
Software Language Engineering

Adrian Johnstone

Edition:

Joseph Wright of Derby; An Iron Forge
©Tate Gallery 1992

Image released under Creative Commons CC-BY-NC-ND (3.0 Unported)

See: https://en.wikipedia.org/wiki/The_Blacksmith’s_Shop

The teaching materials for Software Language Engineering (including this doc-
ument, the walkthroughs, the laboratory scripts, the exercises and their model
solutions, and the project guides) are ©Adrian Johnstone 2021

https://en.wikipedia.org/wiki/The_Blacksmith's_Shop

Contents

1 Formalisation 1
1.1 It’s languages all the way down. . . 1
1.2 Lessons from natural language 2

1.2.1 Semantics, syntax, ambiguity and ‘sayability’ 3
1.2.2 Formal languages: the need for precision 4

1.3 Utility and power in programming languages 5
1.4 The software engineering challenges in language design 6
1.5 An idealised methodology 6
1.6 Formal systems 6

1.6.1 Practice and theory 7
1.6.2 Modularity and scalability 8

1.7 Formalisation as an aid to engineering: Conway’s Game of Life 9
1.7.1 CGL examples 10
1.7.2 Emergent behaviour in CGL 12
1.7.3 Näıve implementation of CGL using an array 13
1.7.4 A better formalisation 15
1.7.5 Improved formalisation can improve implementations 16
1.7.6 Using a visited set to avoid recomputation 18

1.8 Thinking formally about program execution 19
1.8.1 Euclid’s Greatest Common Divisor algorithm 20
1.8.2 The fixed-code-and-program-counter interpretation 21
1.8.3 What is equality? 23
1.8.4 The reduction interpretation 23
1.8.5 A reduction evaluation of GCD with input [6, 9] 25

1.9 Next steps 28
1.10 Exercises 29

2 Rewriting 30
2.1 Equality of programs 30
2.2 Mathematical objects, their denotations and software implemen-

tations 31
2.3 String rewriting 32
2.4 Term rewriting 32
2.5 Internal syntax style 33
2.6 Terms 34

2.6.1 Denoting term symbols 35

CONTENTS ii

2.6.2 Typed terms 35
2.7 Terms and their implementation in Java 35

3 Structural Operational Semantics 36
3.1 The basic idea 36
3.2 Execution via substitution 37

3.2.1 Configurations 38
3.3 Avoiding empty terms – the special value done 40
3.4 Term variables are metavariables 41
3.5 Pattern matching of terms 42
3.6 Pattern substitution 44
3.7 Rules and rule schemas 44
3.8 The interpreting function FSOS 47

3.8.1 Managing the local environment 47
3.8.2 Procedural pseudo-code for FSOS 47
3.8.3 Program term rewrites - the outer interpreter 49

3.9 Structural Operational Semantics and FSOS traces 49
3.9.1 SOS rules for an addition language 50
3.9.2 Expression nesting 51

3.10 An SOS for a language with flow control, variables and expressions 53
3.10.1 Configurations 53
3.10.2 Variable handling 53
3.10.3 Arithmetic operations 54
3.10.4 Boolean relations 55
3.10.5 Sequential flow control 55
3.10.6 Conditional flow control 55
3.10.7 Loops 56

3.11 Using big steps to simplify the rules 56
3.12 Interpretation traces for our language 57

3.12.1 Example 1 – assignment to literal 58
3.12.2 Example 2 – assignment to variable 58
3.12.3 Example 3 – sequence over assignments 58
3.12.4 Example 4 - conditional assignment 59
3.12.5 Example 5 - loops 59

4 Syntax 61
4.1 Syntax in natural languages 62
4.2 Writing 62
4.3 The search for precision 65
4.4 Metalanguage 65
4.5 Outer and inner syntax 65

4.5.1 Syntactic sugar, redundancy and syntactic ‘noise’ 66
4.6 The legacy of non-general parsing 67
4.7 Parsing by expanding the start symbol 68
4.8 Parsing by reducing to the start symbol 68
4.9 Multiparsing and the lexer-parser interface 68
4.10 OSBRD: Implementing a parser toolchain 68

CONTENTS iii

4.11 Ordered Singleton Backtrack Recursive Descent parsing 69
4.11.1 The OSBRD algorithm 69
4.11.2 An OSBRD example in Java 70

4.12 Engineering a complete Java parser 72
4.13 Using built in matchers 75
4.14 Using attributes and inline semantics 79

4.14.1 Attributes 79
4.14.2 A four function calculator 81

4.15 Implementing inline semantics 82
4.16 Making explicit trees 84

4.16.1 The TreeNode class 86
4.16.2 Cloning trees 88
4.16.3 Visualising trees on the console 88
4.16.4 Visualising trees with the GraphViz tools 88
4.16.5 Implementing TIF operators 88

4.17 A Sandbox grammar for Sandbox 89
4.18 The Gather-Insert-Fold-Tear formalism 90

4.18.1 Fold operators 91
4.18.2 The Tear operator 93
4.18.3 Insertions 93
4.18.4 The Gather operator 93

4.19 GIFT applications 94

5 Attributes 99
5.1 Language styles 100

5.1.1 Data-centric languages 100
5.1.2 General purpose programming languages 100
5.1.3 Domain specific languages and requirements analysis 100

5.2 Approaches to implementation 101
5.2.1 Derivation traversers 102

5.3 Attribute Grammars 103
5.3.1 The formal attribute grammar game 103
5.3.2 Attribute grammars in practice 104
5.3.3 Attribute grammar subclasses 105

5.4 Semantic actions in ART 105
5.5 Syntax of attributes in ART 105

5.5.1 Special attributes in ART 106
5.6 Accessing user written code from actions in ART generated parsers107
5.7 A näıve model of attribute evaluation 107
5.8 The representation of attributes within ART generated parsers 108
5.9 The ART RD attribute evaluator 108
5.10 Higher order attributes 110

6 Pragmatics 112
6.1 Icons, letters and phrases 112
6.2 Semantics at machine level 116

6.2.1 Translation to machine level 117

CONTENTS iv

6.3 The semantic facets of programming languages 121
6.3.1 Values, types and expressions 121
6.3.2 Storage, assignment and commands 121
6.3.3 Identifiers, scope and binding 122
6.3.4 Control flow 122
6.3.5 Procedural and data abstraction 122

6.4 Interpretation, compilation and runtime rework 122
6.5 Four early language traditions 122

6.5.1 FORTRAN–numeric processing and portable programs 122
6.5.2 COBOL–data processing 122
6.5.3 LISP – the accidental language 122
6.5.4 Algol – user defined data and algorithmic elegance 122

6.6 New ideas 122
6.6.1 Programming in the large 122
6.6.2 Object orientation 122
6.6.3 Concurrency 122
6.6.4 Generics, and types as values 122

6.7 General purpose and domain specific software languages 122
6.8 The music domain 122

6.8.1 Musical instruments 123
6.8.2 The perception of pitch 124
6.8.3 The physics and psychology of pitch 124
6.8.4 Pure tones and instrument voices 126
6.8.5 Tempo, rhythm and articulation 127
6.8.6 Musical terminology for pitch 128
6.8.7 Major and minor scales 129
6.8.8 Chords 130
6.8.9 Synthesizing music with Java and MIDI 130
6.8.10 minimusic – a DSL to access MiniMusicPlayer 136

6.9 The image processing domain 140
6.10 The 3D object domain 140

A Using ART 141
A.1 Installing and running ART 142
A.2 The ART pipelines 143
A.3 First examples 144
A.4 The static and dynamic pipelines in detail 145

A.4.1 Static pipeline directive summary 145
A.4.2 Dynamic pipeline directive summary 145

A.5 The ART specification language reference manual 148
A.6 String rewrite rules and parsing 150
A.7 Terms and term rewrite rules 151
A.8 RAG rewrite rules 151
A.9 Directives 152

A.9.1 try clauses 152
A.10 Value types and operations 152
A.11 An overview of ART’s implementation 152

CONTENTS v

A.12 ART package and class documentation 152
A.13 ART concisely 153

B Laboratory materials 159
B.1 Domain Specific Languages for solid modelling 160

B.1.1 Changing the view 160
B.1.2 A first object 161
B.1.3 Changing size and color 161
B.1.4 Where is the centre? 162
B.1.5 Cubes are really cuboids 163
B.1.6 Spheres 164
B.1.7 Cylinders 165
B.1.8 Translation and rotation 166
B.1.9 Multiple objects 167
B.1.10 Computational solid geometry 168
B.1.11 Using functions to structure a design 169
B.1.12 Internal and external Domain Specific Languages 170
B.1.13 Signatures and internal syntax 170
B.1.14 How to design a programming language 171
B.1.15 Your exercises 172

B.2 Terms rewriting basics with TermTool 176
B.2.1 Getting help 176
B.2.2 Exiting TermTool 177
B.2.3 Expressions 177
B.2.4 TermTool variables 177
B.2.5 Matching with the ▷ operator 178
B.2.6 Pattern matching and term variables 179
B.2.7 Term variables and tool variables 180
B.2.8 Extending bindings with the union-into += operator 180
B.2.9 Using tool variables in expressions 181
B.2.10 Substitution and unconditional rewrites 181
B.2.11 Evaluation of functions during substitution 182

B.3 SOS – An introduction to eSOS 183
B.3.1 A first example 183
B.3.2 Normal termination and stuck configurations 185
B.3.3 Generalising with term variables and functions 185
B.3.4 Runtime type errors 187
B.3.5 Filtering out type errors using conditions 187
B.3.6 Generalising by adding rules 188
B.3.7 Examining the behaviour of the interpreter in detail 189
B.3.8 Addition of two values 191
B.3.9 Nested additions 191
B.3.10 Forcing deterministic execution 193
B.3.11 Assignment 195
B.3.12 Sequencing 195
B.3.13 Assigning the result of an expression 195
B.3.14 Sequenced assignments 196

CONTENTS vi

B.3.15 Dereferencing and assignment 196
B.3.16 Output 197
B.3.17 Selection with if 197
B.3.18 Iteration with while 198
B.3.19 The GCD language 199

B.4 Syntax – an introduction to parsing 203
B.5 Attributes – using ART with attribute grammars and GIFT

rewrites 204
B.5.1 Getting started 204
B.5.2 Understanding the parse script – Windows version 204
B.5.3 Understanding the parse script – Unix version 205
B.5.4 Visualising derivation trees 205
B.5.5 Simple grammars 208
B.5.6 Using builtins 209
B.5.7 Exercises 209
B.5.8 Attribute evaluation in ART 209
B.5.9 Simple grammars and actions 209
B.5.10 The execution order of actions 210
B.5.11 Attributes 212
B.5.12 miniCalc – a simple calculator 212
B.5.13 miniAssign – adding variables 213
B.5.14 Exercises 215
B.5.15 Delayed attributes in ART 215
B.5.16 A first example of delayed attributes 216
B.5.17 miniIf – adding if-then-else to Mini 217
B.5.18 miniWhile – adding loops 219
B.5.19 miniCall – adding procedures 220
B.5.20 GIFT operators in ART 221
B.5.21 miniSyntax – folding derivation trees 222
B.5.22 Folding nonterminals 222
B.5.23 Suppressing punctuation 223
B.5.24 Flattening lists 223
B.5.25 Function calls 223
B.5.26 Expression trees 223

C Project work 224
C.1 Getting started 225
C.2 Submission 226

C.2.1 The writeup 226
C.3 Ideas 226
C.4 PiM – the project in miniature 227

C.4.1 Informal language specification 227
C.4.2 Internal syntax constructors and arities 229
C.4.3 eSOS rules 229
C.4.4 Internal to external syntax translator 233
C.4.5 Attribute grammar interpreter 233
C.4.6 Examples and tests 235

CONTENTS vii

C.5 Back end libraries 235
C.5.1 An introduction to JavaFX 235
C.5.2 An introduction to image processing 243
C.5.3 An introduction to the Java MIDI subsystem 247

D A mathematics primer 254

1 Formalisation

What one programmer can do in one month, two programmers can
do in two months — Fred Brooks

At their simplest, computers come pre-equipped with a repertoire of machine
level operations such as add and subtract, a memory space and a set of ad-
dressing modes that allow data to be read from memory, combined using one of
the operations and then written back to memory. It is remarkable that the sub-
tle and immersive effects of, say, a realtime virtual reality recreation of a forest
can be generated merely by performing large numbers of simple arithmetic and
logic operations at high speed.

Constructing programs using only basic machine operations is arduous. For
instance, until the mid-1980’s it was common for machines to not even have
a full set of arithmetic operations since hardware implementations of multipli-
cation and division were expensive. Implementing multiplication and division
through sequences of shift and add operations was well understood, and so
a standard set of instructions to perform multiplication would normally be
provided by the manufacturer. These instruction sequences could be bodily in-
serted into a program that required a multiplication, or to save space, a single
copy of the instruction sequence could be held in memory and a call-and-return
mechanism used to execute the multiplication as a sub-program of the main
application.

** Todo: Autocodes for arithmetic
** Todo: Programmers and lines of code: higher level = higher

productivity?
** Todo: What counts as a software language

1.1 It’s languages all the way down. . .

Modern computer systems are composed of many layers of languages which
may be translated into other languages or interpreted directly. At the lowest
level, we have a particular processor’s machine code which is interpreted by the
hardware.

For instance, a computer game may be implemented as a script running on
a game engine. The engine’s script language is not directly executable by any
real computer, so instead a program called a game script interpreter reads the
script and performs appropriate actions. The game script interpreter could be
written directly in the machine language of some real computer, but that would

Lessons from natural language 2

then mean the the interpreter could only run on computers with a particular
central processor, and in any case machine languages are very fine grained, and
require a programmer to keep track of a multitude of clerical details. Instead,
the programmer could elect to write the interpreter in a high level language such
as Java, and another program called the Java compiler could then translate that
into the compact machine-like language of the Java Virtual Machine (JVM). Yet
another program (the JVM interpreter) reads that code, and performs actions
by directly accessing the underlying machine instructions.

At first glance much of this sounds circular: we put in extra layers between
the script interpreter and the JVM, but the JVM is itself interpreting, so what
is the advantage? In terms of absolute performance and functionality, none.
We could have written a game script interpreter in the machine language of
some specific machine, and it might run faster than the layered implementation
described above. However, it would be non-portable to other machines, and
it would almost certainly take very much longer to write. By using mature
established sub-systems such as the Java ecosystem we can reuse the work of
others, allowing us to construct complex artifacts such as computer games by
implementing our ideas using the languages of existing tools. In a sense, the first
step of implementation is itself a translation: from concepts in our minds into
specifications written in some software language, and this forms the topmost
layer of the translation stack.

In detail, systems involve other languages too. Many applications make
use of XML files to store data, and XML itself is a language which must be
interpreted when constructing internal representations of data. Online systems
often use relational databases, with access mediated via SQL statements em-
bedded in other languages. When developing software, the build systems (such
as make) that we use when developing large software systems also have spec-
ification languages associated with them. We can also view file formats such
as JPEG as language specifications, as well as the many protocols that we use
to communicate via networks or with specialised hardware such as 3D printers
and music synthesizers. The testing that we do may generate results stored
in spreadsheets, whose formulae and scripting systems are software languages.
Not least, documentation such as this book may be prepared in LATEX, which
is a set of routines written as macros in the underlying TEX language, the in-
terpreter for which is written in a ‘literate’ language called WEB, which can be
translated into both Pascal and C and then compiled into the machine language
of a variety of processors. Software languages are all-persuasive.

** Todo: 3D printing as a web of languages
** Todo: Turtles all the way down anecdote, finishing off with

languages all the way down to the hardware

1.2 Lessons from natural language

When learning a new human language, we might first concentrate on vocabulary
(the set of generally understood words in that language) and perhaps try to
match up words for objects in the new language with the equivalent words in

Lessons from natural language 3

our native language.
Taking French as an example, an English speaker might note that maison

in French corresponds to house in English and that voiture corresponds to car.
We are not limited to names for objects: attributes such as colour also have
closely corresponding words such as rouge for red and noir for black.

In an emergency, and with some good will on both sides, it is possible
to communicate simple ideas using just vocabulary, but most communication
requires the construction of complete sentences by sequencing together words
from the vocabulary. In typical human languages, the order of words within
these sequences is significant.

Some sequences are ‘wrong’ in that a native speaker would not utter them.
For instance, in English ‘The car black.’ sounds very odd: we expect ‘The black
car.’ It seems as though we expect the attributes of an object (colour in this
case) to be listed before uttering the word for the object. In French, however,
the attributes typically appear after the name of the object: ‘la maison rouge’
corresponds to the ‘the red house’ in English. Interestingly, although ‘The car
black.’ is not a valid English sentence, if we were speaking to somebody who
was learning English we could probably guess what they meant.

The rules governing valid word orderings are called the syntax of the lan-
guage, and ignoring the rules can cause deep confusion. For instance a word-by-
word translation of ‘La maison rouge.’ yields ‘The house red.’, which is a valid
colloquial phrase since The house red in a restaurant means their non-label (and
usually cheaper) wine. Simply by putting the colour last we have completely
changed the meaning of the sentence.

Our programming languages are also like this. The symbol -, for instance
means ‘negate’ if it appears at the beginning of an expression, but means ‘sub-
tract 3 from 2’ if it appears between the symbols 3 and 2. In the Java language,
the symbol + can stand for the addition of integers, the addition of reals or the
concatenation of strings. Not only the order of symbols, but the kinds of things
they stand for controls the meaning of phrases in programs.

1.2.1 Semantics, syntax, ambiguity and ‘sayability’

The fact that we can translate between languages shows that in some deep
sense, meaning is independent of vocabulary and syntax. The semantics of
a sentence is the collection of meanings it may have, and the semantics of
a language is thus the collection of meanings that can be expressed in that
language. The language itself is just a set of word sequences. The syntax rules
and the vocabulary together form the syntax which is a specification of the
language itself. The translation of a phrase from language E to Language F
involves changing the syntax from that of E to that of F in such a way as to
preserve the semantics.

Unfortunately, syntax rules occasionally allow multiple interpretations of a
sentence. My favourite example is an advertising slogan for a headache remedy
that we shall call X. The slogan is Nothing works faster than X. This might
mean that X is a faster-acting remedy than anything else (because No Thing
works faster than X) or it might mean that simply doing nothing will clear a

Lessons from natural language 4

headache more quickly than X because doing nothing is faster than taking X.
A closely related sentence is Take X, you won’t get better. When a sentence
has multiple meanings, we say that it is ambiguous.

Although semantics and syntax are often presented as two independent,
orthogonal aspects of language, each may constrain the other. The idea that
human syntax and vocabulary in some sense limit what can be thought is in-
triguing. George Orwell in his satirical novel 1984 posited a world in which the
English language had been deliberately pruned into a language called Newspeak
so as to make it impossible for the populace to construct anti-establishment nar-
ratives. Given the speed at which humans develop new linguistic expressions,
it is highly debatable as to whether such a strategy could ever really succeed.
Nevertheless, if we want to communicate a notion (and possibly if we even
want to be able to internally think about a notion) then surely we need some
language to describe it.

1.2.2 Formal languages: the need for precision

Human languages are rather slippery things. New words are coined all the
time, so the vocabulary certainly is not fixed. Syntactic forms also come in and
out of vogue, so even the syntax is gradually evolving. In addition, sentences
may be ambiguous, that is have multiple interpretations, and some syntacti-
cally well-formed sentences are nonsensical and thus have no interpretations at
all. A famous example coined by Noam Chomsky in 1957 is Colourless green
ideas sleep furiously which contains multiple contradictions and conceptual con-
fusions: colourless and green cannot both be attributes of a thing at the same
time; ideas are not entities that can sleep, and so on.

Apart from these difficulties, the process by which a sentence that I write can
summon up meanings in the reader’s mind is deeply mysterious. Generations
of philosophers and linguists have debated the rules by which we communicate
and what it means to understand and convey meaning. That debate continues.

When we turn to computer languages, we seek precision of expression above
all else; we certainly do not want our computer programs to have unpredictable
results because of ambiguity. The main way of achieving this is to have very
straightforward syntax (compared to natural languages), and to give explicit
disambiguation rules that ensure that there is at most one meaning for each
syntactically correct phrase. Our software languages must seem like very thin,
limited things to a linguist; but that is how we want them. In particular we do
not want a multitude of ways to express the same idea in our formal languages,
whereas in journalism and literature the ability to find a novel way to say
something is valued.

We might also hope that we could eradicate meaningless sentences in our
software languages, but that is not usually possible: for instance division by
zero is meaningless but cannot in general be detected simply by inspecting the
program. Nevertheless, we try to organise things so that common errors may
be reported before we actually start running the program. Program properties
that can be deduced by looking at the code and which are independent of any
particular data input are called static properties, and we shall sometimes talk

Utility and power in programming languages 5

about the static semantics of a programming language.
Very roughly speaking, the static semantics may be evaluated indepen-

dently of any program input which means that static properties such as type-
correctness may be checked by a compiler before a program is run. The dynamic
semantics of a language involves behaviour and properties which are input data
dependent and thus reveal themselves only when the program is executed. One
strand of programming language development (exemplified by Pascal) empha-
sises the use of compile-time rules to catch programmer errors; an opposing
approach (exemplified by Smalltalk and Scheme) is to do most checking at run-
time. Real programming languages are always a mix of these two but a language
may be said to be more or less static in its approach. Both styles of language
can deliver precision: the difference is the point within the development pro-
cess at which errors may be detected. From a programmer’s perspective, highly
static languages offer early error reporting and are easier to generate efficient
code for, but dynamic languages allow greater freedom of expression, and in
that sense are sometimes thought of as more ‘powerful’.

** Todo: Adje van Wijngaarden’s comments on semantics

1.3 Utility and power in programming languages

What does it mean for one programming language to be ‘more powerful’ than
another? Well, for all conventional general purpose languages ‘more powerful’
does not mean that there are that one language can ultimately do more than
another.

** Todo: Turing completeness
If a general purpose language A can be used to implement an interpreter

for general purpose language B (and indeed vice versa) then clearly they are
formally of equivalent capability. However, when a programmer talks about the
power of a particular language they are usually referring to the ‘naturalness’
and conciseness with which concepts may be expressed.

** Todo: Fibonacci example with and without recursive routines
For instance, early versions of FORTRAN required the arguments to a sub-

routine and its return point to be placed in machine locations which were fixed
for the duration of a particular program execution. This simplified the design of
the compiler, and was also efficient on some 1950’s and 1950’s architectures com-
pared to the modern solution which is to place arguments on a stack. However,
this used of fixed argument locations means that many recursive algorithms
could not be expressed using recursive functions: since each recursive instance
would use the same memory locations to hold arguments every time a function
was called it would overwrite the previous call’s arguments and also its return
point. It is still possible to implement recursive algorithms in early FORTRAN
using an explicitly managed stack data structure, but the resulting code is ugly,
verbose, and more prone to errors.

The software engineering challenges in language design 6

1.4 The software engineering challenges in language design

Here is a common scenario. A company develops and sells set of applications
which are specific to a particular domain. For example, we might

** Todo: Lead programmer wants to write a language. Tapestry of
tools and ad hoc solutions. Enormous difficulty of testing a language.
Maintainability. Cost.

1.5 An idealised methodology

** Todo: See practice and theory section from next chapter - move
back to here and then summarise our approach

Mathematics is a game played according to certain simple rules with
meaningless marks on paper.

1.6 Formal systems

A mathematical proof of a theorem is a very careful explanation of why some-
thing must be true. Finding a proof can be very hard and require deep insight,
but reading a proof should be more like reading a program, and once we under-
stand the constructs of a programming language like Java, we should be able
to read a Java program and manully ‘execute’ each individual action in isola-
tion. To make full sense of a program you need a good grasp of the domain of
application of the program or you will not understand the intent of the author
or the utility of program, but the actual program text itself should not present
difficulties of interpretation. Both programs and proofs are examples of formal
reasoning, and in fact programs and proofs are closely related to one another.

We shall see several examples of formal systems, each of which comes with
some objects that may be manipulated and some rules about how they may be
changed. In this sense, a formal system is a game in which we can set up some
initial configuration and then let the moves of the game evolve that configu-
ration. One well known example is Conway’s Game of Life in which patterns
evolve on a rectangular grid. Once one has set up the rules of game, then we can
ask questions about it and probe its properties. For instance, an early research
question posed by Conway was whether any initial configuration would gener-
ate sequences of configurations whose area grows without limit. (The answer is
yes: we shall examine Conway’s game in more detail in Section 1.7.)

Of course, we need to be able to specify the objects and rules within our
formal system unambiguously. English is a poor vehicle for precise communica-
tion, and so formal systems almost invariably come with some formal language
(in which well formed formulae (wff) may be expressed) and a way of describ-
ing how, given a set of wff we can generate a new wff by applying the rules of
the system to infer a new formula. One view of mathematics (which we shall
call the symbol-pushing view) is that proofs are no more than sequences of well
formed formulae in some formal system, and a theorem is the last line of such
a sequence.

Formal systems 7

1.6.1 Practice and theory

In computing, engineering is the use of mathematics and scientific knowledge to
invent new, useful systems and to improve the utility, performance, economics
and reliability of existing systems. Implicit in this process is some notion that
engineered systems have attributes are too complex to model mathematically,
but which nevertheless contain subsystems that can be so modeled.

Historically, there has been a tension in the computing world between the
practitioner community, who are focused on getting new systems working, and
the theory community who seek insights via formal systems. For many prob-
lems, it has turned out to be hard to find formal descriptions which scale to real
world problems and which are comfortable for practitioners to use, especially
if they are unused to the culture of research level mathematics. As a result,
some practitioners are dismissive of the utility of theoretical studies. This is
a great shame, because the reality is that many, perhaps the majority, of our
software systems are unreliable due to the high incidence of construction errors.
In an ideal world, practitioners and theoreticians would work symbiotically to
convert practitioner observations into mathematical models, which then allow
the construction of new tools that embody principled design based on theory,
with automatic generation of parts of those systems. This sort of virtuous circle
is by and large absent in our field, although in more mature subjects (such as
physics research and electronic engineering) it is standard practice.

Our goal in formalising system should be allow us to reason about useful
properties of programs, such as whether they are complete (and might thus
execute without ever raising exceptions); whether they terminate in all cases;
whether the results meet their specification; and the way in which the time and
space demands of a program vary with size of input. Perhaps surprisingly, it
can be the case that an implementation based on a formalisation is not only
more trustworthy, but also more efficient. We shall illustrate this in Section 1.7
when we shall look at a typical elementary programming challenge which has
an inefficient ‘natural’ implementation, but for which a simple formalisation has
a corresponding implementation that makes much better use of memory and
requires far less computation for a given input.

Encouragingly, our field—software language engineering— is one of the ar-
eas of computing that has most benefited from cooperation between theoreti-
cians and practitioners, and there now exists a set of mathematical techniques
that allow us to specify and analyse software languages, and which (most im-
portantly) also admit practical implementation. As a result, many aspects
of language engineering can be managed using compact specifications which
are then used to automatically generate implementations. However, there re-
main important aspects of language engineering that still rely on the insight
and creativity of the engineer, either because there is no consensus on best
practice (such as the syntax details of the ‘best’ general purpose programming
languages), or because the mathematical techniques do not scale well to large
language projects (such as non-modular semantic specification styles), or be-
cause automatic generation of efficient implementations for different machine
architectures remains elusive (as is the case for many aspects of code generation

Formal systems 8

and interpretation). The research literature on software language topics is vast
and will continue to grow.

Our approach in this book, then, is to emphasise the use of principled tech-
niques and their tools where ever possible. In this we are aided by advances
in the capacity and performance of our computing systems. Many standard
practitioner techniques in software language engineering are rooted in the engi-
neering constraints of 1970’s era computer hardware, and in fact even the design
of some programming languages reflects the inability of computers from that
time to hold a complete representation of a program’s source code in memory.
For instance, in languages such as C and Pascal, it is necessary for function
signatures to be declared before they are used so that the heavily constrained
compilation system on those machines could generate code in a single pass over
the source. In later languages such as Java this constraint is relaxed. More
significantly, the currently conventional techniques used to analyse syntax and
semantics are also limited in ways that is are longer necessary on modern hard-
ware. An important goal of this book is to encourage the use of more general
(though also much more resource hungry) techniques, freeing the designer to
write specifications which are natural to them rather than having to rework
their specifications into an artificial style so as to be admissable by a particular
toolset.

1.6.2 Modularity and scalability

The key to efficiency (both in terms of the time take to develop a system and of
the computer time it takes to execute) is decomposition into tractable subtasks.

A program is a specification for some behaviour that we require a computer
to exhibit, and the actual behaviour is the semantics of the program. For
instance, consider a program that reads four integers a, b, c and d from the
keyboard and prints the result of evaluating (a ∗ b) + (c/d). Computers are
finite, and the range of allowable integers is also finite, so in principle we could
specify the semantics of the program as a finite set of tuples ⟨a, b, c, d, y⟩ where
y is the output for inputs a, b, c and d.

Apart from the difficulty of expressing the value of y when d is zero (which
we could overcome by defining some special value such as ⊥ which indicates
an illegal result) this is not really a useful way to express the semantics be-
cause, although finite, the list is absurdly long. If our computer is a modern
64-bit machine then there are 2(4∗64) different inputs, which is about 1077. Es-
timates for the number of atoms in the universe are in the 1070–1080 range, so
clearly, exhaustively enumerating the entire semantics of this trivial program is
impossible.

To reinforce our understanding of this challenge it is worth reading what
Dijkstra had to say in 1972:

Let us restrict, for a moment, our attention to the hardware and
let us wonder to what extent one can convince oneself of its being
properly constructed. Some years ago a machine was installed on
the premises of my University; in its documentation it was stated

Formalisation as an aid to engineering: Conway’s Game of Life 9

that it contained, among many other things, circuitry for the fixed-
point multiplication of two 27-bit integers. A legitimate question
seems to be: “Is this multiplier correct, is it performing according
to the specifications?”.

The naive answer to this is: “Well, the number of different mul-
tiplications this multiplier is claimed to perform correctly is finite,
viz. 254, so let us try them all.” But, reasonable as this answer
may seem, it is not, for although a single multiplication took only
some tens of microseconds, the total time needed for this finite set of
multiplications would add up to more than 10,000 years! We must
conclude that exhaustive testing, even of a single component such
as a multiplier, is entirely out of the question. (Testing a complete
computer on the same basis would imply the established correct
processing of all possible programs!)

Technology has moved on, and my current machine can perform integer
multiplications at rates of around 109 per second rather than the 105 per second
mentioned by Djistra, so now the exhaustive test of 27-bit multiplication would
only take more than one year, rather than more than 10,000 years. Set against
that, my machine is doing 64-bit multiplication, so we now have 2128 unique
inputs to test, which is about 1038, requiring some 1029 seconds to compute
which is more than 1021 years. Now, all is not lost because enumeration is not
the only tool available to us. We shall use a divide-and-conquer strategy to
avoid having to write out every output for every input.

When we learn arithmetic, we learn rules by which individual operations
may be concisely specified: the algorithms for adding multi-digit numbers and
performing long multiplication, for instance. We also learn that expressions may
be composed from a sequence of individual operations in the order specified by
the bracketing of an expression. (We also have rules of priority and associativity
that allow us to omit parentheses in some circumstances, but really they are
just a form of shorthand for the fully parenthesized expression.) In principle,
then, we could reduce long multiplication to an algorithm which aggregates the
results of multiplying two single digit numbers which is a small enough set of
inputs that we can indeed exhaustively enumerate the outcomes, and check our
design. That leaves the problem of deciding whether the algorithm by which
we multiply multi-digit numbers together is correct.

1.7 Formalisation as an aid to engineering: Conway’s Game
of Life

In this section we explore the benefits to the working programer of concise for-
mal descriptions using the example of Conway’s Game of Life (CGL), which was
described by Martin Gardner in the October 1970 Scientific American. Along
the way, we shall encounter the notion of a system whose state is transformed
using a relation over those states. We shall meet this idea again in Chapter ??
where we shall use it to produce very precise descriptions of the semantics of

Formalisation as an aid to engineering: Conway’s Game of Life 10

programming languages.
CGL is an example of a cellular automaton. Here is a (not very good) formal

description of a cellular automaton.

A cellular automaton is a formal system comprising a set Γ of
cells, each of which must be labeled with an element from a finite set
of states Σ, and a transformation rule which specifies the evolution
of the cell labels in discrete time steps Γ0,Γ1, . . . called generations.

It is usual to think of Γ as having structure, in the sense that
some cells are ‘adjacent’, and for the transformation rule to be
a function over a ‘neighbourhood’ f(p1, p2, . . . , pk) with signature
f : Σ × Σ × . . . × Σ → Σ where the pk are the elements of the
neighbourhood.

Now, this second paragraph does not constitute a particularly useful for-
malisation in that we have not explained how there neighbourhoods are defined
or used, and as a result we could not automatically generate a symbol-pushing
implementation. We shall improve the formalisation in Section 1.7.4.

In CGL, the cells in Γ are arranged as an unbounded two-dimensional rect-
angular array; Σ is the set 0, 1 and the transformation rule defines the new
state of a cell σ′ in terms of the its existing state σ and the population P as the
sum of the states of its eight-connected neighbours according to this function:

σ′ =

1, σ = 0, P = 3
0, σ = 1, P < 2 ∨ P > 3
σ, otherwise

1.7.1 CGL examples

It is interesting to randomly fill a large part of a CGL array and allow the
system to evolve. Surprisingly, regularities soon emerge. By looking closely
at small parts of the evolving grid, we can identify small patterns that have
interesting properties. Over the years, researchers have developed a common
nomenclature for various kinds of CGL patterns: you can read about these at
http://conwaylife.com

For instance, a still life is a pattern that does not change from generation
to generation.

Well known still lives include the block ■■
■■ and the beehive

■■
■ ■
■■

An oscillator is a pattern that is a predecessor of itself, the simplest of which

is the blinker ■■■ −→
■
■
■
−→ ■■■ −→

■
■
■
−→ . . .

A spaceship is a pattern that is a predecessor of itself up to position: that is it
repeats like an oscillator, but each instance is shifted across the playing field.
The most famous spaceship is the glider: a period 4 oscillator which incorporates
displacement of one cell per period in both the x and y dimensions: in a high
speed animation gliders appear to race diagonally across the playing field.

http://conwaylife.com

Formalisation as an aid to engineering: Conway’s Game of Life 11

□□□□□□□
□□□□□□□
□□□□□□□
□■■■□□□
□□□■□□□
□□■□□□□
□□□□□□□

→

□□□□□□□
□□□□□□□
□□■□□□□
□□■■□□□
□■□■□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□□□□□
□□■■□□□
□■□■□□□
□□□■□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□□□□□
□□■■□□□
□□□■■□□
□□■□□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□□□□□
□□■■■□□
□□□□■□□
□□□■□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□■□□□
□□□■■□□
□□■□■□□
□□□□□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□■■□□
□□■□■□□
□□□□■□□
□□□□□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□■■□□
□□□□■■□
□□□■□□□
□□□□□□□
□□□□□□□
□□□□□□□

→

□□□□□□□
□□□■■■□
□□□□□■□
□□□□■□□
□□□□□□□
□□□□□□□
□□□□□□□

→

If we position a single still life and a spaceship on the playing field, then
we may have constructed a CGL pattern whose area will grow without limit
(which presents an existence proof for the question raised in Section 1.6). We
say may, because it is possible for the spaceship to move in such a way that it
‘collides’ with the still life, and the results of that, whilst deterministic, can be
difficult to predict.

The still-life-and-spaceship example shows that CGL patterns can spread
without limit, but the population remains essentially constant. In fact, for
the case of a still life and a glider, the population remains exactly constant
throughout (as long as the glider does not collide with the block) since all
four phases of the glider’s transitions have five occupied cells; however other
spaceships may have varying numbers of cells in their phases, which would cause
cyclic variations in the population

Do there exist patterns which grow both in extent and population? Wonder-
fully, yes. There is a 36× 9 cell structure (found by Bill Gosper in 1970) called
the Gosper glider gun may be viewed as an almost-oscillator which ‘emits’ some
extra pattern. In this case, the extra structure is a glider, which moves away
smoothly. Some cycles later, the gun will emit another glider which moves off
on the same trajectory. Since the gliders are moving at the same speed, are on
the same trajectory, and are separated when initially created, they will never
collide and the pattern will grow without limit on either area or population.
Conway initially conjectured that such patterns could not exist, and Gosper
won a prize of $50 for his discovery. (Conway has said that he had hoped such
a pattern did exist, and offered the prize as a stimulus to research in cellular
automata.)

Structures called eaters, when hit by a glider are initially disrupted, but
after some cycles return to their original state, with the glider disappearing.
It is also possible to find structures that move a fixed distance when hit by a
glider, and can move back again when hit by a glider on a different trajectory.
Together, these may be used to make logic gates in which the information is
encoded as the presence or absence of a stream of gliders.

Formalisation as an aid to engineering: Conway’s Game of Life 12

As is well known, all binary digital logic systems may be decomposed into
networks of two-input NAND gates, and so if we can build such a gate in the
CGL playing space (and we can) then we can in principle simulate arbitrarily
complex digital systems (up to and including Turing machines) within CGL.
We say that CGL, as a computational device, is Turing complete.

Hence, if we were patient enough, we could design a small processor archi-
tecture, decompose it into NAND gates, lay it out on a CGL playing field, write
code for that architecture which interprets the JVM instructions and then run
one of the implementations discussed later in this section within the CGL game.
Such an implementation then represents a sort-of higher level CGL space, in
which could also host the same program, and so on to as many levels as one
likes.

1.7.2 Emergent behaviour in CGL

CGL is an interesting example of so-called emergent behaviour: a simple game
from which quite complex and interesting phenomena appear when allowed to
run. In emergent systems, we deliberately construct an abstract model and ‘see
what it will do’, hoping that higher level organisation will emerge from a few
simple rules. These experiments are thought provoking, and may yield insight,
but there is no direct link between our observations of the emergent system and
our observations of physical reality.

This kind of emergent game is, in a sense, the philosophical dual of the
scientific method. In science, we make observations, construct (usually math-
ematical) paramaterised models of processes which may account for those ob-
servations, and then use the model to construct predictions of behaviour for
as-yet unobserved arguments to those parameters. Experimentalists then con-
struct physical experiments that concretise new values of those arguments, and
if the new observations match the model, then confidence in the model as being
an accurate description of reality increases. If there is disagreement between
reality and model, then the model must be changed.

Formalisation in computing sits somewhere between the two. We typically
have an overall system that is too complex to be modeled as whole. Instead, we
extract key algorithmic parts and build simple mathematical models for them,
much as scientists do, but with the goal of increasing precision and removing
ambiguity rather than ‘explaining’ phenomena: in fact typically we deliber-
ately use formalisations which are divorced from our implementation. Once
content, the formalisation becomes the specification of the system: it is the job
of an implementation to then conform to that specification. From a scientist’s
perspective, we change our reality to fit the model.

In this book, we are using CGL in two ways: as an example of an easy formal
system but also as an exemplar program for the small languages that we shall
develop and a demonstration of the specification-implementation approach to
software development that underpins software language engineering as a field.

Formalisation as an aid to engineering: Conway’s Game of Life 13

1.7.3 Näıve implementation of CGL using an array

In our initial formalisation on page 10 we said that CGL is played on a rect-
angular grid, and that the transformation rule summed the eight connected
neighbours. This leads to a natural implementation, beloved of introductory
programming courses, using an array of integers.

We first need some infrastructure declarations and methods. We declare
two arrays, one called G representing Γ, the current playing field; and one
Gp (Γ′) for the next playing field which we shall compute. At the end of each
generation,we swap over Γ and Γ′ using method swapgG_Gp(), and then display
Γ using method showG(). (In later implementations we shall also clear Γ′ back
to a set of empty cells, but in this array based implementation that is not
necessary.)

1 int extent = 10; // or some other value of your choice
2 int[][] G = new int[extent][extent]; // The current playing field Γ
3 int[][] Gp = new int[extent][extent]; // The next playing field we are computing Γ′

4

5 void setGp(int x, int y, int sigma) { // Set the state σ of an element of Γ′

6 Gp[y][x] = value;
7 }
8

9 int getG(int x, int y) { // Get the state of an element of the Γ playing field
10 if (G[y][x] > 0) return 1; else return 0;
11 }
12

13 void swapG Gp() {// Swap Γ and Γ′ (and clear Γ′ in later implementations)
14 int[][] temp = G; G = Gp; Gp = temp;
15 }
16

17 void showG(int generation) { // display the state of the Γ playing field
18 System.out.println(”Array ” + generation + ” dCount = ” + dCount);
19 for (int y = 1; y < G.length; y++) {
20 for (int x = 1; x < G[0].length; x++)
21 System.out.print(getG(x, y) > 0 ? getG(x, y) : ”.”);
22 System.out.println();
23 }

We need a method which computes the population of P of the eight con-
nected neighbours for some cell at (x, y) in Γ.

1 int d(int x, int y) { // return the 8-connected population of cell (x, y) in Γ
2 return getG(x = 1, y = 1) + getG(x = 1, y) + getG(x = 1, y + 1) +
3 getG(x, y = 1) + getG(x, y + 1) +
4 getG(x + 1, y = 1) + getG(x + 1, y) + getG(x + 1, y + 1);
5 }

Formalisation as an aid to engineering: Conway’s Game of Life 14

We are now ready to focus on the implementation of moves. We assume
that the Γ′ array Gp has been initialised with some pattern specified by the
user. At line 2 we swap the arrays and display Γ as generation zero. We are
going to run the game for some fixed number of moves specified in the argument
generationLimit so at line 3 we use a suitable for loop.

The body of that loop computes a new Γ′ by using two nested loops at
lines 4 and 5 to raster scan over the cells in Γ. At each coordinate x, y, we set
variable s to the state (σ) of the cell, and variable p to the population of the
eight-connected cells. We then call method setGp() at line 9 to set the state
of cell (x, y) in Γ′ according to the CGL rule.

Finally at line 12 we swap the arrays and display the new generation.

1 void run(int generationLimit) { // Run the CGL game for generationLimit transitions
2 swapG Gp(); showG(0);
3 for (int generation = 1; generation <= generationLimit; generation++) {
4 for (int y = 1; y < extent = 1; y++)
5 for (int x = 1; x < extent = 1; x++) {
6 int s = getG(x, y);
7 int p = d(x, y);
8

9 setGp(x, y, (s==0 && p==3) ? 1 : (s==1 && (p<2 || p>3)) ? 0 : s);
10 }
11

12 swapG Gp(); showG(generation);
13 }
14 }

An uncomfortable aspect of this implementation is that the size of the play-
ing field is bounded by constant extent. Now, of course, all real computers
are finite, so the fact that our implementation of CGL is restricted to a finite
playing field is not in itself surprising. In addition to that, though, we have
hard edges beyond which our implementation cannot ‘see’ and that will mean
that in general our implementation misbehaves at the edges. If we run with a
board of, say, 100×100 cells and then run again with a board of 200×200 cells
then the games may diverge.

There are lots of ways in which this might happen: for instance a glider
might emerge outside of the 100× 100 board but move back towards the centre
before crashing into a structure within the 100 central zone. The small version
of the program would never create that glider, and would continue to evolve
the central area as though it never appeared. This argument shows that in fact
any finite board may diverge from the formally defined system.

Apart from this, the edges must in some way disrupt the computation of
the population around a cell. In this version, we have elected to never use the
outermost cells, and this policy is enforced by subscanning the array: in lines
4 and 5 above, the for loops scan from 1 to extent-1. This has the effect of
surrounding our working area with a ring of empty cells which will never give
birth. It is a useful compromise.

Formalisation as an aid to engineering: Conway’s Game of Life 15

This version does not use the computer’s resources very well. If we want
to simulate a sigle glider moving acoss, say, a 100× 100 board, then we have a
total of 10, 000 cells to check (less the border) of which only five will ever be
occupied. Those cells and their immediate neighbours are the only ones that
can ever change state, but we shall continue to blindly compute populations for
all of the cells nevertheless. We can do much better, but first we need to revisit
our formalisation.

1.7.4 A better formalisation

** Todo: Review relations and functions
Our first attempt at formalising CGL leaves the structure of the grid only

informally specified. Here is a better attempt.

A cellular automaton is a formal system comprising a set Γ of
pairs ⟨c, σ⟩ and a relation R = Γ × Γ where σ ∈ Σ is a cell-state
(|Σ| <∞) and c is a tuple ⟨d0, d1, . . . dn⟩, n ∈ Z .

The transition graph of a cellular automaton has a vertex for
each possible Γ. There is an edge from Γx to Γy if ⟨Γx,Γy⟩ ∈ R

The cellular automaton game is ‘played’ by starting with some
Γ0 and tracing out the transition graph by applying the transition
relation.

The d1, . . . dn are just integers, but may be interpreted as coordinates within
an n-dimensional space which forms the ‘playing field’ for the cellular automa-
ton. The states form an arbitrary alphabet of symbols since Σ must be finite.

If R is a partial or complete function, then the cellular automaton is de-
terministic. If the cellular automaton is deterministic, then the vertices of the
transition graph must have at most one out edge. Note that the transition
graph need not be connected, since there may be loops. In addition, if R is a
partial function, then there must be a Γs which appears as the second element
of some pair in R but not as the first element of any pair in R, and thus on
arrival at Γs the game must stop.

If R is not a function, then the graph of the relation will have vertices with
multiple out-edges; we could no longer represent such a game with a linear
sequence(s) of playing field pictures.

This notion of a game with states and a transition relation is one we shall
return to when we consider formalising the semantics of a programming lan-
guage. Using an approach based on Plotkin’s Structural Operational Semantics
we shall represent the execution of a program as the evolution of a computer’s
state under the control of a transition relation.

In CGL, the tuple c has two elements (which we think of as dimensions),
the cell-state set Σ has only two values {1,0}, and the transition relation is
computed by applying this function to every element ⟨(x, y), σ⟩ of Γ:

f((x, y), σ) = ((x, y), σ′) where σ′ =

1, σ = 0, P (x, y) = 3
0, σ = 1, P (x, y) < 2 ∨ P (x, y) > 3
σ, otherwise

Formalisation as an aid to engineering: Conway’s Game of Life 16

where

P (x, y) =
σ(x− 1, y + 1) + σ(x− 1, y) + σ(x− 1, y − 1)+
σ(x, y + 1) + σ(x, y − 1)+
σ(x+ 1, y − 1) + σ(x+ 1, y − 1) + σ(x+ 1, y − 1)

and σ(x, y) is the value of state σ in tuple ⟨(x, y), σ⟩
** Todo: Eamples of fragments of the trnsition relation graph

such as still life and osciallator
** Todo: Note that CGL relation is a function; compare with

chess
When we come to model programming language semantics, we shall be

working with tuples that contain a program and objects representing the store,
the input and the output. The transition function will ‘reduce’ the program
term by, for instance, removing an assignment from the program whilst chang-
ing the store object to represent the effect of that assignment. By running
through a sequence of transitions we shall build a trace of the execution of a
program written in, say, Java by applying a transition relation Rj that encodes
the execution-time behaviour of Java programs, just as we display a series of
CGL playing fields by applying the CGL transition relation. We shall call the
transition relation Rj a formal semantics for Java. Defining the transition rela-
tion can be challenging. The basic approach is to inductively define the relation
by constructing a rule for each feature of the language and allowing the pro-
gramming language’s compositional structure to guide the evaluation order. We
shall study this approach in detail in Chapter ??.

1.7.5 Improved formalisation can improve implementations

This improved formalisation (as a set of tuples rather than a geometrically or-
ganised set of cells with states) immediately suggests a new implementation
strategy. It turns out, perhaps surprisingly, that this more abstract implemen-
tation of CGL is significantly more efficient than the ‘natural’ implementation
of the geometrically based formalisation.

At the heart of the new implementation is a map from c to σ. We can ask
the map what the value of σ is at coordinate c, which thus implements the
function σ(x, y) above. The complete list of mapping elements constitutes the
set Γ.

Now, our computers are finite, but cellular automata playing fields are typ-
ically infinite, so we cannot directly implement the set-of-tuples formalism.
However, we can select one element of σ0 ∈ Σ as a default ‘inactive’ state and
only store active tuples in our implementation. In this encoding, we can ask the
map for σ(x, y) and if the map contains no element for (x, y) then we assume
((x, y), σ0). Note that this approach only works if there are no ‘holes’ in the
playing field which would genuinely need to be represented as coordinates that
map to nothing: our formalisation does in principle allows this sort of game if
the relation R is defined over only a subset of the elements of c.

In the case of CGL, there are only two states, and the playing field has no
holes. Let us select state σ0 = 0 to be the inactive state. That means that for

Formalisation as an aid to engineering: Conway’s Game of Life 17

CGL, every element of our map will be from some coordinate to state σ = 1, so
in fact our map degenerates to a set: we simply need to store the coordinates
of our active cells on Γ and Γ′.

We change the Java code so that the variables G and Gp are sets of coordi-
nates, and make a class Coord to represent a coordinate (which simply has two
fields for CGL) which hold the x and y coordinates of the element.

1 Set<Coord> G = new HashSet<Coord>();
2 Set<Coord> Gp = new HashSet<Coord>();

1 class Coord {
2 int x, y;
3

4 public Coord(int x, int y) { super(); this.x = x; this.y = y;}
5

6 public int hashCode() ...
7 public boolean equals(Object obj) ...
8 public String toString() ...
9 }

and make the corresponding changes to the setGp(), getG(), swapG_Gp() and
showG() methods. The method d() which computes the population of the
neighbours does not change, since it uses getG() which encapsulates the access
to the playing field.

In the run method, we know that we must check every element that is in the
set to see if its neighbourhood population allows it to live, but we also need to
check some elements that are not in the set. In CGL, an empty cell can only be
replaced by a filled cell if there are filled cells in its neighbourhood; that means
that the only empty cells we need to consider are those immediately bordering
each filled cell. We use the Java for-each construct at line 4 to iterate over the
coordinates c in Γ, and then we check a 3× 3 block off coordinates centred on
c using a raster scan generated by the inner loops at lines 5 and 6.

1 void run(int generationLimit) { // Run the CGL game for generationLimit transitions
2 swapG Gp(); showG(0);
3 for (int generation = 1; generation <= generationLimit; generation++) {
4 for (Coord c : G) {
5 for (int y = c.y = 1; y <= c.y + 1; y++)
6 for (int x = c.x; x <= c.x + 1; x++) {
7 int s = getG(x, y);
8 int p = d(x, y);
9

10 setGp(x, y, (s==0 && p==3) ? 1 : (s==1 && (p<2 || p>3)) ? 0 : s);
11 }
12 }

Formalisation as an aid to engineering: Conway’s Game of Life 18

13 swapG Gp(); showG(generation);
14 }
15 }

1.7.6 Using a visited set to avoid recomputation

There is an easy further optimisation. Although the set based implementation
avoids scanning empty cells which have only empty cells as neighbours, it will in
general repeatedly recompute coordinates because we raster scan around every
occupied cell. We add a further set of coordinates checked. Every time we
compute a cell we store its coordinates in checked; just before we compute a
cell we check to see if its coordinated are in checked, and if they are we continue
with the next element.

1 void run(int generationLimit) { // Run the CGL game for generationLimit transitions
2 swapG Gp(); showG(0);
3 for (int generation = 1; generation <= generationLimit; generation++) {
4 checked.clear();
5 for (Coord c : G) {
6 for (int y = c.y = 1; y <= c.y + 1; y++)
7 for (int x = c.x = 1; x <= c.x + 1; x++) {
8 Coord nc = new Coord(x, y);
9 if (checked.contains(nc)) continue;

10 checked.add(nc);
11

12 int s = getG(x, y);
13 int p = d(x, y);
14

15 setGp(x, y, (s==0 && p==3) ? 1 : (s==1 && (p<2 || p>3)) ? 0 : s);
16 }
17 }
18 swapG Gp(); showG(generation);
19 }
20 }

If we instrument these three implementations to count the number of times
the d() method is called to compute a neighbourhood, we can get a sense
of effectiveness of these optimisations. For example, the code that generated
the glider figures on page 11 used a 10 × 10 grid containing a single glider.
The array based implementation computes 64 cells per generation, as might be
expected since the 10× 10 array has only an 8× 8 active area as a result of the
sub-scanning to reduce edge effects. The set implementation for this example
computes 30 cells for each generation, and the final implementation with the
additional check set computes only 22 cells per generation.

These are substantial savings, and of course with larger boards the effects
might be even more extreme since the space and time complexity of the array

Thinking formally about program execution 19

implementation will be proportional to the area of the playing field, whereas the
set and checked set implementations will have both time and space requirements
that are broadly proportional to the number of active cells.

1.8 Thinking formally about program execution

Programming languages grew out of attempts to reduce the clerical overhead of
writing machine level programs for von Neumann style architectures. In their
simplest form, these machines comprise a single central processor coupled to a
memory S, an input sequence I and an output sequence P .

The memory may be thought of as a finite set of cells, each of which has a
fixed index number called its address. Just as in our cellular automata, there
is a finite set of cell-states or values and each cell will display exactly one of
those values at any one time. Modern hardware typically uses cells which can
have one of only 256 states, but high level programming languages suppress
this reality by allowing the programmer to define their own sets of values (or
user defined datatypes) and by providing variables that can be set to any of
those values. These values are then mapped onto sequences of the underlying
hardware values automatically, and those sequences may be stored in contiguous
elements of the hardware store. Since we are mostly thinking about high level
languages in this book, we shallow allow our store to directly map identifiers to
an arbitrary finite set of values.

When thinking in an abstract, formal way, we call this structure a store, a
set of tuples ⟨a, σ⟩ where σ ∈ Σ is a cell-state (|Σ| < ∞) and a ∈ N (or, more
concisely, S = {⟨a, σ⟩ | σ ∈ Σ, |Σ| < ∞, a ∈ N} . Thus the store looks just like
a playing field for a cellular automaton which is one-dimensional.

The input can take many forms, but in this simplest of cases we shall assume
that it is just a sequence (or list) of elements from Σ. We write lists in square
brackets: [σ1, σ2, . . . , σn] and say that n is the length of the sequence, σ1 is the
head of the list, and σn is the tail of the list. The concatenation of two lists is
written as α1 : α2.

Reading from the input I means taking the head of I and replacing with a
new input sequence I ′ comprising the rest of the list. Similarly, the output P
is an initially empty sequence of elements from Σ. When we output a value σ,
we replace P with P ′ = P : [σ].

We can think of the instantaneous state of an entire von Neumann com-
puter’s data resources as a tuple Γ = ⟨I, S, P ⟩. Note that we have said nothing
about programs yet, but as the computer executes a program we can think
of it generating a sequence of sates Γ1,Γ2, . . . just as we thought of a cellular
automaton generating a sequence of playing fields. The program ultimately
represents a transition relation which tells us how to get from one data state
to another, that is from some Γj to some Γk (or at least it does for a so-called
sequential computer in which we hope that the transition relation is a function;
however if we wanted to model concurrency and the spawning of independently
executing sub-processes or threads, then we might expect the relation to not
be a function).

Thinking formally about program execution 20

We shall now make the discussion a little more concrete by considering a
real algorithm specified using a very simple programming language.

1.8.1 Euclid’s Greatest Common Divisor algorithm

The algorithm we shall use is Euclid’s integer Greatest Common Divisor method,
described in the second proposition of Elements VII some 2,300 years ago. It
is worth looking up the original description which is written in quite verbose
prose. For many of the examples in this book we a programming language called
Cava, thus named because it is neither C nor Java but will accept programs
that are quite C/Java-like in their appearance.

1 a := input();
2 b := input();
3

4 while a != b
5 if a > b
6 a := a = b;
7 else
8 b := b = a;
9

10 output(a);

We shall discuss Cava in more deatil in Chapter ??. For now, we note
assignment to a variable is denoted by :=, not by =. As in C and Java statements
are terminated with (not separated by) a ; The phrase input() reads a 32-bit
integer value from the standard input stream, and output(a) appends a textual
representation of the value of a to the output sequence. The names of numeric
types indicate their precision: is equivalent to Integer in Java. Variable
names are not pre-declared.

For comparison, here is the above Cava example turned into a runnable
Java program: it is rather cluttered with extra syntax which is not significant
from our perspective.

1 import java.util.Scanner;
2

3 public class GCD {
4 public static void main(String[] args) {
5 int a, b;
6 Scanner input = new Scanner(System.in);
7

8 a = input.nextInt();
9 b = input.nextInt();

10

11 input.close();
12

Thinking formally about program execution 21

13 while (a != b)
14 if (a > b)
15 a = a = b;
16 else
17 b = b = a;
18

19 System.out.println(a);
20 }
21 }

1.8.2 The fixed-code-and-program-counter interpretation

When we are developing software, we write code, load it into a development
environment such as Eclipse and then run it to see if its behaviour matches our
expectations. Figure 1.1 shows a screenshot of the Java CGD program being
run under the debugger within Eclipse.

We can see the program’s Java code, the input [9, 6] (in green) and the state
of the store with variables a and b, both presently mapped to the value 3. The
program has stopped just before executing the output statement. I can tell this
because line 19 of the code window has a small pointer arrow on the left hand
side and is highlighted in grey. In this system, I can execute one more line of
code (moving the pointer to line 20) by pressing the ‘step-over’ button.

This idea of code which is essentially fixed during a program’s execution
along with the use of a pointer (called the program counter or PC) is fundamen-
tal to most programmers’ ideas of how computers operate. It is a direct legacy
of the von Neumann architecture that is used in almost all modern computing
devices: in these machines most programs are indeed static lists of instructions
that reside in the store; and the instructions for a particular program do not
change as it is being executed. The dynamic aspects of a program’s execution
are under the control of the PC which points to the next piece of code to be
executed: at a branch point we may test a condition and update the PC with
one of two values depending on that outcome. The sequence of values displayed
by the program counter during a program’s execution constitutes the control
flow for this particular input. (We shall sometimes talk about the control flow
of a program which is the union of the control flows exhibited by every possible
input.)

This static-code-and-program-counter model breaks down for some situa-
tions. Firstly, since the instructions reside in the store, it is entirely possible
for a running program to change its own instructions, and indeed some early
processor architectures relied on this idea when executing subroutines. Such
self-modifying code is widely recognised as being very difficult to reason about,
and as a result almost no high level languages allow it. However, operating
systems, and programming environments (such as Java) which allow dynamic
loading of classes at run time do effectively present a form of self modifying
code in a restricted way: we allow a completely new block of code to be loaded
(possibly replacing an existing block or subprogram) and then pass control to

Thinking formally about program execution 22

Figure 1.1 Java GCD implementation during an Eclipse debug session

Thinking formally about program execution 23

it. During a load, the code is treated as passive data, and only once fully in-
stalled do we allow the PC to access its contents. We do not allow individual
instructions within an executing piece of code to be changed. The hardware
often enforces a policy in which the store is internally divided into blocks and
at any one time a block is either read-only or writable. During a code load,
the target blocks are made writable, but then changed to read-only when the
code has been integrated. The PC is never allowed to hold an address from a
writable block.

Now, although the hardware works with (mostly) static code and a program
counter, that does not mean that a formal model of program execution must
take the same view. Just as aviation pioneers had to learn that wing-flapping
was not a useful way to get humans airborne (propellers and jet engines being a
better engineering compromise) the pioneers of formal approaches to program-
ming language semantics had to find a way of dispensing with the program
counter. Why is this?

1.8.3 What is equality?

It turns out that the substitution model of equality that is used in most mathe-
matical reasoning is much simpler than the assignment model of equality used
in procedural programming languages. In mathematics, if I say x = 3 I mean
that x and 3 are synonyms, and in fact anywhere that x appears subsequently I
could cross it out and write 3. In procedural programming languages like Java,
if I write x = 3 I may subsequently write x = 4, and so the relationship between
x and its value depends on the most recent assignment to x under the history
execution history for a particular input.

The substitution model is simple and easy to reason about; the assignment
model is efficient in that identifiers (in detail, named cells with machine ad-
dresses) may be re-used rather than having to be maintained throughout the
runtime of a program. There are languages that use substitution semantics:
they are loosely called functional languages; Haskell is perhaps the purest of
the functional languages. Other mostly-functional languages such as ML and
Scheme do allow assignment, but the culture of programmers in those systems
discourages assignment. In procedural languages, assignments are probably the
most common operation performed during execution.

The use of assignment presents a challenge to formal analyses of program
semantics, but it is particularly problematic that the program counter itself
works by assignment. If we adhere strictly to von Neumann dogma, then we
cannot even execute functional code without using assignment, and this is very
uncomfortable.

1.8.4 The reduction interpretation

There is a straightforward way of thinking about program execution that does
not require the use of a program counter. The trick is to think of the program
code itself as something that can be progressively rewritten until all that we
have left is a result.

Thinking formally about program execution 24

Consider this Cava program fragment

1 output(3);
2 output(10+2+4);

The first thing the program does is output the value 3. We can represent
this by constructing the output list [3] and then discarding the first line of the
program (since we do not need it again). There is a sense in which the tuple

⟨"output(3); output(10+2+4);", []⟩

means the same thing as

⟨"output(10+2+4);", [3]⟩

because the externally visible effect of starting with an empty output and exe-
cuting lines 1 and 2 above is the same as starting with the output [3] and only
executing line 2. Let us therefore represent each step of a program’s execu-
tion by a pair comprising the output and a program that represents only what
remains to be done:

1 output(10+2+4); [3]

Now we have to evaluate the expression 10+2+4 before we can execute the
next output statement. In detail, the computer can only execute one arithmetic
operator at a time; let us choose to execute 10+2, and rewrite it to the result
12.

1 output(12+4); [3]

Now we do the other arithmetic operation: 12+4 is rewritten to 16.

1 output(16); [3]

Finally we can execute the output statement, and add 16 onto the end of the
output list.

1 [3, 16]

Execution is now complete. Note that we could start in any of the five states
above and end up with the same output.

We call this kind of display of machine states the reduction semantics tran-
sition graph for our program. Just as a sequence of CGL playing fields is a
fragment of the graph of the transition relation for CGL, this trace is a frag-
ment of the graph of the transition relation for Cava which is defined over tuples
of ⟨program, output⟩. It is a precise, architecture independent description of
the step-by-step evaluation of our program. Do note, though, that we have not

Thinking formally about program execution 25

yet said anything at all about how that transition relation may be practically
specified. In this example, and in the larger example in the next section, we
have simply chosen plausible operations informally. Later on this book we shall
use sets of inference rules to define the relation in a way which would allow the
automatic generation of this style of reduction interpreter; and that will in fact
be a true symbol-pushing formulation.

1.8.5 A reduction evaluation of GCD with input [6, 9]

A reduction semantics is so-called because we attempt to rewrite programs to
values, which usually means replacing part of the program term with a smaller
one, and thus reducing the program. Occasionally, though, we will actually
rewrite terms to longer terms.

We now present the reduction semantics trace for the GCD program running
on input [6, 9] – exactly the program and input shown in the debugger screenshot
in Figure 1.1 . There are 36 steps in this trace, which make for intimidating
reading, but bear in mind that a step (very roughly) corresponds to a machine
operation such as fetching an operand or adding two numbers. Useful programs
entail the execution of a lot of operations: some of the programs we run on
modern processors take an appreciable amount of time to execute even though
a 3GHz processor will, in two seconds, execute one instruction for every person
on the planet—a number well beyond our abilities to directly comprehend. This
is just a roundabout way of saying that machine operations are fine grained,
and we need an awful lot of them to do useful work. Any attempt to list all of
the steps that are gone through by a non-trivial running program is going to
generate a long list.

We shall use a slightly more compact form to display the steps. First, we
shall write the entire program term on a single line: rather than the nicely laid
out version shown on page 20, we say

a:=input(); b:=input(); while a!=b if a>b a:=a=b; else b:=b=a; output(a);

In our initial example of a reduction trace, the complete state of the machine
could be represented as a tuple containing a program term and an output list.
All of the calculations used constants, so there was no need to represent the
store, or any input. In the GCD program, we shall need these entities, so our
trace will be a sequence of tuples ⟨I, S, P, T ⟩ displaying the current values for
the input, store, output and term, respectively. The initial term has input [6, 9],
an empty store and an empty output:

⟨[6, 9], { }, [], a:=input(); b:=input(); while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

A physical store is a fixed set of cells, each with a fixed address but con-
taining a value which may be changed. One mathematical model of a store is a
map from identifiers to values, and we only put into the map those identifiers
we need. Evaluating a declaration in the program term has the effect of creating
a new store S′ from S which has all of the bindings in S and the new binding
required by the declaration. Assigning a new value to a variable has the effect

Thinking formally about program execution 26

of changing the mapping of one variable in the store, and using a variable in an
expression requires us to look up the value mapped to the variable’s identifier.
We use the notation X 7→ y for an element of S, and the special symbol ⊥ (read
as ‘bottom’) to represent the special value ‘none’. A declaration of X with no
associated initialisation of X creates a binding X 7→ ⊥. In Cava, declarations
are usually implicit, in that the first time we encounter an assignment to a
variable x, we declare x and perform the assignment together.

Each step of our trace involved identifying a part of the program term that
we shall execute, and then rewriting the program term to represent what is
left to do of the original term. We call the subterm that is to be replaced a
reducible expression or redex for short. In the trace below, we have highlighted
the chosen redex in red at each stage. Sometimes there is a choice of redexes
available: for instance when processing the GCD program declarations for a b,
it does not mater which order we process them in. We have chosen to do b first.

A reduction semantics for linear code is straightforward, but we need to
think carefully about loops. The approach we have taken here is to make use
of a program identity, that is a program transformation that does not change
the semantics of a program term, but does change the syntax, and thus the
reduction trace. If we have a loop of the form

1 while booleanExpression do statement;

then we can always transform it into

1 if booleanExpression { statement; while booleanExpression do statement; }

We have effectively unpacked the first iteration of the loop and are handling
it directly with an if statement followed by a new copy of the while loop
which will compute any further iterations. When we have completed all of the
iterations we shall encounter a term like

1 if false { statement; while booleanExpression do statement; }

which rewrites to the empty subterm. This device, then, allows us to treat
while loops using only if statements.

When reading the reduction trace below, the bold headings should sim-
ply be treated as comments: they are there to break up the reductions into
related blocks as an aid to comprehension and have no part in the formal,
symbol-pushing, description of program execution. At each step i, look for the
highlighted redex: the tuple for step i + 1 should contain a term which has
all of the non-highlighted parts from step i, and some new (possibly empty)
subterm which has replaced the redex. The entities will display any changes
arising from side effects of the reduction, such as reading input, declaring a
variable, redefining the value of a variable or writing to output.

Start of trace

Thinking formally about program execution 27

Initialise variables from input

⟨[6, 9], {}, [], a:=input(); b:=input(); while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[9], {a 7→ 6}, [], b:=input(); while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

Rewrite using while p s → if p { s ; while p s }

⟨[], {a 7→ 6, b 7→ 9}, [], while a!=b if a>b a:=a=b; else b:=b=a;output(a);⟩

Evaluate a ̸= b with store {a 7→ 6, b 7→ 9}

⟨[], {a 7→ 6, b 7→ 9}, [], if a!=b { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

⟨[], {a 7→ 6, b 7→ 9}, [], if 6!=b{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

⟨[], {a 7→ 6, b 7→ 9}, [], if 6!=9{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

⟨[], {a 7→ 6, b 7→ 9}, [], if true { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; }output(a);⟩

Evaluate a > b with store {a 7→ 6, b 7→ 9}

⟨[], {a 7→ 6, b 7→ 9}, [], if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 9}, [], if 6>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 9}, [], if 6>9 a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 9}, [], if false a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

Evaluate b− a with store {a 7→ 6, b 7→ 9}

⟨[], {a 7→ 6, b 7→ 9}, [], b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 9}, [], b:=b=6; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 9}, [], b:=9=6; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 9}, [], b:=3; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

Rewrite using while p s → if p { s ; while p s }

⟨[], {a 7→ 6, b 7→ 3}, [], while a!=b if a>b a:=a=b; else b:=b=a;output(a);⟩

Evaluate a ̸= b with store {a 7→ 6, b 7→ 3}

⟨[], {a 7→ 6, b 7→ 3}, [], if a!=b { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

⟨[], {a 7→ 6, b 7→ 3}, [], if 6!=b{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

⟨[], {a 7→ 6, b 7→ 3}, [], if 6!=3{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

⟨[], {a 7→ 6, b 7→ 3}, [], if true { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

Evaluate a > b with store {a 7→ 6, b 7→ 3}

⟨[], {a 7→ 6, b 7→ 3}, [], if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 3}, [], if 6>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 3}, [], if 6>3 a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

Next steps 28

⟨[], {a 7→ 6, b 7→ 3}, [], if true a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

Evaluate a− b with store {a 7→ 6, b 7→ 3}

⟨[], {a 7→ 6, b 7→ 3}, [], a:=a=b; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 3}, [], a:=a=3; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 3}, [], a:=6=3; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

⟨[], {a 7→ 6, b 7→ 3}, [], a:=3; while a!=b if a>b a:=a=b; else b:=b=a; output(a);⟩

Rewrite using while p s → if p { s ; while p s }

⟨[], {a 7→ 3, b 7→ 3}, [], while a!=b if a>b a:=a=b; else b:=b=a;output(a);⟩

Evaluate a ̸= b with store {a 7→ 3, b 7→ 3}

⟨[], {a 7→ 3, b 7→ 3}, [], if a!=b { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

⟨[], {a 7→ 3, b 7→ 3}, [], if 3!=b{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

⟨[], {a 7→ 3, b 7→ 3}, [], if 3!=3{ if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

⟨[], {a 7→ 3, b 7→ 3}, [], if false { if a>b a:=a=b; else b:=b=a; while a!=b if a>b a:=a=b; else b:=b=a; } output(a);⟩

⟨[], {a 7→ 3, b 7→ 3}, [], output(a);⟩

Evaluate output

⟨[], {a 7→ 3, b 7→ 3}, [], output(3);⟩

Empty term indicates normal (successful) termination

⟨[], {a 7→ 3, b 7→ 3}, [3], ⟩

End of trace

The process terminates when we get to a term for which no further reduc-
tions are available, that is, a term that contains no redexes. We call such terms
normal forms. In this case, the final term is empty, which naturally has no
redexes.

Upon termination, the output list shows [3] which is indeed the greatest
common divisor of 6 and 9.

1.9 Next steps

We now have the language for thinking about programs as specifications for
transition system in which a program term is gradually reduced to a normal
form, with side effects being registered in auxiliary entities. However, we have
not described exactly how redexes are recognised, or what form the specification
of the transition relation should take. We need both if we are to write software
tools which can take a reduction semantics specification and a program term and
then work out the reduction trace without human intervention—an automatic
interpreter for this style of programming language specification. Much of the

Exercises 29

rest of this book is devoted to the development of the formal machinery and
generator tools needed for this task.

In a separate thread, we shall look at the broad diversity of software lan-
guages and execution styles that have appeared since 1952, when Glennie de-
veloped the autocode for the Manchester Mk I computer. From the perspective
of the current day, we can identify the first appearances of programming lan-
guage concepts (or notions) such as user defined datatypes and control flow via
recursion that are now present in most production languages, and we can also
see the development of various forms of syntax or notations for writing specifi-
cations. We must also consider the manner in which the language is executed:
some languages (such as XML) describe data layout rather than computation;
other languages are interpreted as a side effect of translation and yet others are
translated directly into a machine level language or compiled for direct execu-
tion. A modern Java Virtual Machine exhibits some of the characteristics of
all three: the basic JVM interpreter collects statistics on program execution,
and for pieces of code which have been intensively used it will stop and cre-
ate compiled versions. This complexity militates against traditional treatments
of compilers and interpreters which tend to focus on one particular style of
execution: in this book we shall use a formal first approach in which we set
up abstract models of language translation that may then be used to generate
concrete translators in these various styles.

1.10 Exercises

1. Create compilable versions of the array, set and set-with-check implemen-
tations of CGL. (You will need to embed the source code within a class
wrapper, add a suitable main() method, fill in the missing definitions in
class Coord, and produce variants of the infra structure methods that use
the Set rather than the array representation.

2. Add instrumentation to your CGL programs to count the number of calls
to the d() method performed in each generation and replicate the results
given in Section 1.7.5 for the first eight generations of a glider.

3. Add a method which fills the playing field with a random selection of occu-
pied cells, and generate statistics showing the time and space requirements
of the three implementations for various sizes of playing field.

4. Write a Cava program which repeatedly reads three integers from the
input and checks to see if they are a Pythagorean triplet, terminating
when such a triplet is found. Write out the reduction semantics transition
graph (the trace) when running on an input of six integers, the last three
of which form a pythagorean triple.

2 Rewriting

Sometimes things look different but mean the same thing. For instance the
mathematical expression 3 + 4 evaluates to the same result as 4 + 3. If we are
only interested in the result of an expression, then we say they are equal, and
we can write 3 + 4 = 4 + 3 = 7.

If we are being very careful, then we would say that the expressions are equal
up to evaluation. In some contexts, these expressions would not be thought of
as equal. For instance the expression 3 + 4 comprises three characters, and the
expression 7 only one, so if we are interested in how much storage we need in a
computer to hold an expression, then 7 is not equal to 3 + 4.

An equation is two expressions separated by the equality symbol =. At a
fundamental level, this tells is that the two expressions either side are inter-
changable because they evaluate to the same mathematical object, and that
means that we can freely replace one by the other. It turns out that we can
do a great deal of useful mathematics (and useful program translation) just by
using equations.

For instance, imagine that we are given two complicated looking expressions
and asked to decide if they are the same. Consider for instance the logical
expressions

a ∧ b...

Now we know a few facts about Boolean algebra.

2.1 Equality of programs

In programming languages we are used to the idea of ‘equivalent’ programs.
For instance, this Java loop:

for (int i = 1; i < 10; i++) System.out.print(i + " ");

generates the same output as

int i = 1; while (i<10) { System.out.println(i + " "); i++ }

If all we are interested in is output of a program, we might say that these two
fragments are equal up to output, or just output-equal. More loosely, we often
say that two programs are semantically equivalent if they produce the same
effects. In this example, the iteration bounds are constant, and we could just
have written

Mathematical objects, their denotations and software implementations 31

System.out.println("1 2 3 4 5 6 7 8 9 ")

These three fragments are semantically equivalent, but the third one will almost
certainly run faster as it does not have the overhead of the loop counter and
only makes one call to println(). Our notion of semantically equivalent does
not include performance, but only the values computed by a program.

Code improvement

High quality translators for general purpose programming languages typically
attempt to improve program fragments by surveying semantically equivalent
alternatives, and selecting ones that are improvements with respect to some
criteria. In the literature, these tools are usually called optimising compilers
which is something of a misnomer since in general it is very hard to find a
truly optimal implementation: perhaps they should be called code-improving
compilers.

The conventional optimisation criteria are (i) execution speed, (ii) memory
consumption and (iii) energy consumption. These three are not independent;
for instance we can often speed things up by using more memory. Small bat-
tery operated systems will emphasise (iii) and (ii) over (i); high performance
scientific computations such as weather prediction will emphasise (i).

In this book we are mostly interested in the meaning of programs up to, but
not including, their performance, so we will have no more to say about code
improvers and optimising compilers. However, there is a vast research literature
describing often-ingenious techniques for improving program performance that
you might wish to explore.

2.2 Mathematical objects, their denotations and software
implementations

When thinking about programming languages, we need to carefully distinguish
between (a) mathematical objects, (b) the textual forms (the denotations) that
we use to name and manipulate those objects, and (c) the implementation of
those objects inside a computer.

Mathematical objects When we are thinking mathematically, we are usually imag-
ining abstract objects and operations regardless of whether we can make a
concrete example. For instance we might decide to think about the set of all
prime numbers, even though we have no easy way of deciding what the elements
of that set are. We can give it a name (a denotation) and then go about inves-
tigating its properties: for instance Euclid proved that there must be infinitely
many primes.

Denotations When we are communicating about mathematics or programs we need
conventions that enable us to write down what we mean. Consider the mathe-
matical object that we get by adding unity to zero six times: we might denote

String rewriting 32

that as 6, 06, six or vi (in Roman numerals). Which form we use is just a
convention, and real programming languages usually support more than one
convention: for instance Java allows us to write six as 6, 06, 0x06 or 0 6 and
these are all denotations for the same mathematical object.

Implementations When we are programming a computer to perform addition we
need some sort of implementation of an integer. Sadly, our implementations will
never have the same properties as the mathematical integers, because our com-
puters are finite. As a result in our programs there will always be some integer
which, if we add one to it, will not generate the integer that mathematically we
would expect. So, for instance, if we were using an eight-bit two’s complement
implementation of the integers, then 126 + 2 would not generate 128 as that
needs nine bits for its two’s complement representation. On many systems, only
the eight least significant bits would be retained, yielding -128. Some systems
have so-called saturated addition in which case the outcome would be 127 (the
largest positive number in that representation).

Note that even using arbitrary precision representations for integers such as
Java’s BigInteger we cannot faithfully represent mathematical integers as there
will be an infinite set of integers that are too large to fit into our finite memory.

2.3 String rewriting

2.4 Term rewriting

Programs often contain expressions such as

17/(4 + (x/2))

They have a well-defined syntax: for instance 4) ∗ (x+ 2) is not a syntactically
well formed expression because of the orphaned opening parenthesis.

This particular way of writing expressions follows the style that we learn in
school which makes use of infix operators like + and / to represent the operations
of addition and division; they are called infix because are written in between
the things they operate on. Expressions can nest and we understand that
evaluation of an expression proceeds from the innermost bracket: to compute
17/(4+ (x/2)) we first need to divide the value of x by 2, then add 4, and then
divide the result into 17.

The choice of infix notation is just that: an arbitrary choice, and we could
have decided to use a different syntax to specify the same sequence of operations,
such as

divide(17, add(4, divide(x, 2)))

We call this form a prefix syntax because each operation is written in front of
the (parenthesized) list of arguments that it is to operate on.

Yet another form, often called Reverse Polish Notation enumerates the ar-
guments and then specifies the operation:

Internal syntax style 33

x,2,divide,4,add,17,divide

This format has the advantage that the operations are encountered in the
order in which they are to be executed, and so no parentheses are required. That
is a significant advantage, but many of us who grew up with infix notation find
these sorts of expression hard to read.

All three of these forms are formally equivalent in that we can unambigu-
ously convert between then without losing any information, and in fact it is
easy to write a computer program to perform that conversion.

Although infix notation is familiar from everyday use it does not extend
very comfortably to operations with more than two arguments. As a rare
example: Java and C both provide the p ? et : ef notation for an expression
in which predicate p is evaluated and then either expression et or expression
ef is evaluated depending on whether the result of p was true or false.

In practice most programming languages provide infix notation for com-
monly understood operations such as addition, less than and logical-and, but
use prefix notation for other operations. Usually we can define procedures which
are then called using a prefix notation. So, for instance, in Java we might write

System.out.println(Math.max(x,y))

.
If you are interested in the design of external language syntax then there are

some alternatives to this approach that you might like to investigate. For in-
stance Scheme and other LISP-like language use an exclusively prefix style; the
printer control language PostScript uses Reverse Polish Notation; the Smalltalk
language effectively uses an infix notation to activate all methods; the C++ lan-
guage allows the dyadic operator symbols like + to have their meanings extended
to include new datatypes, and the Algol-68 language allowed completely new
dyadic operator symbols to be defined. We shall return to these matters of
syntactic style in Chapter 6.

2.5 Internal syntax style

As language implementors and specifiers, we are mostly concerned with internal
syntax—that is, how to represent programs compactly within the computer.
We would like a general notation which is quite regular and thus does not
require us to switch between different styles of writing what are essentially
similar things. We should like to be able to easily transform programs so that if
we chose, we could rewrite an expression such as 3+(5− (10/2)) into 3+(5−5)
or even 3.

The prefix style is both familiar from mathematics and programming, and
easy to manipulate inside the computer so we shall use that style almost exclu-
sively to describe entire programs, and not just expressions. For instance the
program

x = 2;

while (x < 5) { y = y * y; x++;}

Terms 34

might be written

sequence(assign(x,2),

while(greaterThan(x,5),

sequence(assign(y, mul(y, y)),

assign(x, add(x, 1)))))

Here, the concatenation of two statements X and Y in Java is represented by
sequence(X, Y) and an assignment such as x = 2; by assign(x,2).

This notation has the great merit of uniformity: the wide variety of syntactic
styles which are used in high level languages to improve program readability for
humans is replaced by a single notation that requires us to firstly specify what
we are going to do, say add and then give a comma-delimited parenthesised list
of arguments that we are going to operate on.

The heavily nested parentheses can make this a rather hard-to-read notation
although careful use of indentation is helpful. Sometimes, for small expressions
at least, it can be helpful to use a tree diagram to see the expression. For in-
stance 17/(4+(x/2)), which we would write divide(17,add(4,divide(x,2)))
can be drawn as

divide

17 add

4 divide

x 2

2.6 Terms

We call the components of a prefix expression terms. Syntactically, we can
define terms using an inductive (recursive) set of rules like this.

1. A symbol such 1 , π or := is a term.

2. A symbol followed by a parenthesized comma-delimited list of terms is a
term.

Rule one defines terms made up of single symbols. Rule 2 is recursive, and this
allows us to construct terms of arbitrary depth by building one upon another.

The arity of a term is the number of terms within its parentheses. Terms
from rule 1 have no parentheses: they are arity-zero. Equivalently, the arity
is the number of children a term symbol has in its tree representation. Rule 1
terms have no children and so are the leaves of a term tree.

Terms and their implementation in Java 35

Quite often, all instances of a symbol will have the same arity. For instance,
addition is usually thought of as a binary (arity-two) operation, and an expres-
sion 3 + 4 + 5 could be represented by the term add(add(3, 4),5). However,
we could instead decide to have variable arity addition, in which case 4 + 4+ 5
could be represented as add(3,4,5).

2.6.1 Denoting term symbols

We are very permissive about what constitutes a symbol. When we are thinking
about theory, we allow the symbols to be any mathematical object. In this book,
when we are thinking about computer based tools we shall allow a symbol to
be any valid text string over the Unicode alphabet.

Now, great care is needed when reasoning about and writing down terms.
Rule 2 above make comma and parentheses special: how would we go about
writing a symbol that contained parentheses or command? We call these special
characters metacharacters because they are used in the denotation of terms.

If we do want a parenthesis or a comma within a symbol, we usually write
it with a preceding back-slash (\(\) \, or sometimes back-quote character.
Of course, we have now added another meta-symbol, so if we want a back-slash
in a symbol name we have to write it as \\.

2.6.2 Typed terms

Our definition of terms allows any term to be a subterm of any other term.
Often we want to place constraints on our terms by limiting

2.7 Terms and their implementation in Java

Assume that we have types Str(strings), Nat(natural numbers) and Obj(any
data type).

We can move from

Pure text labels with embedded arity Str label×Nat arity× term∗

String map Str↔ Nat Nat label×Nat arity× term∗

Fixed arity map Nat↔ Nat Nat label × Nat arity × term∗ ∨ Nat label ×
term∗, label ∈ arity map

Types mapped to -1 in arity table, structure map Nat↔ Obj Nat label×
Nat data

Small types bool, char, int and real mapped to negatives Nat label ×
data

Arrays should just be a vector of children

3 Structural Operational Semantics

If we want to reason about systems which ultimately execute via an implemen-
tation language then we have to reason about the behaviour and correctness of
that implementation language. If we want to be able to make provable state-
ments about the correctness and completeness of the languages that we develop,
then we must rely the formal correctness of the implementation language and of
its own implementation. But how are we to establish formally the correctness
of the implementation languages? We have a rather circular problem here.

When we use mathematics we typically try to establish relations and equa-
tions between mathematical objects, and then use substitution to propagate
those relationships to derived objects. We should like to use those techniques
to establish properties of the languages that we are developing, without having
to rely on the semantics of some pre-existing programming language. If we can
explain the execution of programs using only simple mathematical notions and
symbol pushing games, then we have a way of talking about programs that
is independent of their implementation on a real computer, that is a formal
semantics. Even better, if we can find a way to operationalise the mathemat-
ical description of semantics, then we can in principle automatically generate
interpreters from the formal semantics. If the automated construction process
is sound, then our generated interpreters will faithfully meet their specification.

Now, in engineering terms formal specifications are still only as good as the
person who wrote them: we can still write rubbish and so formal specification
does not cure all ills. However, automatic generation certainly reduces the error
rate, and the availability of very compact specifications allows us to share our
design easily with other experts who can immediately see what we are doing,
and can help refine our specification. The ideal situation would be for us to
also be able to re-use parts of existing specifications, just as we re-use code in
conventional software engineering by accessing libraries and API’s.

3.1 The basic idea

The core idea is that we shall model program execution taking the tree form
of the program and successively rewriting it into a new tree until no further
rewrites are possible, at which point execution halts. We shall specify the kinds
of rewrites that may be applied using a set of rules and an interpreter which
will apply those rules to the tree: the set of rules together make up the formal
semantics of the language.

For a pure functional language, the rewrites alone will completely model the

Execution via substitution 37

language. Very few languages are purely functional though: real programs have
side effects which may be as simple as outputting a sequence of characters or
may involve complex manipulation of the contents of memory via assignments.
Our rules will therefore allow us to specify side-effects that accumulate as the
tree is repeatedly rewritten.

An important simplification is that the label of the root of a tree to be
rewritten will be used to select which rule to use. If we did not make this
restriction, then we would have to search all over a (potentially huge) tree to
find putative rewrites, and for languages with side effects we would also need
some mechanism for specifying the rewriting order. Our rule, then, will simply
be that we must rewrite using a rule for the root node label, and if there is no
such appropriate rule then execution will cease even if there are other possible
rewrites elsewhere in the tree. This has the twin effects of establishing a rewrite
order, and improving efficiency since we do not have to hunt around for rule
matches.

We should be careful here though. Although only the root node can be used
to select rules, there might still be multiple rules that can be activated, and
we then need to consider how to process such specifications. One approach is
to exploit this property in modelling concurrency and, where multiple rules are
active, proceed with all of them at once, each effectively creating a separate
thread of control. Alternatively, we may have some mechanism for prioritising
the rules, say by checking them in the order that they appear in the specification
and taking the first one.

We should also note that, although the root-node-first approach is much
more efficient than the allowing rewrites anywhere, it is still a rather slow way
to run a program. Depending on your application, it may be fast enough.
In later chapters we shall consider program execution via another technique
called an attribute grammar which can provide good performance, but which
is less tractable when we want to reason about properties of the programming
language or of programs themselves. For ultimate performance, both the struc-
tural operational semantics and attribute grammar formalisms may be used to
output compiled machine code (or its assembly language equivalent) which is
then executed in the conventional way by a real computer, and we shall examine
approaches to compilation later in this book.

3.2 Execution via substitution

We now need to formalise our approach into a game which can run as an au-
tomaton. We shall use ideas from mathematics – relations, equations and sub-
stitution – to describe a running computer program.

In Chapter 1.5 we have already seen (in an informal setting) that we can
describe program execution as a set of states with transitions between them
representing the execution steps of a program. More formally, we developed
the idea of a program execution trace as a series of steps that walk a transition
relation over configurations. A configuration represents the state of a computer,
and configuration Γ1 is related to Γ2 if and only if Γ2 can appear immediately

Execution via substitution 38

after Γ1 in some execution of some program. Configurations always contain
a program term, and in addition we add entities that represent whatever side
effects of program execution we need to record.

By ‘some execution of some program’ we mean any valid program step that
you can imagine - it does not need to be useful or sensible, it just needs to be
allowed by the language that we are writing a formal semantics for.

3.2.1 Configurations

When modelling a programming language, we begin by deciding on the config-
urations of that language. A configuration is a tuple of terms comprising at
least a program term θ, and possibly including a store term σ which represents
the values of program variables, an environment ρ (which holds information
about the scope and location of program objects), an output stream α, an in-
put stream β and some signals ν which RE used to model exception handling.
In the first part of this chapter we shall use configurations of the limited form
⟨θ, α⟩ comprising a program term θ and an output term α.

Execution starts with θ being equal to the whole program to be executed.
We then pick one small part of it, such as the addition of two constant integers,
that we could directly execute, and then rewrite the program to some new term
θ1, replacing the addition with its result.

For example, this program fragment when interpreted will eventually result
in the value 16 being output.

1 output(10+2+4)

Conventional language compilers would typically convert this into machine-
level instructions that add together the 10 and the 2, then add in the 4, and
finally output the result. So as to avoid discussing the complexities of infix
operators with their priorities and associativities, let us represent the program
as a tree, or equivalently as a parenthesized term thus:

1 output(add(add(10, 2),4))

This sort of prefix functional term corresponds directly to a tree if we think of
the written term as being the textual trace of a pre-order tree traversal, with
parentheses being added to show when we pass down or up a tree edge:

Execution via substitution 39

output

add

add 4

10 2

The first computation step for this program reduces the expression to this
simpler term

1 output(add(12, 4))

which we can show graphically as

programTerm

output

add

add 4

10 2

outputTerm

→

programTerm

output

outputTerm

add

12 4

As in Chapter 1.5, we have highlighted the program part that is about to
be rewritten in red. We also have blue nodes representing the various state
components of a running program: in this case limited to the program term
and a presently empty term intended to represent the list of outputs made by
a program.

The full execution of the program is a sequence of three such steps, which
we represent as tuples of the program term and the output.

⟨output(add(add(10, 2),4)), []⟩
⟨output(add(12,4)), []⟩
⟨output(16), []⟩
⟨, [16]⟩

Avoiding empty terms – the special value done 40

As before, the subterm to be evaluated is in red, and we record any side
effects of the computation in an appropriate semantic entity term. In this
case, we have an output term which receives the element 16 as the output
statement is reduced. Here is the graphical representation of this sequence of
three transitions.

programTerm

output

add

add 4

10 2

outputTerm

→

programTerm

output

outputTerm

add

12 4

→

programTerm

output

outputTerm

16

→

programTerm outputTerm

16

3.3 Avoiding empty terms – the special value done

It turns out to be uncomfortable to have ‘empty’ terms. For instance, the
output statement could be just the first component of longer program such as

1 output(10+2+4);output(6)

Here, the ; symbol is a sequencing operator: a sequence action requires first the
left hand side and then the right hand side to be evaluated. In prefix form, we
might represent this as

1 seq(
2 output(add(add(10, 2),4)),
3 output(6)
4)

Term variables are metavariables 41

and by using nested seq() instances we can construct sequences of arbitrary
length.

Reducing the first output() statement to nothing would leave us with the
curious term

1 seq(
2 ,
3 output(6)
4)

and to proceed further we should need some notation for representing these
sorts of missing or empty terms. To avoid this, we instead invent a special
value done which represents the completion of a command.

1 seq(
2 done,
3 output(6)
4)

3.4 Term variables are metavariables

A term variable is a name which stands for an arbitrary term (tree): it a sort
of metavariable (as opposed to the program variables which are represented
by elements of a program term). We shall write term variables in italics to
distinguish them from actual term elements which we have been writing in
sans-serif.

The idea of a term variable is to allow us to speak generally about expres-
sions with arbitrary subexpressions. For example, here is a rule describing how
sequences containing the special value done may be rewritten.

A term describing the sequence of done and then any other sub-
program may be rewritten to just that sub-program. So, for instance,
we can rewrite

1 seq(done, output(6))

as

1 output(6)

This rather clumsy piece of English and its example can be more concisely,
precisely and generally be expressed as follows.

If X is a term variable, then we can then say that a term of the form
seq(done, X) can be rewritten as simply X where X is any valid term, or just

Pattern matching of terms 42

seq(done, X)→ X

We shall make extensive use of term variables as placeholders within trees.

3.5 Pattern matching of terms

Since we are trying to build a formal game which will execute a program without
human intervention, we need some syntax in which to write the rules of the
game. As we have already seen, for this reduction of a sequence with done as
its left hand argument we write

seq(done, X)→ X

This kind of rule is an unconditional rule: anywhere that we find a term
that matches the pattern seq(done, X) we can directly replace it with whatever
the term variable X stands for.

A pattern is a term which may contain term variables. A term which has
no term variables in it is called a closed term. Pattern matching is the process
of comparing a closed term to a pattern to decide if they match and if they
do, constructing a table of term variables showing what they represent. The
relationship between a term variable and its corresponding subterm is called a
binding ; a set of bindings is called an environment.

We can represent this process visually as follows:

seq

done output

6

seq

done X

The sepia coloured closed term is to be matched against the blue pattern.
Some of the leaves of the pattern term may be coloured red: these are nodes
labeled with term variables. We perform the matching by recursively traversing
both trees in tandem. If we arrive at a node which is blue in the pattern but
for which the label does not match the label of the corresponding sepia node,
then the pattern match fails. If we arrive at a node which is red in the pattern
then we have found a term variable-labeled pattern node: we create a binding
between that term variable and the corresponding sepia node (which of course
represents the entire subtree rooted at that node). Otherwise we descend into
the children and continue the recursive traversal.

We can encode this using a recursive function which takes an environment
of bindings, a node from the closed term and a node from the pattern as follows:

Pattern matching of terms 43

1 match(M: set of term variables, E: environment, t: term, p: term)
2 returns environment OR bottom
3 if label(p) in M then add p |=> t to E
4 else if label(p) != label(t) then return bottom
5 else for ct in children(t), cp in children(p) do add match(E, ct, cp) to E
6 return E

Note that our unusual syntax for p in q, r in s do stands for sequential
pairwise traversal of the two lists t and p. We initiate a pattern match by
calling match(M, {}, t, p) where M is the set of term variables in the pattern,
t and p are the root nodes of the term and pattern trees respectively and {} is
an empty environment.

A pattern term may be arbitrarily deep, but in the version of pattern match-
ing that we shall use term variables will always be the labels of leaf nodes. We
shall also restrict ourselves to matching patterns against closed terms. It is
easy to imagine more baroque pattern matching operations, but this will be
sufficient for our style of semantics specification.

A further important restriction is that a term variable X may only appear
at most once within a pattern. Again, one could imagine a version of pattern
matching in which the appearance of two instances of a term variable X meant
that they must each match the same subtree, but we shall not allow this.

We shall write
θ ▷ π

for the operation of matching closed term θ against pattern π. The result of
such a pattern match is either failure represented by ⊥, or a set of bindings. So

seq(done, output(6)) ▷ seq(done, X)

returns
{X 7→ output(6)}

and
seq(done, output(6)) ▷ seq(done, output(Y))

returns
{Y 7→ 6}

whereas
seq(done, output(6)) ▷ seq(X, done)

returns
⊥

because output(6) does not match done.
An important special case of pattern matching uses a pattern which is it-

self a closed term: in such a case, the pattern matcher will return an empty
environment if the two terms are identical, or ⊥ if they differ.

Pattern substitution 44

3.6 Pattern substitution

Pattern matching is a way to extract subtrees (subterms) from within closed
terms. The bindings will associate term variable names with these subterms,
which will themselves be closed (i.e. they will not contain nodes labeled with
term variables).

Pattern substitution is the process by which we stitch subterms into a pat-
tern to create a new closed term by substituting the bound subterms for term
variables in the pattern

We shall write
π ◁ ρ

for the operation of replacing term variables in pattern π with their bound
terms from the environment ρ. The result of such a substitution is a closed
term; it is an error for π to contain a term variable that is not bound in ρ. So

plus(X, 10) ◁ {X 7→ 6}

returns
plus(6, 10)

Here is a recursive function to perform substitution

1 substitute(M: set of term variables, E: environment, t: term) returns term
2 if label(t) in M then return E.get(label(t)).deepCopy()
3 else {
4 ret = t.shallowCopy()
5 for ct in children(t)
6 t.addChild(substitute(M, E, ct)
7 return ret
8 }

3.7 Rules and rule schemas

We now have most of the machinery we need to construct our formal semantics
game; we know how to decompose and compose terms (trees) to give the effects
we showed in Chapter 1.5. There is one major gap though, and that is the
selection of sub-phrases to rewrite. Of course, the ordering of these selections
is important: for instance we know that (x− y)− z is not in general the same
as x− (y − z) so the order in which we formally evaluate the subtractions will
affect the final result.

For very simple languages, it might be practical to define their semantics
by enumeration. Consider a language which allows a single expression to be
output, and limits that expression to a single addition over numbers in the
range 0–2. using configurations ⟨θ, α⟩ there are only nine possible programs

Rules and rule schemas 45

that can be written in this language each of which we could evaluate directly
using these nine rules:

⟨output(plus(0, 0)), []⟩ → ⟨done, [0]⟩

⟨output(plus(0, 1)), []⟩ → ⟨done, [1]⟩

⟨output(plus(0, 2)), []⟩ → ⟨done, [2]⟩

⟨output(plus(1, 0)), []⟩ → ⟨done, [1]⟩

⟨output(plus(1, 1)), []⟩ → ⟨done, [2]⟩

⟨output(plus(1, 2)), []⟩ → ⟨done, [3]⟩

⟨output(plus(2, 0)), []⟩ → ⟨done, [2]⟩

⟨output(plus(2, 1)), []⟩ → ⟨done, [3]⟩

⟨output(plus(2, 2)), []⟩ → ⟨done, [4]⟩

This is clearly not a very practical approach. What we need to do is to be
able to express the pattern of additions more concisely. We call rules that have
term variables in them rule schemas because they are really a compact way of
generating a (possibly infinite) set of real rules.

In pseudo code, we might say something like this:

1 let x, y and z be term variables
2 if program term theta matches output(add(x,y))) with some alpha and
3 x is bound to an integer in the range 0=2 and
4 y is bound to an integer in the range 0=2 and
5 z is bound to the result of adding x and y together then
6 rewrite theta to done and alpha to the substitution of z

More formally, using the notations we have developed we might say

if ⟨ρ1 = (θ ▷ output(plusOp(X,Y))), α⟩

and is012(X) ▷ true

and is012(Y) ▷ true

and ρ2 = ((addOp(X,Y) ◁ ρ1) ▷ Z)

then θ → θ′ = ⟨done, [Z ◁ ρ2]⟩

We have introduced a new mechanism here: simple functions that take terms
and return terms which we write in teletype font. We can think of these as
pre-existing mathematical functions whose definition is obvious, or if we are
writing an interpreter then we might think of these as lookup tables, or calls to
very small programs that compute results. The important thing is that these
functions must be so small as to allow us to trivially check their correctness.

In this case we are using two new functions: is012(x) which returns a
term true or a term false depending on whether x is in the set {0, 1, 2} or not;

Rules and rule schemas 46

and addOp(x, y) which returns a term labeled with the number formed from
the addition of terms x and y. Notice how everything we are doing reduces
to operations over terms: our functions are not returning values such as true
or false; they are returning trees made up of a single node labeled with true or
false. Notice also that we are using names such as addOp for the function that
computes the operation of addition, as opposed to the term constructer add
which is a tree label from a program term. You should think of add as the piece
of syntax that requests an addition, and addOp as the name of the function (or
perhaps even machine instruction) which will actually perform the addition.
We shall follow this convention throughout: names with the Op suffix are used
for functions that perform computations, and they must not also appear as the
names of a term (tree) element.

Even our formal version of the rule schema is rather a lot of writing. It will
turn out that usually several of these rule schemas will be used together in a
way that corresponds to inference in a logical system, and we use a special form
of syntax that allows us to show derivations in that logical system as trees of
rule schemas. A general inference rule looks like this:

C1 C2 . . . Cn

⟨θ, α⟩ → ⟨θ′, α′⟩

The elements above the line (the Ci) are called conditions. Conditions can
themselves be transitions although we have not yet encountered examples of
that style. Conditions may also be simple matches against the return value of
a function, in which case they are called side conditions. The single transition
below the line is called the conclusion. You might read an inference rule in this
style as:

if you have a configuration ⟨θ, α⟩,
and C1 succeeds and C2 succeeds and . . . and Cn succeeds
then transition to configuration ⟨θ′, α′⟩

so one reads this kind of rule by checking that the current configuration matches
the left hand side of the conclusion, then by checking the conditions, and if
everything succeeds rewriting the current configuration into the right hand side
of the conclusion. We sometimes refer to this rather operational view of logical
inference as ‘reading round the clock’.

The inference rule representation of our schema is

(is012(X) ◁ ρ1) ▷ true (is012(Y) ◁ ρ1) ▷ true ρ2 = ((addOp(X,Y) ◁ ρ1) ▷ Z)

⟨ρ1 = (θ ▷ output(plusOp(X,Y)), α ▷ []⟩ → ⟨done, [α,Z ◁ ρ2]⟩

We have been careful here to represent all of the pattern matching and
substitution operations explicitly. In practice, it is understood that (i) each
rule has its own set of term variables even if the same term variable name is
used in multiple rules (that is, there is no communication of bindings from one
rule to the next) and that (ii) as a rule is checked, a private environment is
developed as we go round the clock, (iii) the first time we meet a term variable
it is being used to create a binding, (iv) subsequent appearances of a term

The interpreting function FSOS 47

variable are to be substituted by its binding and (v) that the term in the left
hand side of the conclusion is a pattern to be matched against θ in the current
configuration.

This allows us to abbreviate our inference rule to:

is012(X) ▷ true is012(Y) ▷ true addOp(X,Y) ▷ Z

⟨output(plusOp(X,Y)), α⟩ → ⟨done, [α,Z]⟩

and this is the style that we shall use in future.

3.8 The interpreting function FSOS

Now that we have pattern matching and substitution operations along with
notions of transitions and side conditions, we can think about a function which
takes an input term and interprets it by looking through the rules for possible
transitions.

3.8.1 Managing the local environment

When implementing FSOS using a procedural language with assignment, there
is a useful optimisation that we can apply. Recall that when we wrote out the
full version of the inference rule we were careful to create new environments
ρ1, ρ2, . . . each time we performed a pattern match. As we moved from the
detailed version of a rule schema to the abbreviate form we noted that:

(iii) the first time we meet a term variable it is being used to create
a binding

and

(iv) subsequent appearances of a term variable are to be substituted
by its binding

As a result term variables will never be reused (that is a binding cannot sub-
sequently be changed) and we can use a single environment to which bindings
are added as we go round the clock. We shall call this mutable environment E.

3.8.2 Procedural pseudo-code for FSOS

This is a procedural implementation of the rule application function Fsos. The
function takes a configuration made up of a program term and zero or more
semantic entities and either returns a new configuration or ⊥. It accesses a set
of rule schemes R each of which has a conclusion and a set of conditions. In
the pseudo code, we use the operators |> and <| for the pattern matching ▷
and substitution ◁ operations.

1 let R be the set of rule schemas
2

3 Fsos(C: configuration) returns configuration OR bottom

The interpreting function FSOS 48

4 for r in R
5 if C |> r.conclusion.lhs then
6 let E be an empty set of bindings
7 for c in R.conditions
8 if isSideCondition(c)
9 let res be (c.lhs <| E) |> c.rhs

10 if res = bottom then next r else add res to E
11 else
12 let T be c.lhs <| E
13 if isvalue(T) then return T
14 let res be Fsos(T) |> c.rhs
15 if res = bottom then next r else add res to E
16 return r.conclusion.rhs <| E
17 return bottom

The basic approach is just as we described in our ‘round-the-clock’ informal
description of how to read an inference rule.

We start with a configuration, perhaps the initial program and an empty
output list. We then scan through all of the rule schemas until we find one that
matches the root node of our term. (As an aside, we can make this process
more efficient by storing R as a map from constructor label L to subsets of R
that have L as the root constructor of their conclusion’s left hand side; we have
not used this optimisation here.)

We then create a new, empty environment called E and work our way across
the conditions evaluating them; if they succeed we add their bindings into E,
but if any fail we abort the processing for this rule and throw away E, seeking
another rule whose conclusion left hand side matches our term.

Conditions can be either side conditions or transitions.

⋄ For a side condition we call the left hand side function and then pattern
match the result against the condition’s right hand side.

⋄ If the condition is a transition, we first let T be the condition’s left hand
side after substitution; if T is a value we return that, otherwise we recur-
sively call FSOS(T) and pattern match the result against the condition’s
right hand side.

There is an important technical detail here: a call to Fsos() may result in ⊥
but in line 12 we pattern match the result of the call. Now, the pattern match
operator ▷ is usually only defined over terms, but here we extend the definition
so that an attempt to pattern match against ⊥ will yield ⊥, and in that way
the failure propagate up.

If all of the conditions succeed, then at line 14 FSOS returns the right hand
side of the conclusion after substitution against the final value of E.

If we exhaust the rules set R then we have arrived at a terminal configura-
tion, that is one from which no further transitions may be made. For a correct
program, this terminal transition will correspond to the program’s final ver-
sion. If the rules were ill-formed, it would be possible to run out of applicable

Structural Operational Semantics and FSOS traces 49

transitions prematurely: such a configuration is called a stuck configuration and
would be reported as an error by the interpreter which requires the rules to be
changed. In detail, we nominate some program terms as values. If an evalu-
ation terminates with a value term, then we have a normal execution. If an
evaluation terminate with a non-value term, then we have a stuck execution.
The done constructor in our rule is an example of a value: it marks normal
termination of commands. Numeric and other literals such as strings are also
usually values; and we may indicate the successful completion of expression
evaluations by reducing them to one of these values.

3.8.3 Program term rewrites - the outer interpreter

The Fsos() function only performs a single transition on the program term, so we
usually need to wrap the initial call in an interpret() function which repeatedly
applies Fsos() until we arrive at a terminal configuration; flagging an error if
that configuration is not a value.

1 interpret(C: configuration) returns configuration
2 C' = Fsos(C)
3

4 while C' not bottom
5 C = C'
6 C' = Fsos(C)
7

8 if not isValue(C.theta) error('Stuck configuration')
9

10 return C

As we shall see below, sometimes we shall write transitively closed rules
which internally manage the rewriting of the program term so that the whole
program is redued to a value by a single call to Fsos(). In that case we would
not need to change the interpret() function but the body of the while would only
execute once; if we knew that the rules had this property then we could instead
just directly call Fsos() once.

3.9 Structural Operational Semantics and FSOS traces

It is clear that in some sense the structure of the term to be executed specifies
the execution order. When we looked at attribute grammars we focused on so-
called L-attributed specifications which we processed by descending as deeply
as possible into the tree and then propagating values back up using synthesized
attributes, a sort of inside-out evaluation.

Using a technique due to Plotkin called Structural Operational Semantics,
we shall specify similar inside-out steps often using repeated term traversals.
The basic idea is to conditionally rewrite the term by isolating a subcomputation
that can be performed immediately, and we ensure that the rewrites are done

Structural Operational Semantics and FSOS traces 50

in the inside-out order by building inference rules that have the abstract syntax
of our language embedded in the conclusions.

3.9.1 SOS rules for an addition language

As a first example, let us generalise the 0, 1, 2 addition language of the previous
section to allow expressions involving an arbitary number of additions over
general additions.

We begin with a rule that performs addition for expressions such as 3 + 4,
that is where each operand is a single integer. The rule uses our abstract
syntax, which would encode this example as add(3, 4). Here and in future, we
shall name rules for reference purposes by giving a unique tag in square brackets
at the start of the rule. These names have no meaning in themselves but we
often use names that indicate the purpose of the rule. Sometimes we shall just
number them.

[add]
isInt(n1) ▷ true isInt(n2) ▷ true addOp(n1, n2) ▷ V

⟨add(n1, n2), α⟩ → ⟨V, α⟩

This is very similar to the rule we wrote for our 012 language, except that
we have taken away the output operation, and we now allow the term variables
n1 and n2 to match any integer, not just the integers 0, 1 and 2. We allow
this simply by using side conditions to test the term variables with a function
isInt().

Next we re-introduce the output statement using a separate rule for the
output() constructor which checks that its argument is an integer, and if so
transfers it to the output list before rewriting the program term to the value
done.

[outputInt]
isInt(n) ▷ true

⟨output(n), α⟩ → ⟨done, [α, n]⟩

Now we have a problem. This rule will successfully interpret programs such
as output(3) since 3 is an integer so the side condition will succeed. However,
a program like output(add(3, 4)) will become stuck, since add(3, 4) is not an
integer: it is an expression that we can imagine being reduced to an integer
using rule [add], but there is nothing in rule [outputInt] to say how that is to
be done.

One way of fixing this problem would be by creating variants of the [out-
putInt] rule which handled various expressions. Of course, in any realistic lan-
guage, there is an infinite set of expressions of ever increasing depth, even when
(as here) we are allowing only one operator, and of course we do not want to
write out the corresponding infinite set of [output] rules. Just as with syntax
specification, where we used inductive definitions formed from recursive rules to
generate infinite language, here we shall use recursion to handle the unbounded
nature of expressions. Effectively, we shall allow the rule for [outputInt] to ask
its operand to evaluate itself. Here is a rule that has that effect.

Structural Operational Semantics and FSOS traces 51

[outputExpr]
⟨E,α⟩ → ⟨E′, α⟩

⟨output(E), α⟩ → ⟨output(E′), α⟩

This is the first rule we have seen that has a transition as one of its conditions
rather than a simple side-condition. Looking at the Fsos() function pseudo-code,
you can see that this rule simply takes any program with output() as its outer
constructor, pulls out the argument (which can be of arbitrary complexity) by
pattern matching it to term variable E, and then recursively calls Fsos() on
the configuration ⟨E,α⟩. Whatever comes back from that call is then used to
rewrite the program term into a simpler form.

We shall record the behaviour of our interpreters by showing traces of the
calls and returns from Fsos(). Consider the program output(add(3, 4)) with an
initially empty input list. The program term will be rewritten in two stages:
first to the term output(7) and then to the term done. We will represent each
in a separate block the first line of which is the rewrite number and the outer
call to Fsos() with arguments. Each block thus corresponds to a call to Fsos()
that has been made by interpret(). Within each block, we shall show the rule
selected by Fsos() for interpretation and, for side conditions the yield, and for
transition conditions the trace of recursive calls to Fsos().

1 1. Fsos(output(add(3, 4)), [])
2 [outputExpr].C1 calls Fsos(add(3, 4), [])
3 [add].SC1 yields true
4 [add].SC2 yields true
5 [add] rewrites to 7, []
6 [outputExpr] rewrites to output(7), []

1 2. Fsos(output(add(7)), [])
2 [outputInt].SC1 yields true
3 [outputInt] rewrites to done, [7]

done is a value, so interpretation terminates.

3.9.2 Expression nesting

The three rules [add], [outputInt] and [outputExpr] together allow us to inter-
pret programs such as output(6) and output(add(6, 7)) but they do not cover
programs such as output(add(add(6,7),8) because the only rule we have for the
add() constructor requires its operands to be simple integers. This is just an-
other manifestation of the problem we had with the output() constructor, and
the resolution follows the same principle.

Now, addition is a left associative operator with two arguments. We should
like to evaluate the arguments one at a time, with the leftmost argument being
done first. Here are two additional rules for add() which have that effect.

Structural Operational Semantics and FSOS traces 52

[addLeft]
⟨E1, α⟩ → ⟨I1, α⟩

⟨add(E1, E2), α⟩ → ⟨add(I1, E2), α⟩

[addRight]
⟨E2, α⟩ → ⟨I2, α⟩ isInt(n) ▷ true

⟨add(n,E2), α⟩ → ⟨add(n, I2), α⟩

Rule [addLeft] rewrites the left argument to an add() constructor to a sim-
pler expression whilst preserving the second argument. Rule [addRight] will
only process terms that had a single integer as the left hand argument, and
rewrites the second argument. These two rules together with the [add] rule
allow arbitrarilly deep expressions over add() to be evaluated.

Here is an interpretation trace for the program output(add(add(6,7),8)).

1 1. Fsos(output(add(add(6, 7), 8), [])
2 [outputExpr].C1 calls Fsos(add(add(6, 7), 8), [])
3 [add].SC1 yields false: backtrack, and seek another rule
4 [addLeft].C1 calls Fsos(add(6, 7), [])
5 [add].SC1 yields true
6 [add].SC2 yields true
7 [add] rewrites to 13, []
8 [addLeft] rewrites to add(13, 8}
9 [outputExpr] rewrites to output(add(13,8), []

1 2. Fsos(output(add(13, 8)), [])
2 [outputExpr].C1 calls Fsos(add(13, 8), [])
3 [add].SC1 yields true
4 [add].SC2 yields true
5 [add] rewrites to 21, []
6 [outputExpr] rewrites to output(21), []

1 3. Fsos(output(add(21)), [])
2 [outputInt].SC1 yields true
3 [outputInt] rewrites to done, [21]

Notice that we only use rules [outExpr], [outInt], [addLeft] and [addInt].
We never need to invoke [addRight] because the right hand argument of the
outer add() is already a simple integer. You can probably see that there is a
rekationship between the number of add() constructors in the original term and
the number of program term rewrites that will be performed during interpre-
tation. One of the most useful aspects of this style of semantics specification is
that it allows proofs of these kinds of properties. In the next chapter we shall
see how the proof technique of structural induction on our inference rules may
be used to formally prove properties of languages.

An SOS for a language with flow control, variables and expressions 53

3.10 An SOS for a language with flow control, variables and
expressions

We have now seen the basic interpretive mechanisms at work so we are ready
to look at a non-trivial language. In this section we shall develop a formal
semantics for a language powerful enough to implement Euclid’s algorithm,
and show how the transitions in Chapter 1.5 may be generated from our style
of interpreter.

3.10.1 Configurations

As before, we begin by setting the configuration. Our new language will have
variables, so we need a store in which to hold their values. Our store will be
a simple map from identifiers to integer values, and we shall denote it by σ.
We shall not have multiple scope regions, so a single level map suffices and we
do not need an environment ρ; in addition our programs will be over the store
only, with no output or input. As a result, our configurations will be just ⟨θ, σ⟩,
that is a program term and a store.

3.10.2 Variable handling

Our store comes with two functions that may be used in side conditions called
get() and put(). These operate just as the equivalent methods do in a Java
map, and indeed within the interpreter we implement an instance of σ as a
Map<String,Integer>, mapping variable identifiers to integers. As usual, our
the domain and codomain of our side condition functions is the set of terms,
so one must be careful to remember that a value such as the integer 27 is in
detail a term comprising a single tree node labeled with the integer 27 rather
than some machine-specific representation of 27.

Assignment is handled by using term variables to extract the components
of a configuration which has assign() at the top of its program term. We then
substitute those term variables into a call to put() and bind the resulting new
store to a new term variable. The program term is mapped to the tuple of done
and the new store.

[assign]
isInt(n) ▷ true put(σ1, X, n) ▷ σ2
⟨assign(X,n), σ1⟩ → ⟨done, σ2⟩

Variable access is handled in a way that is rather inefficient for the inter-
preter—we shall return to this issue in the next chapter. We have a rule which
has a single term variable for its program term. This means that this rule will
be triggered for any program configuration; it will usually turn out to be more
efficient to arrange things so that this rule is only checked if everything else has
failed. In the Java interpreter we shall develop in the next section, we can get
this effect by placing the rule at the end of a specification.

[variable]
get(R, σ) ▷ V

⟨R, σ⟩ → ⟨V, σ⟩

An SOS for a language with flow control, variables and expressions 54

Although the rule can be activated for any program term, we ensure that the
side condition function get() returns ⊥ if it is asked to look up a term which
is not in the store. In this way, program terms that have not previously been
used as a variable name in an assign() constructor will cause the rule to fail.

So far we have only shown how to assign an integer to a variable; we shall
need one more rule so as to ensure that expressions more complex than a single
integer are suitably evaluated.

[assignCongruence]
⟨E, σ⟩ → ⟨I, σ⟩

⟨assign(X,E), σ⟩ → ⟨assign(X, I), σ⟩

3.10.3 Arithmetic operations

Our rules for addition are essentially the same as before, except that this time
our configurations are over ⟨theta, σ⟩ instead of ⟨theta, α⟩.

[addLeft]
⟨E1, σ⟩ → ⟨I1, σ⟩

⟨add(E1, E2), σ⟩ → ⟨add(I1, E2), σ⟩

[addRight]
⟨E2, σ⟩ → ⟨I2, σ⟩ isInt(n) ▷ true

⟨add(n,E2), σ⟩ → ⟨add(n, I2), σ⟩

[add]
isInt(n1) ▷ true isInt(n2) ▷ true addOp(n1, n2) ▷ V

⟨add(n1, n2), σ⟩ → ⟨V, σ⟩

We can use the same pattern for any other arithmetic operators we have, and
indeed extend the rules to handle floats and other data types as necessary by
using different side conditions.

[mulLeft]
⟨E1, σ⟩ → ⟨I1, σ⟩

⟨mul(E1, E2), σ⟩ → ⟨mul(I1, E2), σ⟩

[mulRight]
⟨E2, σ⟩ → ⟨I2, σ⟩ isInt(n) ▷ true

⟨mul(n,E2), σ⟩ → ⟨mul(n, I2), σ⟩

[multiply]
isInt(n1) ▷ true isInt(n2) ▷ true mulOp(n1, n2) ▷ V

⟨mul(n1, n2), σ⟩ → ⟨V, σ⟩

It is a little uncomfortable that we need to write three rules for every op-
erator. In the next chapter we shall see alternative styles of rules that allow a
more compact description.

An SOS for a language with flow control, variables and expressions 55

3.10.4 Boolean relations

As a variation on the above, here are four rules that define semantics for the
greater-than relational operation, represented in the abstract syntax by con-
structor gt(). Here, instead of using a term variable to carry the result of the
side condition that performs the computation, we create a rule for each of the
possible outcomes. These rules could instead be written in the style of the
arithmetic ones in the previous section.

[gtLeft]
⟨E1, σ⟩ → ⟨I1, σ⟩

⟨gt(E1, E2), σ⟩ → ⟨gt(I1, E2), σ⟩

[gtRight]
⟨E2, σ⟩ → ⟨I2, σ⟩ isInt(n) ▷ true

⟨gt(n,E2), σ⟩ → ⟨gt(n, I2), σ⟩

[gtFalse]
isInt(n1) ▷ true isInt(n2) ▷ true isgt(n1, n2) ▷ false

⟨gt(E1, E2), σ⟩ → ⟨false, σ⟩

[gtTrue]
isInt(n1) ▷ true isInt(n2) ▷ true isgt(n1, n2) ▷ true

⟨gt(E1, E2), σ⟩ → ⟨true, σ⟩

3.10.5 Sequential flow control

The simplest for of flow control is the sequencing of statements. The special
value done plays an important role here: as we discussed earlier we use it to allow
us to express the notion that a finished command followed by some command
C has the same meaning as just C on its own:

[done] ⟨seq(done, C), σ⟩ → ⟨C, σ⟩

Just as with arithmetic, we need rules that allow other rules to be activated
so as to reduce components of a pattern to basic values: in the case of arithmetic
operations, integers and in the case of commands, to done. These kinds of rules
are sometimes called congruence rules for reasons that we shall discuss in the
next chapter.

For sequencing, we need such a rule to ensure that the left argument is
reduced until such time as rule [done] can be activated:

[sequence]
⟨C1, σ1⟩ → ⟨C ′

1, σ2⟩
⟨seq(C1, C2), σ1⟩ → ⟨seq(C ′

1, C2), σ2⟩

3.10.6 Conditional flow control

An if statement is a language takes an expression as a predicate, and a com-
mand to be executed. If the predicate yields true then the command is executed;

Using big steps to simplify the rules 56

otherwise it is skipped. We can express these semantics using two rules that op-
erate on the degenerate predicates true and false. These rules are unconditional;
that is they are axioms.

[ifTrue] ⟨if(true, C), σ⟩ → ⟨C, σ⟩

[ifFalse] ⟨if(false, C), σ⟩ → ⟨done, σ⟩

We also, of course, need to consider the semantics of if statements that have
non-degenerate predicates. Again, we use a congruence rule to ensure that
general predicates in if statementes are reduced to one of the base cases that
we can handle directly.

[ifCongruence]
⟨E, σ⟩ → ⟨E′, σ⟩

⟨if(E,C), σ⟩ → ⟨if(E′, C), σ⟩

3.10.7 Loops

The rules for a while loop are closely related to those for if; in fact [whileFalse]
and [whileCongruence] are identical up to the constructor name.

[whileFalse] ⟨while(false, C), σ⟩ → ⟨done, σ⟩

[whileCongruence]
⟨E, σ⟩ → ⟨E′, σ⟩

⟨while(E,C), σ⟩ → ⟨while(E′, c), σ⟩

The [whileTrue] rule applies the rewrite that we introduced in the first
chapter, mapping a while to an if followed by a while.

[whileTrue] ⟨while(true, C), σ⟩ → ⟨if(E, seq(C,while(E,C))), σ⟩

3.11 Using big steps to simplify the rules

We can avoid the need to explicitly reduce expressions in steps over the left
and right arguments by simply specifying that a term can transition directly
to its value. We use a big arrow ⇒ to indicate such rules. There is a sense
in which a whole sequence of congruence rule applications has been built-in
to these bug step rules by applying the transitive closure of the rules in our
original specification.

Here is a more compact version of the semantics for our language. We lose
the link between individual rewrites and machine level operations, in that an
entire expression will be rewritten in a single step. We also lose the ability to
reason in detail about the effects of exceptions (such as a divide by zero) that
might be raised during the evaluation of an expression. However, the specifica-
tion, and the associated execution traces, become more compact.

Interpretation traces for our language 57

(3.1)
⟨E, σ⟩ ⇒ ⟨true, σ⟩
⟨if(E,C), σ⟩ → ⟨C, σ⟩

(3.2)
⟨E, σ⟩ ⇒ ⟨false, σ⟩

⟨if(E,C), σ⟩ → ⟨done, σ⟩

(3.3)
⟨E, σ⟩ ⇒ ⟨true, σ⟩

⟨while(E,C), σ⟩ → ⟨if(E, seq(C,while(E,C))), σ⟩

(3.4)
⟨E, σ⟩ ⇒ ⟨false, σ⟩

⟨while(E,C), σ⟩ → ⟨done, σ⟩

(3.5) ⟨seq(done, C2), σ⟩ → ⟨C2, σ⟩

(3.6)
⟨C1, σ1⟩ → ⟨C ′

1, σ2⟩
⟨seq(C1, C2), σ1⟩ → ⟨seq(C ′

1, C2), σ2⟩

(3.7)
⟨E1, σ⟩ ⇒ ⟨I1, σ⟩ ⟨E2, σ⟩ ⇒ ⟨I2, σ⟩ isgt(I1, I2) ▷ false

⟨gt(E1, E2), σ⟩ ⇒ ⟨false, σ⟩

(3.8)
⟨E1, σ⟩ ⇒ ⟨I1, σ⟩ ⟨E2, σ⟩ ⇒ ⟨I2, σ⟩ isgt(I1, I2) ▷ true

⟨gt(E1, E2), σ⟩ ⇒ ⟨true, σ⟩

(3.9)
⟨E1, σ⟩ ⇒ ⟨I1, σ⟩ ⟨E2, σ⟩ ⇒ ⟨I2, σ⟩ addOp(I1, I2) ▷ V

⟨add(E1, E2), σ⟩ ⇒ ⟨V, σ⟩

(3.10)
⟨E1, σ⟩ ⇒ ⟨I1, σ⟩ ⟨E2, σ⟩ ⇒ ⟨I2, σ⟩ mulOp(I1, I2) ▷ V

⟨mul(E1, E2), σ⟩ ⇒ ⟨V, σ⟩

(3.11)
⟨E, σ1⟩ ⇒ ⟨V, σ1⟩ put(σ1, X, V) ▷ σ2
⟨assign(X,E), σ1⟩ → ⟨done, σ2⟩

(3.12)
get(R, σ) ▷ V

⟨R, σ⟩ ⇒ ⟨V, σ⟩

3.12 Interpretation traces for our language

In this section we give FSOS traces for some examples using the rules we have
developed. For convenience, we gather all of the rules together here in the order
that FSOS will examine them.

Interpretation traces for our language 58

3.12.1 Example 1 – assignment to literal

Initial configuration

⟨assign(X, 3), {}⟩

Trace

1 1. Fsos(assign(X, 3), { })
2 [4.11].C1 yields X
3 [4.11].SC2 yields { X |=> 3 }
4 [4.11] rewrites to done, { X |=> 3 }

3.12.2 Example 2 – assignment to variable

Initial configuration

⟨assign(Y, X), {X 7→ 3}⟩

Trace

1 1. Fsos(assign(Y, X), { X |=> 3 })
2 [4.11].C1 calls Fsos(X, { X |=> 3 })
3 [4.12].SC1 yields 3
4 [4.12] rewrites to 3, { X |=> 3 }
5 [4.11].SC2 yields { Y |=> 3, X |=> 3 }
6 [4.11] rewrites to done, { Y |=> 3, X |=> 3 }

3.12.3 Example 3 – sequence over assignments

Initial configuration

⟨seq(assign(X, 3), assign (Y, X)), {}⟩

Trace

1 1. Fsos(seq(assign(X, 3), assign (Y, X)), { })
2 [4.6].C1 calls Fsos(assign(X, 3))
3 [4.11].C1 yields X
4 [4.11].SC2 yields { X |=> 3 }
5 [4.1] rewrites to done, { X |=> 3 }
6 [4.6] rewrites to seq(done, assign (Y, X)) { X |=> 3 }

1 2. Fsos(seq(done, assign (Y, X)), { X |=> 3 })
2 [4.5] rewrites to assign (Y, X)), { X |=> 3 }

Interpretation traces for our language 59

1 3. Fsos(assign(Y, X), { X |=> 3 })
2 [4.11].C1 calls Fsos(X, { X |=> 3 })
3 [4.12].SC1 yields 3
4 [4.13] rewrites to 3, { X |=> 3 }
5 [4.11].SC2 yields { Y |=> 3, X |=> 3 }
6 [4.11] rewrites to done, { Y |=> 3, X |=> 3 }

3.12.4 Example 4 - conditional assignment

Initial configuration—note that the store already includes a value for the vari-
able X.

⟨if(gt(X,0)), assign(Y, X)), {X 7→ 2}⟩

Trace

1 1. Fsos(if(gt(X,0)), assign(Y, X)), { X |=> 2 })
2 [4.1].C1 calls Fsos(gt(X,0), { X |=> 2 })
3 [4.7].C1 calls Fsos(X, { X |=> 2 })
4 [4.12].SC1 yields 3
5 [4.12] rewrites to 3
6 [4.7]C2 yields 0 (already a value = no recursive call)
7 [4.7]SC1 yields true = failure leading to backtrack
8 [4.8].C1 calls Fsos(X, { X |=> 2 })
9 [4.12].SC1 yields 3

10 [4.12] rewrites to 3
11 [4.8]C2 yields 0 (already a value = no recursive call)
12 [4.8]SC1 yields true
13 [4.8] rewrites to true, { X |=> 2 }
14 [4.1] rewrites to assign(Y, X)), { X |=> 2 }

1 2. Fsos(assign(Y, X), { X |=> 3 })
2 [4.11].C1 calls Fsos(X, { X |=> 3 })
3 [4.12].SC1 yields 3
4 [4.12] rewrites to 3, { X |=> 3 }
5 [4.11].SC2 yields { Y |=> 3, X |=> 3 }
6 [4.11] rewrites to done, { Y |=> 3, X |=> 3 }

3.12.5 Example 5 - loops

Initial configuration—note that the store already includes a value for the vari-
able X.

⟨while(gt(X,0)), assign(X, -1)), {X 7→ 2}⟩

Interpretation traces for our language 60

Trace

1 1. Fsos(while(gt(X,0)), assign(Y, =1)), { X |=> 2 })
2 [4.3].C1 calls Fsos(gt(X,0), { X |=> 2 })
3 [4.7].C1 calls Fsos(X, { X |=> 2 })
4 [4.12].SC1 yields 3
5 [4.12] rewrites to 3
6 [4.7]C2 yields 0 (already a value = no recursive call)
7 [4.7]SC1 yields true = failure leading to backtrack
8 [4.8].C1 calls Fsos(X, { X |=> 2 })
9 [4.12].SC1 yields 3

10 [4.12] rewrites to 3
11 [4.8]C2 yields 0 (already a value = no recursive call)
12 [4.8]SC1 yields true
13 [4.8] rewrites to true, { X |=> 2 }
14 [4.3] rewrites to if(gt(X,0), seq(assign(Y, =1), while(gt(X, 0), assign(Y, =1)))), { X |=> 2 }

. . .

4 Syntax

People like to communicate, and language in its broadest sense is the means
by which we perform communication. The processes by which concepts in my
internal world can be summoned up in another person’s consciousness through
the use of language is truly mysterious, and yet at the same time so fundamental
to our lives that we rarely think deeply about it.

Each of us has some sense of self, an internal landscape populated by experi-
ential memories, learned concepts and new ideas. We speak of consciousness as
being the embodiment of being aware and alive, but in truth there is very little
agreement as to what consciousness is even though this fundamental aspect of
existence has been been examined and debated for millennia.

On a prosaic level, we communicate by making noises (speech), or perhaps
with shapes that we make with our hands (sign language), or by creating signs
on paper and other media (writing and symbols). Somehow we achieve agree-
ment that certain noises, shapes or signs stand for certain simple things, and
from that common core we can build joint understanding. I like to think that
the base case of this inductive process is the human smile, which seems to
be universally understood across all cultures as denoting and communicating
happiness.

Human languages are extraordinarily diverse. My own native language,
English, seems to evolve quite quickly, with each generation inventing its own
idioms, jokes and aphorisms: perhaps to better define the new in opposition to
the old. So somebody’s speech patterns can give me clues as to their age. I
can also guess whereabouts somebody grew up from their accent: a particular
pattern of pronunciation. Clearly human language is not constant but varies
from place to place and over time, and this evolution can become so extreme
that different sub-communities lose the ability to understand each other directly.
Presumably this is how the multitude of current human languages came into
being.

Although languages are diverse and evolving, we are able to translate be-
tween them. This tells is that in some sense meaning is more fundamental than
the particular language used to convey that meaning. If A rose by any other
name would smell as sweet then we can be sure that the word rose is just a
marker for a deeper experience that exists independently of whether we speak
English, French or some long dead language like Babylonian. We should dis-
tinguish, then, between language syntax and language semantics. The syntax
is the particular pattern of noises or signs that constitute valid communica-
tions, and the semantics is the set of meanings that we can associate with those

Syntax in natural languages 62

communications.

4.1 Syntax in natural languages

When learning a new human language, we might first concentrate on vocabulary
(the set of generally understood words in that language) and perhaps try to
match up words for objects in the new language with the equivalent words in
our native language.

Taking French as an example, an English speaker might note that maison
in French corresponds to house in English and that voiture corresponds to car.
We are not limited to names for objects: attributes such as colour also have
closely corresponding words such as rouge for red and noir for black.

In an emergency, and with some good will on both sides, it is possible
to communicate simple ideas using just vocabulary, but most communication
requires the construction of complete sentences by sequencing together words
from the vocabulary. In typical human languages, the order of words within
these sequences is significant.

Some sequences are ‘wrong’ in that a native speaker would not utter them.
For instance, in English ‘The car black.’ sounds very odd: we expect ‘The black
car.’ It seems as though we expect the attributes of an object (colour in this
case) to be listed before uttering the word for the object. In French, however,
the attributes typically appear after the name of the object: ‘la maison rouge’
corresponds to the ‘the red house’ in English. Interestingly, although ‘The car
black.’ is not a valid English sentence, if we were speaking to somebody who
was learning English we could probably guess what they meant.

The rules governing valid word orderings are called the syntax of the lan-
guage, and ignoring the rules can cause deep confusion. For instance a word-by-
word translation of ‘La maison rouge.’ yields ‘The house red.’, which is a valid
colloquial phrase since The house red in a restaurant means their non-label (and
usually cheaper) wine. Simply by putting the colour last we have completely
changed the meaning of the sentence.

An important aspect of communication is redundancy. If every sequence of
noises or sign

Search for universal exact scientific language - latin, arithmetic conventions
etc

Syntax as word morphemes, work order, long range relationships such as
agreement

4.2 Writing

The origins of spoken and written communication are necessarily obscure, but
the archaeological record leaves us some clues. We know that bipedal apes
emerged around seven million years ago; that 1.5–2 million years ago early
hominids such as Homo Habilis used tools to scavenge but were often prey
to large animals; and that by the time of Homo Ergaster and its descendant
species (around 1–1.5 million years ago) there is evidence of the use of fire and

Writing 63

a physiology that might allow some form of speech. By 70–80,000 years ago
there is clear evidence that the hunted had turned hunter, with group hunting
of large game, which must surely have required coordination, planning and
communication.

Many hundreds of sites containing cave paintings are known, the oldest of
which are believed to be around 40,000 years old and clearly represent some
form of non-transient communication. Images of animals abound, and images
of humans are rare apart from hand stencils (pigment blown over a hand). In a
few cases, hunting scenes are clearly represented. This painting, for instance, is
from the Bhimbetka rock shelters in India; and shows mesolithic hunters using
bows and arrows, perhaps 6–10,000 years ago.

We cannot know whether these are records of successful campaigns, or per-
haps instructional in the sense that they played a part in preparing for a hunt
and training new members of the group. To be a little whimsical; it would
be pleasing if one could establish that some paintings formed a do-this then
do-that progression, as this would surely constitute use of a recorded sequence
of commands; the world’s first program.

The transition to text based systems is also, naturally, obscure. Neolithic ob-
jects from Jiahu in China incorporating symbols have been dated to 6,500 BCE.
The so-called Vinča symbols on the Tǎrtǎria tablets found in Romania date to
around 5,300 BCE (left, below). The Greek Displio tablet (journals.uair.
arizona.edu/index.php/radiocarbon/article/view/17456 is a wooden piece
which has been carbon-14 dated to 5260±40 BCE and includes symbols such as
a triangle with a dot in it, and forms similar to our letters E, t, v and L (right,
below). Scholars in this area call these sorts of symbols, which often appear in
isloation as proto-writing.

journals.uair.arizona.edu/index.php/radiocarbon/article/view/17456
journals.uair.arizona.edu/index.php/radiocarbon/article/view/17456

Writing 64

In fully formed writing, strings of symbols (called graphemes) represent
spoken sentences. Some writing systems are logographic in which individual
concepts are represented by graphemes called logograms (small pictorial symbols
representing, say, a class of objects such as house); modern examples include
Chinese characters and Japanese Kanji. More commonly individual (or short
sequences of) graphemes represent the primitive sounds or phonemes of spoken
language, forming an alphabet. A string of alphabetic graphemes ‘spell’ out the
sound of a spoken word.

Egyptian hieroglyphs combine both elements: of the 1,000 or so known
hieroglyphics there are symbols corresponding to consonants as well as symbols
that in themselves represent, for instance, sun. Some symbols, such as that for
house, may be logographic in some contexts and but stand for a single consonant
in other contexts. A vertical bar under the symbol indicates the logographic
use. Hieroglyphics and Samarian cuneiform (which was made with cut reeds on
clay tablets) are candidates for the earliest fully formed writing system dating
back to about 3,000 BCE, but they involve large numbers of signs: cuneiform
uses around 800 patterns which represent individual symbols.

Alphabets instead encode the phonemes, the individual sounds from which
speech is composed which requires far fewer symbols, and in which syllables are
represented by short strings of alphabetic letters.

Most Western scripts descend from the Phoenician alphabet which was in
use by 1000 BCE, though that script only directly represents consonants (and
is thus sometimes called an abjad rather than an alphabet). Txt wrttn tht wy
cn b prfctl lgbl. Each Phoenecian letter was derived from the shape of the sign
for some common syllable which started with that letter. This arrow head from
1100 BCE and now in the British Museum is inscribed arrow of Ada, son of
Bala.

Extra characters representing vowels were later added by the Greeks, and that
developed into the Latin alphabet in which this text was written.

The search for precision 65

4.3 The search for precision

Betrand Russell - little quote
Notions and notations - Gauss
Latin
Mathematics
Programming languages

4.4 Metalanguage

Linguistics
Prefix style is a notation
BNF
EBNF
maths conventions
tool conventions
Up until now we have used simple parenthesised terms to capture the es-

sential meaning of programs, and then written inference rules that express the
semantics in a way that allows us to directly interpret the specification. Now,
most real programming languages do not look like these simple terms: perhaps
the closest real example would be the Lisp family languages such as Scheme.
In practice, we would like to write something in an outer syntax like

a:=15;

b:=9;

while a != b do

if a > b then

a:=a-b else

b:=b-a;

gcd := a

and then we would like to have it automatically translated into something in
our inner syntax like

seq(seq(seq(assign(a, 15), assign(b, 9)),

while(ne(deref(a), deref(b)),

if(gt(deref(a), deref(b)),

fcassign(a, sub(deref(a), deref(b))),

assign(b, sub(deref(b), deref(a)))))),

assign(gcd, deref(a)))

4.5 Outer and inner syntax

In practice, real tools usually maintain internal representations that are opti-
mised for the task in hand, and they might not be tree shaped, or they might not
need all of the elements of the derivation tree. In the context of language based

Outer and inner syntax 66

software tools, we often call this internal form the abstract or inner syntax of a
language. The terms intermediate form, internal representation and model also
appear in different contexts. The term abstract syntax usually implies a formal
(or at least semi-formal) relationship to the syntax of the user language, which
is then called the outer or concrete syntax. Intermediate and internal forms are
often understood to be rather ad hoc, and it often not easy to show that all
possible concrete syntax programs have a valid internal form: forgetting certain
cases is a common implementation error. When the internal form is called a
model we usually understand that the concrete syntax is primarily being used
to load the members of a set of classes with data, where the interrelationships
between the classes can be specified with a UML diagram. Tools exist that
allow an existing UML diagram to be ‘decorated’ with concrete syntax so as
to produce a language tuned to that model. If we need to add new classes,
then the language can be regenerated with extended syntax. An alternative
approach is to derive the model from the concrete syntax, by annotating the
nonterminals and terminals which are ‘significant’ and must be loaded into the
internal form.

In this book we shall use the terms inner and outer syntax to distinguish the
internal computer representation of a program and the external human-centric
form. Most often, our inner representations will be trees represented textually
as terms.

4.5.1 Syntactic sugar, redundancy and syntactic ‘noise’

It is the notion of significance which ultimately distinguishes inner from outer
syntax. The outer syntax is designed for humans, and often contains elements
which protect against common error patterns without adding any semantics.
For instance, we could design a concise Java conditional expression which al-
lowed us to write expressions such as

1 x = a > b ? y + 2 z * 3

The real Java conditional operator requires a colon between the two expressions

1 x = a > b ? y + 2 : z * 3

Why is this? Well, it allows the concrete syntax analyser to detect the
situation where the user mistypes the second expression, omitting the variable

1 x = a > b ? y + 2 : * 3

which would be rejected, because there is no monadic * operator in Java. In
our reduced syntax, this would be

The legacy of non-general parsing 67

1 x = a > b ? y + 2 * 3

which is a valid expression (though not the one the user intended) and so would
be accepted by the parser.

This use of syntactic elements to catch common errors also explains why in
Java and C the predicated of if, switch and while statements must be surrounded
with parentheses, even though they carry no semantic information.

Another aspect of concrete syntax that is redundant in the derivation tree
is the use of parentheses to enforce operator execution order in expressions.
We have seen how to write grammar productions that enforce associativity and
priority rules for operators in the absence of parentheses, and we have also seen
that a fully parenthesized expression requires no such rules. In a tree, we use
the depth of a node to encode its execution priority under the rules that the
tree will be traversed top down, left to right with operators being executed
in post-order. It is clear, then, that parentheses in the user expression may
be omitted from the tree, and by the same argument other grouping elements
such as braces around compound statements may be suppressed without losing
fidelity.

4.6 The legacy of non-general parsing

A further source of redundancy in concrete grammars as typically found in
language standard documents such as that for ANSI-C is that they have been
written so as to be admissable by traditional deterministic parsing algorithms,
and as such they can contain complicated BNF constructs which could be sim-
plified for use with a general parser. This problem also affects language ex-
position for human readers. For instance, the first version of the Java Lan-
guage Specification contains two grammars which we call the pedagogic and the
near-deterministic grammars. In the main body of the document, individual
language constructs are introduced with a grammar fragment that describes
their syntax, accompanied by an informal English-language description of the
semantics. The union of all these grammar fragments specifies the language,
but unfortunately simply concatenating the pedagogic grammar fragments does
not yield a grammar that is admissable by traditional parser generators. As a
result, the JLS authors provide a second grammar which would be admissable,
and describe its relationship with the pedagogic grammar so as to convince the
reader that they generate the same language. With a more powerful parsing
technology, it might have been directly use the pedagogic grammar, reducing
the scope for errors.

The JLS example reinforces our expectation that even informal semantics
are conventionally defined over the compositional syntax of the language. In
practice, this means that we need to specify semantics with respect to partic-
ular productions, and would be very convenient to have productions (and thus
nonterminals) which in some sense reflect the semantic concepts within the lan-
guage in as simple a way as possible so as to reduce the number of formal cases

Parsing by expanding the start symbol 68

that have to be specified. Abstract syntax for formal semantics systems empha-
sise this notion of compressing the concrete syntax into a concise form which
matches at least all of the strings in the concrete language. In practice, inner
grammars often match larger languages, and are typically highly ambiguous.
When building tools for such systems, we use a concrete parser to produce an
individual derivation tree in the concrete syntax, and then give rules for, say,
discarding redundant terminals and merging the children of nonterminals so as
to produce a derivation in our inner syntax. The formal semantics interpreter
can then work on the simplified tree.

There are a variety of ways to specify these outer to inner mappings. We
could simply write a program in a general purpose programming language to
traverse the outer derivation and build the corresponding inner derivation. This
rather misses the point for using formal approaches though, since it would usu-
ally be hard to ensure that the translator was complete (catering for all cases)
and correct. Alternatively, we could use an attribute grammar to formalise the
relationship between outer and inners suntax (see Chapter ??), or we could use
a set of equations to show how terms in the outer grammar should be rewritten
to terms in the inner grammar, as we shall see in Chapterrewriting, or we could
use some less general technique which rewrote the concrete tree under the con-
trol of a set of convenient tree annotations. We shall examine one such set of
operations called the Gather-Insert-Fold-Tear (GIFT) formalism in Chapter ??.

Whichever technique we use, we must first develop a derivation of our input
in the outer syntax, and for that we shall need a parser.

4.7 Parsing by expanding the start symbol

** Todo: Classical RD parsing; Backtrack RD parsing;GLL

4.8 Parsing by reducing to the start symbol

** Todo: NFA;DFA;Shift-reduce automaton

4.9 Multiparsing and the lexer-parser interface

** Todo: Lexer parser interface Regular expressions Thompson’s al-
gorithm Subset construction State minimisation Generating all lexi-
calisations (multi) Lexing

4.10 OSBRD: Implementing a parser toolchain

When we implement a translator, we parse the source language into an inter-
mediate form, and then traverse the intermediate form outputting the object
language.

A parser generator is a program which reads specifications for a grammar
Γ written in BNF (or EBNF) and outputs the source code for a parser. When

Ordered Singleton Backtrack Recursive Descent parsing 69

compiled the parser will test strings to see if they are in the language L(Γ), and
perhaps build a derivation tree.

Parser generators, then, can be thought of as processors for a DSL (BNF)
which translates to, say, Java. Embedded within each parser will be a parsing
algorithm. We shall illustrate this process using ordered singleton backtrack
recursive descent parsing (OSBRD) which is a rather limited algorithm: it’s
advantage is that it is easy to understand and easy to generate. This means
that it is possible to fully explain the internals not just of the parsers but of
the program that writes out the parsers.

4.11 Ordered Singleton Backtrack Recursive Descent pars-
ing

OSBRD is a long acronym for a very simple parsing technique. The parsers
may be written by hand, and there is no reqiurement to compute properties of
the grammar: in fact an OSBRD parser can be produced as a syntax-directed
translation from BNF; it is in effect a pretty-printed version of the grammar.

OSBRD is not used for production parsers because (a) the performance of
OSBRD parsers is exponential in the length o fth einput string for some ‘nasty’
grammars and (b) because OSBRD parsers fail to recognise some strings that
are in the language of the grammar being parsed.

(b) sounds like a show stopper, but in fact the commonly-used parsing tech-
niques such as LALR(1), SLR(1) and LL(1) all suffer from the same problem.
In fact any non-general parsing technology will fail to accept some strings for
some grammars. However, it is possible to compute in advance whether a gram-
mar is LALR(1) (or SLR(1) or LL(1). . .) and so the user is at least told that
their grammar will not behave as they expect. Although we could do some
processing to help the user (and in our OSBRD toolchain we do test for one
obvious error condition as we shall see) a basic syntax driven translation pro-
duces a parser which silently misbehave. The user can write what appears to
be a perfectly reasonable grammar, have a parser generated and then find that
it does not work as it should: we call these situations nasty suprises.

4.11.1 The OSBRD algorithm

Consider a grammar Γ = (N,T,XS , P) where, as usual, N is a set of nontermi-
nals {X1, X2, X3, . . . , Xk}, T is a set of terminals, XS is the start nonterminal
and P is a a set of productions {X → ρ, ρ ∈ (N ∪ T)∗}.

The OSBRD algorithm works on ordered grammar. In an ordered grammar
the subset of productions {Xi → ρ1, Xi → ρ2, . . .} are ordered, and are tested
in that order. There is no ordering associated with the nonterminals or the
terminals; it is just the order or productions within a particular nonterminal Xi

that is significant.
This seemingly innocuous change has a big impact on the languages that

can be successfully parsed by OSBRD compared to a truly general technique
such as GLL. We are highlighting this difference here because occasionally one

Ordered Singleton Backtrack Recursive Descent parsing 70

encounters parsing tools which use algorithms based on ordered grammars, and
in my experience the authors often do not adequately explain the limitations
of the technique.

Informally, an OSBRD parser is a set of (possibly recursive) functions, one
per nonterminal. The functions take no parameters, and return a boolean. The
input string is held in a buffer String input and there is a global variable int
cc which holds the index of the current character.

At the start of the parse function for nonterminal Xi, the value of cc on
entry is remembered in a local variable int rc which holds the index of the
restart character. Each alternate production Xi → ρj is then laid out as a
nest of if statements: for a terminal we test against a direct match; for a
nonterminal we call the appropriate parse function and for ϵ we do nothing. If
the nest evaluates true, then we have found a match against that alternate, and
so the parse function returns true. If not, we proceed to alternate Xi → ρj+1.
If all alternate productions fail, the parse function returns false.

Each parse function also remembers which alternate (if any) succeeded. The
running parser maintains a global array of integers called the oracle and a global
variable int co which holds the index of the next free slot in the oracle.

An OSBRD parser explores the grammar by recursively calling the parse
functions. Sometimes these exploration fail after severl layers of function call,
and in that case the parser backtracks to the next level up so as to continue
testings its alternate productions. In fact the backtracking can recursively
unwind an arbitray number of levels. As a result, we need to remember where
we were in the oracle when we entered the parse function so that we can rest co
at the start of each alternate; the local variable int ro remembers this restart
oracle index.

4.11.2 An OSBRD example in Java

Here is a small grammar.

1 S ::= 'b' | 'a' X '@'
2 X ::= 'x' X | #

We specify terminals within single quotes, and ϵ is written as #. Alternate
productions are separated by a vertical bar, and each rule is terminated with a
period. Repeated nonterminals are not allowed.

The language of this grammar is { b, a@, ax@, axx@ axxx@,... }.
When processed by the OSBRD parser generator, the following two Java

parse functions are produced:

1 boolean parse S() {
2 int rc = cc, ro = co;
3

4 /* Nonterminal S, alternate 1 */
5 cc = rc; co = ro; oracleSet(1);

Ordered Singleton Backtrack Recursive Descent parsing 71

6 if (match(”b”)) { return true; }
7

8 /* Nonterminal S, alternate 2 */
9 cc = rc; co = ro; oracleSet(2);

10 if (match(”a”)) {
11 if (parse X()) {
12 if (match(”@”)) { return true; }}}
13

14 return false;
15 }
16

17 boolean parse X() {
18 int rc = cc, ro = co;
19

20 /* Nonterminal X, alternate 1 */
21 cc = rc; co = ro; oracleSet(1);
22 if (match(”x”)) {
23 if (parse X()) { return true; }}
24

25 /* Nonterminal X, alternate 2 */
26 cc = rc; co = ro; oracleSet(2);
27 /* epsilon */ return true;
28 }

Let us follow this code through whilst parsing the string axx@.

The parser initially loads input with the string axx@ $ where $ is not the
dollar character but rather stands for some special end-of-string marker. (In
Java, we use the character containing zero or '\0'; regular expression processors
and parsing texts conventionally use some variant of the dollar symbol.) The
oracle does not need to be initialised, but the two global variables that index
the input and the oracle are zeroed: cc = co = 0

We start the parse by calling the parse function for the start symbol parse_S().
parse_S() remembers the entry values for the input and oracle indices

before executing the clauses for the alternates in sequence.
Each clause begins by setting the gloal indices to these restart values before

testing the input against the production using a nest of predicates each of which
either call match() to test a terminal or call the relevant parse_() function. If
none of the clauses succeed, then the return false; statement is executed.

By instrumenting the parse we can produce a trace of the function calls and
terninal matches. Here is the output from one run.

Input: 'a x x @'

S() at rc = 0, cc = 0 'a'

S() alternate 1 rc = 0, cc = 0 'a'

At 0 'a' match b - reject

S() alternate 2 rc = 0, cc = 0 'a'

At 0 'a' match a - accept

Engineering a complete Java parser 72

X() at rc = 2, cc = 2 'x'

X() alternate 1 rc = 2, cc = 2 'x'

At 2 'x' match x - accept

X() at rc = 4, cc = 4 'x'

X() alternate 1 rc = 4, cc = 4 'x'

At 4 'x' match x - accept

X() at rc = 6, cc = 6 '@'

X() alternate 1 rc = 6, cc = 6 '@'

At 6 '@' match x - reject

X() alternate 2 rc = 6, cc = 6 '@'

At 6 '@' match @ - accept

Accepted

Oracle: 2 1 1 2

This shows us that a call to S() with cc=0 tried alternates 1 and 2, before
a call to X() with cc=2 tries alternate 1 and then calls X() with cc=4 which
calls X() with cc=6. Alternate 1 cannot match @ tp x, so alternate 2 is tried
instead which must succeed because it is an ϵ-production.

All of the calls then unwind, and because the call to S() terminates with
the current character cc pointing to the end of string marker, the string is
Accepted.

The parser then prints out the oracle which (when combined with the gram-
mar) encodes the successful derivation: we took alternates 2, 1, 1 and 2 as we
went down through the nest of parse functions.

4.12 Engineering a complete Java parser

The parse functions in the previous section make use of auxilliary functions like
match() and also require some initialisation code. In this section we shall look
at how the generated parse functions are embedded into Java classes so as to
make a standalone parser.

A minimal OSBRD parser comprises two classes in two source files:

1. ARTOSBRDBase.java which contains auxiliary methods.

2. ARTGeneratedParser.java which extends class ATYOSBRDBase with the
parse member functions and a main() function which processes command
line arguments.

Here is the contents of ARTGeneratedParser.java for a simple parse— in
later sections we shall add more functions to support semantics processing and
tree construction.

1 import java.io.File;
2 import java.io.PrintWriter;
3 import java.io.FileNotFoundException;
4 import java.util.Scanner;
5 import java.util.ArrayList;

Engineering a complete Java parser 73

6

7 class ARTGeneratedParser extends uk.ac.rhul.cs.csle.artosbrd.ARTOSBRDBase {
8 String input;
9 int cc, co, oracleLength, oracle[];

10 int ts, te;
11

12 ARTGeneratedParser() { oracleLength = 1000; oracle = new int[oracleLength]; cc = co = 0;}
13

14 String readInput(String filename) throws FileNotFoundException {
15 return new Scanner(new File(filename)).useDelimiter(”\\Z”).next() + ”\0”;
16 }
17

18 void oracleSet(int i) {
19 if (co == oracleLength) {
20 int oracleLengthOld = oracleLength;
21 oracleLength += oracleLength / 2;
22 int newOracle[] = new int[oracleLength];
23 System.arraycopy(oracle, 0, newOracle, 0, oracleLengthOld);
24 oracle = newOracle;
25 }
26 oracle[co++] = i;
27 }
28

29 boolean match(String s) {
30 if (input.regionMatches(cc, s, 0, s.length())) {
31 cc += s.length();
32 builtIn WHITESPACE();
33 return true;
34 }
35 return false;
36 }
37

38 boolean builtIn WHITESPACE() {
39 while(Character.isWhitespace(input.charAt(cc)))
40 cc++;
41 return true;
42 }
43 }

The constructor sets the initial oracle length 1000, creates the array and
zeroes the cc and co indices. Loading the input string is the responsibility of
the generated parse class SBxyz, though it makes use of functionreadInput()
which automatically appends an end-of-string marker '\0'.

The oracleSet(int i) function resizes the oracle if necessary (adding 50%
to its length at each resize operation) before loading the supplied alternate
number i into the oracle and incrementing co, the current oracle index.

The match(String s) function checks to see whether a substring of input

Engineering a complete Java parser 74

starting at character cc matches parameter s. If so, then a helper function
builtin_WHITESPACE() is called to absorb any blank spaces and line ends after
the string. This allows generated parsers to treat the strings axx@ and a x x @

as equivalent.
If the example grammar is in file test.sb, the parser generator generates

this file SBtest.java.

1 import java.io.FileNotFoundException;
2

3 class ARTGeneratedParser extends uk.ac.rhul.cs.csle.artosbrd.ARTOSBRDBase {
4 boolean parse S() {
5 int rc = cc, ro = co;
6

7 /* Nonterminal S, alternate 1 */
8 cc = rc; co = ro; oracleSet(1);
9 if (match(”b”)) { return true; }

10

11 /* Nonterminal S, alternate 2 */
12 cc = rc; co = ro; oracleSet(2);
13 if (match(”a”)) {
14 if (parse X()) {
15 if (match(”@”)) { return true; }}}
16

17 return false;
18 }
19

20 boolean parse X() {
21 int rc = cc, ro = co;
22

23 /* Nonterminal X, alternate 1 */
24 cc = rc; co = ro; oracleSet(1);
25 if (match(”x”)) {
26 if (parse X()) { return true; }}
27

28 /* Nonterminal X, alternate 2 */
29 cc = rc; co = ro; oracleSet(2);
30 /* epsilon */ return true;
31 }
32

33 SBtest(String filename) throws FileNotFoundException {
34 input = readInput(filename);
35

36 System.out.printf(”Input: '%s'%n”, input);
37 cc = co = 0; builtIn WHITESPACE();
38 if (!(parse S() && input.charAt(cc) == '\0'))
39 { System.out.print(”Rejected%n”); return; }

Using built in matchers 75

40

41 System.out.print(”Accepted%n”);
42 System.out.print(”Oracle:”);
43 for (int i = 0; i < co; i++) System.out.printf(” %d”, oracle[i]);
44 System.out.printf(”%n”);
45 }
46

47 public static void main(String[] args) throws FileNotFoundException{
48 if (args.length < 1)
49 new SBtest(””);
50 else
51 new SBtest(args[0]);
52 }
53 }

The main() function collects the name of a string file from the input and
then instances SBtest, passing the filename as an argument to the constructor.

The constructor loads theinput string from the supplied filename; prints it
out; and then calls builtin_WHITESPACE() to consume any leading blanks in
the input string.

If the start symbol’s parse function consumes the entire string up to but not
including the end-of-string marker, the string is accepted and the oracle printed
out.

4.13 Using built in matchers

The OSBRD base class provides a set of builtin matchers which can be used to
efficiently parse identifiers, numeric literals, strings and so on. It is quite easy
to add new builtins as required.

The parser generator translates pseudo-terminals such as &ID into calls to
the corresponding builtin matcher. In detail, &XYZ is trabslated to a call to
builtin_XYZ(). The generator does not check the name of the builtin, so just
by adding a new builtin member function to class uk.ac.rhul.cs.csle.artosbrd.ARTOSBRDBase

we can extend the repetoire of builtin matchers.
Here is a slightly modified version of our test grammar.

1 S ::= 'b' | 'a' X '@' .
2 X ::= &ID X | # .

It generates these parse functions.

1 boolean parse S() {
2 int rc = cc, ro = co;
3

4 /* Nonterminal S, alternate 1 */
5 cc = rc; co = ro; ora cleSet(1);

Using built in matchers 76

6 if (match(”b”)) { return true; }
7

8 /* Nonterminal S, alternate 2 */
9 cc = rc; co = ro; oracleSet(2);

10 if (match(”a”)) {
11 if (parse X()) {
12 if (match(”@”)) { return true; }}}
13

14 return false;
15 }
16

17 boolean parse X() {
18 int rc = cc, ro = co;
19

20 /* Nonterminal X, alternate 1 */
21 cc = rc; co = ro; oracleSet(1);
22 if (builtIn ID()) {
23 if (parse X()) { return true; }}
24

25 /* Nonterminal X, alternate 2 */
26 cc = rc; co = ro; oracleSet(2);
27 /* epsilon */ return true;
28 }

which are identical to the previous versions except that the call to match("x")
has been replaced by a call to builtIn_ID().

Here is the source code for a set of builtins. Note how each of them calls
builtin_WHITESPACE() after matching. Each builtin matcher remembers the
start and end indices of the matched terminal in global variables int ts and
int te.

1 boolean builtIn ID() {
2 if (!Character.isJavaIdentifierStart(input.charAt(cc))) return false;
3 ts = cc++;
4 while (Character.isJavaIdentifierPart(input.charAt(cc)))
5 cc++;
6 te = cc;
7 builtIn WHITESPACE();
8 return true;
9 }

10

11 boolean isxdigit(char c) {
12 if (Character.isDigit(c)) return true;
13 if (c >= 'a' && c<='f') return true;
14 if (c >= 'A' && c<='F') return true;
15 return false;
16 }

Using built in matchers 77

17

18 boolean builtIn INTEGER() {
19 if (!Character.isDigit(input.charAt(cc))) return false;
20 ts = cc;
21 /* Check for hexadecimal introducer */
22 boolean hex = (input.charAt(cc) == '0' &&
23 (input.charAt(cc + 1) == 'x' ||
24 input.charAt(cc + 1) == 'X'));
25 if (hex) cc += 2; // Skip over hex introducer
26 /* Now collect decimal or hex digits */
27 while (hex ? isxdigit(input.charAt(cc)) :
28 Character.isDigit(input.charAt(cc)))
29 cc++;
30 te = cc;
31 builtIn WHITESPACE();
32 return true;
33 }
34

35 boolean builtIn REAL() {
36 if (!Character.isDigit(input.charAt(cc))) return false;
37 ts = cc;
38 while (Character.isDigit(input.charAt(cc)))
39 cc++;
40 if (input.charAt(cc) != '.')
41 return true;
42 cc++; // skip .
43 while (Character.isDigit(input.charAt(cc)))
44 cc++;
45 if (input.charAt(cc) == 'e' || input.charAt(cc) == 'E') {
46 cc++;
47 while (Character.isDigit(input.charAt(cc)))
48 cc++;
49 }
50 te = cc;
51 builtIn WHITESPACE();
52 return true;
53 }
54

55 boolean builtIn CHAR SQ() {
56 if (input.charAt(cc) != '\'') return false;
57 cc++;
58 ts = cc;
59 if (input.charAt(cc) == '\\')
60 cc++;
61 cc++;
62 if (input.charAt(cc) != '\'') return false;
63 te = cc;

Using built in matchers 78

64 cc++; // skip past final delimiter
65 builtIn WHITESPACE();
66 return true;
67 }
68

69 boolean builtIn STRING SQ() {
70 if (input.charAt(cc) != '\'') return false;
71 ts = cc + 1;
72 do {
73 if (input.charAt(cc) == '\\')
74 cc++;
75

76 cc++;
77 }
78 while (input.charAt(cc) != '\'');
79 te = cc;
80 cc++; // skip past final delimiter
81 builtIn WHITESPACE();
82 return true;
83 }
84

85 boolean builtIn STRING DQ() {
86 if (input.charAt(cc) != '”') return false;
87 ts = cc + 1;
88 do {
89 if (input.charAt(cc) == '\\')
90 cc++;
91 cc++;
92 }
93 while (input.charAt(cc) != '”');
94 te = cc;
95 cc++; // skip past final delimiter
96 builtIn WHITESPACE();
97 return true;
98 }
99

100 boolean builtIn ACTION() {
101 if (!(input.charAt(cc) == '[' &&
102 input.charAt(cc + 1) == '*'))
103 return false;
104 cc += 2;
105 ts = cc;
106 while (true) {
107 if (input.charAt(cc) == 0)
108 break;
109 if (input.charAt(cc) == '*' && input.charAt(cc) == ']') {
110 cc += 2;

Using attributes and inline semantics 79

111 break;
112 }
113 cc++;
114 }
115 te = cc = 2;
116 builtIn WHITESPACE();
117 return true;
118 }

4.14 Using attributes and inline semantics

Our generated OSBRD parsers will execute embedded semantic actions which
may also use synthesized attributes. The current version does not support
inherited attributes, but it is not hard to extend the parser generator to allow
that. Only a single pass is made over the input string which significantly limits
the kinds of behaviour which may be generated. However, the generated parsers
can also generate explicit derivation trees which may be passed to a back end
for arbitrary processing: we shall look at tree generation in the next section.

An embedded action is delimited bt { } brackets and must be written
in the implementation language for the generated parser (in our case Java,
although an ANSI C++ versions exist for which actions must be written in
C++).

Here is our example grammar extended with an action to report the location
of matching x characters.

1 S ::= 'b' | 'a' X '@' .
2 X ::= 'x' [* System.out.printf(”Matched an x at location %d%n”, cc); *] X | # .

The generated parser running on the string a x x @ displays:

Input: 'a x x @ '

Accepted

Oracle: 2 1 1 2

Semantics phase

Matched an x at location 4

Matched an x at location 6

The parse is as before. After parsing is completed, a second pass is made
during which the semantics are executed.

4.14.1 Attributes

Simply printing out messages showing where we are in a parse is interesting,
but limited. If we want to perform useful computations, it turns out that we

Using attributes and inline semantics 80

need to pass information between parse functions or, equivalently, around the
derivation tree.

Recursive descent parsers provide a natural built-in mechanism for passing
information around: we can use the parse function parameters to pass informa-
tion down the derivation tree and the function return values to pass information
up.

The formal underpinnings for this approach are part of the theory of at-
tribute grammars. Attributes are classified as synthesized which means that
move up the tree (like a return result) or inherited which means that they pass
down the tree (like a parameter). In a general attribute grammar information
can move round the derivation tree in arbitrary ways by making use of inher-
ited and synthesized atteibutes, and the calculation of the fial result requires
an analysis of the dependency relationships between attribute definitions and
their users. An attribute evaluator is a general tool for doing just that.

Two useful classes of attribute grammar are the L-attributed class in which
attributes must be resolvable in a single top-down left to right pass and S-
attributed grammars which may only contain synthesized arributes. Recursive
descent parsers naturally support L-attribited grammars whilst bottom up pars-
ing techniques such as LALR(1) (that is, Bison and YACC) naturally support
S-attributed grammars. (In detail, tools often also make use of global attributes
which extends their power a little.)

Here is a grammar that uses synthesized attributes to add up the number
of 1’s seen in a binary string:

1 S ::= 'b' | 'a' X:result [* System.out.printf(”Result is %d\n”, result); *] '@' .
2 X:int ::= '1' X:sum [* rv = sum + 1; *] |
3 '0' X:rv | # .

The language of this grammar is

{ b, a@, a1@, a0@, a11@, a10@, a01@, a00@, a111@, ...}.

The attributes and associated semantic actions implement a recursive func-
tion that runs along the string of 1’s and 0’s maintaining a count of the number
of 1’s seen.

The return value attribute rv is automatically defined for any parse function
that has an associated type, and is used to carry the synthesized information
back up the tree, or equivalently to pass it back to the calling function. At the
top level, the accumulated value is printed out.

Sandbox decides on the type of attributes by looking at the type annotation
for the left hand side of the associated nonterminal. In this case, since nonter-
minal X is declared as being of type int, the sum and result attributes will
also be of type int.

The result of running this parser on the string a101@ is

Input: 'a 1 0 1 @ '

Accepted

Oracle: 2 1 2 1 3

Using attributes and inline semantics 81

Semantics phase

Result is 2

4.14.2 A four function calculator

Let us now extend our example to a more general computing language: a four
function calculator for integer constants of one, two or three digits. Warn-
ing: Sandbox parsers do not allow left recursion, so all of the operators have
been implemented in right associative form, whereas they should really be left
associative.

1 S ::= exprs:val [* System.out.printf(”Final result: %d\n”, val); *] .
2

3 exprs:int ::= add:val ';' [* System.out.printf(”Result: %d\n”, val); *] exprs:rv |
4 add:rv [* System.out.printf(”Result: %d\n”, rv); *] .
5

6 add:int ::= mul:l '+' add:r [* rv = l + r; *] |
7 mul:l '=' add:r [* rv = l = r; *] |
8 mul:rv .
9

10 mul:int ::= op:l '*' mul:r [* rv = l * r; *]|
11 op:l '/' mul:r [* rv = l / r; *]|
12 op:rv .
13

14 op:int ::= integer:rv |
15 '(' exprs:rv ')' .
16

17 integer:int ::= digit:hi digit:mid digit:lo
18 [* rv = hi*100 + mid*10 + lo; *] |
19 digit:mid digit:lo [* rv = mid*10 + lo; *] |
20 digit:rv .
21

22 digit:int ::= '0' [* rv = 0; *] |
23 '1' [* rv = 1; *] |
24 '2' [* rv = 2; *] |
25 '3' [* rv = 3; *] |
26 '4' [* rv = 4; *] |
27 '5' [* rv = 5; *] |
28 '6' [* rv = 6; *] |
29 '7' [* rv = 7; *] |
30 '8' [* rv = 8; *] |
31 '9' [* rv = 9; *] .

When the generated parser is run on the string 3 4; 10; (7*2)+1+ we get the
following output

Implementing inline semantics 82

Input: '3 + 4; 10; (7*2)+1 '

Accepted

Oracle: 1 1 1 3 1 3 4 3 3 1 3 5 1 3 3 1 2 2 1 2 1 3 2 2 3 1 1 3

8 3 1 3 3 3 3 1 3 2

Semantics phase

Result: 7

Result: 10

Result: 14

Result: 15

Final result: 15

4.15 Implementing inline semantics

OSBRD parsers explore the grammar in a way that may require tentative
matches that are subsequently rejected. Whenever a parser backtracks, some
decisions are being unmade.

As a result of this retry behaviour, we cannot simply execute inline semantics
during the parse, even though when we design grammars and their semantic
actions we tend to think of the action being executed as a side-effect of parsing.
Instead, we need to complete the searching associated with parsing and only
then run through the grammar the ‘correct’ way to execute the actions. This
is the purpose of the oracle: during parsing we construct the oracle as we go,
adjusting it as necessary when we backtrack. By the end of the parse we have
a map of where the parser should have gone. We call the control data structure
an oracle because it is as if we had a parser which instead of guessing where to
go could simply ask an all-powerful oracle for advice.

To execute the semantics, we use a modified set of parse functions (the
semantics functions) that (a) contains the embedded semantic actions and (b)
look in the oracle to see where to go rather than searching and backtracking.

Recall the attributed grammar that adds up the 1’s in a string:

1 S ::= 'b' | 'a' X:result [* System.out.printf(”Result is %d\n”, result); *] '@' .
2 X:int ::= '1' X:sum [* rv = sum + 1; *] |
3 '0' X:rv | # .

Here are the associated semantics functions.

1 void semantics S() {
2 int result;
3 switch(oracle[co++]) {
4 case 1:
5 match(”b”);
6 break;
7

8 case 2:

Implementing inline semantics 83

9 match(”a”);
10 result = semantics X();
11 System.out.printf(”Result is %d%n”, result);
12

13 match(”@”);
14 break;
15 }
16 }
17 int semantics X() {
18 int rv = 0;
19 int sum;
20 switch(oracle[co++]) {
21 case 1:
22 match(”1”);
23 sum = semantics X();
24 rv = sum + 1;
25

26 break;
27

28 case 2:
29 match(”0”);
30 rv = 0;
31

32 rv = semantics X();
33 break;
34

35 case 3:
36 /* epsilon */
37 break;
38 }
39 return rv;
40 }

Note that the semantics functions here are void functions taking no para-
maters unless we declare a type for their associated nonterminals. Functions
with a type T automatically have a local variable rv declared of type T which
holds the return value; in addition the statement return rv; is inserted at the
end of the corresponding function.

It is the user’s responsibility to ensure that rv is loaded with a suitable
value. There are two ways to get a value into rv: (i) by explictly assigning
to it using a semantic action as in the first alternate of nonterminal X and (ii)
implictly assigning to it by naming rv as the attribute receiving a synthesized
result from a nonterminal, as in the second alternate of nonterminal X.

The overall control flow is via switch statements selecting on the current
oracle index; as each element of the oracle is consumed, the index is incremented
by one. The use of switch statements is fast compared to the sequential testing
requirted in the parse functions.

Making explicit trees 84

4.16 Making explicit trees

The oracle combined with the semantics functions encode the derivation of a
string, but in a rather implicit way that lends itself only to the evaluation of L-
attributed grammars. If our semantics specification mandates multiple passes
over the tree, or random access into the tree, then the semantics functions are
not helpful. For these kinds of applications it is preferable to construct the
explicit tree as a datastructure in memory that we can traverse in any way we
see fit. (General formal attribute evaluators work this way, as well as the rather
informal translators that we design on this course.)

Sandbox makes trees by building a specialised set of semantics functions
whose sole actions are to construct trees. Here are the tree construction func-
tions for the previous example grammar:

1 TreeNode tree S() {
2 TreeNode leftNode = null, rightNode = null;
3 switch(oracle[co++]) {
4 case 1:
5 /* 'b' */ leftNode = rightNode =
6 new TreeNode(”b”, null, rightNode, TreeKind.TREE TERMINAL,
7 TIFKind.TIF NONE, null);
8 match(”b”);
9 break;

10

11 case 2:
12 /* 'a' */ leftNode = rightNode =
13 new TreeNode(”a”, null, rightNode, TreeKind.TREE TERMINAL,
14 TIFKind.TIF NONE, null);
15 match(”a”);
16 /* X */ rightNode =
17 new TreeNode(”X”, tree X(), rightNode, TreeKind.TREE NONTERMINAL,
18 TIFKind.TIF NONE, null);
19 /* '@' */ rightNode =
20 new TreeNode(”@”, null, rightNode, TreeKind.TREE TERMINAL,
21 TIFKind.TIF NONE, null);
22 match(”@”);
23 break;
24

25 }
26 return leftNode;
27 }
28 TreeNode tree X() {
29 TreeNode leftNode = null, rightNode = null;
30 switch(oracle[co++]) {
31 case 1:
32 /* '1' */ leftNode = rightNode =
33 new TreeNode(”1”, null, rightNode, TreeKind.TREE TERMINAL,

Making explicit trees 85

34 TIFKind.TIF NONE, null);
35 match(”1”);
36 /* X */ rightNode =
37 new TreeNode(”X”, tree X(), rightNode, TreeKind.TREE NONTERMINAL,
38 TIFKind.TIF NONE, null);
39 break;
40

41 case 2:
42 /* '0' */ leftNode = rightNode =
43 new TreeNode(”0”, null, rightNode, TreeKind.TREE TERMINAL,
44 TIFKind.TIF NONE, null);
45 match(”0”);
46 /* X */ rightNode =
47 new TreeNode(”X”, tree X(), rightNode, TreeKind.TREE NONTERMINAL,
48 TIFKind.TIF NONE, null);
49 break;
50

51 case 3:
52 /* # */ leftNode = rightNode =
53 new TreeNode(”#”, null, rightNode, TreeKind.TREE EPSILON,
54 TIFKind.TIF NONE, null);
55 break;
56

57 }
58 return leftNode;
59 }

Each parse function constructs a list of sibling tree nodes corresponding to
the elements of the derivation tree, and returns the leftmost element to its
parent. Treenodes are labelled with either (i) the name of the nonterminal for
nonterminals, or (ii) the name of the terminal for terminals, or (iii) # for epsilon
nodes. Now, we could in principle have both a nonterminal called adrian and a
terminal 'adrian' and we need to be able to distinguish between them which
the names alone will not do. (we have the same possible clash between a
terminal '#' and the epsilon symbol. The solution is to additionally label each
node with an element of a TreeKind enumeration.

There are two other bits of information that we might want to put into
a tree node, neither of which is in use in this example: (i) we might wish to
add a TIF operator and (ii) for builtins we might want to know not only the
name of the builtin, but the substring that it matched. A instance of &ID that
matched adrian needs to store the pair (ID, adrian). The null parameter
in the above example is a placeholder for this attribute information: since this
example does not use builtins, the parameter is always null.

Making explicit trees 86

4.16.1 The TreeNode class

The operation of the tree bundling functions is dependent on the behaviour of
class TreeNode which is a nested class of Sandbox. The core design issue is that
we wish to efficiently represent trees of arbitrary out-degree. Now, there are
three main ways to represent tree-like structures.

⋄ Decide a maximum out-degree n and create a TreeNode class that contains
members that represent the node’s label and n references to other nodes.
This model is memory inefficient for nodes with low out-degree, and in
any case has a fixed upper bound on out degree. (For derivation trees of
BNF grammars, we can at least measure the maximum required outdegree
because it would be the length of the longest right hand side; for EBNF
and for grammars with TIF annotations it is not in general possible to
precompute a maximum length.)

⋄ Create a TreeNode class that contains the node’s label and one reference
to a linked list of TreeEdge objects; the TreeEdge class contains a reference
to the rest of the list and a reference to a TreeNode. In this model, then
a tree node points to a list of edge nodes; each edge node points to a
tree node. This model is sufficiently general to model arbitrary directed
graphs (which of course include trees) but is memory inefficient in that
each edge needs two references though each node needs only one reference.

⋄ Create a TreeNode class that contains the node’s label along with a ref-
erence to the first child node and a reference to the rightmost sibling
node.

Of these three, the last one is the best choice for us since we do not need
the generality of the second scheme and the first scheme is fatally flawed. This
design decision explains the idiom used in the tree construction functions. Here
is a fragment

1 TreeNode tree X() {
2 TreeNode leftNode = null, rightNode = null;
3 switch(oracle[co++]) {
4 case 1:
5 /* '1' */ leftNode = rightNode =
6 new TreeNode(”1”, null, rightNode, TreeKind.TREE TERMINAL,
7 TIFKind.TIF NONE, null);
8 match(”1”);
9 /* X */ rightNode =

10 new TreeNode(”X”, tree X(), rightNode, TreeKind.TREE NONTERMINAL,
11 TIFKind.TIF NONE, null);
12 break;
13

14 ...
15

16 }

Making explicit trees 87

17 return leftNode;
18 }

Tree funcion tree_X() has to create a sequence of children corresponding to
one of the alternates of nonterminal X. Each TreeNode instance is created with
a new TreeNode() operation, and these are formed into a list by remembering
the most recently created (rightmost) TreeNode in local variable rightNode.
We also remember the head of the list in local variable leftNode; this is then
returned at the end of the tree function.

The constructor takes as paramaters the node’s label, a reference to the
first child node and a reference to the left sibling. Inside the constructor,
the left sibling’s sibling reference is updated to point to the newly created
TreeNode. That part of the code is perhaps the most subtle element of sand-
box’s implementation: it repays study. The other fields are the ‘kind’ of the
node (nonterminal, terminal, builtin terminal or epsilon), a TIF operator and
the substring matched by a builtin.

Here is the source for the TreeNode class constructors, along with some
helper methods from Sandbox that are used to render enumeration elements.
(Note that these helper methods should really be implemented as asString

methods in the enumeration classes: this is a hangover from the original C++
implementation of Sandbox—C++ does not treat enumerations as full blown
objects.)

1 enum TreeKind {TREE EPSILON, TREE TERMINAL, TREE BUILTIN, TREE NONTERMINAL};
2 enum TIFKind {TIF NONE, TIF FOLD UNDER, TIF FOLD OVER, TIF FOLD ABOVE};
3

4 class TreeNode{
5 String label; int nodeNumber; TreeNode child; TreeNode sibling;
6 TreeKind kind; TIFKind tifOp; String attribute;
7

8 TreeNode(String label, TreeNode child, TreeNode previousSibling,
9 TreeKind kind, TIFKind tifOp, String attribute) {

10 if (previousSibling != null) previousSibling.sibling = this;
11 this.label = label; this.child = child; this.sibling = null;
12 this.kind = kind; this.tifOp = tifOp; this.attribute = attribute;
13 nodeNumber = nextNode++;
14 };
15

16 TreeNode(TreeNode old) {
17 label = old.label; kind = old.kind; tifOp = old.tifOp;
18 child = sibling = null;
19 attribute = old.attribute;
20 nodeNumber = nextNode++;
21 };
22

23 };

Making explicit trees 88

4.16.2 Cloning trees

1 TreeNode clone(TreeNode parent, TreeNode previousSibling) {
2 TreeNode ret = new TreeNode(this);
3 if (previousSibling != null) previousSibling.sibling = ret;
4 else if (parent != null) parent.child = ret;
5 TreeNode rightNode = null;
6 for (TreeNode srcNode = child; srcNode != null; srcNode = srcNode.sibling)
7 rightNode = srcNode.clone(ret, rightNode);
8 return ret;
9 }

4.16.3 Visualising trees on the console

In addition to the fields described above, every TreeNode object also contains a
unique node number that can be very useful when debugging since it enables us
to distinguish between otherwise-identical tree nodes that carry the same label.

1 void print(int indent) {
2 System.out.printf(”%d: ”, nodeNumber);
3 for (int temp = 0; temp < indent; temp++) System.out.printf(” ”);
4 System.out.printf(”%s%s%s”, labelPreString(kind), label,
5 labelPostString(kind));
6 if (attribute != null) System.out.printf(”:%s”, attribute);
7 System.out.printf(”%s\n”, tifString(tifOp));
8

9 if (child != null) child.print(++indent);
10 if (sibling != null) sibling.print(indent);
11 };

4.16.4 Visualising trees with the GraphViz tools

OSBRD parsers write out files in the .dot format which can then be displayed
graphically using the tools in the GraphViz toolset that is commonly available
on Un*x systems and is available for Windows.

4.16.5 Implementing TIF operators

1 TreeNode evaluateTIF(TreeNode parent, TreeNode previousSibling,
2 boolean parentSuppressed) {
3

4 // Special case: don't promote root node
5 if (parent != null && (tifOp == TIFKind.TIF FOLD UNDER ||

A Sandbox grammar for Sandbox 89

6 tifOp == TIFKind.TIF FOLD OVER))
7 {
8 /* Link the children in to the previousSibling's chain */
9 TreeNode rightNode = null;

10 if (previousSibling != null) rightNode = previousSibling;
11 else if (parent != null) rightNode = parent.child;
12

13 boolean suppress = tifOp == TIFKind.TIF FOLD UNDER ||
14 (parentSuppressed && tifOp == TIFKind.TIF FOLD OVER);
15

16 for (TreeNode srcNode = child; srcNode != null; srcNode = srcNode.sibling)
17 rightNode = srcNode.evaluateTIF(parent, rightNode, suppress);
18

19 if (tifOp == TIFKind.TIF FOLD OVER && !parentSuppressed) {
20 parent.label = label; /* What about tifOp? */
21 parent.kind = kind;
22 parent.attribute = attribute;
23 }
24

25 return rightNode;
26 }
27 else { /* make a new node and scan our children */
28 TreeNode ret = new TreeNode(this); ret.tifOp = TIFKind.TIF NONE;
29 if (previousSibling != null) previousSibling.sibling = ret;
30 else if (parent != null) parent.child = ret;
31 TreeNode rightNode = null;
32 for (TreeNode srcNode = child; srcNode != null; srcNode = srcNode.sibling)
33 rightNode = srcNode.evaluateTIF(ret, rightNode, false);
34 return ret;
35 }
36 }
37

38 void foldunderEpsilon(){
39 if (kind == TreeKind.TREE EPSILON)
40 tifOp = TIFKind.TIF FOLD UNDER;
41 for (TreeNode srcNode = child; srcNode != null; srcNode = srcNode.sibling)
42 srcNode.foldunderEpsilon();
43 }

4.17 A Sandbox grammar for Sandbox

1 grammar ::= ruleOrActionsˆ .
2

3 ruleOrActions ::= action ruleOrActionsˆ | rule ruleOrActionsˆ | # .

The Gather-Insert-Fold-Tear formalism 90

4

5 rule ::= nonterm '::='ˆ catsˆ '.'ˆ .
6

7 cats ::= cat catTailˆ .
8 cat::= element catˆ | # .
9 catTail ::= '|'ˆ cat catTailˆ | # .

10

11 element ::= actionˆˆ | subruleˆˆ | nontermˆˆ tif | termˆˆ tif |
12 builtInˆˆ tif | epsilonˆˆ tif .
13

14 action ::= &ACTION .
15

16 subrule ::= subruleWrapper .
17 subruleWrapper ::= '('ˆ catsˆ subruleKindˆˆ .
18 subruleKind ::= ')'ˆˆ | ')?'ˆˆ | ')+'ˆˆ | ')*'ˆˆ .
19

20 nonterm ::= nontermWrapper .
21 nontermWrapper ::= &IDˆˆ optionalAttribute .
22

23 term ::= termWrapper .
24 termWrapper ::= &STRING SQˆˆ optionalAttribute .
25

26 tif ::= 'ˆˆˆ'ˆˆ | 'ˆˆ'ˆˆ | 'ˆ'ˆˆ | #ˆˆ .
27

28 builtIn ::= '&'ˆ &ID .
29

30 epsilon ::= '#'ˆ.
31

32 optionalAttribute ::= ':'ˆ &IDˆˆ | #ˆˆ .

4.18 The Gather-Insert-Fold-Tear formalism

It is useful to be able to compress derivation trees into trees which carry only
such information from the derivation that we wish to carry forward into other
stages of the translation process. Common transformations include:

⋄ the suppression of recursion-scaffolding nodes,

⋄ the construction of expression trees made up solely of nodes labeled with
terminals,

⋄ the suppression of entire sub-trees,

⋄ the local reordering of sub-trees,

⋄ the insertion of new pieces of tree.

The Gather-Insert-Fold-Tear formalism 91

The GIFT formalism provides a small set of operations with postfix annota-
tions that specify their application to the tree nodes associated with grammar
elements. We specify them by writing them into the grammar, but it is helpful
to think of them being attached to tree nodes.

GIFT stands for Gather-Insert-Fold-Tear. The ART tool presently only
implements the two Fold operations, but we shall discuss applications of the
other operators. Collectively, the GIFT operations may be viewed as special
cases of a more general approach called term rewriting, which allows tree to be
rewritten using tree-to-tree rewrite rules.

The best way to think about the GIFT operators is that they are annotations
that are loaded into the derivation tree, and that a GIFT rewriting phase then
rewrites the derivation tree under the control of those operators into a Rewritten
Derivation Tree (RDT).

4.18.1 Fold operators

The fold operators can only be applied to a node which has a parent: that is
the root node may not be folded.

There are two kinds of fold: fold-under (ˆ) and fold-over (ˆˆ).
A rule such as

X ::= `a `b `cˆ `d

will generate an (as-yet-unrewritten) derivation subtree of the form

X

/ / \ \

a b c^ d

and rule such as

Y ::= `a `b `cˆˆ `d

will generate derivation subtree of the form

X

/ / \ \

a b c^^ d

The idea of the fold operators is that the edge joining the annotated node
to its parent is folded in half so that the child node and the parent node are
coincident. If we fold under (ˆ) then the child goes under the parent; if we fold
over then the child goes over the parent. Alternatively, you can see that for a
fold under we delete the child node and keep the parent node; if we fold over
then we delete the parent node and replace it with the child node.

For fold-under, then, we have

The Gather-Insert-Fold-Tear formalism 92

X ::= a b cˆ d

gives

X => X

/ / \ \ / / \

a b c^ d a b d

and

X ::= a b cˆˆ d

gives

X => c

/ / \ \ / / \

a b c^^ d a b d

Note that this allows us to build trees which have terminals as internal
nodes.

So far, we have only considered fold operators on terminal nodes, which
have no children. If we apply a fold operator to a nonterminal instance, then
we must explain how the children are to be treated. The metaphor of edge
folding helps here: the children of the annotated node are inserted as a group
into the siblings of the annotated node. We can think of this as the children
being dragged up a level in the tree.

For fold-under

X ::= a b Yˆ d
Y ::= y z

X => X

/ / \ \ / / | \ \

a b Y^ d a b y z d

/\

y z

For fold-over

X ::= a b Yˆˆ d
Y ::= y z

The Gather-Insert-Fold-Tear formalism 93

X => Y

/ / \ \ / / | \ \

a b Y^^ d a b y z d

/\

y z

4.18.2 The Tear operator

We can suppress an entire subtree by attaching the Tear (ˆˆˆ) annotation.

X ::= a b Yˆˆˆ d
Y ::= y z

X => X

/ / | \ / | \

a b Y^^^ d a b d

/\

y z

4.18.3 Insertions

Nodes can be named by appending a colon and an identifier, and named tear
nodes can be inserted elsewhere in the tree:

X ::= a b Y:tˆˆˆ d [t]
Y ::= y z

X => X

/ / | \ / | | \

a b Y^^^ d a b d Y

/\ /\

y z y z

4.18.4 The Gather operator

Sometimes we want to bring together nonterminal subtrees under a new parent.

GIFT applications 94

4.19 GIFT applications

It is often convenient to be able to represent expression trees as being made up
of operators and operands. Operators such as + and × are grammar terminals,
and we can achieve this affect by promotin the operator symbols over their
parent nonterminals.

Here is a first attempt, in which the minisyntax grammar has been modified
so that every operator symbol has had a ˆˆ annotation applied to it.

statement ::= 'print' '(' printElements ')' ';' ; (* print statement *)

printElements ::= STRING DQ |
STRING DQ ',' printElements |
e0 | e0 ',' printElements ;

e0 ::= e1 |
e1 '>'ˆˆ e1 | (* Greater than *)
e1 '<'ˆˆ e1 | (* Less than *)
e1 '>='ˆˆ e1 | (* Greater than or equals*)
e1 '<='ˆˆ e1 | (* Less than or equals *)
e1 '=='ˆˆ e1 | (* Equal to *)
e1 '!='ˆˆ e1 ; (* Not equal to *)

e1 ::= e2 |
e1 '+'ˆˆ e2 | (* Add *)
e1 '='ˆˆ e2 ; (* Subtract *)

e2 ::= e3 |
e2 '*'ˆˆ e3 | (* Multiply *)
e2 '/'ˆˆ e3 | (* Divide *)
e2 '%'ˆˆ e3 ; (* Mod *)

e3 ::= e4 |
'+'ˆˆ e3 | (* Posite *)
'='ˆˆ e3 ; (* Negate *)

e4 ::= e5 |
e5 '**'ˆˆ e4 ; (* exponentiate *)

e5 ::= INTEGER | (* Integer literal *)
'(' e1 ')'; (* Parenthesised expression *)

STRING DQ ::= &STRING DQ ;

INTEGER ::= &INTEGER ;

GIFT applications 95

statement

'print' '(' printElements ')' ';'

STRING_DQ ',' printElements

&STRING_DQ "Result is " e0

e1

e1 '+' e2

e2

e3

e4

e5

INTEGER

&INTEGER 3

e2 '*' e3

e3

e4

e5

INTEGER

&INTEGER 4

e4

e5

INTEGER

&INTEGER 2

statement ::= 'print'ˆˆ '('ˆ printElementsˆ ')'ˆ ';'ˆ ; (* print statement *)

printElements ::= STRING DQ |
STRING DQ ','ˆ printElementsˆ |
e0 | e0 ','ˆ printElementsˆˆ ;

GIFT applications 96

e0 ::= e1ˆˆ |
e1 '>'ˆˆ e1 | (* Greater than *)
e1 '<'ˆˆ e1 | (* Less than *)
e1 '>='ˆˆ e1 | (* Greater than or equals*)
e1 '<='ˆˆ e1 | (* Less than or equals *)
e1 '=='ˆˆ e1 | (* Equal to *)
e1 '!='ˆˆ e1 ; (* Not equal to *)

e1 ::= e2ˆˆ |
e1 '+'ˆˆ e2 | (* Add *)
e1 '='ˆˆ e2 ; (* Subtract *)

e2 ::= e3ˆˆ |
e2 '*'ˆˆ e3 | (* Multiply *)
e2 '/'ˆˆ e3 | (* Divide *)
e2 '%'ˆˆ e3 ; (* Mod *)

e3 ::= e4ˆˆ |
'+'ˆˆ e3 | (* Posite *)
'='ˆˆ e3 ; (* Negate *)

e4 ::= e5ˆˆ |
e5 '**'ˆˆ e4 ; (* exponentiate *)

e5 ::= INTEGERˆˆ | (* Integer literal *)
'('ˆ e1ˆˆ ')'ˆ; (* Parenthesised expression *)

STRING DQ ::= &STRING DQ ;

INTEGER ::= &INTEGER ;

A term is a well formed formula (wff) is some formal language Γ. Our
formal view of semantics will be a game in which terms representing program
fragments and semantic entities such as the store and output will evolve through
transitions. We shall move between three different ways of representing terms:
(a) as the formula itself, as a derivation tree of the formula in an abstract syntax
Γ′, and as a fully parenthesized representation of the that derivation tree. So,
for instance, if Γ has these productions

S ::= 'output' '(' E ')'

E ::= E '+' E

E ::= E '*' E

E ::= INTEGER

then the well formed formula output(10+2+4) has this derivation tree

GIFT applications 97

S

'output' '(' E ')'

E '+' E

E '+' E

&INTEGER 10 &INTEGER 2

&INTEGER 4

Using GIFT annotations, we could map this to a more compact trees:

GIFT applications 98

'output'

'+'

'+' &INTEGER 4

&INTEGER 10 &INTEGER 2

and we would then represent the derivation tree term as output(+(+(10, 2), 4))

5 Attributes

In this chapter we look at a variety of formalisms and engineering methodologies
for implementing language semantics. As we have seen, we have well-developed
theory and tools for syntax analysis, and for many years it has been conventional
for the front end of compilers and translators to be automatically generated from
concise specifications in a BNF style notation.

Semantic analysis certainly has a well-developed theory, but in contrast
to syntax analysis, rather few real applications make direct use of formal ap-
proaches to semantic description. The reasons seem to be three-fold.

Firstly, a formal approach to programming is uncomfortable for many soft-
ware engineers. This is a shame, because in fact the mathematics required for
a user-level understanding of formal semantics is straightforward and extends
only to sets, relations, rewriting as substitution and the use of logical infer-
ence. Nevertheless, it is true that very concise mathematical notation can be
off-putting to the casual reader. Attempts have been made to bridge this gap by
wrapping the notions and notations of formal semantics in a more programming-
language like style; most notably in Peter Mosses’ Action Semantics and Action
Notation.

Secondly, currently used formal models of semantics do not have efficient
natural implementations. One can achieve a great deal with paper-only analyses
of programming language constructs, but engineers who want to get a transla-
tor running need a way to get from descriptions of programming languages to
actual interpreters and compilers for their language, and in most cases need the
memory consumption and speed of these to be acceptable to their users.

Thirdly, software projects rely on re-use. Constructing a fully featured pro-
gramming language and its processors from scratch is a very substantial task,
and most developers want to build on pre-existing tools. The most common
styles of formal semantics result in specifications whose elements are richly en-
twined, and adding a new language feature typically requires adjustment to
many existing rules. This high level of interdependence militates against a mix-
and-match approach to programming language design. Of course, some aspects
of programming languages (in particular the type system) are so fundamental
that modifications are very likely to require changes that ripple across the whole
language, but we might hope that we could hybridise most programming lan-
guage features without needing an ab initio rewrite of their formal semantics,
especially when dealing with languages that are ina subset relationship (such as
C and C++, or new version 1.8 and 1.5 of Java) or when dealing with languages
which are conceptually similar, such as Java and C#.

Language styles 100

One of the goals of this book is to encourage the use of more formal ap-
proaches to language design even for small domain specific languages, so as to
promote clean design and reduce the probability of implementation errors. Our
approach is to ‘operationalise’ the mathematics of formal semantics by explain-
ing how specifications may be directly (though inefficiently) interpreted, and
by developing routes to the generation and compilation of formal descriptions
that support automatic generation of more efficient translators. We begin by
considering use-cases for different styles of language.

5.1 Language styles

Languages are designed for particular purposes, and the language designer often
seeks conciseness of expression for their chosen domain and conceptual elegance
by providing a particular set of facilities that match the application domain.

5.1.1 Data-centric languages

Our focus has mostly been on executable languages with a runtime model that
includes state and control flow. However there are many languages which are
in essence data description languages: we call these data-centric languages. Of
course, data structures can display repetition (think of arrays and lists) and
even conditional fields (for instance, discriminated unions in C and Pascal) and
so conditonality and repetition specified by control-flow like constructs can be
useful even in pure data-description languages.

Examples of domain specific data-centric languages include scene descrip-
tion languages such as PoV-ray, and the simulator languages used to describe
electronic circuits. At their core, these languages describe graphs of objects
which can then be exercised by, respectively, ray tracers and simulators.

General purpose data-centric languages based on human-readable textual
descriptions have come to dominate data interchange, especially in networked
and service-oriented computing. Probably the best known example is XML,
which although primarily targeting document description is also widely used to
describe data formats. XML is hierarchical, which means that the described
structures are naturally trees, but object references in principle allow the con-
struction of arbitrary relationships within the data structures. Languages such
as JSON may be viewed as lightweight replacements for XML which are par-
ticularly easy to read and parse.

5.1.2 General purpose programming languages

A multitude of languages for general purpose programming have been developed
since the 1950’s. ** Todo:

5.1.3 Domain specific languages and requirements analysis

** Todo:

Approaches to implementation 101

5.2 Approaches to implementation

At some point, language processors make contact with the hardware, since the
only mechanism we have for generating observable behaviour from specifications
written in some notation N is to ‘run’ it on a real computer. We can distinguish
a spectrum of implementation techniques.

At one end are simple applications which work directly with the results
of syntax analysis: in general a set of derivations for our input string; most
often a single derivation that has been obtained by disambiguating the results
of our parser. We call these derivation traversers. At the other, are tools
which transform the input string through a sequence of translations resulting
in efficient machine code which can be subsequently loaded for execution by
some processor: traditionally these tools are called compilers.

A complete compiler for a general purpose programing language is a chal-
lenging project, and many successful systems have instead been implemented as
preprocessors in which a string in N is translated to a semantically-equivalent
string in some language L which is usually a high level language. For instance,
the first C++ compilers were implemented as a tool called Lfront which trans-
lated from C++ to C. This use case, in which L ⊂ N is particularly common
when researchers are seeking to develop new versions of existing languages. A
related task is the development of translators formingled languages, for instance
allowing the use of SQL database language statements within an existing high
level language. We can think of this as needing multiple preprocessors operat-
ing on a source syntax which is the union of the original languages, the main
task being to separate out phrases belonging to each of the mingled languages,
and then passing them to an appropriate conventional language processors.

In between are tools called interpreters which construct an internal rep-
resentation from the important elements of the derivation and then traverse
that form performing actions as they go. Historically, interpretation has been
viewed as the poor-cousin of compilation, since the overhead of mapping lan-
guage phrases to machine actions during execution means that interpretation
of general purpose programs can be slow. However, in the modern era of fast
processors and abundant memory, interpretive systems are often sufficiently
fast, and if our interpreter is written in a high level language for which good
compilers already exist, then adopting an interpretive style gives a high degree
of portability without the need to maintain multiple translators for multiple
architectures. For instance, the interpreted language Python has a reference
implementation called CPython, the core of which is written in C and is there-
fore portable to any machine with a C compiler (which is practice means nearly
all commercially available architectures). There is also a JPython implmenta-
tion which is implemented in Java, and thus can be compiled on any system
with a Java compiler, and the resulting code run wherever there is a JVM
implementation. A further advantage of interpreted systems is that they may
require less memory: a stream of high level language tokens is often smaller than
the equivalent compiled code, and this can be very helpful in highly memory-
constrained systems: for instance the microPython interpreter is practical for
systems with as little as 32K of rewritable memory.

Approaches to implementation 102

The modern trend, led by the development of high performance Java Virtual
Machines, is to produce hybrid systems which have interpreters that monitor
their own execution, and which can stop and locally compile to native machine
code phrases which have been executed many times. This so-called Just-In-
Time (JIT) execution model has allowed JVM performance to approach that of
compiled code once the interpreter has detected appropriate regions for compi-
lation (a process referred to as ‘warm up’) whilst retaining code compatibility
with highly portable JVM interpreters.

These styles— traverser, preprocessor, interpreter and compiler— form a
loose hierarchy, since all language processors will perform some derivation tree
traversal; most translators perform some normalisation actions (such as trans-
lating different kinds of loop statement into a single mormalised form) which
may be viewed as pre-processing; and simple compilers could be viewed as in-
terpreters whose actions leave behind a trace of machine-level actions to be
executed.

5.2.1 Derivation traversers

There are a few applications for which the tree is the semantics, and no further
processing is required. Consider, for instance, the task of deciding whether two
student programs are identical up to variables names. The derivation tree over
language tokens typically captures this information if we ignore the individual
lexemes associated with identifier leaf nodes. In principle, we could output a
textual form of the derivation tree and use an operating-system level utility to
compare them with no other programming required.

We might be interested in software metrics of various kinds, for instance,
such as the average number of statements in a method, or the maximum nesting
depth of control flow statements. These sorts of applications require simple
computations over the tree such as counting the number of nodes in a subtree,
or counting the maximum depth of a tree. We might also want to write a
tool that enforced some coding standards: for instance a software company
might require all control flow statements in Java to have braces around their
bodies even when they are single statements. These kinds of applications require
straightforward tree traversals.

Now consider code refactoring. A common requirement is to rename all
instances of a variable X, say, to Y in a program. A correct implementation
must not simply change all of the X identifiers to Y because we may be using
the same name for several different variables. For instance, may Javamethods
operating on strings might have an argument called string; a refactoring cen-
tred on one of those methods must leave the others untouched. Clearly we need
a semantics-aware replacement which only updates instances which are within
the same scope region. At this point, the derivation tree is no longer sufficient
in itself: we additionally need some representation of the scope semantics of
our language so that we can distinguish indepndent variables that happen to
have the same name.

For a data-centric language, again the tree itself might be a near-sufficient
representation. The derivation for an XML description of a document contains

Attribute Grammars 103

all of the information in the document, along with styling information, and one
could build, say, a word processing application around routines which traversed
the tree to compose an on-screen representation of the document, and which
modified the tree in response to insertion, deletion and styling requests from a
graphical user interface. The XML derivation tree is thus being directly used
as the internal form for the word processor.

5.3 Attribute Grammars

It is natural to think of the leaves of a derivation tree as being associated with
values: for instance an INTEGER token matching the string "0123" is associ-
ated with the value 123 and so on. When implementing arithmetic expressions,
it is useful to think of these values as percolating up through the tree, being
transformed by operators as we go.

Many early compilers used these sorts of ideas, and in the late 1960’s Donald
Knuth formalised these ideas by associating attributes with nonterminals in a
grammar, such that every (a) instance in a derivation tree of some nonterminal
X would have the same attribute set; (b) the values of attributes would be
specified by equations; and that (c) if an attribute of X were defined in a
production of X, then it must be defined in all productions of X.

Knuth distinguished between inherited and synthesized attributes. Con-
ceptually, the use f inherited attributes causes information to be passed down
the tree, and uses of synthesized attributes represent upwards data flow. It
turns out that formally we can write equivalent specifications that use either
only inherited or only synthesized attributes, but in practice it is convenient to
use both. We have already seen that expression evaluation uses upwards pro-
pogation of values, and indeed expression evaluators typically use synthesized
attributes. Context information, such as the declared types of variables often
needs to be propogated down into sections of the tree, and inherited attributes
are the appropriate means to do so.

5.3.1 The formal attribute grammar game

Let Γ = (T,N, S, P) where T is a set of terminals, N is a set of nonterminals
(T ∩ N = ∅) , S ∈ N is the start nonterminal which must not appear on any
RHS (and so S must not be recursive), andP = (T × (N \ S))∗ is a set of
productions.

Each symbol X ∈ V has a finite set A(X) of attributes partitioned into two
disjoint sets, synthesized attributes AS(X) and inherited attributes AI(X).

The inherited attributes of the start symbol (elements of AI(S)) and the
synthesized attributes of terminal symbols (elements of AS(t ∈ T)) are pre-
initialised before attribute evaluation commences: they have constant values.

Annotate the CFG as follows: if Γ has m productions then let production
p be

Xp0 → xp1xp2 . . . xpnp
, np ≥ 0, Xp0 ∈ N, Xpj ∈ V, 1 ≤ j ≤ np

Attribute Grammars 104

A semantic rule is a function fpja defined for all 1 ≤ p ≤ m, 0 ≤ j ≤ np; if
j = 0 then a ∈ AS(Xp,0) and if j > 0 then a ∈ AI(Xp,j).

The functions map Va1 × Va2 × . . .× Vat into Va for some t = t(p, j, a) ≥ 0
The ‘meaning’ of a string in L(Γ) is the value of some distinguished attribute

of S, along with any side effects of the evaluation.

5.3.2 Attribute grammars in practice

When we want to engineer a translator using attribute grammars we have to
do two things: (a) consider the fragments of data that need to reside at each
node (the attributes) and (b) the manner in which those attributes will be
assigned values. Let us construct by example some concrete syntax for attribute
grammars which incorporates the abstract syntax represented by the definitions
in the previous section.

Consider a rule of the form

X ::= Y Z Y X.a = add(Y1.v, Y2.v) Z1.v = 0

The BNF syntax is as usual. The equation is written as an attribute X.a
followed by a = sign and then an expression involving other attributes. The
scope of an equation is just a single production which means that the only
grammar elements (and thus attributes) that may be referenced in an equation
are the left hand side noterminal, and the terminals and nonterminals on the
right hand side. In Knuth’s definition, the LHS nonterminal has suffix zero,
but typically in real tools we drop the suffix and just use the nonterminal name
as here. The right hand side instances are numbered in a single sequence; in
tools we often maintain separate sequences for each unique nonterminal name
as here.

One can tell syntactically whether an attribute is inherited or synthesized
by examining the left hand side of its equation: if the LHS of an equation is
an attribute of the left hand side of the rule, then in tree terms we are putting
information into the parent node, and thus information is flowing up the tree
and this must be a synthesized attribute. If the LHS of an equation references
one of the right hand side production instances then we are putting information
into one of the children nodes, and information is flowing down the tree (so this
must be an inherited attribute). In the example above, X.a is synthesized and
Z1.v is inherited.

It is perfectly possible to completely define a real translator or compiler
using attribute grammars, and many tools exist to support this methodology.
Pure attribute grammars are a declarative way of specifying language semantics
using just BNF rewrite rules and equations, and it is the job of the attribute
evaluator to find an efficient way to visit the tree nodes and perform the required
computations.

Semantic actions in ART 105

5.3.3 Attribute grammar subclasses

A variety of attribute grammar subclasses have been defined, mostly in an
attempt to ensure that equations may be evaluated in a single pass on-the-fly
by near deterministic parser generators. For instance, the LR style of parsing
used by Bison is bottom up, that is the derivation tree is constructed from the
leaves upwards. If we are to do attribute evaluation at the same time, then
we must restrict ourselves to equations that propogate upwards: hence all of
the attributes must be synthesized (and equations are usually written at the
end of the production to ensure that all values are available). Such attribute
grammars are called S-attributed.

For top-down recursive descent parsers we can handle a broader class of
attribute grammars. As with bottom up, the requirement is that attribute
values be computable in an order which matches the construction order of
the derivation tree. Such attribute grammars are called L-attributed: in an
L-attributed grammar, in every production

X → y0y1y2 . . . yk . . . yn

every inherited attribute of yk depends only on the attributes of y0 . . . yk −
1 and the inherited attributes of X. This definition reflects the left-to-right
construction order of the derivation tree.

5.4 Semantic actions in ART

Semantic actions and attributes in ART use the parser’s implementation lan-
guage to model the decalarative, equational attribute grammar formalism. Back
end languages for ART include C++ and Java, which are languages that do not
enforce referential transparency. As a result, it is possible to write attribute
grammar specifications in ART which are not equational: specifically, attributes
in ART are procedural language variables to which we make assignments, and
so in principle we can have several ‘equations’ in a rule all of which target
the same attribute, which means that the value of an attribute is no longer a
once-and-for-all thing, but instead may evolve during the parse.

From a formal point of view, this is very ugly. From a software engineer’s
perspective, it is an opportunity to introduce efficiencies. Which camp you are
in rather depends on your primary concerns.

Although ART attributes are in some senses more powerful than true AG
attributes, the evaluator in ART is definitely less powerful than would be re-
quired for a true AG evaluator, as we shall see.

5.5 Syntax of attributes in ART

In ART, user attributes must be declared for each nonterminal. A rule such as

X < value:String number:int> ::= 'x'

Syntax of attributes in ART 106

specifies that an instance of X has two attributes: one of type String called
value and another of type int called number.

An action in ART is specified on the right hand side of the rule within curly
braces { and }. Any syntactically and semantically valid fragment of Java
may appear within the braces. It is important to understand that ART treats
material within these braces as a simple string—ART does not understand the
syntax or semantics of Java or any of the other backend languages, and so cannot
test for errors within the string. If you write an action which is ill-formed,
you will only find out when either (a) the compiler for the back end language
attempts to process the output from ART or (b) when the evaluator actually
runs. This can make debugging semantic actions somewhat challenging. This
is in the nature of meta-programming: the ART specification is effectively a
specification for a program that ART will write, so you are one step removed
compared to the normal software engineering process.

So, for instance,

X < value:String number:int> ::= 'x' { X.value = 3; }

is a valid ART specification which generates a compile-time-invalid piece of Java
because the expression 3 is not type compatible with the attribute value which
is of type String. Similarly, if an attribute was an array and an action tried to
acccess an element which was out or range, then the error in the action would
not be picked up by either ART or the Java compiler, but instead generate a
run-time exception.

5.5.1 Special attributes in ART

ART recognises two special attribute names: leftExtent and rightExtent.
When the user declares attributes with those names and type int they are
treated just as for ordinary attributes except that the parser initialises them
with the start and end positions of the string matched by that nonterminal
instance. As a result, one would not usually expect to find attribute equations
in the actions that had either leftExtent or rightExtent on their left hand
sides.

The use of these special attributes allows us to create attributes at the lowest
level of the tree. In ART, attributes cannot be defined for builtin terminals or
terminals that are created literally. However, we can wrap an instance of a
terminal in a nonterminal, and then use these special attributes to extract the
substring matched by some terminal. For instance, here is the definition of a
nonterminal INTEGER which uses the &INTEGER lexical builtin matcher to match
a substring, and then extracts a value using the lextExtent and rightExtent
attributes

INTEGER <leftExtent:int rightExtent:int v:int> ::= &INTEGER
{INTEGER.v = artLexemeAsInteger(INTEGER.leftExtent, INTEGER.rightExtent);}

Accessing user written code from actions in ART generated parsers 107

ART provides a set of methods for converting substrings of the input to
values: artLexemeAsInteger(), artLexemeAsDouble() and so on.

5.6 Accessing user written code from actions in ART gener-
ated parsers

It would be cumbersome to have to put the entire functionality of a translator
into semantic actions. Instead, we would like to parcel complex operations up
into functions or class methods, and simply call them from the semantic actions.

Back end languages for ART vary in their requirements, but for the Java
backend we can imagine both wanting to access objects of classes outside of
ART’s generated parser class, and also the addition of members to the ART
generated parser class itself. ART provides two mechanisms to help.

The prelude{...} declaration specifies that the material within the braces
be copied into the generated code at the top of the file. This enables us to add,
for instance, import declarations to the Java generated parser, and thus to
access objects and static methods of other classes within our semantic actions.

The support{...} declaration specifies that material within the braces be
copied into the generated code within the ART generated parser class itself,
allowing us to declare methods and variables which are visible throughout the
generated parser’s actions.

5.7 A näıve model of attribute evaluation

How would we build a (not very efficient) general attribute evaluator for ART?
Let us begin by giving each node in the tree a unique instance number. Then
each attribute may be uniquely named as (instance number, name). Make a
set U which will contain the subset of attributes which are presently undefined.
Make a map V from attribute names to attribute values which is initially empty.

We begin by handling the special attributes leftExtent and rightExtent.
For each attribute in ui ∈ U with a name of the form (k, leftExtent) or (k,
rightExtent), remove ui from U and add an element to map V which maps (k,
left(right)Extent) to the first(last) index position of the substring matched by
instance k.

Now, while U is nonempty, traverse the entire tree and examine, all of the
equations for productions used in the derivation sequence and perform these
actions

1. If the attribute on the LHS of the equation is not in U , then continue.
(The attribute has already been computed.)

2. If the attribute on the LHS is in U and any attribute on the RHS is in U ,
then continue. (The attribute is not ready to be computed.)

3. If the attribute (k, n) on the LHS is in U and no attribute on the RHS is
in U , remove (k, n) from U and add an element to V mapping (k, n) to
the result of computing the right hand side expression.

The representation of attributes within ART generated parsers 108

Recall that a well-formed attribute grammar must be (a) non-circular and
(b) must have an equation in every production defining the value of all attributes
in its RHS nonterminal. As a result, there must be some ordering over the
equations that allows them to be resolved. This algorithm finds an ordering by
brute force: it simply continually traverses the tree looking for so-far undefined
LHS attributes whose right hand side attributes are defined, at which point it
computes the new value and removes the attribute from the undefined set.

This algorithm is simple, but inefficient because in worst case we might only
be able to compute one equation per entire pass of the tree. In practice, real
general attribute evaluators perform dependency analysis on the equations to
find much more efficient schedules.

5.8 The representation of attributes within ART generated
parsers

ART provides an abstract class ARTGLLAttributeBlock. Inside ART, nontern-
inals are named M.N where M is a module name and N is the name of a
nonterminal defined in module M . The default module name is ART so in spec-
ifications with explicit module handing, a nonterminal called X by the user is
called ART_X internally.

For each attributed nonterminal M.X, ART creates a concrete subclass of
ARTGLLAttributeBlock called ART_AT_M_N, so for instance the ART rule

X <p: int q:double> ::= 'x'

in module M generates the class

1 public static class ART AT M X extends ART GLLAttributeBlock {
2 protected double q;
3 protected int p;
4 }

A separate instance of this class is created for each instance of nonterminal
M.X in the derivation. Each instance effectively has two names within the
attribute evaluator: M.X for left hand side attributes and M.Xk for right hand
side instances, where k is an integer. When we write an action like M_X.v = 3;

we mean, locate the attribute block for my left hand side which is called M_X and
then access the field called v. When we write an action like M_X.v = M_X1.v we
are asking for the v value from the attribute block for the first instance of M.X
on the right hand side of our rule to be copied to the left hand side instance.

5.9 The ART RD attribute evaluator

Whilst we could implement an attribute evaluator based on the general model
above, it would be inefficient. Instead we implement syntax directed translation.

The ART RD attribute evaluator 109

Rather than seeking a schedule which resolves all of the data dependencies
in the attribute grammar, we instead assert a particular schedule and require
the writer of the attribute grammar to not write equations which violate its con-
straints. We say that an AG specification is admissable if it may be computed
by our predefined schedule, and inadmissable otherwise.

The ART attribute evaluator correctly evaluates L-attributed grammars. In
an L-attributed grammar, in every production

X → y0y1y2 . . . yk . . . yn

every inherited attribute of yk depends only on the attributes of y0 . . . yk − 1
and the inherited attributes of X.

There is quite a strong parallel here with parsing: a general parsing al-
gorithm such as GLL (the algorithm ART implements) can handle any spec-
ification, but with the risk of poor performance on some grammars. A non-
backtracking Recursive Descent parser, on the other hand, can only handle
deterministic LL(1) grammars (or ordered grammars which are nearly LL(1))
but will run in linear time.

Our evaluator is essentially a recursive descent evaluator. It will only tra-
verse the tree once. As long as the equations may be fully resolved in a single
pass, all will be well. The ART evaluator is limited to attribute schemes that
are essentially the L-attributed schemes. However, we can do a lot with such
schemes, and the evaluation time is linear in the size of the tree.

In detail, the ART evaluator recurses over the datastructure constructed by
the GLL parser. This is not a single derivation, but a (potentially infinite) set
of derivation trees embedded within a structure called a Shared Packed Parse
Forest (SPPF). However, prior to starting the evaluator, we will have marked
some parts of the SPPF as suppressed, and some parts as selected, and the
net effect is that the evaluator can assume that it is recursing over a single
derivation tree.

As the evaluator enters a node labeled X, it creates the attribute block for
each nonterminal child below it (corresponding to the nonterminal instances in
the derivation step X ⇒ α encoded in this height-1 sub-tree). These newly-
created attribute blocks are assigned to variables with names like Y 1 and Z2
corresponding to the first and second instances of Y and Z in some production
like X::= Y Z Z

The evaluator is a nest of functions, one for each nonterminal, in a way
that is isomorphic with our OSBTRD parser functions. In our example above,
the evaluator function for X will be called and make attribute blocks for the
children Y 1, Z1 and Z2. It will then call the evaluator function for Y passing
block Y 1 as an argument. The evaluator functions all take a single parameter
block whise name is the same as that of the nonterminal. By this means, the
block for Y allocated in X is called Y 1 in the evaluator for X but called Y in
the evaluator for Y .

Just like an RD parser, the evaluator functions call each other in the same
order as instances are encountered within the grammar, and the semantic ac-
tions are inserted directly into the evaluator functions.

Higher order attributes 110

5.10 Higher order attributes

There is a well-developed theory of higher order attributes, which are attributes
that represent parts of derivation trees rather than simple values. There are
essentially two classes of HO attributes: attributes which capture part of an
existing derivation tree, and attributes which contain new pieces of tree which
can be used to extend a derivation tree from the parser. In ART, we support
the former, but not yet the latter. This means that the shape and labelling of a
derivation tree in ART cannot be modified by an attribute grammar: only the
attribute values associated with tree nodes can be modified. In a later section
we shall describe ART’s GIFT operators which do allow trees to be modified. In
the present implementation, the attribute evaluator works on the full derivation
and completes evaluation before the GIFT rewriter changes the tree.

ART’s notion of higher order attributes requires only two things: a way of
marking tree nodes as having a higher-order attribute associated with them,
and a way to allow the user to activate the evaluator function under the control
of semantic actions.

The first is achieved by adding an annotation < to any right hand side in-
stance of a nonterminal in a grammar rule. The second is achieved by providing
a method artEvaluate() which takes as an argument a higher order attribute.

When the evaluator function arrives at a node with a higher-order attribute,
it does not descend into it (although it will construct the attribute block for
it). The idea is that instead of automatically evaluating a subtree, the outer
evaluator will ignore it, but the user may specify semantic actions to trigger its
evaluation on demand.

Why is this useful? Well one application is to allow our recursive evaluator
to interpret flow-control constructs. Consider an if statement. It comprises a
predicate, and a statement which is only to be executed if the predicate is true.
We can specify this as follows:

ifStatement ::= 'if' e0 'then' statement<
{ if (e01.v != 0) artEvaluate(ifStatement.statement1, statement1); } ;

The < character after the instance of statement creates a higher order at-
tribute called statement1 in the attribute block for ifStatement. ART will
also have created an attribute block called statement1. The evaluator will au-
tomatically descend into the subtree for e0, but will not descend into the subtree
for statement: instead it loads a refernce to the subtree for this instance of
statement into the attribute statement1 in ifStatement.

In the action, we look at the result that was computed within e0, and if it
is not zero (signifying false) we call the evaluator on the the subtree root node
held in the attribute ifStatement.statement1 and pass in parameter block
statement1. This effectively emulates what would have happened automati-
cally if we had left off the < annotation, but under the control of the result of e0.
Hence the evaluation order of the tree is being dictated by the attributes and
semantic actions themselves! This is exactly the sense in which our attributes
are higher order. However, we can only traverse bits of tree that were built by

Higher order attributes 111

the parser: we cannot make new tree elements and call the evaluator on them.
Full higher order attributes do allow that. We call our restricted form delayed
attributes so as to distinguish them from the more general technique.

We can use these delayed attributes to build interpreters for languages with
conditionals, loops and function calls, as we shall see in the laboratory exercises.

6 Pragmatics

In this chapter we look at the origins and basic building blocks of programming
languages.

6.1 Icons, letters and phrases

The origins of human communication are necessarily obscure, but the archaeo-
logical record leaves us some clues. We know that bipedal apes emerged around
seven million years ago; that 1.5–2 million years ago early hominids such as
Homo Habilis used tools to scavenge but were often prey to large animals; and
that by the time of Homo Ergaster and its descendant species (around 1–1.5
million years ago) there is evidence of the use of fire and a physiology that might
allow some form of speech. By 70–80,000 years ago there is clear evidence that
the hunted had turned hunter, with group hunting of large game, which must
surely have required coordination, planning and communication.

Many hundreds of sites containing cave paintings are known, the oldest of
which are believed to be around 40,000 years old and clearly represent some
form of non-transient communication. Images of animals abound, and images
of humans are rare apart from hand stencils (pigment blown over a hand). In a
few cases, hunting scenes are clearly represented. This painting, for instance, is
from the Bhimbetka rock shelters in India; and shows mesolithic hunters using
bows and arrows, perhaps 6–10,000 years ago.

We cannot know whether these are records of successful campaigns, or per-
haps instructional in the sense that they played a part in preparing for a hunt
and training new members of the group. To be a little whimsical; it would
be pleasing if one could establish that some paintings formed a do-this then

Icons, letters and phrases 113

do-that progression, as this would surely constitute use of a recorded sequence
of commands; the world’s first program.

The transition to text based systems is also, naturally, obscure. Neolithic ob-
jects from Jiahu in China incorporating symbols have been dated to 6,500 BCE.
The so-called Vinča symbols on the Tǎrtǎria tablets found in Romania date to
around 5,300 BCE (left, below). The Greek Displio tablet (journals.uair.
arizona.edu/index.php/radiocarbon/article/view/17456 is a wooden piece
which has been carbon-14 dated to 5260±40 BCE and includes symbols such as
a triangle with a dot in it, and forms similar to our letters E, t, v and L (right,
below). Scholars in this area call these sorts of symbols, which often appear in
isloation as proto-writing.

In fully formed writing, strings of symbols (called graphemes) represent
spoken sentences. Some writing systems are logographic in which individual
concepts are represented by graphemes called logograms (small pictorial symbols
representing, say, a class of objects such as house); modern examples include
Chinese characters and Japanese Kanji. More commonly individual (or short
sequences of) graphemes represent the primitive sounds or phonemes of spoken
language, forming an alphabet. A string of alphabetic graphemes ‘spell’ out the
sound of a spoken word.

Egyptian hieroglyphs combine both elements: of the 1,000 or so known
hieroglyphics there are symbols corresponding to consonants as well as symbols
that in themselves represent, for instance, sun. Some symbols, such as that for
house, may be logographic in some contexts and but stand for a single consonant
in other contexts. A vertical bar under the symbol indicates the logographic
use. Hieroglyphics and Samarian cuneiform (which was made with cut reeds on
clay tablets) are candidates for the earliest fully formed writing system dating
back to about 3,000 BCE, but they involve large numbers of signs: cuneiform
uses around 800 patterns which represent individual symbols.

journals.uair.arizona.edu/index.php/radiocarbon/article/view/17456
journals.uair.arizona.edu/index.php/radiocarbon/article/view/17456

Icons, letters and phrases 114

Alphabets instead encode the phonemes, the individual sounds from which
speech is composed which requires far fewer symbols, and in which syllables are
represented by short strings of alphabetic letters.

Most Western scripts descend from the Phoenician alphabet which was in
use by 1000 BCE, though that script only directly represents consonants (and
is thus sometimes called an abjad rather than an alphabet). Txt wrttn tht wy
cn b prfctl lgbl. Each Phoenecian letter was derived from the shape of the sign
for some common syllable which started with that letter. This arrow head from
1100 BCE and now in the British Museum is inscribed arrow of Ada, son of
Bala.

Extra characters representing vowels were later added by the Greeks, and that
developed into the Latin alphabet in which this text was written.

Software languages are primarily alphabetic, but there have been many at-
tempts to construct primarily logographic systems, such as the Scratch and
Lego Wedo programming environments for neophyte programmers. Graphi-
cal User Interfaces (GUIs) are heavily oriented towards logographic represen-
tations, making extensive use of mnemonic icons instead of text labels: an
immediate advantage is interationalisation since pictorial representations are
independent of spoken language; immediate disadvantages include the prolifer-
ation of sometimes hard to understand images. GUI’s increasingly use touch
gestures as inputs (such as pinch to zoom) and in future GUI input graphemes
might include future facial expressions and hand gestures. For one-off actions,
clicking a button labeled with an icon can be appropriate, but as soon as we
want to record sequences of actions then logographic specification can become
unwieldy. Most programs are intended to be read as well as executed and a
textual representation is therefore convenient, so shall focus on systems where
the graphemes are limited to characters input via a keyboard.

Even in conventional languages, we extend the Latin alphabet with stan-
dard mathematical symbols such as > and =. Mathematics publications use
many more such symbols and the meaning associated with a symbol, say ϵ will
commonly vary with sub-discipline. There are programming languages which
use large alphabet, most notably APL en.wikipedia.org/wiki/APL_syntax_

and_symbols which pre-defines a very large number of operator symbols. For
instance, this APL expression from the Rosetta code website (rosettacode.
org/wiki/Greatest_common_divisor#APL) is an APL expression which uses
Euclid’s algorithm to compute the GCD of 49,865 and 69,811 which is 9.972.

At the other extreme, languages in the Lisp family tend to be composed mostly
of identifiers composed from letters: a recursive version of GCD in Scheme (also
from the Rosetta code site) is:

en.wikipedia.org/wiki/APL_syntax_and_symbols
en.wikipedia.org/wiki/APL_syntax_and_symbols
rosettacode.org/wiki/Greatest_common_divisor#APL
rosettacode.org/wiki/Greatest_common_divisor#APL

Icons, letters and phrases 115

1 (define (gcd a b)
2 (if (= b 0)
3 a
4 (gcd b (modulo a b))))

The design of a comfortable syntax is unlikely to ever be formalised: the
tension between conciseness and readability means that it is very hard to find
a form that suits all programmers. Some languages even provide alternative
forms. For instance, in Algol-68 our iterative implementation of Euclid’s algo-
rithm may be written as

1 ref int a = loc int;
2 ref int b = loc int;
3

4 while a != b do
5 if a > b
6 a := a = b
7 else
8 b := b = a
9 fi

10 od

or as

1 ref int a = loc int;
2 ref int b = loc int;
3

4 while a != b (
5 (a > b |
6 a := a = b |
7 b := b = a
8)
9)

in which the if statement is written in a concise bracketed form. Programs may
freely intermix if statements written in the two styles (although each individual
if statement must be completely in one of these styles).

Another interesting approach is represented by Donald Knuth’s literate pro-
gramming system [?], which encourages the construction of programs as literary
objects which allow a narrative to be built in a way that is independent of the
conventions of any particular programming language and which allows math-
ematical notation; these specifications may then be converted to compilable
programs and to documentation. In some of his writings, Knuth discusses this
approach as a software engineering paradigm:

I had the feeling that top-down and bottom-up were opposing method-
ologies: one more suitable for program exposition and the other

Semantics at machine level 116

more suitable for program creation. But after gaining experience
with WEB, I have come to realize that there is no need to choose
once and for all between top-down and bottom-up, because a pro-
gram is best thought of as a web instead of a tree. A hierarchical
structure is present, but the most important thing about a program
is its structural relationships. A complex piece of software con-
sists of simple parts and simple relations between those parts; the
programmer’s task is to state those parts and those relationships, in
whatever order is best for human comprehension not in some rigidly
determined order like top-down or bottom-up. [?]

We shall explore more deeply the design and implementation aspects of
syntax in the next chapter. Our focus here is on semantics, and we need to
first look at the semantic components that are found in typical programming
languages.

6.2 Semantics at machine level

At the raw machine code level, we have a store comprising a fixed set of cells,
each of which has a unique index number called its address and a fixed set of
values which may be assigned to it. On a modern computer, this set of values
is almost always the set of binary digit strings of length 8. There is no typing
information associated with these cells: the contents could be a small integer,
part of a high precision floating point number, part of a character string, or
part of an instruction1.

The contents of memory cells are interpreted under the control of a special
variable called the program counter which holds an address P . The behaviour
of the computer reduces to an sequence of fetch-execute cycles.

During a fetch, an instruction is fetched from P , and the program counter is
updated to hold the address of the first store location P ′ past that instruction.
This updating ensure that normally the computer executes store-contiguous
instructions in sequence.

During the execute part of the cycle, the instruction’s bit-pattern is in-
terpreted as, for instance an addition of operands held at two different store
locations with the result being written to a third. Other instruction forms might
generate output, on some specified channel, or read input from a keyboard.

Some instruction modify the flow of control by, during the execute part,
writing some new value T called a branch target to the program counter. The
next fetch cycle will then read an instruction starting at T instead of that at P ′,
and the effect is that the program will branch rather than executing sequentially.
Typically branches are conditional: the loading of the the program counter with

1There have been experimantal machines which associated a tag with the data, thus al-
lowing some type checking in hardware, the most well known example of which is the ICL
2900 which requireded a 64-bit descriptor to be associated with some memory accesses. The
contents of the descriptor could specify, for instance, the size of an operand and whether it
was code or data

Semantics at machine level 117

T depends on whether, say, the value of a store location is zero. In this way,
the program can include data dependent actions.

Since store locations are not tagged with any sort of type information, each
location is simply a bit string, and will be interpreted according to context. If,
for instance, the program counter is accidentally set to an address in the middle
of some data, then the computer will still attempt to interpret those data bit
strings as instructions, with (in general) unpredictable effects. On the other
hand, a von Neumann computer exploits this property to allow programs to be
loaded from storage as data, and then executed by passing control to their start
address A which simply requires A to be loaded into the program counter.

Although cell contents are not tagged, the computer does impose a notion
of type onto those bit patterns, in that particular machine instructions expect
particular types of operands. For instance, a modern machine will have separate
instructions to add 32 bit integers and 64 bit floating point numbers called, say
ADD32 and FADD64. The fetch cycle will collect 32-bit long operands for the
ADD32 instruction and 64-bit long operands for the FADD instruction. If an
integer add specifies operands that have most recently been assigned the results
of a floating point operation, then we have a typing error.

Hardware instructions rarely allow heterogeneous operands: for instance
adding an integer to a floating point number. Instead, conversion instructions
are supplied which directly implement semantics-preserving conversions, such
as converting the floating point number 3.0 to the integer 3. These conversions
are called casts and usually include some ’sensible’ non-semantics preserving
transformations. In the case of floating to integer conversions, the detailed
implementation of the instruction will govern whether 3.6 is converted to integer
3 by truncation, or integer 4 by rounding.

A particularly difficult aspect of cast operations arises when the range of
the target type is less than that of the input type, as in the integer cast above.
Programmers are used to thinking about the decimal places being lost on con-
version but sometimes caught out by the inability of, say, a 32-bit integer to
directly represent even the integer elements of the range of a 64-bit float; that
is an overflow on cast. Probably the most well known failure of this type is the
destruction of the prototype Ariane 5 rocket in 1996. This flight used hardware
and software that had operated successfully on earlier Ariane 4 flights, but the
new vehicle’s flight path included a higher horizontal acceleration component.
The software performed a 64-bit floating to 16-bit integer conversion, and on
the maiden Ariane 5 flight this led to a 16-bit overflow around 50 seconds after
lunch. The autopilot responded to the rsulting sign change in the acceleration
vector and attempted to correct for it by making a large adjustment to the
booster and main engine nozzles which caused the vehicle to disintegrate. The
estimated one-off financial loss from this bug was around one third of a billion
dollars.

6.2.1 Translation to machine level

The set of instruction available on a typical modern computer will include
basic arithmetic and logic operations, casts, copy instructions and flow control

Semantics at machine level 118

including conditional branches and function calls. The raw datatypes encoded
into these instructions semantics will typically include signed and unsigned
integers of various sizes, characters, and floating point numbers of various sizes.

Programming languages, even very simple ones such as assembly languages,
then additionally offer identifiers which may bind to store addresses and values.
Whatever the level of the programming language, all of the semantic machinery
of that languages must have translations down into the machine code level if a
program is to be executed; the purpose of a formal semantics is ultimately to
specify those translations in an unambiguous way and thus aid in the avoidance
of problems such as the Ariane 5 failure.

Before looking at a taxonomy of programming language semantic features,
we shall produce a concrete example of a translation from our high level IL
description of Euclid’s algorithm into a low level machine code.

We shall use eight bit integers, which restricts our algorithm to finding the
GCD of two numbers between 0 and 255. Our store will be large enough to
hold the program and the program variables; it will turn out that a 256 location
store suffices, so our program counter need be only 8 bits wide.

Here is our GCD implementation again:

1 int a, b;
2

3 a := input(); b := input();
4

5 while a != b
6 if a > b
7 a := a = b;
8 else
9 b := b = a;

10

11 output(a);

The only arithmetic operation required is subtraction. It will turn out that
we shall use three kinds of branch instruction, and we shall also need input
and output instructions. Here is a table of instructions for plausible although
non-existent computer architecture.

op opcode operands length Effect

exit 0 0 1 return from program
inp i 1 1 2 σi ← I
outp i 2 1 2 P ← [i : P]
sub8 i j k 3 3 4 σi ← σj −8 σk
bra t 15 1 2 C ← t
beq i t 16 2 3 i = 0⇒ C ← t
ble i t 17 2 3 i ≤ 0⇒ C ← t

The first column gives a human-readable name to each instruction; the second
column gives the opcode for that instruction, that is the unique 8 bit-string that

Semantics at machine level 119

encodes the instruction represented as a decimal number. The third and fourth
columns are the number of operands and the overall length of the instruction,
respectively, and the fifth column gives the semantics. We use the notationσk
to represent the bit string in the store indexed by address k, I to represent the
input, P the output and C the program counter.

Note that type information is effectively encoded into the instruction: we
are using a subtract operation called sub8 represented as −8 in the semantics
column.

We shall now give human readable, and then machine code level transla-
tions of the IL program into instructions for this hypothetical machine. Con-
ventionally, machine level programming languages (called assembly languges)
allow programmer to write programs using syntax like that in the first column
above, and then translate those lines into the binary representation. It is an
easy, though rather clerical and error prone, task to do this by hand; usually a
program called an assembler is used.

The assembler reads the program sequentially, and maintains an assembly
pointer A. Typically the machine code is assembled into an array representing
the memory of the computer at run time. In addition to instructions like
those above, the assembler will provide directives for, for instance, reserving
and initialising memory. The assembler will also provide labels. Syntactically,
a label is usually an alphanumeric identifier followed by a colon; when the
assembler encounters a label it binds the current value of A to that label.

Here is an assembly program corresponding to our GCD IL program. The IL
program lines have been appended as comments so that the relationship between
machine instructions and IL statements is clear. We begin by reserving space
(lines 3–5) for our variables using the assembler directive var k which reserves
k locations for later use.

1 var 2 // leave unused space for two byte variable
2 // int a, b;
3 a: var 1 // reserve one byte for a
4 b: var 1 // reserve one byte for b
5 tmp: var 1 // reserve one byte for internal temporary variable
6

7 var 4 // leave four bytes of unused space
8

9 // start of code
10

11 inp a // a := input();
12 inp b // b := input();
13

14 do1: // while a != b
15 sub8 tmp, a, b
16 beq tmp od1
17

18 if2: // if a > b

Semantics at machine level 120

19 sub8 tmp, a, b
20 ble tmp else2
21

22 sub a, a, b //a := a = b;
23 bra fi2
24

25 else2: // else
26 sub8 b, b, a // b := b = a;
27

28 fi2:
29 bra do1:
30

31 od1:
32

33 outp a // output(a);
34 exit

The executable code begins at line 11. We first use the inp instruction to
load variables a and b. Note how the location of these variables has been bound
to the labels a and b on lines 3 and 3, and the way in which the labels are being
used to provide operands to the inp instruction on lines 11 and 12.

We use data labels as operand addresses, and we use code labels as jump
targets. Control flow constructs such as while ... do loops and if ... then ..
else constructs. We shall use the convention that each control construct in a
program will be given a number, and we shall use labels with names like if3 to
mark the first instruction in the third construct and fi3 to label the successor
to the last instruction in the third construct. We shall use if ... fi around if
statements and do ... od around while do statements.

This next listing expands the assembly language program by preceding each
line with the output that the assembler produces. The concatenation of these
numbers forms the initial state of the store for th erunning program.

1 0: = var 2 // leave unused space for two byte variable
2 // int a, b;
3 2: 0 = a: var 1 // a is at location 2
4 3: 0 = b: var 1 // b is at location 3
5 4: 0 = tmp: var 1 // tmp is at location 4
6

7 4: = var 4 // leave four bytes of unused space
8

9 // entry point for code is location 8
10 8: 1 2 = inp a // a := input();
11 10: 1 3 = inp b // b := input();
12

13 12 = do1: // while a != b
14 12: 3 4 2 3 = sub8 tmp, a, b
15 16: 16 4 38 = beq tmp od1

The semantic facets of programming languages 121

16

17 19 = if2: // if a > b
18 19: 3 4 2 3 = sub tmp, a, b
19 23: 17 4 32 = ble tmp else2
20

21 26: 3 2 2 3 = sub8 a, a, b //a := a = b;
22 30: 15 36 = bra fi2
23

24 32: else2: // else
25 32: 3 3 3 2 = sub8 b, b, a // b := b = a;
26

27 36: fi2:
28 36: 15 12 bra do1:
29

30 38: od1:
31

32 38: 2 2 = outp a // output(a);
33 40: 0 = exit

So this sequence of numbers, then, is our program:

0,0,0,0,0,0,0,0,0,1,2,1,3,3,4,2,3,16,4,38,3,4,2,3,17,4,32,3,2,2,3,15,36,3,3,3,2,15,12,2,2,0

6.3 The semantic facets of programming languages

We shall group our discussion of semantic components of high level languages
into five facets: (a) values, types and expressions; (b) storage, assignment and
commands; (c) identifiers, bindings and scope; (d) control flow and (e) abstrac-
tion mechanisms, both procedural and data.

6.3.1 Values, types and expressions

The ultimate purpose of a program is to compute values; those values might
be numeric solutions to equations, textual outputs, visual effects on a screen
or movements of a robot arm. At machine level, all of these correspond to
patterns of binary digits in memory, but programming languages provide a
range of abstractions which enable us to reason more effectively about program
execution. Grouping the available values by class of abstraction naturally leads
to the notion of type.

6.3.2 Storage, assignment and commands

In a von Neumann view of computing, values are stored in reusable cells, and
in that world, storage is also fundamental. Most program texts are dominated
by identifiers which stand for, for instance, constant values, locations in store,

Interpretation, compilation and runtime rework 122

6.3.3 Identifiers, scope and binding

Nested scope rules

6.3.4 Control flow

D-structures
Concurrency
Jumps
Exceptions

6.3.5 Procedural and data abstraction

Procedures
Higher order functions
Abstract data types, classes and packages
Generics

6.4 Interpretation, compilation and runtime rework

6.5 Four early language traditions

6.5.1 FORTRAN– numeric processing and portable programs

6.5.2 COBOL – data processing

6.5.3 LISP – the accidental language

6.5.4 Algol – user defined data and algorithmic elegance

6.6 New ideas

6.6.1 Programming in the large

6.6.2 Object orientation

6.6.3 Concurrency

6.6.4 Generics, and types as values

6.7 General purpose and domain specific software languages

6.8 The music domain

In this section we lay the foundations for project work in music by looking at
elementary aspects of western music, and exploring the capabilities of Java’s
built in synthesizer. Our goal is to build a domain specific language which
allows convenient specification, performance, and display of musical pieces.

The music domain 123

When working with the Java sound API, please use headphones or earbuds
so as not to disturb other people in the lab.

6.8.1 Musical instruments

Broadly speaking, music is a form of structured sound. Sound itself is our
perception of vibrations in the air which create sympathetic vibrations of our
ear drums, and via the workings of the inner ear into changes in brain activity.
A young human can perceive frequencies between about 20 and 20,000 cycles
per second (written 20-20kHz) though maximum sensitivity is between 2kHz
and 5kHz. We perceive different frequencies as different pitches: an increase or
decrease in frequency is perceived as an increase or decrease in pitch.

A musical instrument is a device for creating structured sound. Physical
objects display frequencies at which they ‘want’ to vibrate: we call these their
resonant frequencies. If you have ever pushed somebody on a swing you will
understand resonance: the swing has a frequency at which it naturally arcs back
and forth, and if you give a little push just at the top of the arc then you can
maintain steady smooth motion with little effort. If on the other hand you shove
the swing before it reaches the high point, then the motion can become very
irregular, and even cause the person on the swing to be thrown off. It turns out
that you can change the resonant frequency of a swing by changing the length
of the ropes holding the seat: longer ropes give a slower swing frequency.

It is a general rule that large physical objects resonate at lower frequencies
than small physical objects, and that if you want to keep an object vibrating
whilst using as little energy as possible, then you should stimulate it at its
resonant frequency. This is, perhaps, why tiny humming birds’ wings move so
quickly that we perceive the disruption in the air as a hum, whilst an albatross
with a 3m wingspan beats its wings slowly.

If we tension a string and pluck it, then it will vibrate at its resonant
frequency. If we shorten the string, or increase its tension. or replace it with a
lighter string, then the resonant frequency will increase. These are the principles
behind stringed instruments including guitars, violins and pianos.

If we take an open bottle and blow across the top of it then the air in it
will resonate. By using a smaller bottle (or perhaps two identical bottles with
one half full of water) we can try smaller mass of air which will resonate at a
higher frequency. This is the operating principle of woodwind instruments.

There are many variations on these basic themes: strings may be plucked,
hit with hammers or excited with a bow. Air resonators may be fed with
pumped air (as in a pipe organ) or blown into; their resonant frequencies may
be modified by opening and closing valves between air spaces or by deforming
the resonator, as in a trombone. For stringed instruments in particular, it is
common to provide a coupled mass of air in a hollow sound box that will res-
onate in sympathy with the primary resonator, strengthening the amplitude
of the air vibrations. Some modern instruments (such as the electric guitar)
directly convert resonator vibrations into electrical signals which can be ampli-
fied, transmitted long distances and fed to a loudspeaker; the microphone is a
general device for converting air pressure waves into an electrical signal.

The music domain 124

Even the highest perceivable sound frequency is very low compared to the
instruction execution frequencies of current computers. At 20kHz, each sound
cycle lasts for 50µs. A modern desktop processor can achieve instruction exe-
cution frequencies of around 2× 109 Hz, and can thus execute around 100,000
instructions during each audio cycle. This makes it feasible to use software to
generate quite complicated musical waveforms in real time. Such a device is
called a digital music synthesizer, and the standard Java distribution ships with
libraries for music synthesis.

Ensuring the correct synchronisation between multiple synthesized instru-
ments and input devices such as keyboards requires careful coding and protocol
design: in 1982 the Musical Instrument Digital Interface standard was pub-
lished, and this has become a very broadly implemented system for controlling
musical instruments. The Java distribution contains classes which may be used
with MIDI controllers (such as keyboards) to make entirely electronic music.
We shall give examples of the use of this library; and we shall write a very
simple Domain Specific Language is to give the non-Java programmer access to
these facilities using a small self-contained notation.

6.8.2 The perception of pitch

When presented with a complex repetitive waveform, the ear resolves it into
multiple pitches, that is we can perceive the separate frequencies individually.
In this respect, the ear is fundamentally different to the eye which ‘averages’
frequencies: when presented with a patch of green light overlaying a patch of red
light, we perceive yellow. The separation of a waveform into its constituent fre-
quencies is called Fourier Analysis: the ear effectively performs Fourier Analysis
whereas the eye merges frequencies.

As we increase frequency, we hear an ascending pitch. Interestingly, and
fundamentally, the ear perceives frequencies which are integer multiples of one
another as ‘the same but different’ and nearly all music systems use this ob-
servation to split the frequency spectrum up into a sequence of ‘octaves’: one
octave is the range of musical pitches between some frequency f and the fre-
quency 2f . This perception of frequency doubling naturally leads to a log-style
description of pitch.

Some instruments offer a continuous range of frequencies (examples include
the Theramin, fretless stringed instruments and the human voice) but most
instruments provide a finite set of discrete pitches which may be based on indi-
vidual tuned resonators (like the strings of a piano) or by discrete adjustments of
an otherwise-continuous resonator (like the frets used in a guitar). When using
a computer to generate audio waveforms, there are no constraints at all, but in
practice we often use the computer to make sounds like traditional instruments.

6.8.3 The physics and psychology of pitch

Music appreciation is highly culturally conditioned, and perceptions of ‘sat-
isfying’ music vary geographically and over time. As computer scientists, we
understand how to systematise and implement behaviours which ‘make sense’

The music domain 125

to our users by hiding low-level complexity and only providing control over
high level concepts: for instance, when we connect our laptops to a network,
we do not expect users to understand the complexities of the network proto-
col, or even to know the numeric address of the machine they are connecting
to. Similarly, musicians organise the continuum of available frequencies into a
set of conventions which ‘feel right’; and growing up within a particular musi-
cal culture these conventions we may come to feel in some sense natural and
fundamental. However, we must never lose sight of the fact that alternative
conventions may be just as natural to people growing up in other cultures.

Most western music is organised around the twelve-tone-equal-temperament
scale (12-TET) in which an octave is divided into twelve discrete frequencies.
The ratio between octaves is 2; the ratio between two successive notes (called
a semitone is thus 12

√
2. Each discrete frequency is called a note. Western

keyboard instruments such as the piano have individual resonators tuned to
each note, and a key which when pressed causes that note to sound. Typically,
fretted string, brass, reed and woodwind instruments provide only a subset of
the available notes in an octave, so to avoid these complications we shall use
the keyboard as a reference instrument.

We noted before that the ear is particularly sensitive to frequencies up to
about 5kHZ. If we start at, say, 20Hz and generate tones by multiplying by
12
√
2, we get to 6kHz in around 100 steps, so we shouldn’t be surprised to

find that large concert pianos have 88 keys, and that nonstandard pianos have
been constructed with 102 keys. Of course, we could have started at 25Hz or
19Hz. The particular mapping between the discrete notes and the continuum of
frequencies is called the tuning of an instrument. For an equal tempered tuning
such as 12-TET, it suffices to pick one particular frequency for one particular
note: the other notes are then fixed by the 12

√
2 ratio between semitones.

Current orchestral practice is to use 440Hz as a tuning standard and to tune
the 49th key of a standard 88 note keyboard to to that frequency. This then
results in the leftmost key generating 27.5Hz, and rightmost key generating
4186.01Hz. (A 102 key keyboard, rarely implemented, ranges from 16.3516Hz
to 5587.65Hz.)

The MIDI standard defines 128 notes numbered from zero to 127, with
twenty notes below and twenty notes above the standard piano keyboard. Key
zero generates 8.17Hz and key 127 12,543.85Hz. Key 69 gives the 440Hz concert
tuning standard.

A note on alternative tunings

There is nothing inherently perfect about this particular tuning. The 440Hz
standard was internationally agreed in 1939, and became an ISO standard
in 1955. However frequencies from 400Hz to 460hz are known to have been
used historically, and those frequencies are more more than 5

√
2 apart, which is

greater than two semitones: playing an historical piece to modern tuning may
therefore yield a performance that differs significantly from the composer’s in-
tent.

Apart from these shifts in reference frequency, equal temperament (the di-

The music domain 126

vision of the octave using a constant ratio) is not the only way of mapping
discrete notes on to the frequency continuum. Many musical traditions instead
use ratios of small integers, since frequencies related in his way form harmo-
nious combinations: these tunings are collectively called just intonation and
arise naturally with certain classes of instrument. The ratio 3:2 forms the basis
of the so-called Pythagorean tuning ; many other systems exist.

The division of the octave into 12 notes is also merely a convention. Divi-
sions into 15, 19, 34 and even 53 notes have been studied; one way of thinking
about this is that by having more notes we can more closely approach the
small-integer-ratio harmonics of just intonation. There is a vast literature on
tunings which you can begin to explore through online articles: in the rest of
this section we shall restrict ourselves to 12-TET.

6.8.4 Pure tones and instrument voices

The resonators used in musical instruments generate more than one frequency.
Roughly speaking, the note that we hear is the lowest frequency produced, but
there will usually be many related overtones present, usually integer multiples
of the lowest frequency. The lowest frequency is called the fundamental; the
integer-multiple frequencies are the harmonics. For a fundamental frequency f ,
the first harmonic has frequency 2f , the second harmonic 3f and so on. Notice
how these harmonics are at the octave intervals: hence a fundamental and its
overtones together sound like a single note rather than resolving into several
independent notes.

A pure single tone sounds rather other-worldly: a tuning fork or the human
whistle is probably the closest thing to a pure tone resonator that most people
hear. Of course, we can use the computer to generate pure tones, once we know
the waveform.

Fourier analysis and synthesis

In 1822, Jean-Baptiste Joseph Fourier published a claim that any periodic wave-
form could be decomposed into a (possibly infinite) set of sinusoidal waveforms,
which when added together would reconstruct the original waveform. This ob-
servation has turned out to have many applications in physics and engineering.
It is of direct relevance to sound synthesis, since it suggests that if we can
write a program that generates sine waves at different frequencies and then add
them together in various proportions we can numerically construct any audio
waveform. This is the principle behind music synthesizers. Interestingly, there
is a procedure by which we can take an arbitrary waveform and numerically
decompose it into its constituent sine waves. We call a display of the strength
of each frequency a spectrum analysis.

If our musical instrument resonator produces only a fundamental and har-
monics, then we can characterise the sound of, say, a piano string by listing the
proportions of sine waves of frequencies f , 2f , 3f ,. . . kf where k is chosen to be
beyond the limit of human hearing. Even for a very low fundamental note such
as 20Hz, the tenth harmonic exceeds 20kHz. Hence we have the prospect of

The music domain 127

being able to accurately encode the detailed sound of a piano note into eleven
real numbers, and then reconstituting the sound in realtime using software.

The conversion of a waveform to a spectrum display of frequencies is called
Fourier Analysis; the reverse process of converting a series of proportions of
sine waves to a single waveform is called Fourier Synthesis. We sometimes refer
to operations on waveforms as ‘working in the time domain’ and operations on
frequency proportions as ’working in the frequency domain’.

The Nyquist-Shannon criterion and making recordings

An ability to encode a single note of a single instrument accurately is clearly im-
portant for synthesis. However, it does not tell us how to capture the behaviour
of an entire orchestra, or indeed how to encode non-musical sounds.

We can use a computer as a sound recorder by connecting a microphone
and then measuring its output, say every microsecond. We use an Analogue to
Digital Converter (ADC) to convert the voltage developed by the microphone
into a number. Typical high quality digital audio systems use around 16 bits
to represent each sample. By storing the resulting sequence of integer num-
bers, we can have a permanent record of a sound experience which may be
reconstructed by converting the numbers back into voltages and applying the
resulting waveform to a loudspeaker.

We can see that if we sample the original sound too slowly, then we may lose
information. On the other hand, if we sample at very high speed then we shall
require extra storage. A fascinating result which arises from Fourier analysis is
that we can capture the full detail of any waveform, no matter how complex, up
to some bounding frequency f by sampling the waveform at no more than 2f .
This is why CD quality audio samples waveforms at 44.1kHz: since the human
ear can perceive sounds up to 20kHz, a sample rate of greater then 40kHz
ensures that no information is lost. (In detail, the figure of 44.1kHz arises as a
result of early experiments using video recorders to store audio information: you
can read the story online.) This 2f requirement is called the Nyquist-Shannon
criterion.

6.8.5 Tempo, rhythm and articulation

It is unusual for a note to be played continuously (although bagpipes and some
other instruments have a drone which sounds continuously during a perfor-
mance). Instead, the playing time is divided up into discrete beats which set
the duration of the basic note.

In the western tradition, a piece of music will have an indicated tempo,
sometimes expressed as beats per minute or bpm. As computer scientists, we
might prefer to use Hz to specify the tempo, that is, beats per second. A very
slow piece would be below 30bpm and a very fast piece above 200bpm, from
which we can see that beat frequencies range from around 0.5 to 3.5Hz.

** Todo: Rhythms
Much of the character of a performance is embedded in the detailed way in

which a performer uses the tempo. A straightforward approach is to leave a very

The music domain 128

short silence at the end of each beat period, and to sound each note uniformly
throughout the rest of the beat period. This very simplistic approach is easy
to program but sounds, well, synthetic.

A human performer even when attempting uniformity will display some
small variations in the length of notes. More significantly, humans players de-
liberately vary the details of note timing within the basic rhythm framework, a
technique known as articulation. For instance, some notes may be run together
into a smoothly connected frequency shift whereas other are deliberately short-
ened so as to create a jumpy effect. In wind instruments articulation is achieved
by controlling airflow with the tongue; in stringed instruments by dampening
the vibrations with the hand. Other forms of articulation include rapid peri-
odic changes in amplitude (called tremolo) and rapid periodic changes in pitch
(called vibrato). A slower shift in pitch is often called a pitch bend: some electric
guitars (such as the fender Stratocaster) have an arm which allows the tension
and length of the strings to be varied – this device is often called a tremolo bar
(although really it is a vibrato bar).

6.8.6 Musical terminology for pitch

Musicians use a very large number of technical terms, and this can be rather
overwhelming at a first encounter. However, we are interested in Domain Spe-
cific Languages, and musician’s terminology certainly represents a very widely
used language which is extremely domain specific, and as such can be the basis
of some interesting case studies.

Musical nomenclature has grown up over a long historical period, and can
seem rather arbitrary to outsiders even though there is usually an underlying
logic. For instance, one might imagine that the divisions of an octave into 12-
semitones might be represented by twelve unique names. In fact, in the western
tradition there are seven unique names (the letters A through G inclusive), and
two modifiers ♯ and ♭ (spoken sharp and flat) which raise (lower) by a semitone
the note represented by a name.

This initially surprising naming convention arises from the observation that
certain sequences of seven notes sound harmonious, and that the majority of
western musical melodies are mostly constructed around seven note selections.

By appending a ♯ or a ♭ symbol to the seven basic names we can name the
‘missing’ five semitones. A conventional way of writing an ascending sequence
of 12 semitones in an octave is:

A A♯ B C C♯ D D♯ E F F♯ G G♯
and a conventional way to write a descending sequence is:

A A♭ G G♭ F E E♭ D D♭ C B B♭
Using the 12-TET tuning (but not necessarily for other tunings), A♯ and B♭

represent the same frequency, and we can enumerate the full set of notes in an
octave as

A A♯/B♭ B C C♯/D♭ D D♯/E♭ E F F♯/G♭ G G♯
** Todo: Octave numbers

The music domain 129

6.8.7 Major and minor scales

Our basic pitch palette, then, comprises octaves of 12 fundamental notes each
separated by a semitone. When played, notes come with a variety of harmonics
which allow us to distinguish, say, a violin note from a guitar note.

Music can generate emotional responses in humans. It is clear that these
responses are culturally conditioned, but nevertheless within a culture such
as our own in which individuals are exposed to many musical pieces, strong
associations between particular musical progressions and particular emotional
states seem to be almost universally recognised— in the western tradition the
difference between a joyous and a sad piece is well understood by most listeners.

The first component of mood is harmony. Some sequences of notes sound
harmonious and some do not: we say they are discordant (which literally means
that they disagree with each other). We can test our response to sequences by
playing subsets of the 12 tones in an octave in ascending or descending order:
it turns out that some sound good and some are unpleasant. Such a sequenced
subset of the tones is called a scale.

If we think of the 12 semitones laid out as a 12-bit vector representing the
presence or absence of a note within some scale, it is easy to see that there are
212 = 4096 scales. The one with all twelve notes in it is called the chromatic
scale; its dual with no notes in at all is simply silence (and therefore of no
musical utility).

We have already noted that western music focuses on scales with seven
notes. It turns out that only two families of such seven note scales find wide
application in popular music. The major scales start with any of the twelve
notes and then include notes according to the increments

+2 +2 +1 +2 +2 +2 +1

The minor scales begin with any note, and then include notes according to the
increments:

+2 +1 +2 +2 +1 +3 +1

Scales are usually played so as to finish one octave above the root. Hence,
we play a major scale rooted on keyboard key k by playing the keys

k, k + 2, k + 4, k + 5, k + 7, k + 9, k + 11, k + 12

and a minor scale with

k, k + 2, k + 3, k + 5, k + 7, k + 8, k + 11, k + 12

As a further example, consider the scale made up of two equally spaced
notes. These are three whole tones apart and thus called a tritone. When
played, this creates, at best, a sense of tension: some might even say it sounds
wrong.

The music domain 130

6.8.8 Chords

A chord is a set of notes played simultaneously. Just as with scales, particular
combinations sound harmonious, and the most common way of forming a chord
for a root note k is to take the first, third and fifth elements of either the major
or minor scale rooted on k. We write CM (spoken C-major) for the chord rooted
on C using the major scale, and Cm (C-minor) for the chord rooted on C using
the minor scale.

Chords formed of notes k, k + 6, k + 12 sound particularly inharmonious,
made up as they are of a pair of tritones.

We can play a simple melody by picking out single notes. If we replace each
note by the major chord rooted at that note then we get a fuller sound. We can
do the same with the minor chords; and in general a melody and chords based
on the minor scale will sound darker and perhaps more gentle: the major scale
sounds brighter.

6.8.9 Synthesizing music with Java and MIDI

** Todo: Overview of MIDI

1 package uk.ac.rhul.cs.csle.artmusic;
2

3 import javax.sound.midi.MidiChannel;
4 import javax.sound.midi.MidiSystem;
5 import javax.sound.midi.Synthesizer;
6

7 public class ARTMiniMusicPlayer {
8 private Synthesizer synthesizer;
9 private MidiChannel[] channels;

10 private int defaultOctave = 5;
11 private int defaultVelocity = 50;
12 private int bpm;
13 private double bps;
14 private double beatPeriod;
15 private double beatRatio = 0.9;
16 private int beatSoundDelay = (int) (1000.0 * beatRatio / bps);
17 private int beatSilenceDelay = (int) (1000.0 * (1.0 = beatRatio) / bps);
18

19 public ARTMiniMusicPlayer() {
20 try {
21 System.out.print(MidiSystem.getMidiDeviceInfo());
22 synthesizer = MidiSystem.getSynthesizer();
23 synthesizer.open();
24 channels = synthesizer.getChannels();
25 } catch (Exception e) {
26 System.err.println(”miniMusicPlayer exception: ” + e.getMessage());
27 System.exit(1);

The music domain 131

28 }
29

30 setBeatRatio(0.9);
31 setBpm(100);
32 setDefaultVelocity(50);
33 }
34

35 public int getDefaultOctave() {
36 return defaultOctave;
37 }
38

39 public void setDefaultOctave(int defaultOctave) {
40 this.defaultOctave = defaultOctave;
41 }
42

43 public int getDefaultVelocity() {
44 return defaultVelocity;
45 }
46

47 public void setDefaultVelocity(int defaultVelocity) {
48 this.defaultVelocity = defaultVelocity;
49 }
50

51 public int getBpm() {
52 return bpm;
53 }
54

55 public void setBpm(int bpm) {
56 this.bpm = bpm;
57 bps = bpm / 60.0;
58 beatPeriod = 1000.0 / bps;
59 beatSoundDelay = (int) (beatRatio * beatPeriod);
60 beatSilenceDelay = (int) ((1.0 = beatRatio) * beatPeriod);
61 }
62

63 public void setBeatRatio(double beatRatio) {
64 this.beatRatio = beatRatio;
65 beatSoundDelay = (int) (beatRatio * beatPeriod);
66 beatSilenceDelay = (int) ((1.0 = beatRatio) * beatPeriod);
67 }
68

69 private int noteNameToMidiKey(String n, int octave) {
70 // @formatter:off
71 int key = octave * 12 +
72 (n.equals(”C”) ? 0
73 : n.equals(”C#”) ? 1
74 : n.equals(”Db”) ? 1

The music domain 132

75 : n.equals(”D”) ? 2
76 : n.equals(”D#”) ? 3
77 : n.equals(”Eb”) ? 3
78 : n.equals(”E”) ? 4
79 : n.equals(”F”) ? 5
80 : n.equals(”F#”) ? 6
81 : n.equals(”Gb”) ? 6
82 : n.equals(”G”) ? 7
83 : n.equals(”G#”) ? 8
84 : n.equals(”Ab”) ? 8
85 : n.equals(”A”) ? 9
86 : n.equals(”A#”) ? 10
87 : n.equals(”Bb”) ? 10
88 : n.equals(”B”) ? 11
89 : =1);
90 // @formatter:on
91

92 if (key < 0 || key > 127) {
93 System.err.println(”miniMusicPlayer exception: attempt to access out of range MIDI key ” + n + octave);
94 System.exit(1);
95 }
96 return key;
97 }
98

99 // Silence
100 public void rest(int beats) {
101 try {
102 Thread.sleep((long) (beats * beatPeriod));
103 } catch (InterruptedException e) {
104 /* ignore interruptedException */ }
105 }
106

107 // Single notes
108 public void play(int k) {
109 try {
110 channels[0].noteOn(k, defaultVelocity);
111 Thread.sleep(beatSoundDelay);
112 channels[0].noteOn(k, 0);
113 Thread.sleep(beatSilenceDelay);
114 } catch (InterruptedException e) {
115 /* ignore interruptedException */ }
116 }
117

118 public void play(String n) {
119 play(noteNameToMidiKey(n, defaultOctave));
120 }
121

The music domain 133

122 public void play(String n, int octave) {
123 play(noteNameToMidiKey(n, octave));
124 }
125

126 // Arrays of notes
127 public void play(int[] k) {
128 try {
129 for (int i = 0; i < k.length; i++)
130 channels[1].noteOn(k[i], defaultVelocity);
131 Thread.sleep(beatSoundDelay);
132 for (int i = 0; i < k.length; i++)
133 channels[1].noteOn(k[i], 0);
134 Thread.sleep(beatSilenceDelay);
135 } catch (InterruptedException e) {
136 /* ignore interruptedException */ }
137 }
138

139 public void playSequentially(int[] k) {
140 try {
141 for (int i = 0; i < k.length; i++) {
142 channels[i].noteOn(k[i], defaultVelocity);
143 Thread.sleep(beatSoundDelay);
144 channels[i].noteOn(k[i], 0);
145 Thread.sleep(beatSilenceDelay);
146 }
147 } catch (InterruptedException e) {
148 /* ignore interruptedException */ }
149 }
150

151 // Scales
152 public void playScale(String n, ARTScale s) {
153 playScale(noteNameToMidiKey(n, defaultOctave), s);
154 }
155

156 public void playScale(String n, int octave, ARTScale s) {
157 playScale(noteNameToMidiKey(n, octave), s);
158 }
159

160 public void playScale(int k, ARTScale s) {
161 int[] keys;
162 switch (s) {
163 case CHROMATIC:
164 keys = new int[] { k, k + 1, k + 2, k + 3, k + 4, k + 5, k + 6, k + 7, k + 8, k + 9, k + 10, k + 11, k + 12 };
165 break;
166

167 case MAJOR: // TTSTTTS
168 keys = new int[] { k, k + 2, k + 4, k + 5, k + 7, k + 9, k + 11, k + 12 };

The music domain 134

169 break;
170

171 case MINOR NATURAL: // TSTTSTT
172 keys = new int[] { k, k + 2, k + 3, k + 5, k + 7, k + 8, k + 10, k + 12 };
173 break;
174 case MINOR HARMONIC: // TSTTS3S
175 keys = new int[] { k, k + 2, k + 3, k + 5, k + 7, k + 8, k + 11, k + 12 };
176 break;
177 case MINOR MELODIC ASCENDING: // TSTTS3S = harmonic with with sixth sharpened
178 keys = new int[] { k, k + 2, k + 3, k + 5, k + 7, k + 9, k + 11, k + 12 };
179 break;
180 case MINOR MELODIC DESCENDING: // TSTTS3S = harmonic with seventh flattened making it the same as the natural minor
181 keys = new int[] { k + 12, k + 10, k + 8, k + 7, k + 5, k + 3, k + 2, k };
182 break;
183

184 default:
185 keys = new int[] { 0 };
186 break;
187 }
188 playSequentially(keys);
189 }
190

191 // Programmed chords
192 public void playChord(String n, ARTChord type) {
193 playChord(noteNameToMidiKey(n, defaultOctave), type);
194 }
195

196 public void playChord(String n, int octave, ARTChord type) {
197 playChord(noteNameToMidiKey(n, octave), type);
198 }
199

200 public void playChord(int k, ARTChord type) {
201 int[] keys;
202 switch (type) {
203 case NONE:
204 keys = new int[] { k };
205 break;
206 case MAJOR:
207 keys = new int[] { k, k + 4, k + 7 };
208 break;
209 case MAJOR7:
210 keys = new int[] { k, k + 4, k + 7, k + 11 };
211 break;
212 case MINOR:
213 keys = new int[] { k, k + 3, k + 7 };
214 break;
215 case MINOR7:

The music domain 135

216 keys = new int[] { k, k + 4, k + 7 };
217 break;
218 default:
219 keys = new int[] { 0 };
220 break;
221 }
222 play(keys);
223 }
224

225 private void tune() {
226 int base = 47;
227 play(base + 14);
228 play(base + 12);
229 play(base + 11);
230 play(base + 7);
231 play(base + 5);
232 play(base + 7);
233 play(base + 2);
234 rest(2);
235 }
236

237 private void tuneChordMajor() {
238 int base = noteNameToMidiKey(”C”, 5);
239 playChord(base + 14, ARTChord.MAJOR);
240 playChord(base + 12, ARTChord.MAJOR);
241 playChord(base + 11, ARTChord.MAJOR);
242 playChord(base + 7, ARTChord.MAJOR);
243 playChord(base + 5, ARTChord.MAJOR);
244 playChord(base + 7, ARTChord.MAJOR);
245 playChord(base + 2, ARTChord.MAJOR);
246 }
247

248 private void tuneChordMinor() {
249 int base = noteNameToMidiKey(”C”, 5);
250 playChord(base + 14, ARTChord.MINOR);
251 playChord(base + 12, ARTChord.MINOR);
252 playChord(base + 11, ARTChord.MINOR);
253 playChord(base + 7, ARTChord.MINOR);
254 playChord(base + 5, ARTChord.MINOR);
255 playChord(base + 7, ARTChord.MINOR);
256 playChord(base + 2, ARTChord.MINOR);
257 }
258

259 public void close() {
260 synthesizer.close();
261 }
262

The music domain 136

263 public static void main(String[] args) {
264 System.err.println(”miniMusicPlayer test routine”);
265 ARTMiniMusicPlayer mp = new ARTMiniMusicPlayer();
266

267 mp.playScale(”C”, ARTScale.CHROMATIC);
268 mp.rest(2);
269 String note = ”C”;
270 int octave = 6;
271 mp.play(note, octave);
272 mp.rest(2);
273 mp.playScale(”C”, ARTScale.MAJOR);
274 mp.rest(2);
275 mp.playScale(”C”, ARTScale.MINOR NATURAL);
276 mp.rest(2);
277 mp.playScale(”C”, ARTScale.MINOR HARMONIC);
278 mp.rest(2);
279 mp.playScale(”C”, ARTScale.MINOR MELODIC ASCENDING);
280 mp.playScale(”C”, ARTScale.MINOR MELODIC DESCENDING);
281 mp.rest(2);
282 mp.playChord(”C”, ARTChord.MAJOR);
283 mp.rest(2);
284 mp.playChord(”C”, ARTChord.MINOR);
285 mp.rest(2);
286 mp.tune();
287 mp.rest(2);
288 mp.tuneChordMajor();
289 mp.rest(2);
290 mp.tuneChordMinor();
291 mp.rest(2);
292 // Tritone scale and scale
293 mp.playSequentially(new int[] { 50, 56, 62 });
294 mp.rest(2);
295 mp.play(new int[] { 50, 56, 62 });
296 mp.rest(2);
297

298 mp.close();
299 }
300 }

6.8.10 minimusic – a DSL to access MiniMusicPlayer

1 melody sanctuary {
2

3 D+M C+M B+ G F G m D m7
4 }

The music domain 137

5

6 x = 3;
7 while x > 0 do { print(”x is ”, x, ”\n”); x = x =1; }
8

9 play sanctuary;

1 (***
2 *
3 * miniMusic.art = Adrian Johnstone 18 Februrary 2017
4 *
5 ***)
6 prelude { import java.util.HashMap; import uk.ac.rhul.cs.csle.artmusic.*; }
7

8 support {
9 HashMap<String, Integer> variables = new HashMap<String, Integer>();

10 HashMap<String, ARTGLLRDTHandle> melodies = new HashMap<String, ARTGLLRDTHandle>();
11 ARTMiniMusicPlayer mp = new ARTMiniMusicPlayer();
12 }
13

14 whitespace &WHITESPACE
15 whitespace &COMMENT NEST ART
16 whitespace &COMMENT LINE C
17

18 statements ::= statement | statement statements
19

20 statement ::= ID '=' e0 ';' { variables.put(ID1.v, e01.v); } | (* assignment *)
21

22 'if' e0 'then' statement< elseOpt< (* if statement *)
23 { if (e01.v != 0)
24 artEvaluate(statement.statement1, statement1);
25 else
26 artEvaluate(statement.elseOpt1, elseOpt1);
27 } |
28

29 'while' e0< 'do' statement< (* while statement *)
30 { artEvaluate(statement.e01, e01);
31 while (e01.v != 0) {
32 artEvaluate(statement.statement1, statement1);
33 artEvaluate(statement.e01, e01);
34 }
35 } |
36

37 'print' '(' printElements ')' ';' | (* print statement *)
38

39 'melody' ID statement< { melodies.put(ID1.v, statement.statement1); } |
40 'play' ID ';'

The music domain 138

41 { if (!melodies.containsKey(ID1.v))
42 artText.println(ARTTextLevel.WARNING, ”ignoring request to play undefined melody: ” + ID1.v);
43 else
44 artEvaluate(melodies.get(ID1.v), null);
45 } |
46

47 '{' statements '}' | (* compound statement *)
48

49 bpm | defaultOctave | note | chord | rest
50

51 elseOpt ::= 'else' statement | #
52

53 bpm ::= 'bpm' INTEGER { mp.setBpm(INTEGER1.v); }
54

55 beatRatio ::= 'beatRatio' REAL { mp.setBeatRatio(REAL1.v); }
56

57 defaultOctave ::= 'defaultOctave' INTEGER
58 { if (INTEGER1.v < 0 || INTEGER1.v > 10)
59 artText.println(ARTTextLevel.WARNING, ”ignoring illegal MIDI octave number ” + INTEGER1.v);
60 else
61 mp.setDefaultOctave(INTEGER1.v);
62 }
63

64 note ::= simpleNote chordMode { mp.playChord(simpleNote1.v.trim(), chordMode1.v); } |
65 simpleNote shifters chordMode { mp.playChord(simpleNote1.v.trim(),
66 mp.getDefaultOctave() + shifters1.v, chordMode1.v); } |
67 simpleNote INTEGER chordMode { mp.playChord(simpleNote1.v.trim(), INTEGER1.v, chordMode1.v); }
68

69 chordMode <v:ARTChord> ::= # { chordMode.v = ARTChord.NONE; } |
70 'm' { chordMode.v = ARTChord.MINOR; } | 'm7' { chordMode.v = ARTChord.MINOR7; } |
71 'M' { chordMode.v = ARTChord.MAJOR; } | 'M7' { chordMode.v = ARTChord.MAJOR7; }
72

73 simpleNote<leftExtent:int rightExtent:int v:String> ::=
74 simpleNoteLexeme { simpleNote.v = artLexeme(simpleNote.leftExtent, simpleNote.rightExtent).trim(); }
75

76 simpleNoteLexeme ::= 'A' | 'A#' | 'Bb' | 'B' | 'C' | 'C#' | 'Db' | 'D' | 'D#' | 'Eb' | 'E' | 'F' | 'F#' | 'Gb' | 'G' | 'G#'
77

78 shifters<v:int> ::= '+' {shifters.v = 1;} | '=' {shifters.v = =1;} |
79 '+' shifters {shifters.v = shifters1.v + 1; } |
80 '=' shifters {shifters.v = shifters1.v = 1; }
81

82 chord ::= '[' notes ']'
83

84 notes ::= note | note notes
85

86 rest ::= '.' { mp.rest(1); } | '..' { mp.rest(2); } | '...' { mp.rest(3); } | '....' { mp.rest(4); }
87

The music domain 139

88 printElements ::= STRING DQ { artText.printf(”%s”, STRING DQ1.v); } |
89 STRING DQ { artText.printf(”%s”, STRING DQ1.v); } ',' printElements |
90 e0 { artText.printf(”%d”, e01.v); } | e0 { artText.printf(”%d”, e01.v); } ',' printElements
91

92 e0 <v:int> ::= e1 { e0.v = e11.v; } |
93 e1 '>' e1 { e0.v = e11.v > e12.v ? 1 : 0; } | (* Greater than *)
94 e1 '<' e1 { e0.v = e11.v < e12.v ? 1 : 0; } | (* Less than *)
95 e1 '>=' e1 { e0.v = e11.v >= e12.v ? 1 : 0; } | (* Greater than or equals*)
96 e1 '<=' e1 { e0.v = e11.v <= e12.v ? 1 : 0; } | (* Less than or equals *)
97 e1 '==' e1 { e0.v = e11.v == e12.v ? 1 : 0; } | (* Equal to *)
98 e1 '!=' e1 { e0.v = e11.v != e12.v ? 1 : 0; } (* Not equal to *)
99

100 e1 <v:int> ::= e2 { e1.v = e21.v; } |
101 e1 '+' e2 { e1.v = e11.v + e21.v; } | (* Add *)
102 e1 '=' e2 { e1.v = e11.v = e21.v; } (* Subtract *)
103

104 e2 <v:int> ::= e3 { e2.v= e31.v; } |
105 e2 '*' e3 { e2.v = e21.v * e31.v; } | (* Multiply *)
106 e2 '/' e3 { e2.v = e21.v / e31.v; } | (* Divide *)
107 e2 '%' e3 { e2.v = e21.v % e31.v; } (* Mod *)
108

109 e3 <v:int> ::= e4 {e3.v = e41.v; } |
110 '+' e3 {e3.v = e41.v; } | (* Posite *)
111 '=' e3 {e3.v = =e41.v; } (* Negate *)
112

113 e4 <v:int> ::= e5 { e4.v = e51.v; } |
114 e5 '**' e4 {e4.v = (int) Math.pow(e51.v, e41.v); } (* exponentiate *)
115

116 e5 <v:int> ::= INTEGER {e5.v = INTEGER1.v; } | (* Integer literal *)
117 ID { e5.v = variables.get(ID1.v); } | (* Variable access *)
118 '(' e1 { e5.v = e11.v; } ')' (* Parenthesised expression *)
119

120 ID <leftExtent:int rightExtent:int lexeme:String v:String> ::=
121 &ID {ID.lexeme = artLexeme(ID.leftExtent, ID.rightExtent); ID.v = artLexemeAsID(ID.leftExtent, ID.rightExtent); }
122

123 INTEGER <leftExtent:int rightExtent:int lexeme:String v:int> ::=
124 &INTEGER {INTEGER.lexeme = artLexeme(INTEGER.leftExtent, INTEGER.rightExtent);
125 INTEGER.v = artLexemeAsInteger(INTEGER.leftExtent, INTEGER.rightExtent); }
126

127 REAL <leftExtent:int rightExtent:int lexeme:String v:double> ::=
128 &REAL {REAL.lexeme = artLexeme(REAL.leftExtent, REAL.rightExtent);
129 REAL.v = artLexemeAsInteger(REAL.leftExtent, REAL.rightExtent); }
130

131 STRING DQ <leftExtent:int rightExtent:int lexeme:String v:String> ::=
132 &STRING DQ {STRING DQ.lexeme = artLexeme(STRING DQ.leftExtent, STRING DQ.rightExtent);
133 STRING DQ.v = artLexemeAsString(STRING DQ.leftExtent, STRING DQ.rightExtent); }

The image processing domain 140

6.9 The image processing domain

6.10 The 3D object domain

A Using ART

ART (Ambiguity Resiliant Translation) is a tool for specifying the syntax and
semantics of language processors.

Traditional language implementation tools use restricted algorithms which
remove ambiguity in ways that are not conveniently controllable by the language
designer. ART takes a different approach, employing general algorithms which
allow ambiguous interpretations of language rules to be maintained through
various stages of translation, and supporting principled resolution of ambiguity.

ART supports unrestricted context-free lexing and parsing, term rewriting,
and computation of tree attributes. For ambiguous rules, the general lexing
and parsing algorithms will construct all derivations: chooser relations may
optionally be used to suppress some derivations in a controlled manner.

There are two styles of attribute computation: Syntax Directed Translation
(SDT) in which programming language fragments are embedded within rules
and executed as a side-effect of the parsing process; and Syntax Directed Defini-
tion (SDD) which uses a set of equations over the attributes to define language
semantics. An SDD with no side-effects is called an Attribute Grammar.

The term rewriter may be used to directly implement the Structured Oper-
ational Semantics style of formal language specification as well as performing
general purpose language specifications.

Installing and running ART 142

A.1 Installing and running ART

ART is written in Java, and distributed as a single file art.jar which requires
an installed Java Runtime Environment but which has no other dependencies.
ART may be run from the command line as

java -cp path/art.jar uk.ac.rhul.cs.csle.art.ART restOfLine

where path is the directory containing art.jar and restOfLine is any valid
ART specification.

Environment variables

ART uses environment variable artpath to search for specification files, and
ART’s convenience scripts use environment variable arthome to locate art.jar.

Convenience scripts

On Windows, ART is conveniently activated via this batch file art.bat

java -cp .;%arthome%/art.jar uk.ac.rhul.cs.csle.art.ART %*

Using the bash shell, ART is conveniently activated via this script file art.sh

#!/bin/bash

java -cp ".:$arthome/art.jar" uk.ac.rhul.cs.csle.art.ART "$@"

Convenience shortcuts

The most common ART usage is to run the tool on a single specification file
with an optional single input file and there are two special cases of restOfLine
for these.

1. If restOfLine comprises exactly one space delimited field file1 that does
not begin with a ! character, then it is rewritten to

!merge file1 !try

Typing art mySpec.art at the command line then has the effect of run-
ning ART on the specification myspec.art.

2. If restOfLine comprises exactly two space delimited fields file1 file2

neither of which begin with a ! character, then it is rewritten to

!merge file1 !input file2 !try

Typing art mySpec.art myInput.str at the command line then has the
effect of running ART on the specification myspec.art with string input
file myInput.str.

The ART pipelines 143

A.2 The ART pipelines

ART passes language inputs through a set of processes which include lexicali-
sation, parsing, ambiguity reduction via choice relations, term extraction, term
rewriting and term attribute evaluation.

These various subsystems form the dynamic pipeline which takes language
inputs and processes them according to rules given in the language specification.

The rules themselves are constructed by the static pipeline from files written
in the ART specification language which contain rules and directives grouped
into modules.

Each module contains five (possibly empty) sets of rules (lex, parse, choose,
rewrite and evaluate) and a script. Modules may use rules and directives from
other modules: the intention is to allow both standard libraries of common
idioms to be built up, and to allow large language specifications to be segmented
into managable pieces.

Input

TWE set

SPPF

Term

Lexicalise

Choose

Parse

EvaluateRewrite

Extract

Choose

ART specification files

Parse and merge

Resolve and check

Lex rules

Parse rules

Choose rules

Rewrite rules

Attribute rules

Script

Execute script

Module specifications

Static pipeline Rules Dynamic pipeline

ART specifications comprise a mix of rule definitions and directives.
Rules are declarative and static: that is the rule definitions are used to

construct the rules by which parsing, rewriting and evaluation will proceed
independently of any input, and the ordering of rules in the specification is not
significant.

ART directives (the names of which all start with an exclamation mark (!)
form a program script to be executed by the dynamic program and should be
read sequentially.

First examples 144

A.3 First examples

The static and dynamic pipelines in detail 145

A.4 The static and dynamic pipelines in detail

A.4.1 Static pipeline directive summary

!merge

!module

!use

!paraterminal

!cfgElements

A.4.2 Dynamic pipeline directive summary

Standalone subsystems

!termTool

!grammarWrite

!lexerData — Deprecated: instead switch on the TWE set analyses

Logging

!verbosity <n>

!trace <n>

!statistics <n>

!parseCounts

Datastructure visualisation

!inputPrint

!twePrint !tweWrite !tweShow

!gssPrint !gssWrite !gssShow

!sppfPrint !sppfWrite !sppfShow

!treePrint !treeWrite !treeShow

!termPrint !termWrite !termShow

Lexer control

!lexDFA Unavailable
!lexGLL

!lexHardCoded

!lexWSSuffix

!whitespace <nonterminal>

!absorb <nonterminal>

!absorb #

!injectInstance <nonterminal>

!injectInstance #

!injectProduction <nonterminal>

!injectProduction #

The static and dynamic pipelines in detail 146

TWE set analysis

!tweFromSPPF

!tweTokenWrite

!tweExtents

!tweSegments

!tweRecursive

Chooser enabling

!tweLonges !twePriority !tweDead

!sppfLongest !sppfPriority

Generated parser control

!outputDirectory <plainstring>

!namespace <plainstring>

!lexerName <plainstring>

!parserName <plainstring>

!generateDynamic !generateStatic !generateState !generateFragment

!generatePool

!generateJava !generateC++ !generateML

Native language insertions for generated parsers

!prelude <action>

!support <action>

GLL template control

!GLLPredictivePops

!GLLFIFODescriptors

!GLLSuppressPopGuard !GLLSuppressProductionGuard !GLLSuppressTestRepeat

!GLLSuppressSemantics

Parse algorithms and implementations

!earley2007LinkedAPI

!earley, !earleyLinkedAPI, !earleyIndexedAPI, !earleyIndexedPool, !earleyIndexedData

!earleyTable !earleyTableLinkedAPI !earleyTableIndexedAPI !earleyTableIndexedPool

!earleyTableIndexedData

!cnp !cnpLinkedAPI !cnpIndexedAPI !cnpIndexedPool !cnpGeneratorPool

!lcnp !lcnpLinkedAPI !lcnpIndexedAPI !lcnpIndexedPool !lcnpGeneratorPool

!gll !gllGeneratorPool

!gllTWEGeneratorPool

The static and dynamic pipelines in detail 147

!gllClusteredGeneratorPool

!mgll !mgllGeneratorPool

!osbrd !osbrdGenerator

!sml97Parser

Rewrite rule elisions

!relation <relation> <entities...>

Term rewriter strategy selection

!strategyRoot — Set initial term rewriter strategy
!strategyPostOrder —
!strategyPreOrderOneShot —

Pipeline activation

!main <moduleName> ==
!start <nonterminal> — Set parser start nonterminal
!start <relation> — Set term rewriter start relation
!input <input> — Set input string or term
!result <term> — Set test term
!try — Run pipeline
!try <input> — Run pipeline on ¡input¿
!try <input> = <term> —Run pipeline on <input>; compare result to <term>

The ART specification language reference manual 148

A.5 The ART specification language reference manual

Lexical structure

An ART specification is a normal text file which contains a string of characters.
As is conventional with many software languages, this stream of characters is
initially lexicalised into tokens. A token might always correspond to a single
substring of characters, such as the sign for addition + or it might correspond
to a multitude of possible substrings, such as the token for integers which could
represent 1 or 2 or 3, and so on.

We call the substring corresponding to an instance of a token the lexeme of
that token. The set of possible lexemes for a token is called the pattern of the
token.

Each lexeme has a lexical value. For instance, the integer lexems 07, 007
and 7 all have the same value: the number seven in its natural representation in
ART’s implementation language (which is Java). For string-like lexemes such
as "abc" the value is the string with the delimiters removed: abc, and with any
escape sequences (see below) replaced by their single character interpetation.

As is conventional in many programming languages, the lexicalisation of
ART specifications discards all comment and whitespace tokens. The effect of
this is that arbitrary comments and whitespace may appear at the boundaries
of other tokens, and thus the layout of an ART specification has no significance
(although an ART specification may create parsers that do not themselves sup-
press whitespace: see section A.6).

In the rest of this section we specify the pattern and values for each token
in the ART specification language.

String-like tokens

Delimited string are used in four ways: the single character literal introduced
by a back quote `, and the full string literals delimited by '...' or "..." and
the special identifier form $...$

All four styles share the property that their lexemes respect Java-style es-
cape sequences: within the body of a string-like lexeme: a single backslash \

introduces an escape sequence that will be interpreted as a single character.
The available escape sequences are as follows.

\uabcd Unicode character where abcd are hexadecimal digits
\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\x Any other character x

The lexical value of a string-like lexeme is the substring formed by removing
the delimiters from the lexeme and then replacing embedded escape sequences
according to this table. So for instance, the value of lexeme 'ART\'s' is ART's
since the \' escape sequence yields the character '.

The ART specification language reference manual 149

Comments

Comments within ART specifications have two forms.

1. An ART line comment is introduced by a double slash // and continues
to next end of line.

2. An ART block comment is delimited by (*...*) where ... denotes any
character string without an unbalanced embedded *). ART block com-
ments nest, so blocks of specification may be ‘commented outeven if they
include comments (as long as balanced nesting is observed).

Whitespace

ART specification language whitespace tokens have pattern

(` `\n `\t)*

that is zero or more space, newline or tab characters.

Identifiers

An ART identifier is either a simple identifier, or a dollar-delimited special
identifier.

Simple identifiers follow the conventions of the Java language with pattern

(`_ `a..`z `A..`Z) (`_ `a..`z `A..`Z `0..`9)*

that is they begin with an alphabetic character or underscore, and continue with
zero or more alphabetic characters, digits or underscores. The lexical value of
a simple identifier is the same as its lexeme.

Special identifiers are arbitrary dollar-delimited strings $...$. As a string-
like token, the lexical value is the substring formed by removing the delimiters
and replacing escape sequences. Special identifiers are intended for exceptional
use. Although the lexical value of identifiers _x1 and $_x1$ are identical, the
simple form is preferred wherever it may be used.

Boolean literals

ART has separate tokens for boolean true and false, with patterns True and
False respectively and corresponding lexical values represented internally as
Java primitive type bool.

Numeric literals

Numeric literals may be decimal integers, hexadecimal integers or decimal reals.

1. An integer literal has pattern (`0..`9)+, that is a non-empty string of
decimal digits in the range zero to nine; lexical values are represented
internally as Java primitive type int.

2. A hexadecimal integer literal has pattern

String rewrite rules and parsing 150

`0 (`x`X) (`0..`9 `a..`f `A..`F)+

that is 0x or 0X followed by a non-empty string of hexadecimal digits in
the range zero to nine or the first six alphabetic characters, upper or lower
case; lexical values are represented internally as Java primitive type int.

3. A real literal has pattern

(`0..`9)+ `. (`0..`9)+ ((`e `E) (`0..`9)+)?

that is two non-empty strings of decimal digits in the range zero to nine
separated by a decimal point and followed by an optional exponent; lexical
values are reprsented internally as Java primitive type double.

Other ART tokens

There are a large number of other ART tokens which are used as operators and
keywords. These simple tokens all have patterns that contain a single lexeme,
and for each their lexical value is the lexeme itself.

module more to follow

A.6 String rewrite rules and parsing

String rewrite rules are used to specify grammars for parsing from strings to
derivation trees. The general form of a string rewrite rule is one of

stringRewrite ::= ID (\dirsection{<nativeAttribute+' >)? '::= srRHS

srRhs ::= srCat srCat '' srRhs

where ID is an identifier and sRHS is sequence of extended Backus-Naur Form
(EBNF) expressions over string rule elements, separated by | tokens.

EBNF operators

concatenation

alternation

group

optional

Kleene closure

positive closure

range

not

Terms and term rewrite rules 151

String rule elements

nonterminals

case-insensitive terminals

case-sensitive terminals

character terminals

builtin terminals

Native attribute declarations and actions

Value expressions

Whitespace management in string rewrite rules

String rewrite rules may be rewritten to display one of three modes of automatic
whitespace handline:

none

inject add an instance of the WS nonterminal after each terminal

absorb add an instance of the WS terminal at the end of

Paraterminalise tokens in the phrase level grammar.
Paraterminals from ‘x in the phrase level grammar do not have whitespace

injection or absorption applied to them.

A.7 Terms and term rewrite rules

Term rewrite rules are used to rewrite terms represented as prefix expressions.
Equivalently, term rewrite rules may be thought of as tree to tree rewrites. The
general form of a term rewrite rules is

premise* --- conclusion

that is, zero or more premises followed by a --- token followed by a conclusion.

A.8 RAG rewrite rules

This section intentionally blank

Directives 152

A.9 Directives

A.9.1 try clauses

A.10 Value types and operations

A.11 An overview of ART’s implementation

A.12 ART package and class documentation

ART concisely 153

A.13 ART concisely

The ART static pipeline processes ART specifications to construct a set of modules
containing rules, and a single list of dynamic directives:
1. Parse initial specification
2. Recursively process !merge directives to form final specification
3. Construct modules using !module, !import and !export directives
4. Construct an imperative program by concatenating dynamic directives.

The ART dynamic pipeline connnects a lexer, a parser, a term rewriter and an at-
tribute evaluator to process an input string. The pipeline is parameterised by
the rules and by dynamic directives which specify, for instance, the particular
parsing algorithm to be used. the !try directive triggers a single pipeline run
over an input string or term.

Stage Process Result

1. Read input → Character string or term

2. Lexicalise → TWE set

3. Lexical choose → TWE set

4. Parse → ESPPF

5. Derivation choose → Term

6. Rewrite → Term

7. Evaluate → Value

‘
The ART command line interface constructs constructs an initial specification F

from the space delimited command line arguments a1 . . . ak as follows:

assign the empty string to F
if a1 does not begin with a shriek (!) then for i from 1 to k append ai
else {

append !merge 'a1'
if a2 does not begin with a shriek (!) then for i from 2 to k append ai
else {

append !input 'a1'
for i from 3 to k append ai

}}
if F does not contain the substring !try then append !try

The effect of this is that a command line such as
java -jar art.jar spec.art input.str !option1

yields the initial ART specification
!merge 'spec.art' !input 'input.str' !option1 !try

which will process the contents of file input.str using the rules in spec.art

with directive !option1.

Static pipeline directives control the process of constructing modules
!merge hjgjgh

ART concisely 154

!module

!use

Dynamic pipeline directives
Tracing, creating and accessing pipeline data structures

!verbosity n set the console verbosity threshold to n (DEFAULT 5)
!trace n set the console trace threshold for processes (DEFAULT 0)
!log n set the logging threshold to n

For x in input, TWE, ESPPF, GSS, tree, term: !xCountsprint summary
statistics !xPrint print contents !xPrintFull print detailed contents !xWrite ’f’write
detailed contents as text to file f !xShowcreate a graphical visialisation !xShow-
Fullcreate a detailed graphical visialisation !xDump ’f’write binary representa-
tion to file ’f’ !xUndump ’f’read binary representation from file ’f’

!main m select m as main module
!start N set the start nonterminal for the parser to nonterminal N
!start R set the initial rewrite relation to relation R
!try trigger pipeline execution

Input control
!input "s" set current input to the literal string s
!input ’f’ set current input to the string contents of file named f
!inputPrint print the current input
!inputCounts print the number of lines and the overall number of characters
for current input

Lexer/parser interface control
!paraterminal n declare nonterminal n as a paraterminal (n may also be a
comma delimited list of nonterminals)
!wsAbsorbLeft absorb prefix whitespace into left extent
!wsAbsorbRight absorb postfix whitespace into right extent (DEFAULT)
!wsAbsorb absorb default whitespace (‘ — ‘t — ‘n — ‘r)* after each parater-
minal is recognised
!wsAbsorb N absorb whitespace defined by nonterminal N after each parater-
minal is recognised
!wsInject inject (‘ — ‘t — ‘n — ‘r)* after each righ hand side instance of a
paraterminal
!wsInject N inject nontermonal N after each right hand side instance of a
paraterminal

Lexer control
!lexCounts print final lexer statistics
!lexDisable disable lexing, using current TWE set for parser input
!lexDFA select DFA based recogniser (DEFAULT)
!lexGLL select GLL recogniser
!lexPlugin select hand-crafted recognisers defined by lexer plugin code

ART concisely 155

TWE set management
!tweShortest enable suppression of TWE element ¡t,i,j¿ if s¡¡t and there ex-
ists ¡s,i,k¿ with k¡j (t, s tokens; i, j extents)
!tweLongest enable suppression of TWE element ¡t,i,j¿ if s¿¿t and there ex-
ists ¡s,i,k¿ with k¿j (t, s tokens; i, j extents)
!twePriority enable suppression of TWE element ¡t,i,j¿ if s¿t and there ex-
ists ¡s,i,j¿ (t, s tokens; i, j extents)
!tweDead enable suppression of TWE element if it is not on a path that
spans the input string
!tweSelectOne arbitrarily select a single lexicalisation within the TWE set if
there is one after chooser application
!twePrint print non-suppressed contents of TWE set
!twePrintFull print all TWE set elements
!tweCounts print TWE set cardinalities
!tweAmbiguityClasses collect and print current TWE set’s ambiguity classes
!tweLexicalisations compute lexicalisation counts and report: the next
three directives enable different aspects of lexicalisation counting
!tweExtents in tweCounts, use extents
!tweSegments in tweCounts, use segments
!tweRecursive in tweCounts, exhastively count lexicalisations (only useful
for small TWE sets)
!tweDump dump TWE set to ARTTWE.twe in a format that can be loaded
by V3 MGLL parsers
!tweTokenWrite ’f’ write selected lexicalisation out as a token string to file
’f’

Parser control
!parseCounts print final parser statistics

select parser mode: for x in mgll gll gllClustered gllTWERecognise cnp lcnp
mcnp lr glr rnglr brnglr earley earley2007 OSBRD RD !xTermAPI use algo-
rithm x reading term based grammar and using standard API functions for
support
!xIndexedAPI use algorithm x reading lookup table based grammar and us-
ing standard API functions for support
!xIndexedPool use algorithm x reading lookup table based grammar and
Hash Pool memory management for support
!xGeneratorPool write out standalone parser which uses algorithm x reading
lookup table based grammar and Hash Pool memory management for support

SPPF management
!sppfShow output visualisation of SPPF in file ’sppf.dot’
!sppfChooseCounts Report on node numbers before and after SPPF choosers
run
!sppfShortest suppress SPPF packed node ¡l,j¿ if l¡¡m and there exists sib-
ling ¡m,k¿ with k¡j (l,m slots; j pivot)
!sppfLongest suppress SPPF packed node ¡l,j¿ if l¿¿m and there exists sib-

ART concisely 156

ling ¡m,k¿ with k¿j (l,m slots; j pivot)
!sppfPriority suppress SPPF packed node ¡l,j¿ if l¿m and there exists sib-
ling ¡m,k¿ (l,m slots; j,k pivot)
!sppfDead suppress SPPF packed node if it is unreachable from node ¡S,0,n¿
!sppfOrderedLongest suppress SPPF packed node ¡l,j¿ if there exists sibling
¡m,k¿ with k¿j OR if m appears before l in the specification ** Issue
!sppfSelectOne arbitrarily select a single derivation from the SPPF if there
is one after chooser application
!sppfCountArities compute a histogram of the arities of all symbol/inter-
mediate nodes reachable from the SPPF root
!sppfCountDerivations attempt to count all of the derivations in an SPPF
(warning: time exponential in arities)
!sppfCountSentences attempt to enumerate all of the sentences in an SPPF
by constructing each yield and adding it to a set of sentences (warning: time
exponential in arities and potentially space exponential too)
!sppfToTWE (was!tweFromSPPF)construct a TWE set containing the yields
for all of the unsuppressed derivations in the SPPF

Rewrite management
!rewriteConfiguration <relation> <entities> Create a rewrite configu-
ration allowing elided eSOS rules to be used
!rewriteDisable disable the term rewriter
!rewritePure redex matching at root only (Default)
!rewritePreorder redex matching in preorder traversal
!rewritePostorder redex matching in postorder traversal
!rewriteOneStep perform only a single step - default: step until normalised
!rewriteContractum after a rewrite has been performed, resume original
term traversal at the rewritten redex
!rewriteResume after a rewrite has been performed, resume original term
traversal at the right-sibling of the rewritten redex

Attribute evaluator management
!evalDisable disable the attribute evaluator

Standalone tools
!termTool start the term rewriting tutorial tool
!grammarWrite write out parse, lexer, character level, token and pretty printed
grammars
!generateDepth generate strings from grammar depth first
!generateBreadth generate strings from grammar breadth first
!generateRandom generate strings by randomly selecting the expansion in-
stance and right hand side
!extractJLS extract Java Language Specification grammar from text snipped
document
!compressWhitespaceJava compress Java file whitespace runs to single char-
acter

ART concisely 157

Rules ART uses three kinds of rule: context free grammar rules, choser rules and
rewrite inference rules. CFG rules and rewrite rules may optionally contain
attribute equations which are evaluated after the tree stabilises.

Context Free Grammar rules
A CFG rule has the form ¡nonterminal¿ ::= ¡cfgRHS¿
CFG rules are composed from nonterminals, terminals, the empty string

symbol, EBNF operators and the ::= symbol
A nonterminal is denoted by an alphnumeric symbol or a string delimited

by $ characters: An alphanumeric identifier may not begin with ART, art
or any other mix of cases Terminals have four subclass: ’case sensitive’ ”case
insensitive” &builtin ‘c where c is a single character The empty string is denoted
by # EBNF operators are: postfix * Kleene star, postifx + positive closure,
postfix ? optional, () do-first, infix — alternation, infix concatentaion, infix
difference, prefix not,

adrian ::= ’xb’* C C ::= (’c’ — ’C’)+ — #
Choosers

The choice mechanism utilises named sets of three-tuples (higher, longer,
shorter) where higher, longer and shorter are sets of ordered pairs of grammar
elements which may include terminals, nonterminals, productions and slots.

A chooser declaration has this form:
!choose chooserSetName? (L OP R)*
that is, the directive !choose followed by an optional name followed by zero or

more choosers, where: L and R are set expressions over grammar elements and
the operators — and () representing union, difference and do-first respectively
Grammar elements may be terminals, nonterminals, productions and slots, or
one of these keywords: anyLiteralTerminal, anyBuiltinTerminal, anyParatermi-
nal, anyTerminal OP is one of ¿¿ (longer) ¡¡ (shorter) ¿ (L higher than R) ¡ (R
higher than L) chooserSetName is an optional named set. If chooserSetName
is omitted, the set with the empty name ”” is selected

In the grammarPrint phase, chooser relations are computed, and the indi-
vidual written out to files names ARTChooseXyz.art where Xyz is a chooser
set name. Since the default name is empty, the unnamed chooser set is written
to ARTChoose.art

The batch files lexGLL and parseMGLL expect to find files ARTChooseLex-
TWE.art, ARTChooseParseSPPF.art and ARTChooseParseTWE.art, so spec-
ifications to be used with these batch files must include !choose directive for
those three names. This is only a convention, and the names could be changed
if the batch files were changed to match.

The relations are written into the generated lexer and parser, so any changes
to them will require regeneration. However, ambiguity reduction is only actually
enabled by the directives !tweLongest, !twePriority, !sppfLongest and !sppfPri-
ority applied to the corresponding ARTV3TestGenerated instance.

Rewrite rules
A rewrite rules has the form conditions — transition
Notes on V3 and V4 ==================
The notes above are for V4.Version 3 does not have the pipeline and asso-

ciated directive list. Instead, ART is activated once for each

ART concisely 158

Top level batch files ——————–
1. grammarWrite ¡spec¿output ART specification files derived from ¡spec¿:

ARTParserGrammar.art, ARTLexerGrammar.art, ARTChoose*.art, ARTChar-
acterGrammar.art, ARTPrettyGrammar.art, ARTTokenGrammar.art

2. lexGLL ¡inp¿use EBNF GLL to lexicalise the contents of ¡inp¿ and dump
the TWE set to file ARTTWE.twe

3. parseMGLL ¡inp¿use BNF-only MGLL to parse ARTTWE.twe - argu-
ment ¡inp¿ identical to the lexGLL run that built ARTTWE.twe

4. validateTokens ¡spec¿ ¡inp¿run steps 1-3 and then perform a token level
parse using a lexicalisation derived from the SPPF

5. cleanremoves intermediate files created by steps 1-4
Utility batch files used by the top level batch files ———————————

——————– artRun ART V4 artV3Run ARTV3 artV3CompileGeneratedRun
the Java compiler on the most recently produced ARTGeneratedLexer.java and
ARTGeneratedParser.java artV3TestGeneratedExercise the most recently com-
piled ARTGeneratedParser and ARTGeneratedLexer

B Laboratory materials

This book introduces a range of techniques and formalisms. In this section,
we provide a series of tutorial guides and examples that use the ART tool to
implement small languages. To use these lab scripts you need to fetch an up-to-
date version of SLELabs.zip. When unpacked, you will have a new directory
SLELabs which contains the ART system itself in art.jar along with this series
of subdirectories.

ART User manuals for the ART system.

Solid Examples of solid modelling

TermRewriting Examples for the termTool application

SOS A set of graduated examples illustrating the use of eSOS rules.

Syntax Simple parsing and syntax directed translation.

Attributes A set of languages and their interpreters specified using ART’s
attribute evaluation notations, and some examples of the use of GIFT
rewrites to produce inner syntax trees.

ProjectMaster A ‘project in miniature’ which illustrates the various stages
required for the project specified in Appendix C

ProjectWork A clone of ProjectMaster that you can use as the basis of your
own project language.

ART is written in Java, so you will need a suitable Java runtime or develop-
ment kit. Use a search engine to find an up to date install page for your system.
It is a good idea to check the Wikipedia page that outlines Java’s version his-
tory to ensure that you are using a recent version: some obsolete offerings are
still online

Helper scripts are provided to reduce the amount you have to type when
running ART. On Windows systems these appear as batch files with filename
suffix .bat. On Un*x based operating systems such as Linux and MacOS, the
shell scripts have filename suffix .sh; you may need to make these shell scripts
executable before running them for the first time by typing chmod +x *.sh

Domain Specific Languages for solid modelling 160

B.1 Domain Specific Languages for solid modelling

This laboratory session aims to help you understand the users’ view of Domain
Specific Languages. We shall look at the domain of solid modelling languages
which may be used, amongst other things, to create objects suitable for 3D
printing.

We shall use an online version of the OpenJSCAD language. Other inter-
esting systems which address the same domain include OpenSCAD (which was
the inspiration for OpenJSCAD), the ray tracer PoVRay and the animation
tool Blender, which uses Python for scripting.

You will find most of the materials you need in subdirectory Solid. The
OpenJSCAD tool itself runs in your browser, which you should point at

https://openjscad.azurewebsites.net/

. Note that there are other sites running versions of OpenJScad: to use this
tutorial you open this specific site.

Your browser should show something like this:

The window contains a text editing area to the right which floats above a
display showing the most recently rendered program.

B.1.1 Changing the view

Click on the displayed object outside of the text area and drag the mouse pointer
around. You will find that you can rotate the object around the origin.

If you try pressing the shift key and then dragging, you will be able to pan

the view across the screen. If you try pressing the ctrl key and then dragging,
you will zoom in and out. (You can also use the middle mouse wheel to zoom
if you have one.)

There is a pink tab on the left hand side of the window that opens some
documentation.

https://openjscad.azurewebsites.net/

Domain Specific Languages for solid modelling 161

B.1.2 A first object

Delete all of the text in the editor window, and replace it with the following code.
(You will find the source code for these examples in the SOLID subdirectory.)

function main () {
return cube({size: 25});

}

You render the code by pressing shift - return . This specification asks for
a cube with 25mm edges. When rendered you should see this:

B.1.3 Changing size and color

The size argument sets the length of the cube’s edge. Change it to 15 and
rerender: the cube will become smaller. You can set the colour of objects
using the .setColor() method which takes three arguments in the range 0–1.0
representing the proportion of red, green and blue (RGB) in the colour. Modify
your code by adding this setColor call:

function main () {
return cube({size: 15}).setColor(1,0,0);

}

The rendered output should look like:

Domain Specific Languages for solid modelling 162

B.1.4 Where is the centre?

Rotations are specified around the origin, and as a result it is useful to ensure
that all objects are created at the origin so that they can be re-oriented before
being moved to their final position. Some objects like spheres are centered by
default, but cubes are not. However, we can add an argument to force centring:

function main () {
return cube({size: 15, center: true}).setColor(1,0,0);

}

Notice how the rendered object is centered in all three axes: the coordinate
origin is at the centre of the cube.

Domain Specific Languages for solid modelling 163

B.1.5 Cubes are really cuboids

The cube primitive can be used to specify cuboids, that is objects with varying
x, y and z edge lengths.

function main () {
return cube({size: [10,20,30]}).setColor(0,1,0);

}

The sequence of three numbers within square brackets is a vector and may be
used to specify the three coordinates. Actually, just using a single integer, say
13, is taken to be shorthand for [13, 13, 13].

Domain Specific Languages for solid modelling 164

B.1.6 Spheres

JSCAD uses the triangle mesh method of representing objects: in reality all of
the objects are rendered as flat triangles.

We can model spheres as polyhedra with sufficient faces to make the surface
look smooth. The default for a sphere is only 32, which looks blocky if the
sphere is large. The sphere() primitive constructs a spherical mesh, with
radius specified by an argument called r and the number of facets around the
equator and poles specified by argument called fn.

function main () {
return sphere({r: 20, fn:32});

}

Domain Specific Languages for solid modelling 165

Try raising the value of fn to 120, and then to 360. You will see that
the sphere gets much smoother, but you’ll also notice that the rendering time
increases.

B.1.7 Cylinders

The cylinder() primitive takes a radius r and a height h.

function main () {
return cylinder({r: 10, h: 30, center: true});

}

Domain Specific Languages for solid modelling 166

Now really, the cylinder primitive is just extruding a polygon. As before, we
can use the fn argument to make a cylinder smoother, or we can make simpler
objects. For instance, if we want to make an hexagonal bar, we can set it to
six:

function main () {
return cylinder({r: 10, h: 30, center: true, fn:6});

}

We could in fact make many kinds of box this way too. Is there a cylinder()
equivalent for every cube()?

B.1.8 Translation and rotation

So far, we have made objects at the coordinate origin. We can move an ob-
ject in space using the translate() method which takes as an argument a
vector: three values within square brackets corresponding to the x, y and z
displacements.

For instance, changing the previous example to

function main () {
return cylinder({r: 10, h: 30, center: true, fn:6}).rotateY(45).translate([10,10,10]);

}

moves the hexagonal rod so that its centre is at (x, y, z(=) = (10, 10, 10) and
so that is tilted 45 degrees around the y axis.

Domain Specific Languages for solid modelling 167

B.1.9 Multiple objects

In JSCAD, functions return a single result. We need some way of constructing
scenes with more than one object in, though. The answer is to make a new
mesh which is the union of two other meshes.

function main () {
return union(

cube({size: 20, center: true}),
sphere({r: 14, center: true})

)
}

Domain Specific Languages for solid modelling 168

B.1.10 Computational solid geometry

Computational Solid Geometry (CSG) is a technique for making new objects
from old via the operations of union, difference and intersection. We met
union in the previous example. Here the equivalent examples for difference and
intersection.

function main () {
return difference(

cube({size: 20, center: true}),
sphere({r: 14, center: true})

)
}

function main () {
return intersection(

cube({size: 20, center: true}),
sphere({r: 14, center: true})

)
}

Domain Specific Languages for solid modelling 169

The difference() operation is widely used to make holes in objects by
subtracting a cylinder from them.

B.1.11 Using functions to structure a design

We can use the full facilities of Javascript in our JSCAD specifications, because
JSCAD is simply a Javascript library. (This style of Domain Specific Language
is called an internal DSL.)

We write functions that return meshes, and then combine them together in
the calling function. We can also use function arguments to parametrise our
meshes. In this example, we make a rough model of an hexagonal nut and
a cylindrical bolt which are combined together in the main() function. The
bolt() function takes an argument length which specifies how long the bolt
should be.

function nut () {
return cylinder({r:4, h:2, fn:6, center:true});

}

function bolt (length) {
return union (

cylinder({r:2, h:length, fn:200, center:true}),
cylinder({r:3.5, h:2, fn:200, center:true}).translate([0,0,length/2])

);
}

function main () {
return union(

nut(),
bolt(30)

)
}

Domain Specific Languages for solid modelling 170

B.1.12 Internal and external Domain Specific Languages

A Domain Specific Language has some set of facilities (for instance special
datatypes or special operations) over and above a general purpose language like
Java or JavaScript. DSLs are also often limited compared to general purpose
languages - we call these little DSLs.

In this lab, the main special data type is a mesh, that is an array of triangles
arranged in space that we use to represent three dimensional objects. There
are other special types hiding in here too: colors for instance. The special
operations include things like translation and rotation, and CSG operations like
union and difference.

Sometimes we just make a Domain Specific Library and access it from a
general purpose language: that is an internal Domain Specific Language. Open-
JSCAD is an example of an internal DSL that uses JavaScript as its host.

Sometimes we make up a completely new syntax and build complete, self
contained language processors: we call that an external DSL.

OpenSCAD (https://openscad.org/) is an external DSL that addresses
the same domain as OpenJSCAD: in fact OpenSCAD is the original tool, and
OpenJSCAD is essentially a JavaScript addon to replicate OpenSCAD. You
might like to install OpenSCAD and try it out. It turns out that OpenSCAD
is a little DSL in that it has very limited facilities for input and output as well
as a host of other restrictions.

B.1.13 Signatures and internal syntax

We need some way to concisely list the features of a language. In this course we
make heavy use of signatures which you can think of as function definitions that
name individual capabilities of a language. For instance, we describe integer
addition as

https://openscad.org/

Domain Specific Languages for solid modelling 171

add(_l: __int32, _r: __int32): __int32

This says that there is an operation called add which has two parameters
called _l and _r (for left and right) both of which are constrained to be of type
__int32 (that is a 32-bit integer); after the close parenthesis there is another
type constraint which tells us the type of the result computed by this add which
is also a 32-bit integer.

The ART tool that we use on this course has a set of builtin type names
which start with two underscores. ART also understand metavariables which
have a single leading underscore, and are used as placeholders for arbitrary
expressions. The type constraints say that those arbitrary expressions must
reduce to particular types for this signature to become active.

Noe how the signature above only describes addition of 32-bit integers. You
need a different signature for real-number addition and indeed for any other
sized integers, so the list can grow rather quickly. Also, what about mixed
mode arithmetic? Well the usual approach is to define a cast signature as
a separate operation which reduces the overall number of signatures needed
(why?)

Here are two other examples:

union(_l: __mesh, _r: __mesh): __mesh

translate(_m: __mesh, _x: __real64, _y: __real64, _z: __real64) : __mesh

The union operation takes two expressions that yield a mesh of triangles (type
__mesh) and yields another mesh.

The translate operation takes a mesh and three expressions which each
yield a 64-bit real number, and returns a mesh.

Note how these signatures are just describing the name, arguments and
return type of these operations and not actually saying what they do - though
the name of the operation is a clue.

B.1.14 How to design a programming language

There is a natural tendency for programming language designers to start with
syntax, that is the way that programs look to the programmer. That can be
useful for inspiration in the early stages, but in general is a Very Bad Idea.

A much better approach is to start of by thinking about the types of data
that we want to manipulate and the operations that we want to perform. Sig-
natures are our way of doing this. We call the complete set of signatures for
a language the internal syntax of that language. Once we have the internal
syntax, we can write rules or little programs that implement the actual actions
associated with those operation, and that gives us a semantic interpreter which
will take expressions composed from those signatures and execute them. When
we are happy with that, we can design an external syntax for the language
where, for instance addition is represented as 3 + 4. We then need a parser for
that external syntax that builds expressions in the internal syntax which can be
handed to the semantic interpreter. This is the approach that we shall follow
on this course.

Domain Specific Languages for solid modelling 172

B.1.15 Your exercises

A: Write signatures for my examples

Go through the examples above and list the operations and types that you find.
Then write a set of signatures that describe those operations. Some, such as
function definition and call, are likely to be quite hard for you to think about
and it is OK at this stage to just write list the operation without having to
decide what its signature should be. Some, like rotate are very similar to the
signature examples in section B.1.12 above.

B: Make a 3D model of a steam engine

This is the body section from a simple model steam engine, designed in this
case in OpenSCAD rather than OpenJSCAD.

It is based on this prototype, real world engine. (The engine is a member of
the J69 class, and you can read more about them at https://www.lner.info/
locos/J/j67j69.php.)

https://www.lner.info/locos/J/j67j69.php
https://www.lner.info/locos/J/j67j69.php

Domain Specific Languages for solid modelling 173

Your task now is to build your own version of the simple steam engine
body, and if you are so inclined to embellish it so that it captures more of
the prototype. Begin by defining the tanks, which are simple cuboids, and
then make the cab as a cuboid which has another cuboid subtracted from it to
make a hollow box. You can then subtract cylinders from it to make the round
windows.

Here are reference views of the model from various angles.
Front

Rear

Domain Specific Languages for solid modelling 174

Above

Below

Domain Specific Languages for solid modelling 175

Side

When you have something you are pleased with, take a screenshot and then
submit your work via Moodle.

C: Write signatures for your submission

Repeat the signature writing exercise, but this time go through your own
model’s code, adding in any new signatures that are needed.

Terms rewriting basics with TermTool 176

B.2 Terms rewriting basics with TermTool

In this section we shall look at terms written in a prefix syntax, and at the
use of pattern matching and substitution to make new terms. We shall also
use ART’s Value classes to perform some computations via terms. You should
review the material in Chapter 2.4 before starting.

TermTool is a line-oriented interpreter—you type a line, and after press-
ing return TermTool will execute that line and return to the prompt. Start
the TermTool interpreter by typing java -jar ../art.jar !termTool Note
that the capitalisation is important.

TermTool will introduce itself and then leave the cursor at a > prompt,
awaiting your input.

TermTool: type !?<return> for help

>

Input lines in TermTool are of two kinds: commands which begin with a !

character and expressions which do not begin with a ! character.

B.2.1 Getting help

The first command to try is !? which prints a summary of TermTool’s features.

TermTool

Command lines have a ! character in column 1

!? Help (this message)

!# Show variables

!S Show table statistics

!> Show tables

!> filename Output tables to a dump file

!< filename Update tables from a dump file

!- Delete contents of tables

!@ filename Read commands from file

!. Exit

Expression examples

A(B, c)

#X := A(B, c)

#Y := A(B, c) |> A(_1, _)

#Z := A(B, c) |> A(_1, _) <| P(_1, _1)

#P := #Y <| P(_1, _1)

#Q := #Y

#Q += A(B,c) |> A(_2, _3)

#Z := A |> A

#Z <| __add(__int32(10), __int32(4))

Terms rewriting basics with TermTool 177

B.2.2 Exiting TermTool

The !. command exits TermTool and returns you to the operating system
prompt.

B.2.3 Expressions

Now try typing an expression. Expressions are made up of terms which may
be combined with match and substitute operators, and whose result may be
remembered in TermTool variables.

A term on its own is a valid expression, so at the TermTool prompt enter
A(B , c) and press return, giving

> A(B , c)

A(B, c)

>

TermTool has read the line you typed, and echoed back the result of evaluating
it. A term on its own (as here) just evaluates to itself, but note that the spacing
has been standardised with no spaces before and one space after the comma.
You can use as many space characters as pleases you, but TermTool will always
echo terms in their canonical form, using standard spacing.

B.2.4 TermTool variables

It can be tiresome to have to repeatedly type in long terms, so TermTool main-
tains a set of tool variables which can be set to the result of any expression.
These names of these tool variables always start with a # character, and can
continue with mixture of alphabetic characters and digits. The := operator
assigns the result of an expression to a tool variable.

> #X := A(B, c)

A(B, c)

>

The echoed result is the expression that was assigned, but that value will now
be remembered. You can get a list of the current tool variables and their values
using the !# command.

> !#

#X = A(B, c)

>

A variable name alone evaluates to its assigned value, so if you just want to
know the value of a single variable you can type it on its own

> #X:=A(B,c)

A(B, c)

> #X

A(B, c)

>

Terms rewriting basics with TermTool 178

You can delete a tool variable by assigning nothing to it.

> #x := a(b,c)

a(b, c)

> !#

#x = a(b, c)

> #x:=

a(b, c)

> !#

No TermTool variables defined

>

The expression #x:= looks up the value assigned to x, but deletes the variable
x and returns the value that had been assigned to it.

B.2.5 Matching with the ▷ operator

The match operator ▷ compares two terms, starting at the outermost symbol
and then recursively descending into their subterms. The whole term is checked
and an error message is printed if the match fails.

If the match succeeds, TermTool prints out the result which in this example
is simply an empty set.

> A(b,c) |> A(b, c)

{ }

>

Equality of symbols

Names in terms are just sequences of characters; they have no associated mean-
ing, and matching operates over those simple character sequences. Therefore
you shouldn’t make assumptions about common conventions. For instance, in
arithmetic 023 would be the same value as 23, but here 023 is a string three
characters long and 23 is a different string of two characters. Thus they are not
equal and will not match!

Although names can have any character in them, you may not use space
characters or the following characters directly since TermTool uses them for
itself - we say they are metasymbols in the TermTool language.

! : = + | < > # _ \

All is not lost though because TermTool uses an escape convention in which
a backslash \ followed by some character evaluates to that character, so in fact
we have two syntactic forms for most characters. For instance, if we wanted to
have a name that started with a ! that would conflict with TermTool’s use of
! to introduce commands, but we can get round that with an escape sequence.
There are three exceptions: as in Java, the sequences \n \t and \r stand for
newline, tab and carriage return respectively, but we wouldn’t recommend using
the in term names.

Terms rewriting basics with TermTool 179

B.2.6 Pattern matching and term variables

As you will have read in Chapter 2.4, terms can include term variables. These
act as placeholders in the term against which an arbitrary subterm may be
substituted. Alternatively we can view them as holes in a term which are filled
in during a pattern match. We shall use a combination of pattern matching
and substitution to transform terms.

In TermTool, term variable names begin with an underscore character _ and
continue with an integer number that must be greater than zero. There is an
limit on the number of term variables that are allowed in each term, typically
16, but a fresh set of variables is available for each term. (We should note that
formally there is no limit to the number of variables in a term, but our proposed
hardware implementation does require a small upper bound to avoid wasting
hardware resources.)

Here is a first example. As before, the match operator ▷ checks that the
terms are identical but when it arrives at a right-hand-side variable, it creates a
binding from that variable to the corresponding subterm on the left hand side.
The result of a match is then the set of bindings from variables to subterms
that were found during the complete match.

> A(B, c) |> A(_1, c)

{ _1->B }

>

So, the position of variable _1 on the right corresponds to the subterm B on the
left, and so the binding _1->B is added to the result of evaluating the expression.

There are many possible formulations for pattern matching, some of which
can be very expensive to compute. The TermTool match operation ▷ imposes
several restrictions on the form of patterns so as to provide efficient, unambigu-
ous pattern matching. Recall that a term that has no term variables within it
is called a closed term. A term that has one or more term variables within it is
called an open term.

1. The left operand must be a closed term.

2. The right operand may be a closed term or an open term with these
restrictions.

(a) In the right operand, term variables may only appear as leaf nodes
in the term tree, that is term variables must have arity zero.

(b) In the right operand, a term variable may only appear once in a
term.

The don’t care variable

Sometimes we just want to ensure that a term has the right number of subterms,
and do not need to remember their actual values. A single underscore, with no
following number matches in the usual way, but nothing is added to the binding
set.

Terms rewriting basics with TermTool 180

> A(B, c) |> A(_1, _2)

{ _1->B _2->c }

> A(B, c) |> A(_, _2)

{ _2->c }

>

B.2.7 Term variables and tool variables

It is important not to confuse term variables, which hold subterms from match-
ing, and tool variables which hold the results of complete expressions. In
TermTool we emphasise the difference syntactically— tool variables begin with
a # character, and term variables begin with an underscore _ character. Tool
variables can have alphanumeric names, but the names of term variables are
numeric, and there is an upper limit on how many there can be. The scope of
a term variable is limited to the term it appears within whereas tool variables
continue to exist until TermTool exits.

Tool variables can be used to hold the results of matches, and this is useful
because we often want to extract some subtrees with a match and then use
them in several other terms. In this example we

> #Y := A(B, c) |> A(_1, _)

{ _1->B }

> !#

#Y = { _1->B }

>

B.2.8 Extending bindings with the union-into += operator

We sometimes want to build up sets of bindings from several matches. We can
extend the set of bindings held in a tool variable by using the union-into +=

operator instead of the assignment operator :=. This operator adds bindings
into an existing set.

In this example, we first create the set of bindings { _1->b _2->C } and as-
sign it to #X. We then extend #X with { _5->q } to give { _1->b _2->C _5->q }.

> #X := A(b, C) |> A(_1, _2)

{ _1->b _2->C }

> !#

#X = { _1->b _2->C }

> #X += P(q,r) |> P(_5,_)

{ _5->q }

> #X

{ _1->b _2->C _5->q }

>

Use of the =+ operator is quite constrained. First, the left hand side may
not be a variable that is bound to a term, because it makes no sense to take the
union of two terms, or of a term and a set of bindings. Secondly, the bindings

Terms rewriting basics with TermTool 181

in the left and right hand sides must not collide, that is no term variable may
appear in both the left and right sets. If they did, we would have to decide
which one to keep after the union operation and which one to throw away, and
thus information could then be lost.

If the left hand side of a += operator was previously undefined, then it is
created as an empty set of bindings. Effectively the += operator degenerates to
:= for fresh tool variables.

B.2.9 Using tool variables in expressions

The purpose of tool variables is to save typing. If a tool variable contains a
term, it may be used anywhere a term may be.

> #A := A(b,c)

A(b, c)

> #B := A(_1,_)

A(_1, _)

>

> #A |> #B

{ _1->b }

>

If a tool variable contains a set of bindings, it may be used on the right hand
side of side of a substitution. In fact this is the standard way of specifying
substitutions since you cannot write a binding set directly: it first must be
constructed using a match operation.

B.2.10 Substitution and unconditional rewrites

The pattern matching operator ▷ extracts subterms from terms and returns a
(possibly empty) set of bindings. The substitution operator ◁ takes a term that
may include term variables and a set of bindings, and builds a new term from
them.

For instance, if we wanted to rewrite the term A(b, c) into A(c, b) (that
it, swap the children over) we could write

> A(b,c) |> A(_1, _2) <| A(_2, _1)

A(c, b)

>

The closed term A(b,c) is matched against open term A(_1, _2), yielding the
bindings { _1->b _2->c }. These are then substituted into A(_2, _1) to give
A(c, b).

Note that this is a direct implementation of the unconditional rewrite

A(X,Y)⇝ A(Y,X)

In general, if you have an unconditional rewrite

Terms rewriting basics with TermTool 182

L⇝ R

that you want to apply to term T , then you write T ▷L◁R, or in TermTool
script

> T |> L <| R

It is an error for the open term on the right of a ▷ substitution operator
to contain a term variable that is not in the set of bindings provided as a left
operand. It is not an error for there to be bindings to term variables that do
not appear in the right hand operand. It is (of course) an error for the wildcard
variable _ to appear in the term on the right hand side of a substitute operator
(<|) since we would not know what to substitute in at that point.

B.2.11 Evaluation of functions during substitution

Simply using pattern matching and substitution allows us to break up and
rebuild terms, and in fact we can, with care, perform arbitrary computations by,
for instance, implementing the untyped lambda calculus. However, something
as simple as addition of integers can require very lengthy sequences of rewrites
and terms whose size is proportional to the integers being manipulated. Neither
of these is very comfortable for practical computation. Our terms may therefore
include some built in functions that take terms and return terms, and which
are automatically evaluated as part of the substitution mechanism.

Functions have names beginning with two underscores, such as __add and
__multiply. The underscores remind us that they are a bit like special term
variables during substitution, and the name is meant to indicate the function
that is computed.

We said early that the names in terms were simply strings of characters,
and that a name like 0123 was distinct from a name like 123. That is true
for pattern matching and substitution, but the built in functions do provide
an interpretation of these names, and will fail if you call them with the wrong
kinds of subterms.

The full gamut of operations is described in Chapter ??, and as an aide
memoir their names are preloaded into the string table and may be examined
within a session using the !> command.

Since functions are only evaluated during substitution, we need to perform
a substitution to see any effects. It is sometimes useful to create an empty set
of bindings and assign it to, say, variable #Z.

> #Z := A |> A

{ }

> #Z <| __add(__int32(10), __int32(4))

Substitute __add(__int32(10), __int32(4)) into { } returned __int32(14)

__int32(14)

SOS – An introduction to eSOS 183

B.3 SOS – An introduction to eSOS

We now turn from programming to meta-programming, that is the design and
implementation of programming languages. These exercises use an implementa-
tion of the SOS style of formal semantics called eSOS (which stands for elided-
SOS: the sense in which eSOS specifications are elided will be examined later).

The materials for this section reside in subdirectory SLELabs/SOS and com-
prise a sequence of example specifications with names of the form Ln.art.

To interpret specification L1.art on Windows, you issue the following com-
mand

..\art L1.art

To interpret specification L1.art on Un*x style operating systems, you issue
the following command

../art.sh L1.art

The interpreter will display trace output on the console, and in addition
create the file artSpecification.tex which contains the fully instantiated
rules from the source file. If you have a running LATEX system, you can produce
a pretty-printed version of the rules in file artSpecification.pdf by typing:

pdflatex artSpecification

B.3.1 A first example

We shall design a programming language which can do only one thing: take
the constant 3 and increment it to 4. Make a file L1.art containing this text
which is a full specification of the language that we shall call L1.

increment(3) -> 4

!trace 1

!try increment(3)

!try increment(4)

Rules in eSOS comprise zero or more conditions followed by a line made up
of three - characters followed by a single transition called the conclusion. A
transition will be of the form term relation-symbol term where relation-symbol
is defined in a relation directive, and the terms are trees written in the usual
prefix-function style.

The single rule here is written

increment(3) -> 4

from which we can see that it has zero conditions and just a conclusion.
These unconditional rules are called axioms.

SOS – An introduction to eSOS 184

The rule tells us that a program increment(3) will be rewritten in one step
to the program 4. The fact that this is the only rule and that it contains no
term variables tells us that this is actually the only thing that our programming
language can do.

We have three directives:

!trace 1

!try increment(3)

!try increment(4)

ART directives are all preceded by a shriek (!) which indicates that they are
to be executed procedurally, as opposed to rules which are declarative in nature.
Essentially directives make up a simple script that tells us how to exercise the
rules.

A phrase like !try increment(3) simply specifies a term which eSOS will
attempt to reduce using the default relation, that is the relation in the conclu-
sion of the first rule in the file. The directive !trace 1 sets the trace level for
subsequent directives (up to the next !trace). The available trace levels are as
follows:

0 silent
1 final result only
2 top level rewrites
3 all rewrites
4 conditions
5 bindings

These levels are cumulative: each level includes all the information from the
levels with a lower trace number.

Now run ART on L1.art to produce this output:

*** try increment(3) with relation ->

Normal termination on 4 after 2 steps and 2 rewrites

*** try increment(4) with relation ->

Stuck on increment(4) after 1 step and 1 rewrite

This tells is that the first try terminated normally after rewriting to 4, but that
the second try became stuck, which means that it could not find a matching
rule.

If we change to !trace 5 then we get much more voluminous output which
tells us exactly what is going on:

*** try increment(3) with relation ->

Step 1

Rewrite call 1 increment(3) ->

-R1 --- increment(3) -> 4

-R1 bindings after Theta match { }

-R1 rewrites to 4

Step 2

SOS – An introduction to eSOS 185

Rewrite call 2 4 ->

Terminal 4

Normal termination on 4 after 2 steps and 2 rewrites

*** try increment(4) with relation ->

Step 1

Rewrite call 1 increment(4) ->

-R1 --- increment(3) -> 4

-R1 Theta match failed: seek another rule

Failed rewrite call 1 increment(4) ->

Stuck on increment(4) after 1 step and 1 rewrite

We shall look in more detail at trace outputs in a later section.

B.3.2 Normal termination and stuck configurations

The eSOS interpreter terminates when it cannot find any rule with which it
can reduce the program term. Now, of course some configurations are intended
to represent successful termination, so some program terms are what we call
terminals. In eSOS, numeric literals, strings and boolean true values true and
false are all terminals, and there is a way to declare extra terminal terms: we
shall see examples of this later.

If the interpreter stops and the final program term is a terminal term, then
the interpreter reports Normal termination; otherwise the interpreter will re-
port that it is ‘stuck’.

In this example, all integer literals are automatically terminals, and so when
the interpreter terminates with a program term which is just an integer it
reports Normal termination. However, increment(4) is not a terminal, so
the interpreter reports that it is stuck.

B.3.3 Generalising with term variables and functions

We shall now make a new programming language which can increment any
integer. We shall still only need one eSOS ‘rule’, though when we were being
careful we would say that the specification now has a single rule schema which
induces a rule for every number, and a particular number will be represented
by the name X which will label a term containing that number.

Make a file L2.art with these contents:

increment(_X) -> __add(_X,1)

!try increment(3)

!try increment(4)

When we run the interpreter on L2 we get this output:

*** try increment(3) with relation ->

Step 1

SOS – An introduction to eSOS 186

Rewrite call 1 increment(3) ->

-R1 --- increment(_X) -> __add(_X, 1)

-R1 rewrites to 4

Step 2

Rewrite call 2 4 ->

Terminal 4

Normal termination on 4 after 2 steps and 2 rewrites

*** try increment(4) with relation ->

Step 1

Rewrite call 1 increment(4) ->

-R1 --- increment(_X) -> __add(_X, 1)

-R1 rewrites to 5

Step 2

Rewrite call 2 5 ->

Terminal 5

Normal termination on 5 after 2 steps and 2 rewrites

Our language apparently works for both 3 and 4. Let’s examine in detail what
is happening.

We begin with a program term such as increment(3). We look through
the set of rules (there is only one in this case!) and try to match the term with
the left hand side of a conclusion.

Our one rule has increment(X)) as its left hand side. Now X in not a
terminal, nor does X appear as the first element in any term so eSOS assumes
that it is a term variable. That means it can match any subterm, including the
subterm 3. Thus the binding X 7→ 3 is created.

Having matched the left hand side of the conclusion, we now proceed to the
conditions. The only condition is __add(1,X) |> Y. We begin by substituting
X by 3 since that is what is in the set of bindings to give addOp(1,3) |> Y.
The two leading underscores in the constructor __add operator tells us that the
term __add(1,3) must be a function call, that is an attempt to access a lookup
table (or equivalent mechanism) which will return some term, which will then
be matched against the term Y. eSOS has a fixed repertoire of such tables: this
particular one has been loaded with numbers that match our expectation of
adding numbers together: the number at coordinated (3, 4) for instance would
be 7.

Now that we have checked the conditions, adding to the set of bindings as
we go, we can process the right hand side of the conclusion below the line by
substituting and then deleting that part of the program term that was originally
matched by the left hand side by the results and inserting the substituted right
hand side. For the program increment(3), Y will have been bound to 4, and
the conclusion matched the whole program term, so the whole program will be
deleted and replaced with 4.

SOS – An introduction to eSOS 187

B.3.4 Runtime type errors

If we add the try !try increment("five") to our file then we get a type error
from the __add function

*** try increment("five") with relation ->

Step 1

Rewrite call 1 increment("five") ->

-R1 --- increment(_X) -> __add(_X, 1)

!! Function error: __add(__string,__int32) - operands must be of same type; returning __bottom

-R1 rewrites to __bottom

Step 2

Rewrite call 2 __bottom ->

Terminal __bottom

Normal termination on __bottom after 2 steps and 2 rewrites

This unhappy situation arises because "five" is a string, not a number, and
whilst the eSOS interpreter is perfectly happy to match X to "five" and pass
it to the __add function (lookup table), addition is not defined over strings, so
we get a runtime type error.

The set of types and operations provided by eSOS is exactly the set of types
and their operations described in Section ?? and summarised in the spreadsheet
sleLabs\ART\ARTTypeAndOperationTable.xlsx

B.3.5 Filtering out type errors using conditions

All is not lost! We can introduce some type checking into our rules by adding
extra conditions. Make a file L3.art containing:

_X |> __int32(_)

increment(_X) -> __add(_X, 1)

!try increment(3)

!try increment(4)

!try increment(5.5)

!try increment("five")

We can check that a variable is bound to a particular type with a pattern line
__int32(_). In this case, failure must lead to the interpreter getting stuck,
because there are no more rules that can be tried.

When we interpret L3 we see

*** try increment(3) with relation ->

Step 1

Rewrite call 1 increment(3) ->

-R1 _X |> _ --- increment(_X) -> __add(_X, 1)

-R1 rewrites to 4

Step 2

SOS – An introduction to eSOS 188

Rewrite call 2 4 ->

Terminal 4

Normal termination on 4 after 2 steps and 2 rewrites

*** try increment(4) with relation ->

Step 1

Rewrite call 1 increment(4) ->

-R1 _X |> _ --- increment(_X) -> __add(_X, 1)

-R1 rewrites to 5

Step 2

Rewrite call 2 5 ->

Terminal 5

Normal termination on 5 after 2 steps and 2 rewrites

*** try increment(5.5) with relation ->

Step 1

Rewrite call 1 increment(5.5) ->

-R1 _X |> _ --- increment(_X) -> __add(_X, 1)

Failed rewrite call 1 increment(5.5) ->

Stuck on increment(5.5) after 1 step and 1 rewrite

*** try increment("five") with relation ->

Step 1

Rewrite call 1 increment("five") ->

-R1 _X |> _ --- increment(_X) -> __add(_X, 1)

Failed rewrite call 1 increment("five") ->

Stuck on increment("five") after 1 step and 1 rewrite

C:\adrian\teaching\softwareLanguageEngineering\2022\SLELabs\SOS>

Now, instead of the string argument causing a run time failure from the ARTValue
system, the eSOS interpreter runs normally, terminates and then notices that
the final term is not a terminal term, and so reports that it got stuck (in this
case, because it found no reductions at all).

B.3.6 Generalising by adding rules

Unfortunately we’ve gone a little too far: L3 cannot increment real numbers.
We can restore that capability by adding another rule which handles reals.
Make a file L4.art containing

-integerInc

_X |> __int32(_)

increment(_X) -> __add(_X, 1)

-realInc

_X |> __real64(_)

increment(_X) -> __add(_X, 1.0)

!try increment(4)

SOS – An introduction to eSOS 189

!try increment(5.5)

!trace 5

!try increment(5.5)

We now have two rules, and we have given them names: you can attach a label
to a rule in eSOS by prefacing it with a - character. The rule name must be a
single integer, a single word or a single string. If you do not specify a label in
this way, the eSOS interpreter will attach a numeric label to them in the order
it finds the rules in the file. The labels are purely to help the reader and have
no significance to the interpreter.

Recall that eSOS will search through its rule set seeking matches. Now,
both test programs have a rule that will handle them. The interpreter gives:

*** try increment(4) with relation ->

Step 1

Rewrite call 1 increment(4) ->

-integerInc _X |> _ --- increment(_X) -> __add(_X, 1)

-integerInc rewrites to 5

Step 2

Rewrite call 2 5 ->

Terminal 5

Normal termination on 5 after 2 steps and 2 rewrites

*** try increment(5.5) with relation ->

Step 1

Rewrite call 1 increment(5.5) ->

-integerInc _X |> _ --- increment(_X) -> __add(_X, 1)

-realInc _X |> _ --- increment(_X) -> __add(_X, 1.0)

-realInc rewrites to 6.5

Step 2

Rewrite call 2 6.5 ->

Terminal 6.5

Normal termination on 6.5 after 2 steps and 2 rewrites

B.3.7 Examining the behaviour of the interpreter in detail

When debugging specifications, it is sometimes helpful to examine the behaviour
of the interpreter in detail as it backtracks through the rules. Recall that we
can set the trace message level for the interpreter using the !trace n directive
where n can be an integer from zero to five with these (cumulative) meanings:

0 silent
1 final result only
2 top level rewrites
3 all rewrites
4 conditions
5 bindings

The default level is 3, and that was the trace level used for the previous
example.

SOS – An introduction to eSOS 190

Change the !trace level in L4.esos to be !trace 5 which will show us all
of the available detail.

Now when we run the interpreter we see

*** try increment(4) with relation ->

Step 1

Rewrite call 1 increment(4) ->

-integerInc _X |> _ --- increment(_X) -> __add(_X, 1)

-integerInc bindings after Theta match { _X=4 }

-integerInc premise 1 _X |> _

-integerInc bindings after premise 1 { _X=4 }

-integerInc rewrites to 5

Step 2

Rewrite call 2 5 ->

Terminal 5

Normal termination on 5 after 2 steps and 2 rewrites

*** try increment(5.5) with relation ->

Step 1

Rewrite call 1 increment(5.5) ->

-integerInc _X |> _ --- increment(_X) -> __add(_X, 1)

-integerInc bindings after Theta match { _X=5.5 }

-integerInc premise 1 _X |> _

-integerInc premise 1 failed: seek another rule

-realInc _X |> _ --- increment(_X) -> __add(_X, 1.0)

-realInc bindings after Theta match { _X=5.5 }

-realInc premise 1 _X |> _

-realInc bindings after premise 1 { _X=5.5 }

-realInc rewrites to 6.5

Step 2

Rewrite call 2 6.5 ->

Terminal 6.5

Normal termination on 6.5 after 2 steps and 2 rewrites

The line Rewrite call 1 increment(4) -> tells us that whilst checking
the first step, the interpreter has been called on relation -> with a configuration
comprising just the program term increment(4). We then see that we are
working with rule integerInc and that after matching to the program term,
_X is bound to 4.

The second !try on increment(5.5) proceeds differently in that the in-
terpreter matches the conclusion in rule 1, but then fails after testing the first
premise. The interpeter then searches for another rule that matches the pro-
gram term, finds realInc and proceeds to the rewrite.

From this we can see that the order of the rules significantly affects per-
formance: integer increments will be faster than real increments because the
interpreter find the integer rule first. Do bear in mind though that our goal is to
produce compact specifications of programming languages that we can reason
about, and that performance is secondary to that goal.

SOS – An introduction to eSOS 191

B.3.8 Addition of two values

It is easy to modify our incrementing language L4 to perform addition of two
values. Make a file L5.art containing:

_X |> __int32(_) _Y |> __int32(_)

add(_X,_Y) -> __add(_X, _Y)

!try add(3,4)

We are now using the constructor add instead of increment, and the pattern
on the left hand side of the conclusion has two term variables in it, X and Y .
The subterms bound to these term variables are checked to ensure that they are
integers, and then they are used to access the __add lookup table (function).
The interpreter output is:

*** try add(3, 4) with relation ->

Step 1

Rewrite call 1 add(3, 4) ->

-R1 _X |> _ _Y |> _ --- add(_X, _Y) -> __add(_X, _Y)

-R1 rewrites to 7

Step 2

Rewrite call 2 7 ->

Terminal 7

Normal termination on 7 after 2 steps and 2 rewrites

B.3.9 Nested additions

In our outer syntax, we might want to be able to evaluate expressions containing
more than one operator instance, such as 3+4+5. These would naturally give
rise to internal syntax terms like add(add(3, 4), 5)

Make a copy of L5.art called L6.art and then modify the !try directive
to read

!try add(add(3,4),5)

The interpreter then gives:

*** try add(add(3, 4), 5) with relation ->

Step 1

Rewrite call 1 add(add(3, 4), 5) ->

-R1 _X |> _ _Y |> _ --- add(_X, _Y) -> __add(_X, _Y)

-R1 bindings after Theta match { _X=add(3, 4), _Y=5 }

-R1 premise 1 _X |> _

-R1 premise 1 failed: seek another rule

Failed rewrite call 1 add(add(3, 4), 5) ->

Stuck on add(add(3, 4), 5) after 1 step and 1 rewrite

SOS – An introduction to eSOS 192

We have got stuck because although the add rule matches the initial program
term, term variable X is bound to add(3,4) which is not a number, so the first
condition fails.

The solution is perhaps the most subtle part of an SOS-style specification.
We add a rule which allow the arguments of an add constructor to be recursively
shrunk down to operations that can be directly executed, and then as the
recursion unwinds program is rewritten as the values are propagated.

Create a specification called L7.art containing these rules:

-add _X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z

add(_X,_Y) -> _Z

-addExpr

_E1 -> _V1 _E2 -> _V2

add(_E1, _E2) -> add(_V1, _V2)

!trace 4

!try add(add(3,4),5)

The original rule add from L6.art can, as we have seen only add arguments
which can be directly accepted by the __add(,) function. The new rule addExpr
will match any term which has a root node labelled add

*** try add(add(3, 4), 5) with relation ->

Step 1

Rewrite call 1 add(add(3, 4), 5) ->

-add _X |> _ _Y |> _ __add(_X, _Y) |> _Z --- add(_X, _Y) -> _Z

-add premise 1 _X |> _

-add premise 1 failed: seek another rule

-addExpr _E1 -> _V1 _E2 -> _V2 --- add(_E1, _E2) -> add(_V1, _V2)

-addExpr premise 1 _E1 -> _V1

Rewrite call 2 add(3, 4) ->

-add _X |> _ _Y |> _ __add(_X, _Y) |> _Z --- add(_X, _Y) -> _Z

-add premise 1 _X |> _

-add premise 2 _Y |> _

-add premise 3 __add(_X, _Y) |> _Z

-add rewrites to 7

-addExpr premise 2 _E2 -> _V2

Rewrite call 3 5 ->

Terminal 5

-addExpr rewrites to add(7, 5)

Step 2

Rewrite call 4 add(7, 5) ->

-add _X |> _ _Y |> _ __add(_X, _Y) |> _Z --- add(_X, _Y) -> _Z

-add premise 1 _X |> _

-add premise 2 _Y |> _

SOS – An introduction to eSOS 193

-add premise 3 __add(_X, _Y) |> _Z

-add rewrites to 12

Step 3

Rewrite call 5 12 ->

Terminal 12

Normal termination on 12 after 3 steps and 5 rewrites

B.3.10 Forcing deterministic execution

We have discussed elsewhere about the difference between an SOS specification
as a declarative, mathematical object and the particular concretisation or im-
plementation that we are using here. Now from a declarative perspective, the
specification in l7.art models several different executions since any order in
which we evaluate the conditions is valid. That means that we might check the
left condition first, or the right condition, and in fact where the checks trigger
further behaviour, any interleaving of those actions is allowed.

So, in fact our addexpr rule admits many possible rewrite sequences, and
if eSOS were faithfully implementing the specification so as to fulfill every-
thing that the declarative meaning allows then we would need to explore all
interleavings of rewrites.

This is undesirable for practical reasons since that suggests that very large
amounts of computation might be required.

Much more importantly though, if we were to write a similar specification
for subtraction then we would end up with a non-confluent rewrite system. We
know that in general (a − b) − c is not the same as a − (b − c), so we can see
that if we were to explore the left-first and then the right-first SOS traces for
subtraction in the style of l8.esos we would in general get different final states.

Now, all is not lost because we can write the rules for arithmetic operators
in such a way as to force left-associative or right-associative evaluation. This
has the twin benefits of ensuring the the specification is confluent, and that only
one rewrite trace has to be explored (that is, the rewrites aredeterministic).

Create a specification called L8.RT containing these rules:

-add

_X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z

add(_X,_Y) -> _Z

-addRight

_n |> __int32(_) _E2 -> _I2

add(_n, _E2) -> add(_n, _I2)

-addLeft

_E1 -> _I1

add(_E1, _E2) -> add(_I1, _E2)

SOS – An introduction to eSOS 194

!trace 4

!try add(add(3,4), 5)

In this specification, rule -addright can cause a step if the left hand operand
of the add(,) term is already an integer, as opposed to a subexpression. That
means that it cannot run until some other rules has reduced the left operand
to a value, and that is the purpose of the addleft rule. We call these rules –
the ones that force a particular ordering – congruence rules.

The interpreter trace shows the effect of this change:

*** try add(add(3, 4), 5) with relation ->

Step 1

Rewrite call 1 add(add(3, 4), 5) ->

-add _X |> _ _Y |> _ __add(_X, _Y) |> _Z --- add(_X, _Y) -> _Z

-add premise 1 _X |> _

-add premise 1 failed: seek another rule

-addRight _n |> _ _E2 -> _I2 --- add(_n, _E2) -> add(_n, _I2)

-addRight premise 1 _n |> _

-addRight premise 1 failed: seek another rule

-addLeft _E1 -> _I1 --- add(_E1, _E2) -> add(_I1, _E2)

-addLeft premise 1 _E1 -> _I1

Rewrite call 2 add(3, 4) ->

-add _X |> _ _Y |> _ __add(_X, _Y) |> _Z --- add(_X, _Y) -> _Z

-add premise 1 _X |> _

-add premise 2 _Y |> _

-add premise 3 __add(_X, _Y) |> _Z

-add rewrites to 7

-addLeft rewrites to add(7, 5)

Step 2

Rewrite call 3 add(7, 5) ->

-add _X |> _ _Y |> _ __add(_X, _Y) |> _Z --- add(_X, _Y) -> _Z

-add premise 1 _X |> _

-add premise 2 _Y |> _

-add premise 3 __add(_X, _Y) |> _Z

-add rewrites to 12

Step 3

Rewrite call 4 12 ->

Terminal 12

Normal termination on 12 after 3 steps and 4 rewrites

In the following examples, you are expected to analyse the rules so as to
understand their function, and then run the interpreter on the example to see
how the rules are used.

SOS – An introduction to eSOS 195

B.3.11 Assignment

Example l9.art shows assignment, the creation of a binding within a store
sig.

-assign

_n |> __int32(_) __put(_sig, _X, _n) |> _sig1

assign(_X, _n), _sig -> __done, _sig1

!try assign(tmp, 32), __map()

B.3.12 Sequencing

Sequencing, illustrated in example l10.art requires two rules: a base rule that
reduces the pair __done, command to just command, and a resolution rule that
reduces the pair command1, command2 to __done, commandf2

-sequenceDone

seq(__done, _C) -> _C

-sequence

_C1 -> _C1P

seq(_C1, _C2) -> seq(_C1P, _C2)

!try seq(__done, 7)

B.3.13 Assigning the result of an expression

Example l11.art shows the resolution of an expression which is then assigned
to a program variable.

-add

_X |> __int32(_) _Y |> __int32(_) __add(_X, _Y) |> _Z

add(_X,_Y),_sig -> _Z,_sig

-addRight

_n |> __int32(_) _E2,_sig -> _I2,_sig

add(_n, _E2),_sig -> add(_n, _I2),_sig

-addLeft

_E1,_sig -> _I1,_sig

add(_E1, _E2),_sig -> add(_I1, _E2),_sig

SOS – An introduction to eSOS 196

-assign

_n |> __int32(_) __put(_sig, _X, _n) |> _sig1

assign(_X, _n), _sig -> __done, _sig1

-assignResolve

_E, _sig -> _I, _sigP

assign(_X,_E), _sig -> assign(_X, _I), _sigP

!trace 2

!try assign(a,add(3,4)), __map

B.3.14 Sequenced assignments

Example l12.art shows the effect on the store of sequences of assignments.

-sequenceDone

seq(__done, _C), _sig -> _C, _sig

-sequence

_C1, _sig1 -> _C1P, _sig2

seq(_C1, _C2), _sig1 -> seq(_C1P, _C2), _sig2

-assign

_n |> __int32(_) __put(_sig, _X, _n) |> _sig1

assign(_X, _n), _sig -> __done, _sig1

!try assign(tmp, 32), __map()

!try seq(assign(tmp1, 32),assign(tmp2, 64)), __map()

!try seq(seq(assign(tmp1, 32),assign(tmp2, 64)),assign(tmp3,128)), __map()

B.3.15 Dereferencing and assignment

In example l13.art we assign 3 to variable a and then assign to b the result
of dereferencing a from the store.

-sequenceDone

seq(__done, _C), _sig -> _C, _sig

-sequence

SOS – An introduction to eSOS 197

_C1, _sig1 -> _C1P, _sig2

seq(_C1, _C2), _sig1 -> seq(_C1P, _C2), _sig2

-assign

_n |> __int32(_) __put(_sig, _X, _n) |> _sig1

assign(_X, _n), _sig -> __done, _sig1

-assignResolve

_E, _sig -> _I, _sigP

assign(_X,_E), _sig -> assign(_X, _I), _sigP

-deref

__get(_sig, _R) |> _Z

deref(_R),_sig -> _Z, _sig

!try seq(assign(a,3),assign(b,deref(a))), __map

B.3.16 Output

We output data by modelling the a ‘printer’ as a __list semantic entity called
ϕ, Example l14.art illustrates a sequence of two output operations.

-sequenceDone

seq(__done, _C), _phi -> _C, _phi

-sequence

_C1, _phi1 -> _C1P, _phi2

seq(_C1, _C2), _phi1 -> seq(_C1P, _C2), _phi2

-output _x,_phi1 ->_y,_phi2

output(_x),_phi1 -> __done, __put(_phi2,_y)

!try seq(output(4),output(5)),__list

B.3.17 Selection with if

In example l15.art, rules for a not-equals operator with constructor ne are
provided in the usual three-rule style, and used with rules for if to conditionally
evaluate.

SOS – An introduction to eSOS 198

-ifTrue

if(True, _C1, _C2) -> _C1

-ifFalse

if(False, _C1, _C2) -> _C2

-ifResolve

_E ->_EP

if(_E,_C1,_C2) -> if(_EP, _C1, _C2)

-ne

_n1 |> __int32(_) _n2 |> __int32(_)

ne(_n1, _n2) -> __ne(_n1, _n2)

-neRight

_n |> __int32(_) _E2 -> _I2

ne(_n, _E2) -> ne(_n, _I2)

-neLeft

_E1 -> _I1

ne(_E1, _E2) -> ne(_I1, _E2)

!try if(True, 7, 9)

!try if(False, 7, 9)

!try if(ne(3,3),7,9)

!try if(ne(3,4),7,9)

B.3.18 Iteration with while

Example l16.art illustrates the handling of while loops by expanding to an
if statement. The second !try is commented out since it is an infinite loop.
Uncomment it and see what happens.

-sequenceDone

seq(__done, _C) -> _C

-sequence

_C1 -> _C1P

SOS – An introduction to eSOS 199

seq(_C1, _C2) -> seq(_C1P, _C2)

-ifTrue

if(True, _C1, _C2) -> _C1

-ifFalse

if(False, _C1, _C2) -> _C2

-ifResolve

_E ->_EP

if(_E,_C1,_C2) -> if(_EP, _C1, _C2)

-while

while(_E, _C) -> if(_E, seq(_C, while(_E,_C)), __done)

!try while(False, __done)

//!try while(True, __done)

B.3.19 The GCD language

We arrive, at last, at the full set of rules for our GCD language which are in
the file SLELabs/SOS/gcdSmallStep.art. This language supports only sub-
traction, the greater-than and not-equal operations, along with variables, if
statements and while loops. However, it is sufficient to implement Euclid’s
GCD algorithm, and the extension to other arithmetic operators and relations
simply follows the pattern of the rules here for subtraction and <.

After the rules, you will see a large number of !try directives which exercise
all of the language features. The final !try computes the GCD of 6 and 9.
Work your way through the individual language features, ensuring that you
understand how they work.

-sequenceDone

seq(__done, _C), _sig -> _C, _sig

-sequence

_C1, _sig -> _C1P, _sigP

seq(_C1, _C2), _sig -> seq(_C1P, _C2), _sigP

-ifTrue

SOS – An introduction to eSOS 200

if(True, _C1, _C2),_sig -> _C1, _sig

-ifFalse

if(False, _C1, _C2),_sig -> _C2,_sig

-ifResolve

_E, _sig ->_EP, _sigP

if(_E,_C1,_C2),_sig -> if(_EP, _C1, _C2), _sigP

-while

while(_E, _C),_sig -> if(_E, seq(_C, while(_E,_C)), __done), _sig

-assign

_n |> __int32(_)

assign(_X, _n), _sig -> __done, __put(_sig, _X, _n)

-assignResolve

_E, _sig -> _I, _sigP

assign(_X,_E), _sig -> assign(_X, _I), _sigP

-gt

_n1 |> __int32(_) _n2 |> __int32(_)

gt(_n1, _n2),_sig -> __gt(_n1, _n2),_sig

-gtRight

_n |> __int32(_) _E2, _sig -> _I2,_sigP

gt(_n, _E2),_sig -> gt(_n, _I2), _sigP

-gtLeft

_E1, _sig -> _I1, _sigP

gt(_E1, _E2),_sig -> gt(_I1, _E2), _sigP

-ne

_n1 |> __int32(_) _n2 |> __int32(_)

ne(_n1, _n2),_sig -> __ne(_n1, _n2),_sig

-neRight

_n |> __int32(_) _E2, _sig -> _I2,_sigP

SOS – An introduction to eSOS 201

ne(_n, _E2),_sig -> ne(_n, _I2), _sigP

-neLeft

_E1, _sig -> _I1, _sigP

ne(_E1, _E2),_sig -> ne(_I1, _E2), _sigP

-sub

_n1 |> __int32(_) _n2 |> __int32(_)

sub(_n1, _n2),_sig -> __sub(_n1, _n2),_sig

-subRight

_n |> __int32(_) _E2,_sig -> _I2,_sigP

sub(_n, _E2),_sig -> sub(_n, _I2), _sigP

-subLeft

_E1,_sig -> _I1,_sigP

sub(_E1, _E2),_sig -> sub(_I1, _E2), _sigP

-deref

__get(_sig, _R) |> _Z

deref(_R),_sig -> _Z, _sig

!try seq(__done, __empty), __map

!try seq (666,667), __map

!try if(True, 7, 9),__map

!try if(False, 7, 9),__map

!try while(False, S), __map

!try gt(4,3),__map

!try gt(3,4),__map

!try ne(3,3),__map

!try ne(3,4),__map

!try if(ne(3,3),7,9),__map

!try if(ne(3,4),7,9),__map

!try if(gt(4,3),7,9),__map

!try if(gt(3,4),7,9),__map

SOS – An introduction to eSOS 202

!try sub(3,4),__map

!try seq(assign(x,3), assign(y,28)),__map

!try seq(assign(x,3), assign(y,deref(x))),__map

!try seq(seq(assign(x, 1), assign(y,2)), deref(x)),__map

!try seq(seq(assign(x, 1), assign(y,2)), sub(deref(x), deref(y))),__map

!try seq(assign(z, 1), while(gt(deref(z), 0), assign(z,0))),__map

!try seq(assign(z,3), while(gt(deref(z), sub(0, 2)),

assign(z, sub(deref(z),1)))),__map

!try seq(seq(seq(

assign(a, 6), assign(b, 9)),

while(ne(deref(a), deref(b)),

if(gt(deref(a), deref(b)), assign(a, sub(deref(a), deref(b))),

assign(b, sub(deref(b), deref(a)))))),

assign(gcd, deref(a))),__map

Syntax – an introduction to parsing 203

B.4 Syntax – an introduction to parsing

This laboratory introduces parsing, parser generation and simple attribute
grammars. In later labs you will use general parsing techniques called CNP
parsing and MGLL parsing, but in this lab we shall use Ordered Singleton
Backtrack recursive Descent (OSBRD) parsers which are so simple they can be
written by hand.

Attributes – using ART with attribute grammars and GIFT rewrites 204

B.5 Attributes – using ART with attribute grammars and
GIFT rewrites

ART is a general parser generator which takes a specification written in the
ART input language and outputs a general parser written in Java which you
can compile and use from your own code. You can specify the semantics of your
language using attributes and actions, and we shall also see how to do some
simple rewriting of the derivation trees so as to output trees that are usable as
input terms to the eSOS interpreter.

B.5.1 Getting started

Start in directory SLELabs/Attributes/miniActionJava by performing cd

xxx/SLELabs/Attributes/miniActionJava where xxx is the directory into
which you unpacked slelabs.zip.

If you are running on Unix or MacOS, you may need to run the command
chmod +x parse.sh to make it executable.

You may need to set the arthome environment variable to the location of
art.jar. On Windows systems, type set arthome ..\... On Unix systems,
the shell script is already set up.

1 parse miniCall

or, on Un*x-style operating systems

1 ./parse.sh miniCall

You should see the following output

1 x is 3
2 x is 2
3 x is 1
4 Hello from a procedure

B.5.2 Understanding the parse script – Windows version

Examine the contents of file parse.bat It includes

1 call clean
2 java =jar ../art.jar %1.art
3 javac =classpath .;../art.jar ARTGLLParser.java ARTGLLLexer.java
4 call run %1 %2 %3 %4 %5 %6 %7 %8 %9

On the line we call the script clean.bat to delete any old generated parsers,
their class files and any tree visualisations that you have in the directory.

Attributes – using ART with attribute grammars and GIFT rewrites 205

The next line runs the ART parser generator on a file of type .art using
the name you supply as a parameter to parse.bat. If all goes well, ART will
write out the file ARTGLLParser.java.

We then compile the supplied test harness ARTTest.java and the generated
file ARTGLLParser.java, making sure that the jar file art.jar is in the class
path so that the Java compiler can find the parse-time classes.

Finally, we run the compiled classes on an input which must be in a file
with the same name as the grammar and file type .str by calling the script
run.bat.

B.5.3 Understanding the parse script – Unix version

Examine the contents of file parse.sh It includes

1 #!/bin/bash
2 ./clean.sh
3 java =jar ../art.jar $1.art
4 javac =classpath ”.:../art.jar” ARTGLLParser.java ARTGLLLexer.java
5 ./run.sh $1 $2 $3 $4 $5 $6 $7 $8 $9

On the line we call the script clean.sh to delete any old generated parsers,
their class files and any tree visualisations that you have in the directory.

The next line runs the ART parser generator on a file of type .art using
the name you supply as a parameter to parse.sh. If all goes well, ART will
write out the file ARTGLLParser.java.

We then compile the supplied test harness ARTTest.java and the generated
file ARTGLLParser.java, making sure that the jar file art.jar is in the class
path so that the Java compiler can find the parse-time classes.

Finally, we run the compiled classes on an input which must be in a file with
the same name as the grammar and file type .str by calling the script run.sh.

B.5.4 Visualising derivation trees

After an ART parser has found all of derivations of an input string it will call
the attribute evaluator to execute the semantics and at the same time construct
a (potentially rewritten) derivation tree.

If we add a +showAll command line option to the parse or to the run scripts
as a second parameter then the evaluated tree will be printed on the console in
an indented style, and in addition a file called rdt.dot will be output which
can be used to generate a graphical version of the tree.

Try this out by (for Windows) typing

1 parse miniCall +showAll

or, on Un*x-style operating systems

Attributes – using ART with attribute grammars and GIFT rewrites 206

1 ./parse.sh miniCall +showAll

You will get the following console output.

1 x is 3
2 x is 2
3 x is 1
4 Hello from a procedure
5 1: statement
6 2: {
7 3: statements
8 4: statement
9 5: procedure

10 6: ID
11 7: &ID sub
12 8: statement
13 9: statements
14 10: statement
15 11: ID
16 12: &ID x
17 13: =
18 14: e0
19 15: e1
20 16: e2
21 17: e3
22 18: e4
23 19: e5
24 20: INTEGER
25 21: &INTEGER 3
26 22: ;
27 23: statements
28 24: statement
29 25: while
30 26: e0
31 27: do
32 28: statement
33 230: statements
34 231: statement
35 232: call
36 233: ID
37 234: &ID sub
38 235: ;
39 247: }

The numbered lines of output each correspond to a single node in the tree
shown above: the node number appear before the colon and the label after it,

Attributes – using ART with attribute grammars and GIFT rewrites 207

and the depth of the node in the tree is represented by the indentation level.
If you have the GraphViz graph drawing utilities installed on your system,

you can type

dot -Tpdf rdt.dot > rdt.dot.pdf

to generate a graphical representation of the tree that can then be displayed
using your PDF reader. Other output formats are available including .png files.

Warning! These trees can get very big very quickly, and the dot tool
may give up if the tree is very large. This tree is produced after running
parse miniCall:

When you use +showAll the tree is also printed as a term, which will be
useful when we start building trees that are intended as inputs to the eSOS
interpreter. These terms can quickly swamp the output, so they are written to
the file term.txt and you need to look in that file for the rendered output.

Attributes – using ART with attribute grammars and GIFT rewrites 208

The term for the miniCall example is:

statements(statement('{', statements(statement('procedure', ID < rightExtent=16

leftExtent=12 lexeme=sub v=sub >(sub), statement),

statements(statement(ID < rightExtent=62 leftExtent=55 lexeme=x v=x

>(x), '=', e0 < v=3 >(e1 < v=3 >(e2 < v=3 >(e3 < v=3 >(e4

< v=3 >(e5 < v=3 >(INTEGER < v=3 rightExtent=66 leftExtent=64

lexeme=3 >(3))))))), ';'), statements(statement('while', e0 < v=0

>, 'do', statement), statements(statement('call', ID < rightExtent=134 leftExtent=130

lexeme=sub v=sub >(sub), ';'))))), '}'))

B.5.5 Simple grammars

Create a new file first.art with this content:

1 S ::= 'b' | 'a' X '@'
2 X ::= 'x' X | #

This is the ART version of the first grammar that we wrote in the section
on OSBRD parsing. Each rule starts with a nonterminal followed by a ::=

symbol. Terminals are delimited by single quotes and ϵ, the empty string, is
denoted by #.

Now make a file first.str containing:

1 axx@

Generate and run the parser by typing parse first Do not add a file type.
If you have the textual tree output routine enabled, you should see the

following output:

1 1: S
2 2: a
3 3: X
4 4: x
5 5: X
6 6: x
7 7: X
8 8: #
9 9: @

Try changing the input by adding more x characters and observe what
happens.

Try removing the final @ character and see what happens.

Attributes – using ART with attribute grammars and GIFT rewrites 209

B.5.6 Using builtins

ART provides a family of useful builtin lexer functions which can be used to
process things like strings, integers and identifiers.

Create a file assign.art containing

1 S ::= &ID '=' &INTEGER ';'

and an input file assign.str containing

1 x = 23;

Process the files using parse assign and see that the &ID and &INTEGER

builtins have matched the alphanumeric identifier and the integer. Experiment
with changing the input file to have a longer identifier or a different number.
What happens if you try a negative integer?

B.5.7 Exercises

Now complete these exercises.

1. Write and test a grammar that specifies the language of well nested sub-
traction expressions over integers. Check the tree to ensure that you have
the correct associativity.

2. Write and test a grammar that specifies the language of well formed
boolean expressions using the Java Boolean operators & | ! and the
constants true and false. Ensure that Java’s operator priorities and
associativities are correctly implemented.

3. Write and test a grammar that specifies the language of BNF expressions
using ART syntax.

B.5.8 Attribute evaluation in ART

In this lab we are going to learn how to extend ART grammars with semantic
actions and attributes so that we can build complete translators.

B.5.9 Simple grammars and actions

Create a file abaction.art with these contents:

1 S ::= A | B
2

3 A ::= 'a'
4

5 B ::='b'

Attributes – using ART with attribute grammars and GIFT rewrites 210

Now create a file containing a single a character and run parse abaction

+showAll.
You should see the following output

1 1: S
2 2: A
3 3: a

This shows that the parser found the derivation

S ⇒ A⇒ a

We can arrange for the grammar to announce what it has found by adding
semantic actions. In ART, an action is enclosed in braces { }. Within the
braces we can add any syntactically valid Java fragment.

Modify your abaction.art file so that it announces when it has matched
the letter a.

1 S ::= A | B
2

3 A ::= 'a' {System.out.println(”Found an a”);}
4

5 B ::='b'

Now we get this output:

1 Found an a
2 1: S
3 2: A
4 3: a

Change the input to b and satisfy yourself that that the message no longer
appears.

B.5.10 The execution order of actions

ART first finds all the derivations of the input in the grammar, then selects
one of the (potentially infinite set of) derivations. Only then does the evaluator
run: it visits the derivation tree top-down, left-to-right and executes actions as
it passes between nodes, in the order that they are written in the grammar.

We now extend the grammar to match a sequence of a characters.

1 S ::= A | B
2

3 A ::= 'a' {System.out.println(”Found an a”);} A | #
4

5 B ::='b'

Attributes – using ART with attribute grammars and GIFT rewrites 211

Run this using the input aaa to get this output:

1 Found an a
2 Found an a
3 Found an a
4 1: S
5 2: A
6 3: a
7 4: A
8 5: a
9 6: A

10 7: a
11 8: A
12 9: #

The tree has three terminal a nodes, and the message is printed out three times.
The deepest node in the tree is an epsilon node labeled #, and it will be

visited last. If we add an action to the A ::= # production, we can announce
that we have reached the end of the list.

1 S ::= A | B
2

3 A ::= 'a' {System.out.println(”Found an a”);} A |
4 {artText.println(”End of list of a”); } #
5

6 B ::='b'

which yields

1 Found an a
2 Found an a
3 Found an a
4 End of list of a
5 1: S
6 2: A
7 3: a
8 4: A
9 5: a

10 6: A
11 7: a
12 8: A
13 9: #

Notice, by the way, that ART provides a special object called artText which
supports some useful text manipulation methods, including a print method.

Attributes – using ART with attribute grammars and GIFT rewrites 212

B.5.11 Attributes

Simply adding print statements to a grammar does not provide much useful
capability because all they can do is report where the evaluator has got to. To
make a useful translator, we need to be able to transfer information across the
tree, possibly transforming it as we go.

In an attribute grammar we define a (possibly empty) set of attributes for
each nonterminal. The actions execute in the context of a small sub-tree: each
action can ‘see’ a single parent node and its children, but no more. The name
of the parent node will be the name of a nonterminal, and the names of the
child nodes will be the name of a nonterminal suffixed by an integer instance
number.

We can add an attribute listLength to nonterminal A, and an action which
propagates the length of the list up the tree. We then add an action to the start
symbol to print out the length:

Change your abaction.art grammar to

1 S ::= A { artText.println(”List length is ” + A1.listLength); } | B
2

3 A<listLength:int> ::=
4 'a' A { A.listLength = A1.listLength + 1; } |
5 # { A.listLength = 0; }
6

7 B ::='b'

When run on aaa we get

1 List length is 3
2 1: S
3 2: A
4 3: a
5 4: A
6 5: a
7 6: A
8 7: a
9 8: A

10 9: #

We now have enough machinery to implement arbitrary transformations.

B.5.12 miniCalc – a simple calculator

Review the grammar minisyntax.art and ensure that you understand the way
in which operator associativities and priorities are encoded into the grammar.

Now compare with the grammar minicalc.art.

Attributes – using ART with attribute grammars and GIFT rewrites 213

1 (***
2 *
3 * miniCalc.art = Adrian Johnstone 9 January 2016
4 *
5 ***)
6 statement ::= 'print' '(' printElements ')' ';'
7

8 printElements ::= STRING DQ { artText.printf(”%s”, STRING DQ1.v); } |
9 STRING DQ { artText.printf(”%s”, STRING DQ1.v); } ',' printElements |

10 e0 { artText.printf(”%d”, e01.v); } |
11 e0 { artText.printf(”%d”, e01.v); } ',' printElements
12

13 e0 <v:int> ::= e1 { e0.v = e11.v; } |
14 e1 '>' e1 { e0.v = e11.v > e12.v ? 1 : 0; } |
15 e1 '<' e1 { e0.v = e11.v < e12.v ? 1 : 0; } |
16 e1 '>=' e1 { e0.v = e11.v >= e12.v ? 1 : 0; } |
17 e1 '<=' e1 { e0.v = e11.v <= e12.v ? 1 : 0; } |
18 e1 '==' e1 { e0.v = e11.v == e12.v ? 1 : 0; } |
19 e1 '!=' e1 { e0.v = e11.v != e12.v ? 1 : 0; }
20

21 e1 <v:int> ::= e2 { e1.v = e21.v; } |
22 e1 '+' e2 { e1.v = e11.v + e21.v; } |
23 e1 '=' e2 { e1.v = e11.v = e21.v; }
24

25 e2 <v:int> ::= e3 { e2.v= e31.v; } |
26 e2 '*' e3 { e2.v = e21.v * e31.v; } |
27 e2 '/' e3 { e2.v = e21.v / e31.v; } |
28 e2 '%' e3 { e2.v = e21.v % e31.v; }
29

30 e3 <v:int> ::= e4 {e3.v = e41.v; } |
31 '+' e3 {e3.v = e41.v; } |
32 '=' e3 {e3.v = =e41.v; }
33

34 e4 <v:int> ::= e5 { e4.v = e51.v; } |
35 e5 '**' e4 {e4.v = (int) Math.pow(e51.v, e41.v); }
36

37 e5 <v:int> ::= INTEGER {e5.v = INTEGER1.v; } |
38 '(' e1 { e5.v = e11.v; } ')'

As we visit each node of the tree, we perform the computation required by
that part of the syntax. The values propogate up via the v attributes.

B.5.13 miniAssign – adding variables

The previous grammar performs computations over expressions involving literal
integers. We want to be able to add variables and an assignment statement.

Attributes – using ART with attribute grammars and GIFT rewrites 214

Now, at the time we write the grammar, we do not know the names of the
variables that a user might write into a program, so we cannot simply create
attributes to hold the variables. Instead, we create a map which holds bindings
of values to identifiers. Assignment statements update the map with new values.
Variable uses on the right hand side of an expression access the map to retrieve
values.

The grammar miniAssign.art extends Mini with a symbol table imple-
mented as a map from identifiers to integer values.

1 (***
2 *
3 * miniAssign.art = Adrian Johnstone 9 January 2016
4 *
5 ***)
6 prelude {import java.util.HashMap;}
7

8 support { HashMap<String, Integer> symbols = new HashMap<String, Integer>(); }
9

10 statements ::= statement | statement statements
11

12 statement ::= ID '=' e0 ';' { symbols.put(ID1.v, e01.v); } |
13 'print' '(' printElements ')' ';'
14

15 printElements ::= STRING DQ { artText.printf(”%s”, STRING DQ1.v); } |
16 STRING DQ { artText.printf(”%s”, STRING DQ1.v); } ',' printElements |
17 e0 { artText.printf(”%d”, e01.v); } |
18 e0 { artText.printf(”%d”, e01.v); } ',' printElements
19

20 e0 <v:int> ::= e1 { e0.v = e11.v; } |
21 e1 '>' e1 { e0.v = e11.v > e12.v ? 1 : 0; } |
22 e1 '<' e1 { e0.v = e11.v < e12.v ? 1 : 0; } |
23 e1 '>=' e1 { e0.v = e11.v >= e12.v ? 1 : 0; } |
24 e1 '<=' e1 { e0.v = e11.v <= e12.v ? 1 : 0; } |
25 e1 '==' e1 { e0.v = e11.v == e12.v ? 1 : 0; } |
26 e1 '!=' e1 { e0.v = e11.v != e12.v ? 1 : 0; }
27

28 e1 <v:int> ::= e2 { e1.v = e21.v; } |
29 e1 '+' e2 { e1.v = e11.v + e21.v; } |
30 e1 '=' e2 { e1.v = e11.v = e21.v; }
31

32 e2 <v:int> ::= e3 { e2.v= e31.v; } |
33 e2 '*' e3 { e2.v = e21.v * e31.v; } |
34 e2 '/' e3 { e2.v = e21.v / e31.v; } |
35 e2 '%' e3 { e2.v = e21.v % e31.v; }
36

37 e3 <v:int> ::= e4 {e3.v = e41.v; } |

Attributes – using ART with attribute grammars and GIFT rewrites 215

38 '+' e3 {e3.v = e41.v; } |
39 '=' e3 {e3.v = =e41.v; }
40

41 e4 <v:int> ::= e5 { e4.v = e51.v; } |
42 e5 '**' e4 {e4.v = (int) Math.pow(e51.v, e41.v); }
43

44 e5 <v:int> ::= INTEGER {e5.v = INTEGER1.v; } |
45 ID { e5.v = symbols.get(ID1.v); } |
46 '(' e1 { e5.v = e11.v; } ')'

Now, we need to handle two new technical difficulties before proceeding.
ART generated parsers are written into a Java class. If we want to access parts
of the Java API, we need to import them, and if we want to create instances
of Java API classes we need to declare them as members of the parser class.
To allow this we have two ART declarations: prelude {...} which inserts
arbitrary Java code at the top of the class file, and support{...} which inserts
arbitrary Java code at the top of the class itself.

In this case, we import the HashMap class, and declare a member which
maps String instances to int. We shall use this as a symbol table. We are
not attempting to have any kind of scope regime —there is a single global map
which is accumulated as we work through the input.

In fact, the approach is very fragile. If we try to access an undefined variable,
then the semantic action in the rule e5 ::= ID will yield a null value. Try
changing the input to generate this error.

We now have much of a real programming language, but as yet no control
flow. That is the topic of next week’s lab.

B.5.14 Exercises

1. Add left shift and right shift operators (<< and >>) to the miniAssign

grammar. Look up Java’s priority and associativity rules to ensure that
you implement them in your Mini grammar, and add appropriate at-
tributes and actions to allow such expressions to be correctly evaluated.

2. Add a check action to the rule for e5 which catches the use of an undefined
variable.

3. Write a grammar which matches decimal literals, and add semantic ac-
tions so that your grammar will match the input 12300, load an attribute
with the appropriate decimal value and then print it out.

B.5.15 Delayed attributes in ART

We can postpone evaluation of a subtree by giving it a so-called delayed at-
tribute, and these subtrees can then be evaluated under the control of semantic
actions. This allows us, for instance, to repetetively evaluate the body of a
while loop.

Attributes – using ART with attribute grammars and GIFT rewrites 216

B.5.16 A first example of delayed attributes

Create a new file delay.art containing:

1 S ::= 'if' P 'then' A
2 P ::= 'true' | 'false'
3 A ::= 'print'

The language of this grammar is

{ if true then print, if false then print }

. Use the parse.bat batch file to parse both inputs using delay.art and verify
that, for instance, the derivation tree for the first element is:

1 1: S
2 2: if
3 3: P
4 4: true
5 5: then
6 6: A
7 7: print

Now expand the grammar with attributes and actions as follows:

1 S ::= 'if' P 'then' A
2 P<v:boolean> ::= 'true' {P.v = true;} | 'false' {P.v = false;}
3 A ::= 'print' {artText.println(”Printed”);}

When run with the input if true then print, we get this output

1 Printed
2 1: S
3 2: if
4 3: P
5 4: true
6 5: then
7 6: A
8 7: print

Unfortunately, we get almost the same output with the other input. . .

1 Printed
2 1: S
3 2: if
4 3: P
5 4: false

Attributes – using ART with attribute grammars and GIFT rewrites 217

6 5: then
7 6: A
8 7: print

We shall now add a delayed attribute to the instance of A, and use the syn-
thesized result of P to decide whether to evaluate A, thus building an interpreter
for if statements.

1 S<dummy:int> ::= 'if' P 'then' A< { if (P1.v) artEvaluate(S.A1, A1);}
2 P<v:boolean> ::= 'true' {P.v = true;} | 'false' {P.v = false;}
3 A ::= 'print' {artText.println(”Printed”);}

The < annotation on the instance of A delays the evaluation. In the semantic
action, we look at the synthesized value from P, and only evaluate A if it is true.

Look closely at the tree too. The tree is built by the ‘automatic’ outer
instance of the evaluator function. Since it does not descend into A, the subtree
for A is truncated and as a result node 7 does not appear.

Here is the output for if true then print

1 Printed
2 1: S
3 2: if
4 3: P
5 4: true
6 5: then
7 6: A

and here is the output for if false then print

1 1: S
2 2: if
3 3: P
4 4: false
5 5: then
6 6: A

B.5.17 miniIf – adding if-then-else to Mini

In Mini, the only available type is int. We shall use an integer value of zero
to represent false and any other integer value to represent true. (This is how
booleans are represented in ANSI-C, by the way. Later versions of C add a
boolean type.)

We need to take some care with the syntax of the if then else state-
ment—we only have BNF available so we make a rule called elseOpt which
matches either ϵ or else We then delay evaluation of both statement

Attributes – using ART with attribute grammars and GIFT rewrites 218

and elseOpt, placing the evaluation under the control of the value computed
by e0.

1 (***
2 *
3 * miniIf.art = Adrian Johnstone 9 January 2016
4 *
5 ***)
6 prelude {import java.util.HashMap;}
7

8 support { HashMap<String, Integer> symbols = new HashMap<String, Integer>(); }
9

10 statement ::= ID '=' e0 ';' { symbols.put(ID1.v, e01.v); } | (* assignment *)
11

12 'if' e0 'then' statement< elseOpt< (* if statement *)
13 { if (e01.v != 0)
14 artEvaluate(statement.statement1, statement1);
15 else
16 artEvaluate(statement.elseOpt1, elseOpt1);
17 } |
18

19 'print' '(' printElements ')' ';' |
20

21 '{' statements '}'
22

23 elseOpt ::= 'else' statement | #
24

25 statements ::= statement | statement statements
26

27 printElements ::= STRING DQ { artText.printf(”%s”, STRING DQ1.v); } |
28 STRING DQ { artText.printf(”%s”, STRING DQ1.v); } ',' printElements |
29 e0 { artText.printf(”%d”, e01.v); } | e0 { artText.printf(”%d”, e01.v); }
30 ',' printElements
31

32 e0 <v:int> ::= e1 { e0.v = e11.v; } |
33 e1 '>' e1 { e0.v = e11.v > e12.v ? 1 : 0; } | (* Greater than *)
34 e1 '<' e1 { e0.v = e11.v < e12.v ? 1 : 0; } | (* Less than *)
35 e1 '>=' e1 { e0.v = e11.v >= e12.v ? 1 : 0; } | (* Greater than or equals*)
36 e1 '<=' e1 { e0.v = e11.v <= e12.v ? 1 : 0; } | (* Less than or equals *)
37 e1 '==' e1 { e0.v = e11.v == e12.v ? 1 : 0; } | (* Equal to *)
38 e1 '!=' e1 { e0.v = e11.v != e12.v ? 1 : 0; } (* Not equal to *)
39

40 e1 <v:int> ::= e2 { e1.v = e21.v; } |
41 e1 '+' e2 { e1.v = e11.v + e21.v; } | (* Add *)
42 e1 '=' e2 { e1.v = e11.v = e21.v; } (* Subtract *)
43

Attributes – using ART with attribute grammars and GIFT rewrites 219

44 e2 <v:int> ::= e3 { e2.v= e31.v; } |
45 e2 '*' e3 { e2.v = e21.v * e31.v; } | (* Multiply *)
46 e2 '/' e3 { e2.v = e21.v / e31.v; } | (* Divide *)
47 e2 '%' e3 { e2.v = e21.v % e31.v; } (* Mod *)
48

49 e3 <v:int> ::= e4 {e3.v = e41.v; } |
50 '+' e3 {e3.v = e41.v; } | (* Posite *)
51 '=' e3 {e3.v = =e41.v; } (* Negate *)
52

53 e4 <v:int> ::= e5 { e4.v = e51.v; } |
54 e5 '**' e4 {e4.v = (int) Math.pow(e51.v, e41.v); } (* exponentiate *)
55

56 e5 <v:int> ::= INTEGER {e5.v = INTEGER1.v; } | (* Integer literal *)
57 ID { e5.v = symbols.get(ID1.v); } | (* Variable access *)
58 '(' e1 { e5.v = e11.v; } ')' (* do=first *)
59

60 ID <leftExtent:int rightExtent:int lexeme:String v:String> ::=
61 &ID {ID.lexeme = artLexeme(ID.leftExtent, ID.rightExtent);
62 ID.v = artLexemeAsID(ID.leftExtent, ID.rightExtent); }
63

64 INTEGER <leftExtent:int rightExtent:int lexeme:String v:int> ::=
65 &INTEGER {INTEGER.lexeme = artLexeme(INTEGER.leftExtent, INTEGER.rightExtent);
66 INTEGER.v = artLexemeAsInteger(INTEGER.leftExtent, INTEGER.rightExtent); }
67

68 STRING DQ <leftExtent:int rightExtent:int lexeme:String v:String> ::=
69 &STRING DQ {STRING DQ.lexeme =
70 artLexeme(STRING DQ.leftExtent, STRING DQ.rightExtent);
71 STRING DQ.v = artLexemeAsString(STRING DQ.leftExtent, STRING DQ.rightExtent); }

Exercise: write programs to test the nested-if ambiguity. Do ART’s default
disambiguation rules generate the expected results?

B.5.18 miniWhile – adding loops

The specification miniWhile.art further extends Mini with a while loop. Here
is the key addition:

1 'while' e0< 'do' statement< (* while statement *)
2 { artEvaluate(statement.e01, e01);
3 while (e01.v != 0) {
4 artEvaluate(statement.statement1, statement1);
5 artEvaluate(statement.e01, e01);
6 }
7 } |

The syntactic structure is very similar to an if statement, but we need to
implement the actions with care. We make an initial evaluation of e0, and then

Attributes – using ART with attribute grammars and GIFT rewrites 220

loop over the body and a re-evaluation of e0 as long as the returned value is
non-zero.

This is the first time we have seen a sub-tree evaluated more than once.
The tree is a purely syntactic structure, and our attribute schemes (even these
higher-order delayed attributes) do not allow us to change the tree. Therefore,
the only way that we can see any variation in the evaluation of a sub-tree results
from side effects. In this case, the relevant side effects are the updating of values
in the symbol table as a result of assignments.

When run on this input

1 {
2 x = 3;
3 while x > 0 do { print(”x is ”, x, ”\n”); x = x =1; }
4 }

We get this output

1 x is 3
2 x is 2
3 x is 1

Exercise: add a do - while statement to Mini.

B.5.19 miniCall – adding procedures

Attributes are only locally visible, and that is true for delayed attributes too.
Procedure call is non-local in the sense that we define procedures (functions,
subroutines, methods, call them what you will) in one part of a program, and
we call the code from potentially many places in the program.

To connect calls to their procedure definitions, therefore, we need to be able
to propagate information across the tree, in much the same way that we need to
connect assignment statements to their corresponding variable usages. As we
saw in the previous lab, we can do this by creating a map between identifiers
and values. We can use the same idea to connect the names of procedures to
their code bodies.

In a real compiler we often use a single hierarchical name space to handle
variables and procedure names. To keep things simple in minicall.art, we have
two independent maps, one for the variable names and one for the procedures.
This allows us have a map from identifiers to integers to support assignments
and variable usages, and another map from identifiers to tree nodes to support
procedure definition an call. As a further simplification, we use explicit syntax
to flag procedure calls with a call keyword.

You have the file miniCall.art which extends miniWhile.art with these
productions:

1 support {HashMap<String, ART TT> procedures = new HashMap<String, ART TT>();}

Attributes – using ART with attribute grammars and GIFT rewrites 221

2

3 statement ::= 'procedure' ID statement<
4 { procedures.put(ID1.v, statement.statement1); } |
5

6 'call' ID ';' { artEvaluate(procedures.get(ID1.v), null); } |

If we run this extended grammar with the input

1 {
2 procedure sub { print(”Hello from a procedure\n”); }
3 x = 3;
4 while x > 0 do { print(”x is ”, x, ”\n”); x = x =1; }
5 call sub;
6 }

we get this output

1 x is 3
2 x is 2
3 x is 1
4 Hello from a procedure

Now, this implementation is quite limited. Apart from the syntactic clum-
siness, our procedures have no parameters or return values. Your task now is
to consider how to make a better implementation. Here is one idea for you to
pursue.

It is easy to add syntax to support one (or indeed more) formal parameters
to the procedure declaration, and to add one or more expressions to the call.
To simplify things, let us just add a single parameter. Now, the fundamental
problem we have is that our maps only provide a single scope region, and we
would not much enjoy having to think of unique parameters names for every
procedure. A proper solution requires multiple scopes, but we can ‘uniquify’
parameter names by internally concatenating them with the name of the pro-
cedure. We can use an illegal character such as $ as a separator, so for instance
a parameter x to procedure myproc would be put into the variable map under
the name myproc$x. This cannot clash with a user variable name, because Mini
user variables names cannot include a $ character.

Your task now is to add such a feature to Mini, and to add semantics to
the call statement so that the argument expression is evaluated and assigned
to the relevant variable.

This scheme has deep flaws. What happens if such a procedure calls itself?

B.5.20 GIFT operators in ART

In this lab we shall use ART’s GIFT operators to generate Rewritten Derivation
Trees (RDT’s). A well-designed RDT contains all of the essential information

Attributes – using ART with attribute grammars and GIFT rewrites 222

from the derivation tree but is more compact, and possibly rearranged to better
suit the semantics. We shall restrict ourselves to the two fold operators: fold-
under ˆ and fold over ˆˆ

B.5.21 miniSyntax – folding derivation trees

Following the examples in the main text, exercise these three grammars:

1 X ::= `a `b `c `d

and

1 X ::= `a `b `cˆ `d

and

1 X ::= `a `b `cˆˆ `d

Ensure that you visualise and fully understand the effect of the fold opera-
tors on terminals.

B.5.22 Folding nonterminals

When the in-edge to a nonterminal is folded, the children of the nonterminal
are dragged upwards and become siblings of the folded nonterminal’s siblings.

Exercise these three grammars and ensure you fully understand the action
of the fold operators.

1 X ::= a b Y d
2 Y ::= y z

and

1 X ::= a b Yˆ d
2 Y ::= y z

and

1 X ::= a b Yˆˆ d
2 Y ::= y z

Attributes – using ART with attribute grammars and GIFT rewrites 223

B.5.23 Suppressing punctuation

Programming language syntaxes are defined over one-dimensional strings of
characters, but derivation trees are two-dimensional. In addition, the tree nodes
naturally break up the string into ‘lumps’. As a result, we can separators
(such as commas and semicolons) and various kinds of brackets as simply one-
dimensional cues that can be discarded in the tree.

Write a simple grammar that describes procedure calls which must have
exactly zero or one variable. Example strings include Y() and Z(a).

Now add fold operators so that the resulting trees have root node labelled
with the name of the function,

B.5.24 Flattening lists

Write a recursive grammar that matches comma delimited lists of identifiers
such a,b,c,d a and a,b Your grammar should also match the empty string.

Now add fold operators so that the commas are removed, and the identifiers
are siblings under a root node.

B.5.25 Function calls

Now combine your two previous solutions to make a grammar which describes
function calls with arbitrary numbers of arguments and which produces RDT’s
which have a root node labelled with the name of the function and which have
all of the arguments as siblings under that root node.

B.5.26 Expression trees

Write a grammar that describes expressions over the four standard arithmetic
operators and parentheses which correctly captures the priorities of those op-
erators, and the effect of parentheses.

Now add fold operators so that the resulting RDT is composed entirely of
terminals, and still reflects the priorities of the operators. the applications,
advantages and disadvantages of Domain Specific Languages. Start with the
Wiki page and stack overflow.

C Project work

The goal

The project is an opportunity for you to display your creativity. The goal is to
produce a Domain Specific Language that could be used by somebody who is
not a computer scientist to access advanced features.

Choice of domain

Many DSLs are developed inside companies, and their functions are naturally
very company specific, so they wouldn’t make good examples for our purposes.
A lot of other DSLs are essentially data description languages, and they are less
interesting because they lack control flow (and are thus not Turing Complete).

Java comes with powerful libraries that include a full MIDI synthesizer,
an advanced 3D graphics capability and image handling. This project will be
based around those subsystems.

You must choose from one of three domains in which to work, and then you
will write a small programming language suitable for use by a non-specialist.
The domains are:

1. 3D modelling of objects, targeting 3D printing;

2. 2D image processing; and

3. music.

This appendix includes introductions to the Java APIs which will give you
some experience of each domain so that you can make an informed decision.

Getting started 225

Weekly activity

To give structure to your work, here is a week-by-week list of activities that
you should be working to. It is entirely your responsibility to manage your own
time. This is a framework to keep you on track, not a series of hoops to jump
through!

Week Submission Activity

1 Experiments with JavaFX 3D
2 Experiments with simple image processing and Java MIDI
3 A Choice of domain, language features and internal syntax
4 A Core eSOS interpetation
5 A DSL feature and plugin development
6 B Design of external syntax
7 B External to internal syntax parsing
– – Part A submission at end of week 7
8 B Attribute evaluator for control flow
9 B Attribute evaluator for scope and types
10 B Example programs and testing
11 B Finish write up
– – Part B submission at end of week 11

Assessment

The project is a substantial piece of work, worth 50% of the mark on this final
year module with seven deliverables.

The marking scheme is:

1. 5% Informal language specification

2. 5% Internal syntax signatures

3. 25% eSOS rules for an interpreter

4. 10% External syntax parser generating internal syntax trees

5. 25% Attribute evaluation based interpreter

6. 10% Example domain specific programs

7. 20% A concise write up as a single PDF file which includes descriptions of
the other deliverables and which emphasises your personal achievements.

C.1 Getting started

In section C.4 you will find a the deliverables for complete miniature project
language called PiM which extends the GCD language with a single backend
command. It is perfectly allowable for you to use the source files for PiM as the
starting point for your work. Of course, you must add significant value,

Submission 226

and your project report will contain a final section called Achievements where
you can list the extensions to PiM that you have made. It is also perfectly
allowable for you to write a new language from scratch without using PiM as a
base.

C.2 Submission

There are two submission deadlines, one at the end of week seven and the other
at the end of term. For each, submit via Moodle a single zip file containing the
required deliverables. For the first submission, you must include deliverables 1–
3 (informal language specification, internal syntax signatures and eSOS rules).
For the second submission, you must include all seven deliverables.

C.2.1 The writeup

Your writeup should be provided as a single PDF file. There should be an
introductory section explaining your choice of domain, then a section for each
of deliverables 1–6 highlighting any interesting aspects of your work. Finally,
there should be an Achievements section which lists the novelty: that is the
extensions you have made to PiM. You do not need to write extensively: the
goal is to show (a) that this is your own work and not copied from elsewhere and
(b) highlight to the markers anything that you are particularly proud of. You
can reasonably assume that the first thing the markers will do is turn to your
Achievements section to get a sense of what you have done, so take particular
care to give a good summary of your language’s capabilities.

C.3 Ideas

Ideas for features to implement come in two categories: general purpose pro-
gramming language features and Domain Specific features. The PiM example
is deliberately minimalist which leaves great scope for extension. Here is an
incomplete list of programming language features that are not present in PiM
and could be candidates for your own extensions. You may have other great
ideas of your own.

for loops, do-while loops, repeat-until loops, break, labelled break, continue,
switch statements, procedure call and return, procedure parameters, named and
default parameters, scope, reference variables that allow two names to refer to
the same memory location allowing linked data structures to be constructed, any
kind of type system, most of the arithmetic operators, logic operators, pattern
matching, lambdas, exceptions, objects, . . .

PiM – the project in miniature 227

C.4 PiM – the project in miniature

In this section we look at a tiny version of the project. The scope of the language
is extremely limited, but we shall illustrate the stages you need to go through,
and give examples of all of the techniques you need to exercise.

Source code for all of the material discussed in this Appendix is available in
the directory SLELabs/Project.

You may use SLELabs/ProjectWork as the base for your work: ProjectWork
is a clone of ProjectMaster.

I recommend that you do not change the files in ProjectMaster so that you
have a clean copy of the files for reference.

The file 00README.txt in SLELabs/ProjectMaster contains instructions
for running all of the examples.

Our exemplar PiM language is the GCD language from Chapter 1 ex-
tended with a statement backend(int32, int32, int32) which connects
to backend code via class ValueUserPlugin.

The marking scheme lists the six deliverables that you should include in
your write up; the write up itself constitutes the seventh deliverable, of course.

1. An informal language specification in the style shown below, listing your
languages features.

2. A list of internal syntax signatures, each with an informal comment as to
its function.

3. A set of eSOS rules that can interpret terms over your internal syntax
and an associated ValueUserPlugin for the backend.

4. A context free parser decorated with promotion operators ˆ and ˆˆ that
translates from external syntax to internal syntax.

5. A context free grammar decorated with attributes and actions that di-
rectly interprets your language an associated ValueUserPlugin for the
backend.

6. Example programs and test outputs.

We shall now go through these six sections for the PiM language. Advice on
the seventh deliverable (the write up) may be found in section C.2.1.

C.4.1 Informal language specification

The language PiM can perform simple arithmetic and call a back end function.

PiM – the project in miniature 228

S.1 Programs
A PiM program is one or more statements
Statements are separated by the ; and-also operator. There is no state-
ment terminator.
A sequence of whitespace characters can be used wherever one whites-
pace is valid.

S.2 Arithmetic and expressions
PiM has only 32-bit integer arithmetic
Non-keyword alphanumeric identifiers denote variables that may have
integers bound to them.
The only operations provided are subtraction over constant integers and
variables such as x− y, x− 3 or 3− 4

S.3 Predicates
PiM allows comparison of 32-bit integers using relational operators that
return a boolean result
x > y x greater than y
x!=y x not equal to y

S.4 Selection statements
PiM provides two selection statements
if pred then statement else statement

if pred then statement

where pred is a predicate as defined in section S.3, and statement is
any statement

S.5 Iteration statements
PiM provides one iteration statement
while pred do statement

where pred is a predicate as defined in section S.4, and statement is
any statement

PiM – the project in miniature 229

S.6 Backend statement
PiM provides one DSL-type statement
backend(v1, v2, v3)

where v1, v2 and v3 are integer expressions.
This statement then activates the corresponding method in class Val-
ueUserPlugin via the user() function in the ART value library.
The behaviour depends on the code implemented in that class.
Implementation note: The only connection between the eSOS interpreter
and the Java backend is the ART value function user() which can have
any arity and which returns a single Value.
A protocol must be defined for passing information between the eSOS
interpreter and the Java backend.
Typically the first argument will be an operation code, and subse-
quent arguments will be operation-specific data. In the example plugin
ValueUserPlugin TEXT.java, the only action is to print to the console
the values passed, and to return a string.

C.4.2 Internal syntax constructors and arities

⋄ seq(C1, C2) execute command C 1 followed by command C 2

⋄ sub(E1: int32, E2: int32) integer subtraction: E 1 − E 2

⋄ gt(E1: int32, E2: int32) integer greater-than E 1 > E 2

⋄ ne(E1: int32, E2: int32) integer not-equals E 1 ̸= E 2

⋄ assign(N: int32, E: int32) bind E to name N in variables map

⋄ deref(N)) retrieve binding for name N in variables map

⋄ if(P: bool, C1, C2) select if P then execute C 2 else execute C 3

⋄ while(P: bool, C1, C2) iterate while P then execute C 2 else execute
C 3

⋄ backend(V1, V2, V3) call user(V1, V2, V3)

C.4.3 eSOS rules

Source form

-sequenceDone

seq(__done, _C), _sig -> _C, _sig

-sequence

_C1, _sig -> _C1P, _sigP

seq(_C1, _C2), _sig -> seq(_C1P, _C2), _sigP

PiM – the project in miniature 230

-ifTrue

if(True, _C1, _C2),_sig -> _C1, _sig

-ifFalse

if(False, _C1, _C2),_sig -> _C2,_sig

-ifResolve

_E, _sig ->_EP, _sigP

if(_E,_C1,_C2),_sig -> if(_EP, _C1, _C2), _sigP

-while

while(_E, _C),_sig -> if(_E, seq(_C, while(_E,_C)), __done), _sig

-assign

_n |> __int32(_)

assign(_X, _n), _sig -> __done, __put(_sig, _X, _n)

-assignResolve

_E, _sig -> _I, _sigP

assign(_X,_E), _sig -> assign(_X, _I), _sigP

-gt

_n1 |> __int32(_) _n2 |> __int32(_)

gt(_n1, _n2),_sig -> __gt(_n1, _n2),_sig

-gtRight

_n |> __int32(_) _E2, _sig -> _I2,_sigP

gt(_n, _E2),_sig -> gt(_n, _I2), _sigP

-gtLeft

_E1, _sig -> _I1, _sigP

gt(_E1, _E2),_sig -> gt(_I1, _E2), _sigP

-ne

_n1 |> __int32(_) _n2 |> __int32(_)

ne(_n1, _n2),_sig -> __ne(_n1, _n2),_sig

PiM – the project in miniature 231

-neRight

_n |> __int32(_) _E2, _sig -> _I2,_sigP

ne(_n, _E2),_sig -> ne(_n, _I2), _sigP

-neLeft

_E1, _sig -> _I1, _sigP

ne(_E1, _E2),_sig -> ne(_I1, _E2), _sigP

-sub

_n1 |> __int32(_) _n2 |> __int32(_)

sub(_n1, _n2),_sig -> __sub(_n1, _n2),_sig

-subRight

_n |> __int32(_) _E2,_sig -> _I2,_sigP

sub(_n, _E2),_sig -> sub(_n, _I2), _sigP

-subLeft

_E1,_sig -> _I1,_sigP

sub(_E1, _E2),_sig -> sub(_I1, _E2), _sigP

-variable

__get(_sig, _R) |> _Z

deref(_R),_sig -> _Z, _sig

-backend

backend(_P1, _P2, _P3),_sig -> __user(_P1, _P2, _P3)

//!try 2 seq(assign(a, 15), seq(seq(seq(assign(b, 9), while(ne(deref(a), deref(b)), if(gt(deref(a), deref(b)), assign(a, sub(deref(a), deref(b))), assign(b, sub(deref(b), deref(a)))))), assign(gcd, deref(a))), backend(1, 2, 3))), __map ->

!try 2 @"term.txt", __map ->

Typeset form

[sub]
n1 ▷ int32() n2 ▷ int32()

⟨sub(n1,n2), σ⟩ → ⟨ sub(n1,n2), σ⟩

[subRight]
n ▷ int32() ⟨E2, σ⟩ → ⟨I2, σ′⟩
⟨sub(n,E2), σ⟩ → ⟨sub(n, I2), σ′⟩

PiM – the project in miniature 232

[subLeft]
⟨E1, σ⟩ → ⟨I1, σ′⟩

⟨sub(E1,E2), σ⟩ → ⟨sub(I1,E2), σ
′⟩

[gt]
n1 ▷ int32() n2 ▷ int32()

⟨gt(n1,n2), σ⟩ → ⟨ gt(n1,n2), σ⟩

[gtRight]
n ▷ int32() ⟨E2, σ⟩ → ⟨I2, σ′⟩
⟨gt(n,E2), σ⟩ → ⟨gt(n, I2), σ′⟩

[gtLeft]
⟨E1, σ⟩ → ⟨I1, σ′⟩

⟨gt(E1,E2), σ⟩ → ⟨gt(I1,E2), σ
′⟩

[variable]
get(σ,R) ▷ Z

⟨deref(R), σ⟩ → ⟨Z , σ⟩

[backend]
⟨backend(P1,P2,P3), σ⟩ → ⟨ user(P1,P2,P3)⟩

[ifTrue]
⟨if(boolean(True),C1,C2), σ⟩ → ⟨C1, σ⟩

[ifFalse]
⟨if(boolean(False),C1,C2), σ⟩ → ⟨C2, σ⟩

[ifResolve]
⟨E , σ⟩ → ⟨E ′, σ′⟩

⟨if(E ,C1,C2), σ⟩ → ⟨if(E ′,C1,C2), σ
′⟩

[ne]
n1 ▷ int32() n2 ▷ int32()

⟨ne(n1,n2), σ⟩ → ⟨ ne(n1,n2), σ⟩

[neRight]
n ▷ int32() ⟨E2, σ⟩ → ⟨I2, σ′⟩
⟨ne(n,E2), σ⟩ → ⟨ne(n, I2), σ′⟩

[neLeft]
⟨E1, σ⟩ → ⟨I1, σ′⟩

⟨ne(E1,E2), σ⟩ → ⟨ne(I1,E2), σ
′⟩

[sequenceDone]
⟨seq(done,C), σ⟩ → ⟨C , σ⟩

PiM – the project in miniature 233

[sequence]
⟨C1, σ⟩ → ⟨C1

′, σ′⟩
⟨seq(C1,C2), σ⟩ → ⟨seq(C1

′,C2), σ
′⟩

[while]
⟨while(E ,C), σ⟩ → ⟨if(E , seq(C ,while(E ,C)), done), σ⟩

[assign]
n ▷ int32()

⟨assign(X ,n), σ⟩ → ⟨ done, put(σ,X ,n)⟩

[assignResolve]
⟨E , σ⟩ → ⟨I , σ′⟩

⟨assign(X ,E), σ⟩ → ⟨assign(X , I), σ′⟩

C.4.4 Internal to external syntax translator

statement ::= seq | assign | if | while | backend

seq ::= statement statement

assign ::= ID ':=' subExpr ';'

if ::= 'if' relExpr statement 'else' statement

while ::= 'while' relExpr statement

backend ::= 'backend' '(' subExpr ',' subExpr ',' subExpr ')'

relExpr ::= subExpr | gt | ne

gt ::= relExpr '>' subExpr

ne ::= relExpr '!=' subExpr

subExpr ::= operand | sub

sub ::= subExpr '-' operand

operand ::= deref | INTEGER | '(' subExpr ')'

deref ::= ID

C.4.5 Attribute grammar interpreter

(* ART parser with attributes for the GCD language *)

prelude {import java.util.HashMap; }

support { HashMap<String, Integer> variables = new HashMap<String, Integer>();

ValueUserPlugin valueUserPlugin = new ValueUserPlugin();

}

PiM – the project in miniature 234

statements ::=

statement { System.out.println("Variables at end of program: " + variables); }

| statement statements

statement ::=

ID ':=' subExpr ';' { variables.put(ID1.v, subExpr1.v); }

| 'if' relExpr statement< 'else' statement<

{ if (relExpr1.v != 0)

artEvaluate(statement.statement1, statement1);

else

artEvaluate(statement.statement2, statement2);

}

| 'while' relExpr< statement<

{ artEvaluate(statement.relExpr1, relExpr1);

while (relExpr1.v != 0) {

artEvaluate(statement.statement1, statement1);

artEvaluate(statement.relExpr1, relExpr1);

}

}

| 'backend' '(' subExpr ',' subExpr ',' subExpr ')'

{ valueUserPlugin.user(subExpr1.v,subExpr2.v,subExpr3.v); }

relExpr<v:int> ::=

subExpr { relExpr.v = subExpr1.v; }

| relExpr '>' subExpr { relExpr.v = relExpr1.v > subExpr1.v ? 1 : 0; }

| relExpr '!=' subExpr { relExpr.v = relExpr1.v != subExpr1.v ? 1 : 0; }

subExpr<v:int> ::=

operand { subExpr.v = operand1.v; }

| subExpr '-' operand { subExpr.v = subExpr1.v - operand1.v; }

operand<v:int> ::=

ID {operand.v = variables.get(ID1.v); }

| INTEGER {operand.v = INTEGER1.v; }

| '(' subExpr ')' {operand.v = subExpr1.v; }

(* lexical items below this line *)

ID <leftExtent:int rightExtent:int lexeme:String v:String> ::=

&ID {ID.lexeme = artLexeme(ID.leftExtent, ID.rightExtent);

ID.v = artLexemeAsID(ID.leftExtent, ID.rightExtent); }

INTEGER <leftExtent:int rightExtent:int lexeme:String v:int> ::=

&INTEGER {INTEGER.lexeme = artLexeme(INTEGER.leftExtent, INTEGER.rightExtent);

INTEGER.v = artLexemeAsInteger(INTEGER.leftExtent, INTEGER.rightExtent); }

Back end libraries 235

C.4.6 Examples and tests

a := 15; b := 9;

while a != b

if a > b

a := a - b;

else

b := b - a;

gcd := a;

backend(1,2,3)

** Accept

Variables at end of program: {a=3, b=3, gcd=3}

C.5 Back end libraries

In this section we look at back end code that you could connect to using your
own version of ValueUserPlugin. There are three suggested options: JavaFX
for 3D CAD and graphics, some hand rolled code for 2D image processing, and
the Java MIDI system.

C.5.1 An introduction to JavaFX

There have been several major graphics libraries developed for Java. For a long
time Swing was the ‘official’ graphics library, but around 2012 Oracle announced
that it would be succeeded by JavaFX.

For our purposes, one of the most exciting aspects of JavaFX is that it offers
3D graphics based on meshes.

JavaFX is based in the notion of a scene graph (actually a tree) of objects
which are rendered by underlying graphics hardware. So one might declare a
box which contains different subsections, and each pane might have a picture
in it or user interface buttons.

JavaFX also uses a theater metaphor to manage the display of windows. A
stage is the platform on which a display may be built, and stages may appear
as windows on the desktop.

Once we have a stage, we can attach different scenes to it, and each scene
has an associated tree of objects to display.

WindowTest.java

Our first example simply opens a window. When you admired it, close it in the
usual way by clicking on the window’s close button.

Back end libraries 236

1 import javafx.application.Application;
2 import javafx.stage.Stage;
3

4 public class WindowTest extends Application {
5 @Override
6 public void start(Stage primaryStage) throws Exception {
7 primaryStage.setTitle(”A window”);
8 primaryStage.show();
9 }

10 }

As you can see from the code above, JavaFX applications look a little dif-
ferent to conventional Java programs in that they appear to have no main()

method.
The reasons for this is that JavaFX has to (a) perform a large amount of

initialisation and (b) needs to be in control. In a point-and-click style user
interface, programs are event driven. Java FX maintains various threads, one
of which is called the application thread. Once everything is nicely set up, Java
calls the allocation thread, which hooks into your code (class WindowTest in
this case) as long as it is an extension of the JavaFX class Application.

So JavaFX user programs always extend Applications and instead of a
main() method they have one called start().

You can put initialisation code into your extension into start() and in a
dynamic user interface that would include attaching listeners to various kinds
of events. If all you want to do is just display something, then you can put all
of the code into start() and your program will then exit, presumably opening
at least one graphical window, and then wait until the user closes that window.
This is the style that we shall use in these examples.

If you want a a dynamic user interface that triggers large scale processing,
then you should make a new thread so that the avaFX application thread can
remain responsive to user inputs such as mouse clicks. You’ll find a useful
tutorial referenced in subsection C.5.1 below.

Back end libraries 237

SceneTest.java

We now extend the first example so that the window includes a small text label.
The window will by default resize to fit the label, so it will be very small!

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Label;
4 import javafx.stage.Stage;
5

6 public class SceneTest extends Application {
7 @Override
8 public void start(Stage primaryStage) throws Exception {
9 primaryStage.setTitle(”A window”);

10 Label label = new Label(”A label”);
11 Scene scene = new Scene(label);
12 primaryStage.setScene(scene);
13 primaryStage.show();
14 }
15 }

So in this example the scene graph (which was empty in the first example) is
still rather degenerate: it is a only single node that is supplied as an argument
to the Scene() constructor. The text on the label is specified on the Label

constructor.

LabelSizeTest.java

By default, the window snaps to the size of its contents. We can override that
by calling the setWidth() method on the Stage object that is associated with
the window.

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Label;
4 import javafx.stage.Stage;
5

6 public class LabelSizeTest extends Application {
7 @Override
8 public void start(Stage primaryStage) throws Exception {
9 primaryStage.setTitle(”A window”);

10 Label label = new Label(”A label”);
11 Scene scene = new Scene(label);

Back end libraries 238

12

13 primaryStage.setWidth(400);
14 // primaryStage.setHeight(200);
15 primaryStage.setScene(scene);
16 primaryStage.show();
17 }
18 }

ImageTest.java

JavaFX knows how to render common image formats, and will deduce the for-
mat from the filename. The zip file containing these example files also includes
a picture of one of my steam engines called GERTanl.png.

Displaying images is a two stage process. First you have to load the im-
age into memory by creating an Image object. In the constructor you can
specify the filename, along with sizes to scale to - the online documentation
is viewable at https://openjfx.io/javadoc/12/javafx.graphics/javafx/

scene/image/package-summary.html

After loading the image, you wrap it in an ImageView object. This is of the
right type to be built into the JavaFX scene graph.

There is one more subtlety. We are now going to have a non-degenerate
tree, so we need a parent node off which we can hang other scene nodes. The
type Group represents a ‘bland’ tree node that simply acts as a scaffolding node
for other tree elements. So we create a Scene with a Group as its root node,
and then we can start hanging other nodes off of the group, which we do by
adding them to the Group’s children.

1 import javafx.application.Application;
2 import javafx.scene.Group;
3 import javafx.scene.Scene;
4 import javafx.scene.image.Image;
5 import javafx.scene.image.ImageView;
6 import javafx.stage.Stage;
7

8 public class ImageTest extends Application {
9 @Override

10 public void start(Stage primaryStage) throws Exception {
11 primaryStage.setTitle(”A window”);
12 Group group = new Group();
13 Scene scene = new Scene(group);
14

15 Image image = new Image(”GERTank.png”, 400, 0, true, true);
16 ImageView imageView = new ImageView(image);
17

18 group.getChildren().add(imageView);
19

https://openjfx.io/javadoc/12/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/12/javafx.graphics/javafx/scene/image/package-summary.html

Back end libraries 239

20 primaryStage.setWidth(1000);
21 primaryStage.setHeight(800);
22 primaryStage.setScene(scene);
23 primaryStage.show();
24 }
25 }

SolidTest.java

Up until now, all of our examples have used only two dimensional graphics.
JavaFX has a powerful 3D imaging capability. Using 3D is a step up in com-
plexity, but the principles remain the same: there is a scene graph (tree) and
you add elements to it. You also need to add a camera to a scene or you won’t
see anything!

Often difficulties with 3D graphics turn out to involve having the camera
looking the right way: in a later session we’ll look at how to controlthe camera
with the mouse.

1 import javafx.application.Application;
2 import javafx.application.ConditionalFeature;
3 import javafx.application.Platform;
4 import javafx.scene.Group;
5 import javafx.scene.PerspectiveCamera;
6 import javafx.scene.Scene;
7 import javafx.scene.paint.Color;
8 import javafx.scene.paint.PhongMaterial;
9 import javafx.scene.shape.Box;

10 import javafx.scene.shape.Sphere;
11 import javafx.scene.transform.Rotate;
12 import javafx.stage.Stage;
13

14 public class SolidTest extends Application {
15 public static void main(String[] args) {
16 launch(args);

Back end libraries 240

17 }
18 @Override
19 public void start(Stage primaryStage) {
20 // Check to see if our graphics system will play nicely
21 if (!Platform.isSupported(ConditionalFeature.SCENE3D)) {
22 System.err.println(”Your display system does not support JavaFX 3D = exiting”);
23 System.exit(1);
24 }
25

26 final int windowX = 800;
27 final int windowY = 600;
28 primaryStage.setTitle(”A window”);
29

30 // Create a scene with a rotated group at its root
31 Group root = new Group();
32 root.setRotationAxis(Rotate.Y AXIS);
33 root.setRotate(50);
34 Scene scene = new Scene(root, windowX, windowY, true);
35

36 // Make some coloured materials
37 final PhongMaterial redMaterial = new PhongMaterial();
38 redMaterial.setDiffuseColor(Color.DARKRED);
39 redMaterial.setSpecularColor(Color.RED);
40

41 final PhongMaterial greenMaterial = new PhongMaterial();
42 greenMaterial.setDiffuseColor(Color.DARKGREEN);
43 greenMaterial.setSpecularColor(Color.GREEN);
44

45 final PhongMaterial blueMaterial = new PhongMaterial();
46 blueMaterial.setDiffuseColor(Color.DARKBLUE);
47 blueMaterial.setSpecularColor(Color.BLUE);
48

49 // Make three coordinate boxes in different colours
50 final Box xAxis = new Box(windowX / 2, 10, 10);
51 xAxis.setMaterial(redMaterial);
52 final Box yAxis = new Box(10, windowY / 2, 10);
53 yAxis.setMaterial(greenMaterial);
54 final Box zAxis = new Box(10, 10, windowY / 2);
55 zAxis.setMaterial(blueMaterial);
56

57 // Make a sphere in the default colour (grey)
58 Sphere ball = new Sphere(50);
59 ball.setTranslateX(120);
60 ball.setTranslateY(=100);
61 ball.setTranslateZ(10);
62

63 // Attach the axes and the ball as children of the root of the scene graph

Back end libraries 241

64 root.getChildren().addAll(xAxis, yAxis, zAxis, ball);
65

66 // Create camera and move it away from the origin
67 PerspectiveCamera camera = new PerspectiveCamera(false);
68 camera.setTranslateX(=0.25 * windowX);
69 camera.setTranslateY(=0.7 * windowY);
70 scene.setCamera(camera); // Putthe camera into the scene
71

72 // Now attach the scene to our stage, and 'open the curtains'
73 primaryStage.setScene(scene);
74 primaryStage.show();
75 }
76 }

Other JavaFX materials

There are some very good online tutorials that you can explore as part of your
wider reading.

Oracle Java 8 tutorials

These are the original Oracle tutorials for Java FX. If you are working with the
3D domain you must read and try out the examples in the javafx-3d-graphics
tutorial.

https://docs.oracle.com/javase/8/javafx/get-started-tutorial

https://docs.oracle.com/javase/8/javafx/graphics-tutorial/preface.htm

https://docs.oracle.com/javase/8/javafx/graphics-tutorial/javafx-3d-graphics.htm

Open JavaFX tutorials

JavaFX has now been unbundled by Oracle and is a community project. On-
going development is under the umbrella of the openJavaFX group, and they
have provided their own tutorials.

https://openjfx.io/openjfx-docs/

https://docs.oracle.com/javase/8/javafx/get-started-tutorial
https://docs.oracle.com/javase/8/javafx/graphics-tutorial/preface.htm
https://docs.oracle.com/javase/8/javafx/graphics-tutorial/javafx-3d-graphics.htm
https://openjfx.io/openjfx-docs/

Back end libraries 242

Jencov JavaFX tutorials

Jacob Jencov has provided many tutorials on Java and the Java APIs. I like
his concise and fairly comprehensive approach, and I think youmight too.

http://tutorials.jenkov.com/javafx/index.html

Jencov JavaFX concurrency tutorial

IMPORTANT!

All modifications to the JavaFX scene graph must be performed from the
main JavaFX thread. That thread also handles all UI inputs, such as mouse
events. Now, if you also do a lot of back end processing on that thread then
the user interface can become jittery and slow. So if you have a lot of non-UI
processing to do you should multi-thread. This tutorial is a helpful introduction.

http://tutorials.jenkov.com/javafx/concurrency.html

http://tutorials.jenkov.com/javafx/index.html
http://tutorials.jenkov.com/javafx/concurrency.html

Back end libraries 243

C.5.2 An introduction to image processing

In this lab we shall work with the supplied Java class ImageProcessingDemo

which you will find in the imageProcessing subdirectory of the SLELabs pack-
age.

You compile and run the program by issuing the command

tst ImageProcessingDemo

The program outputs the message

Image Height: 576.0

Image Width: 768.0

and displays this window

The monochrome image on the right is an edge map of the locomotive. It is
bright where there are sharp edges in the original colour image, and dark where
the original image has a uniform tone.

The pipeline of operations that produces this edge map is:

1. convert the colour image to monochrome

2. compute dx, the horizontal grey-scale gradient component

3. compute dy, the vertical grey-scale gradient component

4. compute the magnitude of the grey-scale gradient as
√
d2x + d2y

5. threshold the gradient so that values above mid-grey are mapped to white
and other values to black

Back end libraries 244

The six stages look like this:

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.image.Image;
4 import javafx.scene.image.ImageView;
5 import javafx.scene.image.PixelReader;
6 import javafx.scene.image.PixelWriter;
7 import javafx.scene.image.WritableImage;
8 import javafx.scene.layout.HBox;
9 import javafx.scene.paint.Color;

10 import javafx.stage.Stage;

Back end libraries 245

11

12 public class ImageProcessingDemo extends Application {
13 @Override
14 public void start(Stage primaryStage) throws Exception {
15 primaryStage.setTitle(”Image processing demo”);
16 HBox root = new HBox();
17 Scene scene = new Scene(root);
18

19 Image inputImage = new Image(”GERTank.png”);
20 System.out.println(”Image Height: ” + inputImage.getHeight());
21 System.out.println(”Image Width: ” + inputImage.getWidth());
22

23 WritableImage outputImage = new WritableImage((int) inputImage.getWidth(), (int) inputImage.getHeight());
24

25 PixelReader pixelReader = inputImage.getPixelReader();
26 PixelWriter pixelWriter = outputImage.getPixelWriter();
27

28 for (int readY = 1; readY < inputImage.getHeight() = 1; readY++) {
29 for (int readX = 1; readX < inputImage.getWidth() = 1; readX++) {
30 /*
31 * p4 p3 p2
32 * p5 p0 p1
33 * p6 p7 p8
34 */
35 double p0 = pixelReader.getColor(readX, readY).grayscale().getRed();
36 double p1 = pixelReader.getColor(readX + 1, readY).grayscale().getRed();
37 double p2 = pixelReader.getColor(readX + 1, readY + 1).grayscale().getRed();
38 double p3 = pixelReader.getColor(readX, readY + 1).grayscale().getRed();
39 double p4 = pixelReader.getColor(readX = 1, readY + 1).grayscale().getRed();
40 double p5 = pixelReader.getColor(readX = 1, readY).grayscale().getRed();
41 double p6 = pixelReader.getColor(readX = 1, readY = 1).grayscale().getRed();
42 double p7 = pixelReader.getColor(readX, readY = 1).grayscale().getRed();
43 double p8 = pixelReader.getColor(readX + 1, readY = 1).grayscale().getRed();
44

45 double sobeldx = (p2 + 2 * p1 + p8) = (p4 + 2 * p5 + p6);
46 double sobeldy = (p4 + 2 * p3 + p2) = (p6 + 2 * p7 + p8);
47 double sobelFilter = Math.sqrt(sobeldx * sobeldx + sobeldy * sobeldy);
48

49 double edge = threshold(0.5, sobelFilter);
50

51 double meanFilter = (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) / 9;
52

53 double q0 = range(0, 1, edge);
54

55 pixelWriter.setColor(readX, readY, new Color(q0, q0, q0, 1));
56 }
57 }

Back end libraries 246

58

59 ImageView inputImageView = new ImageView(inputImage);
60 ImageView outputImageView = new ImageView(outputImage);
61 root.getChildren().addAll(inputImageView, outputImageView);
62 primaryStage.setScene(scene);
63 primaryStage.show();
64 }
65

66 private double range(double offset, double scale, double value) {
67 double ret = offset + (scale * value);
68 if (ret > 1.0) ret = 1.0;
69 if (ret < 0) ret = 0;
70 return ret;
71 }
72

73 private double threshold(double threshold, double value) {
74 return value >= threshold ? 1.0 : 0.0;
75 }
76 }

Back end libraries 247

C.5.3 An introduction to the Java MIDI subsystem

1 public enum Scale {
2 CHROMATIC, MAJOR, MINOR NATURAL, MINOR HARMONIC,
3 MINOR MELODIC ASCENDING, MINOR MELODIC DESCENDING
4 }

1 public enum Scale {
2 public enum Chord {
3 NONE, MAJOR, MINOR, MAJOR7, MINOR7
4 }

1 import javax.sound.midi.MidiChannel;
2 import javax.sound.midi.MidiSystem;
3 import javax.sound.midi.Synthesizer;
4

5 public class MiniMusicPlayer {
6 private Synthesizer synthesizer;
7 private MidiChannel[] channels;
8 private int defaultOctave = 5;
9 private int defaultVelocity = 50;

10 private int bpm;
11 private double bps;
12 private double beatPeriod;
13 private double beatRatio = 0.9;
14 private int beatSoundDelay = (int) (1000.0 * beatRatio / bps);
15 private int beatSilenceDelay = (int) (1000.0 * (1.0 = beatRatio) / bps);
16

17 MiniMusicPlayer() {
18 try {
19 System.out.print(MidiSystem.getMidiDeviceInfo());
20 synthesizer = MidiSystem.getSynthesizer();
21 synthesizer.open();
22 channels = synthesizer.getChannels();
23 } catch (Exception e) {
24 System.err.println(”miniMusicPlayer exception: ” + e.getMessage());
25 System.exit(1);
26 }
27

28 setBeatRatio(0.9);
29 setBpm(100);
30 setDefaultVelocity(50);
31 rest(2);
32 }

Back end libraries 248

33

34 public int getDefaultOctave() {
35 return defaultOctave;
36 }
37

38 public void setDefaultOctave(int defaultOctave) {
39 this.defaultOctave = defaultOctave;
40 }
41

42 public int getDefaultVelocity() {
43 return defaultVelocity;
44 }
45

46 public void setDefaultVelocity(int defaultVelocity) {
47 this.defaultVelocity = defaultVelocity;
48 }
49

50 public int getBpm() {
51 return bpm;
52 }
53

54 public void setBpm(int bpm) {
55 this.bpm = bpm;
56 bps = bpm / 60.0;
57 beatPeriod = 1000.0 / bps;
58 beatSoundDelay = (int) (beatRatio * beatPeriod);
59 beatSilenceDelay = (int) ((1.0 = beatRatio) * beatPeriod);
60 }
61

62 public void setBeatRatio(double beatRatio) {
63 this.beatRatio = beatRatio;
64 beatSoundDelay = (int) (beatRatio * beatPeriod);
65 beatSilenceDelay = (int) ((1.0 = beatRatio) * beatPeriod);
66 }
67

68 int noteNameToMidiKey(String n, int octave) {
69 // @formatter:off
70 int key = octave * 12 +
71 (n.equals(”C”) ? 0
72 : n.equals(”C#”) ? 1
73 : n.equals(”Db”) ? 1
74 : n.equals(”D”) ? 2
75 : n.equals(”D#”) ? 3
76 : n.equals(”Eb”) ? 3
77 : n.equals(”E”) ? 4
78 : n.equals(”F”) ? 5
79 : n.equals(”F#”) ? 6

Back end libraries 249

80 : n.equals(”Gb”) ? 6
81 : n.equals(”G”) ? 7
82 : n.equals(”G#”) ? 8
83 : n.equals(”Ab”) ? 8
84 : n.equals(”A”) ? 9
85 : n.equals(”A#”) ? 10
86 : n.equals(”Bb”) ? 10
87 : n.equals(”B”) ? 11
88 : =1);
89 // @formatter:on
90

91 if (key < 0 || key > 127) {
92 System.err.println(”miniMusicPlayer exception: attempt to access out of range MIDI key ”
93 + n + octave);
94 System.exit(1);
95 }
96 return key;
97 }
98

99 // Silence
100 public void rest(int beats) {
101 try {
102 Thread.sleep((long) (beats * beatPeriod));
103 } catch (InterruptedException e) {
104 /* ignore interruptedException */ }
105 }
106

107 // Single notes
108 void play(int k) {
109 try {
110 channels[0].noteOn(k, defaultVelocity);
111 Thread.sleep(beatSoundDelay);
112 channels[0].noteOn(k, 0);
113 Thread.sleep(beatSilenceDelay);
114 } catch (InterruptedException e) {
115 /* ignore interruptedException */ }
116 }
117

118 void play(String n) {
119 play(noteNameToMidiKey(n, defaultOctave));
120 }
121

122 void play(String n, int octave) {
123 play(noteNameToMidiKey(n, octave));
124 }
125

126 // Arrays of notes

Back end libraries 250

127 void play(int[] k) {
128 try {
129 for (int i = 0; i < k.length; i++)
130 channels[1].noteOn(k[i], defaultVelocity);
131 Thread.sleep(beatSoundDelay);
132 for (int i = 0; i < k.length; i++)
133 channels[1].noteOn(k[i], 0);
134 Thread.sleep(beatSilenceDelay);
135 } catch (InterruptedException e) {
136 /* ignore interruptedException */ }
137 }
138

139 private void playSequentially(int[] k) {
140 try {
141 for (int i = 0; i < k.length; i++) {
142 channels[i].noteOn(k[i], defaultVelocity);
143 Thread.sleep(beatSoundDelay);
144 channels[i].noteOn(k[i], 0);
145 Thread.sleep(beatSilenceDelay);
146 }
147 } catch (InterruptedException e) {
148 /* ignore interruptedException */ }
149 }
150

151 // Scales
152 void playScale(String n, Scale s) {
153 playScale(noteNameToMidiKey(n, defaultOctave), s);
154 }
155

156 void playScale(String n, int octave, Scale s) {
157 playScale(noteNameToMidiKey(n, octave), s);
158 }
159

160 void playScale(int k, Scale s) {
161 int[] keys;
162 switch (s) {
163 case CHROMATIC:
164 keys = new int[] { k, k + 1, k + 2, k + 3, k + 4, k + 5, k + 6, k + 7, k + 8, k + 9,
165 k + 10, k + 11, k + 12 };
166 break;
167

168 case MAJOR: // TTSTTTS
169 keys = new int[] { k, k + 2, k + 4, k + 5, k + 7, k + 9, k + 11, k + 12 };
170 break;
171

172 case MINOR NATURAL: // TSTTSTT
173 keys = new int[] { k, k + 2, k + 3, k + 5, k + 7, k + 8, k + 10, k + 12 };

Back end libraries 251

174 break;
175 case MINOR HARMONIC: // TSTTS3S
176 keys = new int[] { k, k + 2, k + 3, k + 5, k + 7, k + 8, k + 11, k + 12 };
177 break;
178 case MINOR MELODIC ASCENDING: // TSTTS3S = harmonic with with sixth sharpened
179 keys = new int[] { k, k + 2, k + 3, k + 5, k + 7, k + 9, k + 11, k + 12 };
180 break;
181 case MINOR MELODIC DESCENDING: // TSTTS3S = harmonic with seventh
182 // flattened making it the same as the natural minor
183 keys = new int[] { k + 12, k + 10, k + 8, k + 7, k + 5, k + 3, k + 2, k };
184 break;
185

186 default:
187 keys = new int[] { k };
188 break;
189 }
190 playSequentially(keys);
191 }
192

193 // Programmed chords
194 void playChord(String n, Chord type) {
195 playChord(noteNameToMidiKey(n, defaultOctave), type);
196 }
197

198 void playChord(String n, int octave, Chord type) {
199 playChord(noteNameToMidiKey(n, octave), type);
200 }
201

202 private void playChord(int k, Chord type) {
203 int[] keys;
204 switch (type) {
205 case MAJOR:
206 keys = new int[] { k, k + 4, k + 7 };
207 break;
208 case MAJOR7:
209 keys = new int[] { k, k + 4, k + 7, k + 11 };
210 break;
211 case MINOR:
212 keys = new int[] { k, k + 3, k + 7 };
213 break;
214 case MINOR7:
215 keys = new int[] { k, k + 4, k + 7 };
216 break;
217 default:
218 keys = new int[] { k };
219 break;
220 }

Back end libraries 252

221 play(keys);
222 }
223

224 public void tune() {
225 int base = 47;
226 play(base + 14);
227 play(base + 12);
228 play(base + 11);
229 play(base + 7);
230 play(base + 5);
231 play(base + 7);
232 play(base + 2);
233 rest(2);
234 }
235

236 public void tuneChordMajor() {
237 int base = noteNameToMidiKey(”C”, 5);
238 playChord(base + 14, Chord.MAJOR);
239 playChord(base + 12, Chord.MAJOR);
240 playChord(base + 11, Chord.MAJOR);
241 playChord(base + 7, Chord.MAJOR);
242 playChord(base + 5, Chord.MAJOR);
243 playChord(base + 7, Chord.MAJOR);
244 playChord(base + 2, Chord.MAJOR);
245 }
246

247 public void tuneChordMinor() {
248 int base = noteNameToMidiKey(”C”, 5);
249 playChord(base + 14, Chord.MINOR);
250 playChord(base + 12, Chord.MINOR);
251 playChord(base + 11, Chord.MINOR);
252 playChord(base + 7, Chord.MINOR);
253 playChord(base + 5, Chord.MINOR);
254 playChord(base + 7, Chord.MINOR);
255 playChord(base + 2, Chord.MINOR);
256 }
257

258 void close() {
259 rest(3);
260 synthesizer.close();
261 }
262

263 public static void main(String[] args) {
264 System.err.println(”miniMusicPlayer test routine”);
265 MiniMusicPlayer mp = new MiniMusicPlayer();
266

267 mp.playScale(”C”, Scale.CHROMATIC);

Back end libraries 253

268 mp.rest(2);
269 String note = ”C”;
270 int octave = 6;
271 mp.play(note, octave);
272 mp.rest(2);
273 mp.playScale(”C”, Scale.MAJOR);
274 mp.rest(2);
275 mp.playScale(”C”, Scale.MINOR NATURAL);
276 mp.rest(2);
277 mp.playScale(”C”, Scale.MINOR HARMONIC);
278 mp.rest(2);
279 mp.playScale(”C”, Scale.MINOR MELODIC ASCENDING);
280 mp.playScale(”C”, Scale.MINOR MELODIC DESCENDING);
281 mp.rest(2);
282 mp.playChord(”C”, Chord.MAJOR);
283 mp.rest(2);
284 mp.playChord(”C”, Chord.MINOR);
285 mp.rest(2);
286 mp.tune();
287 mp.rest(2);
288 mp.tuneChordMajor();
289 mp.rest(2);
290 mp.tuneChordMinor();
291 mp.rest(2);
292 mp.close();
293 }
294 }

D A mathematics primer

	Formalisation
	It's languages all the way down…
	Lessons from natural language
	Semantics, syntax, ambiguity and `sayability'
	Formal languages: the need for precision

	Utility and power in programming languages
	The software engineering challenges in language design
	An idealised methodology
	Formal systems
	Practice and theory
	Modularity and scalability

	Formalisation as an aid to engineering: Conway's Game of Life
	CGL examples
	Emergent behaviour in CGL
	Naïve implementation of CGL using an array
	A better formalisation
	Improved formalisation can improve implementations
	Using a visited set to avoid recomputation

	Thinking formally about program execution
	Euclid's Greatest Common Divisor algorithm
	The fixed-code-and-program-counter interpretation
	What is equality?
	The reduction interpretation
	A reduction evaluation of GCD with input [6, 9]

	Next steps
	Exercises

	Rewriting
	Equality of programs
	Mathematical objects, their denotations and software implementations
	String rewriting
	Term rewriting
	Internal syntax style
	Terms
	Denoting term symbols
	Typed terms

	Terms and their implementation in Java

	Structural Operational Semantics
	The basic idea
	Execution via substitution
	Configurations

	Avoiding empty terms–the special value done
	Term variables are metavariables
	Pattern matching of terms
	Pattern substitution
	Rules and rule schemas
	The interpreting function FSOS
	Managing the local environment
	Procedural pseudo-code for FSOS
	Program term rewrites - the outer interpreter

	Structural Operational Semantics and FSOS traces
	SOS rules for an addition language
	Expression nesting

	An SOS for a language with flow control, variables and expressions
	Configurations
	Variable handling
	Arithmetic operations
	Boolean relations
	Sequential flow control
	Conditional flow control
	Loops

	Using big steps to simplify the rules
	Interpretation traces for our language
	Example 1 – assignment to literal
	Example 2 – assignment to variable
	Example 3 – sequence over assignments
	Example 4 - conditional assignment
	Example 5 - loops

	Syntax
	Syntax in natural languages
	Writing
	The search for precision
	Metalanguage
	Outer and inner syntax
	Syntactic sugar, redundancy and syntactic `noise'

	The legacy of non-general parsing
	Parsing by expanding the start symbol
	Parsing by reducing to the start symbol
	Multiparsing and the lexer-parser interface
	OSBRD: Implementing a parser toolchain
	Ordered Singleton Backtrack Recursive Descent parsing
	The OSBRD algorithm
	An OSBRD example in Java

	Engineering a complete Java parser
	Using built in matchers
	Using attributes and inline semantics
	Attributes
	A four function calculator

	Implementing inline semantics
	Making explicit trees
	The TreeNode class
	Cloning trees
	Visualising trees on the console
	Visualising trees with the GraphViz tools
	Implementing TIF operators

	A Sandbox grammar for Sandbox
	The Gather-Insert-Fold-Tear formalism
	Fold operators
	The Tear operator
	Insertions
	The Gather operator

	GIFT applications

	Attributes
	Language styles
	Data-centric languages
	General purpose programming languages
	Domain specific languages and requirements analysis

	Approaches to implementation
	Derivation traversers

	Attribute Grammars
	The formal attribute grammar game
	Attribute grammars in practice
	Attribute grammar subclasses

	Semantic actions in ART
	Syntax of attributes in ART
	Special attributes in ART

	Accessing user written code from actions in ART generated parsers
	A naïve model of attribute evaluation
	The representation of attributes within ART generated parsers
	The ART RD attribute evaluator
	Higher order attributes

	Pragmatics
	Icons, letters and phrases
	Semantics at machine level
	Translation to machine level

	The semantic facets of programming languages
	Values, types and expressions
	Storage, assignment and commands
	Identifiers, scope and binding
	Control flow
	Procedural and data abstraction

	Interpretation, compilation and runtime rework
	Four early language traditions
	FORTRAN–numeric processing and portable programs
	COBOL–data processing
	LISP–the accidental language
	Algol–user defined data and algorithmic elegance

	New ideas
	Programming in the large
	Object orientation
	Concurrency
	Generics, and types as values

	General purpose and domain specific software languages
	The music domain
	Musical instruments
	The perception of pitch
	The physics and psychology of pitch
	Pure tones and instrument voices
	Tempo, rhythm and articulation
	Musical terminology for pitch
	Major and minor scales
	Chords
	Synthesizing music with Java and MIDI
	minimusic – a DSL to access MiniMusicPlayer

	The image processing domain
	The 3D object domain

	Using ART
	Installing and running ART
	The ART pipelines
	First examples
	The static and dynamic pipelines in detail
	Static pipeline directive summary
	Dynamic pipeline directive summary

	The ART specification language reference manual
	String rewrite rules and parsing
	Terms and term rewrite rules
	RAG rewrite rules
	Directives
	try clauses

	Value types and operations
	An overview of ART's implementation
	ART package and class documentation
	ART concisely

	Laboratory materials
	Domain Specific Languages for solid modelling
	Changing the view
	A first object
	Changing size and color
	Where is the centre?
	Cubes are really cuboids
	Spheres
	Cylinders
	Translation and rotation
	Multiple objects
	Computational solid geometry
	Using functions to structure a design
	Internal and external Domain Specific Languages
	Signatures and internal syntax
	How to design a programming language
	Your exercises

	Terms rewriting basics with TermTool
	Getting help
	Exiting TermTool
	Expressions
	TermTool variables
	Matching with the operator
	Pattern matching and term variables
	Term variables and tool variables
	Extending bindings with the union-into += operator
	Using tool variables in expressions
	Substitution and unconditional rewrites
	Evaluation of functions during substitution

	SOS – An introduction to eSOS
	A first example
	Normal termination and stuck configurations
	Generalising with term variables and functions
	Runtime type errors
	Filtering out type errors using conditions
	Generalising by adding rules
	Examining the behaviour of the interpreter in detail
	Addition of two values
	Nested additions
	Forcing deterministic execution
	Assignment
	Sequencing
	Assigning the result of an expression
	Sequenced assignments
	Dereferencing and assignment
	Output
	Selection with if
	Iteration with while
	The GCD language

	Syntax – an introduction to parsing
	Attributes – using ART with attribute grammars and GIFT rewrites
	Getting started
	Understanding the parse script – Windows version
	Understanding the parse script – Unix version
	Visualising derivation trees
	Simple grammars
	Using builtins
	Exercises
	Attribute evaluation in ART
	Simple grammars and actions
	The execution order of actions
	Attributes
	miniCalc – a simple calculator
	miniAssign – adding variables
	Exercises
	Delayed attributes in ART
	A first example of delayed attributes
	miniIf – adding if-then-else to Mini
	miniWhile – adding loops
	miniCall – adding procedures
	GIFT operators in ART
	miniSyntax – folding derivation trees
	Folding nonterminals
	Suppressing punctuation
	Flattening lists
	Function calls
	Expression trees

	Project work
	Getting started
	Submission
	The writeup

	Ideas
	PiM – the project in miniature
	Informal language specification
	Internal syntax constructors and arities
	eSOS rules
	Internal to external syntax translator
	Attribute grammar interpreter
	Examples and tests

	Back end libraries
	An introduction to JavaFX
	An introduction to image processing
	An introduction to the Java MIDI subsystem

	A mathematics primer

