammar

GIFT
annotations

The ‘Holloway’ pipeline

Character
based

external
form

Lexical
analysis

MGLL
Multi-
parser

Set of linear
tokenisations

Set of
derivation treesLexical

ambiguity
reduction

Subset of
tokenisations

Derivation
ambiguity
reduction

Subset of
derivation trees Derivation

selection
Derivation

rewrite

Selected
derivation tree

RDT
term

The ‘Holloway’ pipeline with specification inputs

Character
based

external
form

Lexical
analysis

MGLL
Multi-
parser

Set of linear
tokenisations

Set of
derivation treesLexical

ambiguity
reduction

Subset of
tokenisations

Derivation
ambiguity
reduction

Subset of
derivation trees Derivation

selection
Derivation

rewrite

Selected
derivation tree

RDT
term

Context free
nonterminal

rules

Lexical
choosers

Context free
paraterminal

and whitespace
rules

Derivation
choosers

Derivation
selector

GIFT
annotations

Noam Chomsky 1928–
https://en.wikipedia.org/wiki/Noam_Chomsky

https://en.wikipedia.org/wiki/Noam_Chomsky

4 B Limited but easy parsing: Ordered Singleton Backtrack Recursive
Descent

This section illustrates the basic principles of parsing, semantics evaluation and term
construction using the simplest useful parsing technique I could think of.

We shall also look at the limitations and failure modes of this technique.

This technique is called OSBRD – Ordered Singleton Backtrack Recursive Descent

Ordered – rules are checked in specification order (so valid inputs may be rejected)
Singleton – one match returned from each branch (so valid inputs may be rejected)
Backtrack – if a parser branch fails, then backtrack (with worst case exponential time)
Recursive Descent – a recursive nest of function calls (which may not terminate)

Given that OSBRD is broken in multiple ways, why learn about it?

The pedagogic benefits of OSBRD

OSBRD is not a serious contender for use as a production parser, but it has pedagogic benefits

1. Recursive Descent parsers may be written by hand – they are effectively just a specialised
form of grammar pretty-printing. They are both easy to write and easy to understand

2. Recursive Descent parsers can be easily traced using a conventional code debugger, and
that can be very helpful when trying to debug a grammar specification

3. Recursive descent parsers may be tamed: if a grammar is both left factored and follow
determined then an RD parser will run in linear time and not reject valid strings.
Grammars in this format are called LL(1). However the LL(1) format does not admit
some useful grammatical idioms, in particular left recursion.

4. The refereed research literature on parsing is littered with over-strong claims. It is good
to study broken algorithms as it will help you improve your critical reasoning skills.

So we shall use OSBRD to learn about the internals of parsing, syntax-directed translation and
a limited form of attribute grammars before using fully engineered production parsing
algorithms for the real work

The graph of leftmost derivation steps

The string rewriting relation that is induced by an unambiguous Context Free Grammar has a
transition graph that is a tree. So, for instance, the grammar

Γ = S → b | aXz X → xX | ϵ

has language
L(Γ) = {b, az , axz , axxz , axxxz , . . .}

and the following leftmost derivations:
S ⇒ b

S ⇒ aXz ⇒ az

S ⇒ aXz ⇒ axXz ⇒ axz

S ⇒ aXz ⇒ axXz ⇒ axxXz ⇒ axxz

S ⇒ aXz ⇒ axXz ⇒ axxXz ⇒ axxxXz ⇒ axxxz

S ⇒ axXz ⇒ axxXz ⇒ axxxXz . . .

An unambiguous transition graph is a tree

The (leftmost) transition graph
of the derivation relation is con-
structed by making a node for
each unique sentential form, la-
belled with that sentential form.
There is then an edge from the
node labelled α to the node la-

belled β if α
left

⇒ β

S

b aXz

az axXz

axxz axxXz

axxxz axxxXz

...

An ambiguous transition graph is not a tree

S → XY X → ar | a Y → rt | t

S ⇒ XY ⇒ arY ⇒ arrt

S ⇒ XY ⇒ arY ⇒ art

S ⇒ XY ⇒ aY ⇒ art

S ⇒ XY ⇒ aY ⇒ at

S

XY

arY aY

arrt art at

Unhygenic transition graphs are not even DAGs

S → XY X → ar | BX Y → t B → ϵ

S ⇒ XY ⇒ arY ⇒ art

S ⇒ XY ⇒ BXY ⇒ XY ⇒ . . .

S

XY

arY BXY

art

Parsing strategies

The recognition problem is: given a string σ, is there a path through the derivation transition
graph that takes us from the node labelled with the start symbol to a node labelled with σ

The parsing problem is: given a string σ, for every path through the derivation transition graph
the node labelled with the start symbol to a node labelled with σ, given the sequence of
sentential forms linked by that path

There are two core operations we can use when trying to find derivations: so-called top down
or predictive parsing where we select the (usually leftmost) nonterminal X in a sentential form,
and then rewrite X using the i productions X → αi . In general we therefore have a set of
sentential forms that we are expanding at each step.

Alternatively we can look for production right hand sides within sentential forms, and replace
them with their corresponding left hand side nonterminal. These reductions are making use of
the inverse derivation relation: one in which all of the rewrite rules have their arrow reversed.
Bottom up parsers work this way.

Our approach

So, top down parsers move forwards through the derivation relation graph, and bottom up
parsers move backwards in the graph. In both cases the goal is the same (to find a path from
the start symbol’s node to the node containing the string we are parsing), and indeed mixed
approaches (such as left corner parsing are also available.

We might also characterise algorithms in terms of how many sentential forms they are looking
at. Deterministic parsers can be written that run in linear time (that is, O(n) where n is the
length of the input) but they usually only consider one sentential form at a time. General
parsers typically maintain a set of parser configurations which are being processed together.

In this section, our OSBRD parsers are, at any given time, working on a single sentential form.
However, if we reach a dead end, the parser can backtrack and try an alternative. Actually
even out backtracking is inadequate, because OSBRD is greedy and will pursue the first
successful production in a nonterminal that matches. More genrality is achieved if each
nonterminal can return a set of production matches to pursue.

Two external syntaxes for BNF

Recall the set of conventions that we use when discussing the theory of conext free grammars:
lower case letters a . . . g denote terminals, lower case letters u . . . z denote (possibly empty)
strings of terminals, upper case letters denote nonterminals and Greek letters α . . . δ denote
strings over both terminals and nonterminals. The empty string (of length zero) is denoted by
ϵ. These conventions are useful for writing small examples, compactly

For ‘real world’ examples, we need a different set of conventions that distinguish terminals and
nonterminals using stropping, and which use only characters that appear on standard
keyboards. we only need to specify rules, not reason about sentential forms, so we can drop the
string conventions.

In ART, we use the following external syntax for context free productions:

nonterminals are alphanumeric identifiers such as this
case sensitive terminals are denoted by single quote delimited strings like ’this’
the → ‘produces’ symbol is denoted by ::=

the | alternation symbol is denoted by |

the empty string is denoted by #

Thus we have two external syntaxes for the mathematical object ‘Context Free Grammar’

Extended Backus Naur form – EBNF

ART does also provide the standard postfix regular expression operators and parentheses:

X? one or zero occurrences of X
X+ one or more occurrences of X
X* zero or more occurrences of X
(X | Y)* zero or more occurrences of X or Y

These operators do not extend the set of languages that may be defined since in terms of the
generated language, they are shorthands for BNF expressions:
X ::= Y? ≡ X ::= Y | #

X ::= Y+ ≡ X1 ::= Y X1 | Y X ::= X1

X ::= Y* ≡ X1 ::= Y X1 | # X ::= X1 (right recursive) or
X ::= Y* ≡ X1 ::= X1 Y | # X ::= X1 (left recursive)
X ::= (Y | Z)? ≡ X1 ::= Y | Z X ::= X1

where ≡ means equivalent generated language

Some EBNF subtleties

EBNF is widely supported in parser generator tools, but there are some subtleties to watch out
for.

1. It is easy to accidentally introduce ambiguities. For instance, a well known language
standard contains the idiom

X ::= (Y | Z?)*

Here, X generate the empty string in more than one way since Z? can generate ϵ and so
can the star operator. And anyway, what does #* actually mean? Is it, in fact an error to
apply an EBNF operator to the empty string?

2. What should derivation trees for EBNF look like? If our semantics is defined over
derivation trees, we need a sound formal definition of the tree that appears from an EBNF
parse

Lexical matters

Dividing the lexer and parser as described earlier reduces complexity in the parser, and enables
automatic suppression of whitespace.

Formally, ART parsers use productions defined at character level. You can denote these
explictly with ART productions using a character level terminal which is a backquote ‘

followed by a single printable character or an escape sequence.

Formally, then, the terminal ’adrian’ is shorthand the sequence

‘a‘d‘r‘i‘a‘n WS

where WS is the name of a nonterminal that defines the whitespace convention.

ART V3 also provides a set of built in lexical elements whose names are precede by an
ampersand: &ID, &INTEGER, &REAL, &STRING DQ, &STRING SQ and others.

Some lexical subtleties

The partitioning of a grammar into lexical and phrase level productions is often convenient, but
does present some theoretical challenges.

1. Traditional lexers require regular specifications, and this disallows nested bracketed
comments

2. Traditional lexers provide only a single lexicalisation for each input, and in general this is
not correct. Think about a+++b in Java, for instance

3. Traditional parsers would not know what to do with multiple lexicalisations even if they
were available.

4. Sometimes one wants to parse mixed languages where more than one whitespace
convention is in use. A global WS nonterminal is likely to be inadequate

ART V3 and your project work

We have developed ways to manage these EBNF and lexical difficulties, and the new ART V4
incorporates those ideas.

The eSOS interpreter and value system that you are using is part of ART V4.

However, for the parsing part of your project work in AY 2020-21, you will be using ART V3
which can run EBNF parses, but whose attribute evaluator is BNF only. As such, you need to
stick to BNF specifications for your project work, and only use the builtin lexical elements.

Do not use EBNF constructs or character level terminals in your project work Do use
BNF constructs and the builtin &... terminals in your project work

The OSBRD idea

OSBRD parsers come in three sections which run as separate phases:

1. A set of mutually recursive functions that read the input string to find a single derivation,
and return it as a sequence of integers called the oracle

2. A set of mutually recursive functions that read the oracle to follow the trace of the
successful derivation in step 1, executing embedded Java actions as a side effect

3. A set of mutually recursive functions that read the oracle to follow the trace of the
successful derivation in step 1, and construct a Rewritten Derivation Tree under the
control of the ˆ and ˆˆ GIFT annotations.

Phase 1 tries to find the derivation using a backtracking search. Phase 2 allows semantic
actions to be embedded within the parser. Phase 3 uses a special set of pre-written semantic
actions to build trees suitablke for input to eSOS.

We need the oracle because there is no way to undo embedded semantic actions, so we need to
find the derivation first (allowing backtracking) and then re-run the parser using the oracle to
tell it ‘magically’ where to go.

OSBRD for pedagogy, MGLL for production

Although OSBRD is slow and in general incorrect, it can do much useful work, and the ideas
and notations carry straight across to the production parsers in ART, such as MGLL.

The internals of OSBRD are easy to understand, and in fact sufficiently simple that we can
write parsers for BNF specifications by hand. So we can explore the ideas around parsing and
attribute grammars in this ‘sandbox’ and then use more sophisticated general algorithms in a
black box manner.

OSBRD example output: S ::= ’b’|’a’ X ’@’ X ::= ’x’ X | #

Input: 'axx@ '

Accepted

Oracle: 2 1 1 2

Semantics phase

Tree construction phase

Derivation term

S('a',X('x',X('x',X(#))),'@'))

Derivation tree

9: S

1: 'a'

7: X

2: 'x'

6: X

3: 'x'

5: X

4: #

8: '@'

OSBRD parse code: S ::= ’b’|’a’ X ’@’ X ::= ’x’ X | #

1 boolean parse S() {
2 int rc = cc, ro = co;
3
4 /* Nonterminal S, alternate 1 */
5 cc = rc; co = ro; oracleSet(1);
6 if (match(”b”)) {return true; }
7
8 /* Nonterminal S, alternate 2 */
9 cc = rc; co = ro; oracleSet(2);

10 if (match(”a”)) {
11 if (parse X()) {
12 if (match(”@”)) {return true; }}}
13
14 return false;
15 }
16
17 boolean parse X() {
18 int rc = cc, ro = co;
19
20 /* Nonterminal X, alternate 1 */
21 cc = rc; co = ro; oracleSet(1);
22 if (match(”x”)) {
23 if (parse X()) {return true; }}
24
25 /* Nonterminal X, alternate 2 */
26 cc = rc; co = ro; oracleSet(2);
27 /* epsilon */ return true;
28 }

Informal parser construction rules

1. One function per nonterminal with no parameters and return type boolean

2. Global variables cc and co which index the current input character and current oracle
output slot

3. Local variables rc and ro which remember the values of cc and co at entry

4. For each alternate production:

4.1 Reset cc and co to their values at entry
4.2 Write the number of the alternate into the oracle
4.3 A nest of if statements for each alternate, one element per terminal and

nonterminal, wrapping return true;
4.4 For each element of the alternate production

4.4.1 If a terminal, then call match
4.4.2 If a nonterminal, then call the parse function for that nonterminal
4.4.3 If ϵ (#) then return true;

5. If there is no epsilon alternative, at the end of the function return false;

OSBRD parse trace: S ::= ’b’|’a’ X ’@’ X ::= ’x’ X | #

Input: 'a x x @'

S() at rc = 0, cc = 0 'a'

S() alternate 1 rc = 0, cc = 0 'a'

At 0 'a' match b - reject

S() alternate 2 rc = 0, cc = 0 'a'

At 0 'a' match a - accept

X() at rc = 2, cc = 2 'x'

X() alternate 1 rc = 2, cc = 2 'x'

At 2 'x' match x - accept

X() at rc = 4, cc = 4 'x'

X() alternate 1 rc = 4, cc = 4 'x'

At 4 'x' match x - accept

X() at rc = 6, cc = 6 '@'

X() alternate 1 rc = 6, cc = 6 '@'

At 6 '@' match x - reject

X() alternate 2 rc = 6, cc = 6 '@'

At 6 '@' match @ - accept

Accepted

Oracle: 2 1 1 2

Adding in semantic actions

There is a style of translation called syntax directed in which actions are executed as a side
effect of the parse. Deterministic Recursive Descent parsers naturally lend themselves to this
style since the actions can just be copied straight into the generated parsers.

Nondeterministic parsers (such as OSBRD, which backtracks) need to find a derivation before
executing semantic actions. The Oracle is our mechanism for communicating between the
parse and semantic phases.

In ART, actions in Java can be written between curly braces anywhere on the right hand side
of a production:

S ::= 'b' | 'a' X '@'

X ::= 'x' { System.out.println("Found an x at location " + cc); } X | #

Syntax directed translation output

Input: 'axx@ '

Accepted

Oracle: 2 1 1 2

Semantics phase

Found an x at location 2

Found an x at location 3

The Oracle records the number of the alternate to be executed for each nonterminal.

So the Oracle 2 1 1 2 says:
Use the second alternate for the start symbol (S)
For the leftmost nonterminal in the resulting expansion (X) use the first production
For the leftmost nonterminal in the resulting expansion (X) use the first production
For the leftmost nonterminal in the resulting expansion (X) use the second production

OSBRD semantic functions

1 class Attribute S {}
2 void semantics S(Attribute S S) {
3 switch(oracle[co++]) {
4 case 1: {
5 match(”b”);
6 break; }
7
8 case 2: {
9 Attribute X X1 = new Attribute X();

10 match(”a”);
11 semantics X(X1);
12 match(”@”);
13 break; }
14 }
15 }
16
17 class Attribute X {}
18 void semantics X(Attribute X X) {
19 switch(oracle[co++]) {
20 case 1: {
21 Attribute X X1 = new Attribute X();
22 match(”x”); System.out.println(”Found an x at location ” + cc);
23 semantics X(X1);
24 break; }
25
26 case 2: {
27 /* epsilon */
28 break; }
29 }
30 }

OSBRD main() and parse() functions

1 void parse(String filename) throws FileNotFoundException {
2 input = readInput(filename);
3
4 System.out.printf(”Input: '%s'\n”, input);
5 cc = co = 0; builtIn WHITESPACE();
6 if (!(parse S() && input.charAt(cc) == '\0')) {System.out.print(”Rejected\n”); return; }
7
8 System.out.print(”Accepted\n”);
9 System.out.print(”Oracle:”); for (int i = 0; i < co; i++) System.out.printf(” %d”, oracle[i]); System.out.printf(”\n”);

10 System.out.print(”\nSemantics phase\n”); cc = 0; co = 0; builtIn WHITESPACE(); Attribute S S = new Attribute S(); semantics S(S);
11 System.out.print(”\nTree construction phase\n”); cc = 0; co = 0; builtIn WHITESPACE();
12 TreeNode dt = new TreeNode(”S”, tree S(), null, TreeKind.NONTERMINAL, GIFTKind.NONE);
13 dt.dot(”dt.dot”); System.out.print(”\nDerivation term\n”); dt.printTerm(0);
14 System.out.print(”\n\nDerivation tree\n”); dt.printTree(0);
15
16 ...
17
18 }
19
20 public static void main(String[] args) throws FileNotFoundException{
21 if (args.length < 1) {
22 System.err.println(”No input file name supplied”);
23 System.exit(1);
24 } else
25 new ARTGeneratedParser().parse(args[0]);
26 }

Using attributes to transmit information within the tree

Adding a print statement to a rule is a rather limited form of side-effect: in general we want to
be able to perform computations over data drawn from several rules.

The mechanism by which we move information around is the attribute. We are allowed to
attach arbitrary data elements to trees in the node

Now, the internal (non-leaf) nodes of a derivation tree are created by instances of a
nonterminal. We specify the data to be attached to these nodes within angle brackets, and we
can then manipulate those elements in Java actions@

X <a:int b:double> ::= 'x' X X { X.a = X1.b + X2.b; }

The instances of nonterminals are numbered across the rule so that we can distinguish them; in
Java we say X.a for the left hand side attribute, X1.a for the first right hand side X’s attribute,
and so on. We are not allowed to look further into the tree - all data accesses are local in this
sense.

The leaf nodes are created by instances of terminals. In our ART system, leaf nodes have
automatically generated attributes that allow us to retrieve the substring of the input that was
matched by this token.

An attributed example

Let us now write an attributed grammar that does not just report the appearance of an x, but
counts the number of x characters in a string:

S ::= 'b' | 'a' X '@' { System.out.println("Xcount: " + X1.x); }

X < x:int> ::= 'x' X { X.x = X1.x+1; }

| # { X.x = 0; }

Input: 'axx@ '

Accepted

Oracle: 2 1 1 2

Semantics phase

Xcount: 2

Implementing attributes in OSBRD

Each nonterminal has its own unique set of attributes. In the generated OSBRD parser, for
each nontermina X we create a class called Attribute X Java declarations corresponding to
the attribute definitions in angle brackets

On entry to a parse function for Y , we create separarate instances of the attribute classes for
every nonterminal that appears on a right hand side of Y .

We can use actions to put values into these attributes before calling the associated parse
function - this allows a parent node to pass information down the tree. Such attributes are
called inherited attributes in the literature.

We can also put new values into the attribute block that was passed to us, thus allowing
information to flow back to our parent. Such attributes are called synthesized attributes in the
literature.

1 class Attribute S {}
2
3 void semantics S(Attribute S S) {
4 switch(oracle[co++]) {
5 case 1: {
6 match(”b”);
7 break; }
8
9 case 2: {

10 Attribute X X1 = new Attribute X();
11 match(”a”);
12 // Instance X1
13 semantics X(X1);
14 match(”@”); System.out.println(”Xcount: ” + X1.x);
15 break; }
16 }
17 }
18
19 class Attribute X { int x; }
20
21 void semantics X(Attribute X X) {
22 switch(oracle[co++]) {
23 case 1: {
24 Attribute X X1 = new Attribute X();
25 match(”x”);
26 // Instance X1
27 semantics X(X1); X.x = X1.x+1;
28 break; }
29
30 case 2: {
31 /* epsilon */ X.x = 0;
32 break; }
33 }
34 }

Tree construction as specialised semantics

In OSBRD grammars, the attributes and actions allow us to directly implement interpreters for
languages up to, but not including, flow control involving loops since the OSBRD semantics
functions only visit each tree node once.

(We shall handle using delayed attributes in a more powerful attribute evaluator to be
discussed in Section 6).

One important use case for these interpreters is the creation of terms for interpretation via SOS
rules (and other styles of formal semantics). In the research literature these are usually called
abstract syntax trees: the idea being that anything a human writes is a concrete syntax, and
the internal forms are all abstractions of the human-written text.

I prefer to use the terms external syntax and internal syntax in recognition of the multi-layered
nature of many real systems, since the internal syntax of an outer layer is used as the external
syntax of the next layer down. We shall have more to say about this in section 5.

Representing trees

We have already studied a purpose-built library for efficiently representing trees in the form of
ART’s ITerms class hierarchy, and of course we could use that with OSBRD generated parsers.
However, we want OSBRD to be stand-alone and simple to understand, so instead we offer a
simple, traditional tree class which uses the child/sibling model.

Each tree node has a String label which is the textual representation of the tree node’s
label. In addition, for pedagogic and debugging purposes, we include an integer field
nodeNumber which holds a unique integer. This allows us to trace through trees more easily
since we can distinguish between multiple instances of the same nonterminal or terminal.

The tree nodes also have a type field to distinguish between epsilon-nodes, terminals,
nonterminals and builtins (since a terminal, nonterminal and builtin could all have the same
text label) and a GIFT annotation of which more later.

1 public enum TreeKind {
2 EPSILON, TERMINAL, BUILTIN, NONTERMINAL
3 };
4

5 public enum GIFTKind {
6 NONE, FOLD UNDER, FOLD OVER, FOLD ABOVE
7 };
8

9 public class TreeNode {
10 String label;
11 int nodeNumber;
12 TreeNode child;
13 TreeNode sibling;
14 TreeKind kind;
15 GIFTKind giftOp;
16

17 ...

Tree construction and rendering

In OSBRD, trees are created bottom-up using a postorder traversal of the derivation, and so
our tree nodes can be created via the usual constructor which is passed child and sibling values.

1 public TreeNode(String label, TreeNode child, TreeNode previousSibling, TreeKind kind, GIFTKind giftOp) {
2 if (previousSibling != null) previousSibling.sibling = this;
3 this.label = label;
4 this.child = child;
5 this.sibling = null;
6 this.kind = kind;
7 this.giftOp = giftOp;
8 nodeNumber = nextNode++;
9 };

The TreeNode class also contains code to render trees as .dot files for visual display, and for
two kinds of textual rendering of these trees: as an indented listing, and as a parenthesized
term suitable for input to eSOS.

1 public void printTree(int indent) {
2 System.out.printf(”%d: ”, nodeNumber);
3 for (int temp = 0; temp < indent; temp++)
4 System.out.printf(” ”);
5 System.out.printf(”%s%s%s”, labelPreString(kind), label, labelPostString(kind));
6 System.out.printf(”%s\n”, giftString(giftOp));
7

8 if (child != null) child.printTree(indent + 1);
9 if (sibling != null) sibling.printTree(indent);

10 };
11

12 public void printTerm(int indent) {
13 System.out.printf(”%s%s%s”, labelPreString(kind), label, labelPostString(kind));
14

15 if (child != null) { System.out.print(”(”); child.printTerm(++indent);
16 }
17

18 if (sibling != null) { System.out.print(”,”); sibling.printTerm(indent);
19 } else
20 System.out.print(”)”);
21 };

Tree outputs

We shall demonstrate the tree outputs with this
example:

X ::= aYc

Y ::= pZr

Z ::= q

The language has only one string apqrc with
this derivation:

X ⇒ aYc ⇒ apZrc ⇒ apqrc

8: X

1: 'a' 6: Y 7: 'c'

2: 'p' 4: Z 5: 'r'

3: 'q'

> parse treeTest

Input: 'apqrc '

Accepted

Oracle: 1 1 1

Semantics phase

Tree construction phase

Derivation term

X('a',Y('p',Z('q'),'r'),'c'))

Derivation tree

8: X

1: 'a'

6: Y

2: 'p'

4: Z

3: 'q'

5: 'r'

7: 'c'

Generated tree functions

1 TreeNode tree X() {
2 TreeNode leftNode = null, rightNode = null;
3 switch(oracle[co++]) {
4 case 1:
5 leftNode = rightNode = new TreeNode(”a”, null, rightNode, TreeKind.TERMINAL, GIFTKind.NONE);
6 match(”a”);
7 rightNode = new TreeNode(”Y”, tree Y(), rightNode, TreeKind.NONTERMINAL, GIFTKind.NONE);
8 rightNode = new TreeNode(”c”, null, rightNode, TreeKind.TERMINAL, GIFTKind.NONE);
9 match(”c”);

10 break;
11 }
12 return leftNode;
13 }
14 TreeNode tree Z() {
15 TreeNode leftNode = null, rightNode = null;
16 switch(oracle[co++]) {
17 case 1:
18 leftNode = rightNode = new TreeNode(”q”, null, rightNode, TreeKind.TERMINAL, GIFTKind.NONE);
19 match(”q”);
20 break;
21 }
22 return leftNode;
23 }

Skipping tree nodes with promotion operators

Sometimes it is useful to omit tree nodes during construction. For instance, consider the Java
if-then-else statement. In Java (and C) the if keyword is always followed by an opening
parenthesis. From the point of view of the semantics, it is entirely redundant.

In fact, bracketing conventions of all kinds are redundant in the tree representation since we
can use the parent-child structure of the tree to directly represent the nesting of all kinds of
constructs, from expression operator priorities and associativities, through control flow
statement nesting and local classes.

We can also rename language constructs by creating dummy nonterminal names and dropping
keywords. So we might write a rule like

if ::= ’if’ ’(’ predicate ’)’ statement ’;’

but want the elements in red to be omitted from the tree so that we and up with the term
if(predicate,statement)

The ˆ and ˆˆ fold operators

ART provides a set of tree annotations called GIFT operators (which stands for
Gather-Insert-Fold-Tear). In this section we only consider two main the Fold annotations:
fold-under ^ and fold-over ^^.

Conceptually, the fold operators move the annotated node up one level in the tree, folding on
top of or underneath their parent. The annotated node’s children are dragged up with it.

Fold under ^ on a terminal

A ^ annotation applied to a terminal simply deletes it (it is folded under its parent, and has no
children)

X ::= ’a’ Y ’c’^

Y ::= ’p’ Z ’r’

Z ::= ’q’

8: X

1: 'a' 6: Y 7: 'c' ^

2: 'p' 4: Z 5: 'r'

3: 'q'

24: X

25: 'a' 26: Y

27: 'p' 28: Z 30: 'r'

29: 'q'

Fold under ^ on a nonterminal

A ^ annotation applied to a nonterminal pulls that node up under its parent. The children
come with it, and are inserted into the children of the parent:

X ::= ’a’ Y^ ’c’

Y ::= ’p’ Z ’r’

Z ::= ’q’

8: X

1: 'a' 6: Y^ 7: 'c'

2: 'p' 4: Z 5: 'r'

3: 'q'

24: X

25: 'a' 26: 'p' 27: Z 29: 'r' 30: 'c'

28: 'q'

Fold over ^^ on a nonterminal

A ^^ annotation applied to a nonterminal pulls that node up over its parent, effectively

relabelling the parent node. As before, the children come with it:

X ::= ’a’ Y^^ ’c’

Y ::= ’p’ Z ’r’

Z ::= ’q’

8: X

1: 'a' 6: Y^̂ 7: 'c'

2: 'p' 4: Z 5: 'r'

3: 'q'

24: Y

25: 'a' 26: 'p' 27: Z 29: 'r' 30: 'c'

28: 'q'

John Backus 1924–2007
https://en.wikipedia.org/wiki/John_Backus

https://en.wikipedia.org/wiki/John_Backus

4C From strings to tokens - lexical analysis

Peter Naur 1928–2016
https://en.wikipedia.org/wiki/Peter_Naur

https://en.wikipedia.org/wiki/Peter_Naur

4D The space of parsing algorithms

Donald Knuth 1938–
https://en.wikipedia.org/wiki/Donald_Knuth

https://en.wikipedia.org/wiki/Donald_Knuth

4E Generalised Context Free parsing

Masaru Tomita 1957 –
https://en.wikipedia.org/wiki/Masaru_Tomita

https://en.wikipedia.org/wiki/Masaru_Tomita

4F Generalised regular and context free lexical analysis

Adrian Johnstone and Elizabeth Scott

5 Grammars, trees and attributes

Now we have the formalisms, how do we work with them?

You now have a working knowledge of parsing, action execution, derivation tree rework for
internal syntax generation and SOS interpretation. Just as with any form of programming,
once you have understood the building blocks you still need to develop idioms and design
patterns to generate the effects that you want.

We shall now look at a sequence of small languages in SLELabs/AttributeEvaluation and
develop grammar styles to handle common programming language features.

Section Topic

5A Motivation
5B Grammar idioms for expressions
5C Delayed attributes and control flow
5D Control flow abstraction
5E Formal aspects of attribute grammars
5F A synthesis of attribute grammars and term rewriting

5A Motivation

We have two main routes to language interpretation: the genertaion of prefix internal forms
suitable for eSOS interpretation, and the direct implementation of interpreters using syntax
directed translation in which actions are executed as a side effect of the parse.

These two are not necessarilly in tension with each other: for instance we might use a syntax
directed translation to construct the internal form (and in fact that is effectively what we shall
do, but the actions are disguised as GIFT annotations).

So both techniques are important. I think it is fair to say, though, that most little languages
are implemented as syntax directed translations, possibly to some three-address code-like
internal form that may be easily executed by a simple simulator.

The common thread is abstraction or, loosely speaking, knowing what to throw away.

Abstraction in linguistics, science and mathematics

Abstraction is central to what we do in computing – essentially the process of finding clean,
general models of things that we aid implementation and often describe real applications as a
special case of some more general pattern or idea. The idea of abstraction as a powerful
intellectual tool emerges from linguistics and mathematics:

Quotations from: Anatol Rappaport Science and the goals of man (1950) and from Maths Vault at
https://mathvault.ca/math-glossary. See also https://en.wikipedia.org/wiki/Abstraction

https://mathvault.ca/math-glossary
https://en.wikipedia.org/wiki/Abstraction

Abstraction in programming

Early programming languages dealt very much at the level of individual machine operations and
individual machine locations. The subroutine (first really identified by Maurice Wilkes) was
initially thought of as a way of reducing teh size of prigrams.

Consider an integer only machine and a program that needs to perform floating point addition.
We could insert a sheaf of instructions to perform the addition at every point where FP
addition was called for (this is called a macro. The subroutine idea was to call a separate piece
of library code which resided at one location in memory, and since the call and return sequence
was small compared to the FP addition syntax, the program size was reduced.

What began as a technical trick was soon recognised as an excellent way of organising the
programmer’s thoughts. The structured programming debates of the 1970s, and the Design
Patterns movement are examples of procedural abstraction. We recognise data abstraction in
our use of (amongst other things) parameterised collection data types such as HashMap<> in
Java. Continuations are control flow abstractions.

The idea of abstract syntax

Donald Knuth attributes the term abstract syntax to John McCarthy, the inventor of LISP. The
LISP style as we know it today was originally intended to be just the internal syntax for
another, more human-friendly language. So LISP’s intended internal syntax ended up as its
external syntax.

As an aside, the use of a single internal representation for both data and code in LISP is
intensely liberating, and allows all kinds of idioms that are hard – and often impossible – to
express in conventional languages. Learn Scheme if you want your mind expanded.

So LISP shows that separating out the notions of human-friendly concrete syntax and internal
abstract syntax is rather fraught.

I don’t use the terms myself because real systems are often multilayer, in which the internal
syntax of an outer layer is the external syntax of the next layer down. And as one progresses
towards code generation for a real architecture, the layers tend to get more concrete.
Nevertheless, the term Abstract Syntax Tree is ubiquitous - when you see it just think Internal
Syntax Tree/Term.

Abstraction in syntax

Now, just because I don’t like the term abstract syntax please don’t get the idea that I think
we aren’t abstracting...

In this context (internal syntactic forms) abstraction usually involves one of two transformations

1. Discarding syntactic elements that do not change the semantics of the internal syntax

2. Normalising syntactic forms so that external phrases with similar meanings are mapped to
the same (possibly more general) internal form.

Occasionally, especially for normalisation, we want to reorder elements, or insert pieces of tree
that do not directly arise from the concrete syntax.

Occasionally, especially for normalisation, we also want to gather together children of disparate
nodes into a single new node.

Discarding nesting tokens

Humans like to write text linearly, but ever since Algol-60 introduced the notion of block
structure, programming languages have been strongly compositional making extensive use of
nesting to build complex behaviour from small building blocks.

In Java, the { and } braces delimit blocks of code that we think of as compisite statements.
Each control structure takes a single statement (which may be a composite). In other
languages, explicit bracketing is used instead if the composite statement, with structures such
as if-then-if or if-then-endif

In Java, classes can nest. In Pascal like languages, procedures can nest. In nearly all languages,
operator expressions can nest.

All of these nesting ideas need delimiter tokens in linear text, but can be represented directly by
parent-child relationships in the tree. So we do not need the various kinds of brackets that we
see in Java. However, getting the right shape of tree requires care.

Rear Admiral Grace Hopper
https://en.wikipedia.org/wiki/Grace_Hopper

https://en.wikipedia.org/wiki/Grace_Hopper

5B Grammar idioms for infix expressions

Early pocket calculators executed arithmetic operations in strictly left to right order. This was
straightforward from an implementor’s point of view, but ignores the arithmetic conventions
that we learn in school.

These conventions can be viewed as a way of putting in parentheses that a user has omitted.
So, for instance, we typically use these priority levels

▶ parentheses (do-first) [High]

▶ exponentiate

▶ multiply, divide, remainder

▶ add, subtract [Low]

So the, by convention, the meaning of x + y × z is x + (y × z) not (x + 7)× z

We could avoid this ambiguity by insisting that all operations are parenthesized, or by using
Reverse Polish Notation. The difficulty arises from our love of infix notation.

Commutativity

Some operations are mathematically commutative, which means that we get the same result if
we swap the operands around. So for instance,

3 + 4 = 7 = 4 + 3

but
3− 4 = −1 ̸= 4− 3

Hence, in mathematics, addition of integers is commutative but subtraction is not.

In computing, even addition is not commutative, because of the finite representation of
numbers. So, for instance, for eight bit unsigned addition, 254 + 1 = 255 but 255 + 1 = 0.

Forgetting to take this irregularity of computer arithmetic into account has led to some
expensive failures (eg Ariane 501: https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=PK_yguLapgA

Associativity

In programming languages, we disambiguate compound expressions over operators of equal
priority by specifying that operators are left-, right- or non associative. (Note that this is
different to the mathematical notion of associativity in which an operator is associative if the
order of parentheses does not matter.)

In most programming languages, relation operations are not associative. For instance
1 ≤ x ≤ 6 is aperfectly reasonable thematically expression which constrains x to the interval
1..6. However, in Java 1 <= x returns a boolean value which cannot be used in a further
relational operation. We call such operators non-associative.

By convention x − y − z means (z − y)− z . We sometimes say that subtraction − binds more
tightly to the left or is left associative.

Exponentiation in arithmetic is conventionally right associative: xy
z

means x (y
z)

When treated as an operator, assignment must also be right associative since x = y = z = 3

must be processed right to left.

Syntax Semantics Precedence Associativity

[] Array element select 1 Left
() Method call 1 Left
. Class member select 1 Left

+ Unary posite 2 Right
- Unary negate 2 Right
! Unary logical complement 2 Right
~ Unary bitwise complement 2 Right
++ Unary postfix or prefix complement 2 Right
-- Unary postfix or prefix complement 2 Right
(type) Type cast 2 Right
new Create new object 2 Right

* Multiply 3 Left
/ Divide 3 Left
% Remainder after division 3 Left

+ Add 4 Left
- Subtract 4 Left
+ String concatenation 4 Left

Syntax Semantics Precedence Associativity

<< Signed left shift 5 Left
>> Signed right shift 5 Left
>>> Unsigned right shift 5 Left

< Less than 6 Non
<= Less than or equal 6 Non
> Greater than 6 Non
>= Greater than or equal 6 Non
instanceof Reference is an instance of 6 Non

== Equal to 7 Non
!= Not equal to 7 Non

& Bitwise and 8 Left
& Logical and 8 Left

^ Bitwise xor 9 Left
^ Logical xor 9 Left

| Bitwise or 10 Left
| Logical or 10 Left

&& Logical short circuit and 11 Left

|| Logical short circuit or 12 Left

? : Conditional 13 Right

= Assignment 14 Right
+*= Operation and assign 14 Right
-= Operation and assign 14 Right
*= Operation and assign 14 Right
/= Operation and assign 14 Right
%= Operation and assign 14 Right
<<= Operation and assign 14 Right
>>= Operation and assign 14 Right
>>>= Operation and assign 14 Right
&= Operation and assign 14 Right
^= Operation and assign 14 Right
|= Operation and assign 14 Right

Niklaus Wirth
https://en.wikipedia.org/wiki/Niklaus_Wirth

https://en.wikipedia.org/wiki/Niklaus_Wirth

5C Delayed attributes and control flow

Edsger W. Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

5D Control flow abstraction

Sir Maurice Wilkes
https://en.wikipedia.org/wiki/Maurice_Wilkes

https://en.wikipedia.org/wiki/Maurice_Wilkes

5E Formal aspects of attribute grammars

Donald Knuth on writing
https://www.youtube.com/watch?v=vG0D-kKTF1g

https://www.youtube.com/watch?v=vG0D-kKTF1g

5F A synthesis of attribute grammars and term rewriting

6 Pragmatics and case studies

Section Topic

6A The architecture of language processors
6B The landscape of programming languages
6C The Zoo of implementation technologies
6D The tar pit of complexity
6E Ambition, management and maintenance
6F The future

Further reading on language design and implementation

These books are useful compendia of topics in language design and compilation:

Programming Language Pragmatics
Michael L Scott, fourth edition, Morgan Kaufman, 2016

Modern compiler design
Dick Grune et al, Second edition, Wiley, 2016

Programming language design concepts
David A. Watt, Wiley, 2010

Design concepts in programming languages
Franklyn Turback and David Gifford, MIT Press, 2008

A now very dated, but in my opinion enjoyable and motivating book is:

The programming language landscape
Henry Ledgard and Michael Marcotty, Science Research Associates, 1981

Further reading on machine level topics and software management

These two books are the standard texts on computer architecture and systems software:

Computer architecture: a quantitative approach
John Hennessy and David Patterson, sixth edition, Morgan Kaufmann,2017

Computer organisation and design
John Hennessy and David Patterson, sixth edition, Morgan Kaufmann,2020

Anybody who ever has to be a member of a software development should read this:

The mythical man-month
Fred Brooks, anniversary edition, Addison Wesley, 1995

6A The architecture of language processors

We can identify four main parts of a language system

1. The front end (F) translates from external syntax to internal syntax

2. The back end (B) translates from external syntax to target syntax

3. The middle end (M) translates from internal syntax to internal syntax, transforming the
program in some way

4. The execution end (X) executes the program, consuming data and generating the
programs effects

There are at least three representations of the user program in use here: external (E), internal
(I) and target (T). In the case of javac, the Java compiler, syntax E is the Java language
itself, syntax T is Java byte code and syntax I is a property of the particular java compiler
implementation. Some compiler toolkits, for instance the gcc toolchain, have multiple internal
syntaxes, each optimised for a particular task.

It’s languages all the way along

We can visualise these four parts as a translation pipeline, each stage of which translates the
user’s initial program, perhaps producing some outputs as a side effect.

Syntax Stage Side outputs
External User program

Front end Syntax check
Internal Internal representation

Middle end Call graph, cross refeference, lint and verify
Internal Reworked internal representation

Back end Source-to-source transformations
Target Translated program

Execution end Profile, coverage, program effects
In detail, the middle end often involved multiple phases, each of which is an I-to-I translation

Why four stages?

The four stage process arises naturally from a modularisation based on dependencies.

The front end is dependent only on the external syntax and outputs the internal syntax

The middle end is independent of external and target syntax

The back end is dependent only on the target syntax and the internal syntax

The execution end is dependent only on the target syntax

This separation of concerns allows external and target independent middle ends to be
developed, which can then be connected to multiple front and back ends. So the GNU compiler
collection includes front ends for C, C++, Go, Pascal, Modula-2, FORTRAN, Ada and others.
GNU has supported over 50 different machine architectures over its development history.

Detailed code analysis and rearrangement so as to improve speed or compactness of the
generated code resides in the middle end, so having a machine and programming language
independent middle end allows reuse of significant intellectual property.

Do we always need four stages? The single pass compiler

In some use cases we do not need all four stages

It is perfectly possible (for certain restricted classes of programming language) to emit machine
code for a real computer architecture as a side effect of the parsing process, with no discernible
middle- or back-end. In fact nearly all languages designed before the mid-1990s support this
so-called single pass compiler architecture.

The defining feature of ‘single pass friendly’ languages is that variables and procedures must be
declared before use. ANSI-C and Pascal are good examples of this phenomenon. It cause
particular problems with recursive functions, whose definitions cannot be completed before they
are used. To handle such cases, both languages allow a signature to be declared without a
corresponding function body.

Such compilers usually generate rather inefficient executable code, but they can be run on very
small memory machines with only a few thousand memory locations. They can also be very fast
- the 1980s Turbo Pascal compiler wasa very popular development environment for IBM PCs.

Do we always need four stages? The assembler

Until highly portable languages such as Java appeared in the mid 1990s, most working software
engineers would have had the skills to drop down into machine language if they wanted to speed
up a critical piece of code. In our terms, this means writing programs directly in syntax T.

To a hardware engineer, syntax T comprises bit strings, and humans are not very good at
distinguishing bit strings by eye, so very early on in the development of computers (around
1947 and 1948 in Birkbeck College London and at the Mathematical Laboratory in Cambridge)
a programming style developed in which short mnemonics such as ADD and JMP were defined
for each discrete machine instruction, along with a facility to associate an alphanumeric name
with a machine address. This allowed programmers to write, for instance, ADD X,Y,Z which
could easily be turned into a bit string by looking up the bit-string values of A, X, Y and Z,
and then concatenating them together into a binary machine word. The style of programming
language is called an assembler; and the reverse lookup provides a dissassembly when
examining machine instructions.

Nearly all execution environments provide some sort of assembly and dissassembly. The javap
command dissasembles JVM byte code from .class files.

Do we always need four stages? The interpreter

Programs in languages other than assembly language first began to emerge in the mid-1950s.
So-called autocodes were developed for the Manchester Mk 1 and later Ferranti machines also
associated with Manchester University and in Cambridge for EDSAC. These systems typically
allowed individual expressions to be compiled into subroutines, and were the beginnings of
portable programs that could run on more than one machine architecture.

Language development then took two paths for two user communities. The FORTRAN
language (1957) aimed to produce code which was fast enough to persuade assembly language
programmers to learn the new technique.

Universities were interested in teaching programming to engineers and scientists, and needed
simple languages that could run on low performance systems with instant feedback to the user.
BASIC (Beginners All Purpose Symbolic Instruction Code) (1964) was designed to be executed
line-by-line in an interactive environment. No syntax T program is produced: instead the
middle end has a routine for each language feature which is activated as each line is parsed:
this style is called an interpreter.

Do we need more than four stages? The Just-In-Time compiler

One way to achieve high portability but still allow significant code improvements to be applied
to the user’s program is to compile to a virtual machine. The UCSD P-system (1977) was a
response to the plethora of new microprocessor architectures being developed at that time. By
compiling to P-code and then having an efficient interpreter which could be easily implemented
in, say, assembly language one could quickly get Pascal running on a new architecture.

The same approach was taken by the designers of Java (1995) which was originally intended
for embedded systems in which code would be compiled on a general purpose machine, but run
on processors with very restricted resources.

Early Java systems were very slow compared to C code compiled to native instructions.
Modern systems are often within a small integer factor of the performance of C due to the
development of Just-In-Time techniques in which the interpreter monitors hot spots that are
frequently executed, and can stop and compile those to native instructions. Note that this is a
T to T’ translation, where T is JVM byte code and T’ is the native instruction set of the host
architecture.

Tooling use cases

1. Syntax checker (F)

2. Cross referencer, call graph generator, linter, ‘bad smell’ detector (FM)

3. Code verifier against some high level specification (FM)

4. Pretty printer, minifier, normaliser (FMB, but with syntax T=E)

5. Test case generator (FMB, but with syntax T=E)

6. Live editor with immediate feedback to the programmer (all of the above, running in the
background of an editor)

7. Interpreter (FMX)

8. Single pass compiler (FX)

9. Optimising compiler (FMBX)

10. Just-in-time compiler (FMBX(B’X)*)

11. Reverse compiler (FMB, but with syntax E being low level (eg Java byte code) and syntax
T being high level (eg Java))

12. Profiler (FMBX)

13. Coverage analyser (FMBX)

6B The landscape of programming languages

Most languages evolve from earlier attempts, but occasionally radical new ideas emerge.
FORTRAN was the first complete programming language that could run on more than one
architecture. COBOL was the first attempt to converge programming language syntax with
non-scientific prose (SUBTRACT A FROM B GIVING C). LISP (1958) was the first functional
language (although LISP as we know it was intended only to be the internal syntax for a more
baroque external syntax!)

Algol was the first widely used language to allow user defined types, recursion and block
structured control flow. Simula-67 introduced object orientation. Smalltalk took the object
idea to the limit - everything in Smalltalk-80 is an object including control flow structures.

SETL (1969) introduced comprehensions which now appear in many functional languages, and
more recently Python. ML (1973)and its precursors introduced the notions of type inference,
type variables, algebraic types and pattern matching. Rust (2015) provides a type system that
guarantees certain safety properties.

How not to design a successful language

Notions are more important than notations. Notation matters though!

When programmers start thinking about a new language there is a strong tendency to focus on
external syntax by finding neat ways to capture common idioms. Now, it turns out that a clean
and unified design is more likely to emerge from a consideration of abstract language features
which are then fitted into an external syntax.

This is why on this course we have focused on internal syntax first – in our prefix style we only
have to decide on set of features, their names and their arities and then we have the internal
syntax defined. With it we can start to write semantic descriptions and discover unpleasant
inconsistencies and interactions using a very simple regular syntax which supports reasoning.
Once the design has settled down, we can ‘decorate’ the internal syntax by developing an
external syntax that admits straightforward translation to our internal semantics-friendly
notation.

The perfect language may not exist

It is conceivable that at some point in the future, all programs will be written in a single
language. After all, we are still quite early on in the evolution of computing systems, and are
only just emerging from the frenetic era of exponential hardware improvement during which
Moore’s ‘law’ has delivered a doubling of speed and memory density every 18 months for many
decades.

However, at the moment new ideas and ways of implementing them continue to surface in
experimental languages.

Programming languages and their ecosystems have lifecycles, just like any other kind of
software. Many modern features such as generics, lambdas and limited type inference have
been retro-fitted into Java’s initial core, just as object oriented programming was retro-fitted to
ANSI-C. It is likely that in the end these languages will be superceded by more elegant,
integrated designs

Programming language facets

1. Names

2. Atomic values and types

3. Binding time and scope regions

4. Expressions

5. Sequencing, selection, iteration and call/return

6. Statements

7. Data abstraction

8. Functional and procedural abstraction

9. Packaging

10. Concurrency and non-determinism

11. Exceptions

12. Meta-programming and reflection

Selected ideas in programming languages

1. Throw away the syntax – Scheme, Forth

2. Orthogonality vs one-way-to-say – Algol-68, Lua, Pascal

3. When to bind – Python (dynamic) vs Occam (very static)

4. Organising arguments – keyword arguments vs signature ordering

5. Algebraic datatypes and pattern matching

6. Collection comprehensions – set builder notation

7. Making functions first order – lambdas

8. Making types first order – generic vs type variables

9. Pragmatic types – lengths do not add to areas; ranging

10. Type inference

11. Throw away the control flow - continuations

12. Concurrent friendly notions – map/reduce, array operations

6C A Zoo of specification and implementation technologies

1. Deterministic lexing parsing and parsing

2. General lexing and parsing

3. Intermediate form languages

4. Structural Operational Semantics

5. Other approaches to formal semantics

6. Control flow analysis

7. Dataflow analysis

8. Traditional optimisations

9. Static scheduling

10. Dynamic scheduling

L1 Laboratory: Domain specific languages for 3D printing

Our first laboratory session is designed to familiarise you with one example of a Domain
Specific Language.

Please turn to Appendix A of the book, and work with Section A.1.

P1 Project: Java FX 3D as an internal DSL

Our first project session introduces you to some aspects of the JavaFX 3D modelling API, as
one of thre epotential bases for your individual project.

Please turn to Appendix B of the book, and work with Section B.1.

Revision topics

Term rewriting and the ARTValue system
Context Free grammars :idioms for context free grammars - priority, associativity, modularity
[Cava exprssion grammar] Ordered Singleton Backtrack Recursive Descent parsing: Parse
functions Semantic functions Tree builder functions GIFT opertions Producing rewritten
derivation trees for direct input as ESOS terms
Attribute grammars: L-attribution [minicalc] Delayed attributes [minicall] Flow control
Variables Accessing native code
SOS Inference rules specifiying relations The ESOS system The interpretation function Fsos
Fsos traces Flow control Variables Dynamic type checking via the artvalue package
Domain specific languages Solid, image processing and music domains, physical unit types

Stephen Kleene 1909–1994
https://en.wikipedia.org/wiki/Stephen_Cole_Kleene

https://en.wikipedia.org/wiki/Stephen_Cole_Kleene

Emil Post 1897–1954
https://en.wikipedia.org/wiki/Emil_Leon_Post

https://en.wikipedia.org/wiki/Emil_Leon_Post

George Peacock 1791–1858
https://en.wikipedia.org/wiki/George_Peacock

https://en.wikipedia.org/wiki/George_Peacock

John Herschel 1792–1871
https://en.wikipedia.org/wiki/John_Herschel

https://en.wikipedia.org/wiki/John_Herschel

Kurt Gödel 1906–1978
https://en.wikipedia.org/wiki/Kurt_Godel

https://en.wikipedia.org/wiki/Kurt_Godel

Ludwig Wittgenstein 1889–1951
https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

Giusepe Peano 1858–1932
https://en.wikipedia.org/wiki/Giuseppe_Peano

https://en.wikipedia.org/wiki/Giuseppe_Peano

Charles Babbage 1791–1871
https://en.wikipedia.org/wiki/Charles_Babbage

https://en.wikipedia.org/wiki/Charles_Babbage

Adrian Johnstone and Elizabeth Scott

0 Course structure2Course sessions3Learning resources4Week by week – lectures and
labs5Week by week – the project6Project marking criteria7The examination8How much
work?9Time management101 Formalisation121A It’s languages all the way down13The Java
translation stack14Real computers, automatic and manual15The essence of
computing16Programs17Is the six-instruction computer sufficient?18Are all six instructions
necessary?19Cheap computing20Expensive computing21Languages all the way down... with the
hardware as a base case221B Utility and power in languages and their processors24Reuse
encourages layering25Internal and external DSLs26The DSL maintenance trap27The DSL
maintenance solution281C What do we mean by formal?30Formalising
mathematics31Formalising the notion of computation32Programming languages and the
Entscheidungsproblem 331D Conway’s Game of Life, formalised35Cellular automata36The CGL
transition rule37Neighbourhoods38Translation to Java39Some CGL patterns40Näıve
implementation of CGL using an array41A set based implementation without ‘edges’42Using a
visited set to avoid recomputations43How is this relevant to programming language design and
implementation?44Programming languages as transition relations451E The rewrite model:
Euclid’s Greatest Common Divisor47The text of Elements48The GCD algorithm as a
program49GCD in Java50The fixed-code-and-program-counter interpretation51Rewriting –
another way to think about program execution52Rewriting vs. using a program counter54A
rewrite evaluation of GCD with input [6, 9]562 Rewriting systems - concepts and
terminology612A Transition relations and abstract rewriting62Relations63Operations over

relations64Properties of relations R between domain X and codomain Y 65Homogeneous
relations over a set X66Closures of homogeneous relations67The graph of a
relation68Transition systems and abstract rewriting systems69Normal forms and termination70
Normal termination and stuck transitions71Confluence72Keeping things simple732B String
rewriting75Rules for upper casing76Rule schemas77More subtle rewrites78Avoiding implicit
equality tests79Avoiding contiguous variables80Matching, binding and substituting812C Term
rewriting83Infix syntax84Prefix and postfix syntax85Internal syntax style86Prefix notation and
trees87Terms88The recursive nature of terms89Term patterns90Matching of terms91Notation
for the matching operation92Pseudo-code for term matching93Substitution of
terms94Pseudo-code for term substitution95Some simple rewrites962D Rewriting
strategies98Subsetting rules and using phased strategies to manage termination99Subsetting
rules and using phased strategies to manage confluence100Expressions naturally need inside out
evaluation101Simple Java class for binary term constructors102Preorder traversal103Inorder
traversal104Postorder traversal105Sibling order106Incomplete traversals107Real systems1082E
Implementing terms110Näıve term representation111Better term representation112The
immense cost of term rewriting113DAGs and immutable terms114Hash tables of terms: the
term is its hash table address115Aspects of ART’s implementation116The CWI ATerm
datatype1172F Types and operations: the ARTValue system119The rise of typing in
programming languages120Typeful programming121Coercion vs conversion122Strong and weak
typing123Static and dynamic typing124Name equivalence vs structural equivalence125ART’s
types126ART’s operations127Dynamic type checking of ART values128The V3 and V4 ART

value systems129Atomic types130Enumeration types131Subrange
types132Dimensions133Polymorphism through overloading and named
arguments134Polymorphism through flexible arities135Polymorphsim through
inheritance136Polymorphism through parameterised types137The emporer’s old clothes:
https://dl.acm.org/doi/pdf/10.1145/358549.3585611393 Structural Operational
Semantics1403A Conditional term rewriting141Configurations142Semantics by
enumeration143A schema for add02144Conditional rewriting expressed using operators145Built
in functions146Inference rules147Round the clock and recursion148Inference rules in
detail149Abbreviated rules150Examples in ART151ART’s eSOS trace levels1583B Recursive
inference rules161Addition, and compound addition162Compact traces1713C Expression
nesting and congruence rules173The three-rule style for binary operators1743D The store,
program variables, output and simple sequencing179Assignment of an integer to a
variable180Assignment resolution181Sequencing182Sequenced store operations using previous
rules183Dereferencing a variable184Output1853E Control
flow188if-then-else189while-do192Other structures1963F Big step semantics1984 Syntax
specification and analysis2044A Internal and external syntax205Middle end first206Thinking
about programs and their transformations207Syntax for humans208Resources for thinking
about syntax209Taming the syntax monster210Backus and Naur and their
notation211Mathematical games for lexicalisation and parsing212Formal
grammars213Generating sentences214The Chomsky hierarchy215Derivation steps and context
free derivations216Derivation trees217Properties of derivation trees218Unit productions,

https://dl.acm.org/doi/pdf/10.1145/358549.358561

epsilon-free grammars and uselessness219Finite and infinite languages220Ambiguity and
grammar equivalence221Semantics and derivation trees222Generators, recognisers and
parsers223Alphabets, whitespace, and the benefits of lexicalisation224Why context free
parsing?225The traditional Lex/Yacc style external to internal syntax pipeline226The
‘Holloway’ pipeline227The ‘Holloway’ pipeline with specification inputs2284 B Limited but easy
parsing: Ordered Singleton Backtrack Recursive Descent230The pedagogic benefits of
OSBRD231The graph of leftmost derivation steps232An unambiguous transition graph is a
tree233An ambiguous transition graph is not a tree234Unhygenic transition graphs are not
even DAGs235Parsing strategies236Our approach237Two external syntaxes for
BNF238Extended Backus Naur form – EBNF239Some EBNF subtleties240Lexical
matters241Some lexical subtleties242ART V3 and your project work243The OSBRD
idea244OSBRD for pedagogy, MGLL for production245OSBRD example output: S ::=

’b’|’a’ X ’@’ X ::= ’x’ X | #246OSBRD parse code: S ::= ’b’|’a’ X ’@’ X

::= ’x’ X | #247Informal parser construction rules248OSBRD parse trace: S ::= ’b’|’a’

X ’@’ X ::= ’x’ X | #249Adding in semantic actions250Syntax directed translation
output251OSBRD semantic functions252OSBRD main() and parse() functions253Using
attributes to transmit information within the tree254An attributed example255Implementing
attributes in OSBRD256Tree construction as specialised semantics258Representing
trees259Tree construction and rendering261Tree outputs263Generated tree
functions265Skipping tree nodes with promotion operators266The ˆ and ˆˆ fold
operators267Fold under ^ on a terminal268Fold under ^ on a nonterminal269Fold over ^^ on a

nonterminal2704C From strings to tokens - lexical analysis2724D The space of parsing
algorithms2744E Generalised Context Free parsing2764F Generalised regular and context free
lexical analysis2785 Grammars, trees and attributes2805A Motivation281Abstraction in
linguistics, science and mathematics282Abstraction in programming283The idea of abstract
syntax284Abstraction in syntax285Discarding nesting tokens2865B Grammar idioms for infix
expressions288Commutativity289Associativity2905C Delayed attributes and control flow2955D
Control flow abstraction2975E Formal aspects of attribute grammars2995F A synthesis of
attribute grammars and term rewriting3016 Pragmatics and case studies302Further reading on
language design and implementation303Further reading on machine level topics and software
management3046A The architecture of language processors305It’s languages all the way
along306Why four stages?307Do we always need four stages? The single pass compiler308Do
we always need four stages? The assembler309Do we always need four stages? The
interpreter310Do we need more than four stages? The Just-In-Time compiler311Tooling use
cases3126B The landscape of programming languages313How not to design a successful
language314The perfect language may not exist315Programming language facets316Selected
ideas in programming languages3176C A Zoo of specification and implementation
technologies318L1 Laboratory: Domain specific languages for 3D printing319P1 Project: Java
FX 3D as an internal DSL320Revision topics321

