
rdp { a recursive descentcompiler compilerUser manual for version 1.5Adrian Johnstone Elizabeth ScottTechnical ReportCSD {TR { 97 { 25December 20, 1997
!()+,-./0123456Department of Computer ScienceEgham, Surrey TW20 0EX, England

Abstractrdp is a system for implementing language processors. Compilers, assem-blers and interpreters may all be speci�ed in the rdp source language (an ex-tended Backus-Naur Formwith support for inherited and synthesized attributeswhich may be accessed from within C-language semantic actions). These spec-i�cations may then be processed by the rdp command to produce a programwritten in ANSI C which can be compiled by any ANSI standard C compiler.It is possible to use rdp write, for example, compilers (by using the semanticactions to specify the corresponding target code), interpreters (by using thesemantic actions to evaluate input fragments) and pretty printers (by using theactions to reformat the input fragments).This report describes the rdp source language, command switches and er-ror messages. Serious usage of rdp-generated parsers requires an understand-ing of the support library rdp supp which is documented in a companion re-port [JS97b]. A third, tutorial, report assumes no knowledge of parsing, gram-mars or language design and shows how to use rdp to develop a small calculator-like language [JS97c]. The emphasis in the tutorial guide is on learning to usethe basic rdp features and command line options. A large case study is docu-mented in [JS97a] which extends the language described in the tutorial guidewith details of a syntax checker, an interpreter and a compiler along with an as-sembler and simulator for a synthetic architecture which is used as the compilertarget machine.The rdp source code is public domain and has been successfully built usingBorland C++ version 3.1 and Microsoft C++ version 7 on MS-DOS, BorlandC++ version 5.1 on Windows-95, GNU gcc and g++ running on OSF/1, Ultrix,MS-DOS, Linux and SunOS, and Sun's own acc running on Solaris. Users havealso reported straightforward ports to the Amiga, Macintosh and Archimedessystems.This document is c
Adrian Johnstone and Elizabeth Scott 1997.Permission is given to freely distribute this document electronically andon paper. You may not change this document or incorporate parts of itin other documents: it must be distributed intact.The rdp system itself is c
Adrian Johnstone but may be freely copiedand modi�ed on condition that details of the modi�cations are sent tothe copyright holder with permission to include such modi�cations infuture versions and to discuss them (with acknowledgement) in futurepublications.The version of rdp described here is version 1.50 dated 16 August 1997.Please send bug reports and copies of modi�cations to the authors at theaddress on the title page or electronically to A.Johnstone@rhbnc.ac.uk.

Contents1 Introduction 11.1 Specifying languages to rdp 11.2 Acceptable languages 21.3 Support modules 31.4 System
ow 32 IBNF { the rdp source language 72.1 Grammars and BNF 72.2 Layout and comments 92.3 Identi�ers 92.4 Grammar rule format 103 IBNF extended forms 113.1 Sequences 113.2 Alternate productions 113.3 Recursion 123.4 Do-�rst 123.5 Zero-or-one occurrences (optional sub-productions) 123.6 Zero-or-many occurrences (Kleene closure) 133.7 One-or-many occurrences (positive closure) 133.8 The iterator operator @ 133.9 Using iterators to implement lists 144 Scanner elements 154.1 Introduction 15Keyword tokens 16ID token 16INTEGER token 16REAL token 17STRING(open) token 17STRING ESC (open escape) token 17CHAR(open) token 17CHAR ESC (open escape) token 18EOLN token 184.2 Describing comments to the scanner 18

ii CONTENTS5 Attributes and semantic actions 215.1 An introductory example 215.2 Synthesized attribute de�nition 225.3 Synthesized attribute types for scanner primitives 235.4 Using synthesized attributes 235.5 Inherited attribute de�nition 245.6 Semantic actions 245.7 Error checking of semantic actions 255.8 Default actions for iterators that match the empty string 255.9 Semantic rules 255.10 Semantic actions in multi-pass parsers 266 Directives 296.1 Flow control directives 29INCLUDE("�lename") 296.2 Parser setup directives 29USES("�lename") 29TITLE("string") 30SUFFIX("string") 30PARSER(start) 30PRE PARSE([* action *]) 30POST PARSE([* action *]) 30OUTPUT FILE("�le") 30PASSES(count) 30SYMBOL TABLE(name size prime compare hash print [* data *]) 316.3 Command line argument de�nition directives 32ARG BOOLEAN(key identi�er key string) 32ARG NUMERIC(key identi�er key string) 32ARG STRING(key identi�er key string) 33ARG BLANK(key string) 336.4 Command line default directives 33TAB WIDTH(count) 33TEXT SIZE(count) 33MAX ERRORS(count) 33MAX WARNINGS(count) 346.5 Scanner directives 34CASE INSENSITIVE 34SHOW SKIPS 346.6 Tree generation directives 34TREE([* data *]) 34EPSILON TREE([* data *]) 34ANNOTATED EPSILON TREE([* data *]) 357 Running rdp 377.1 rdp �lename parameters 377.2 rdp option parameters 37-e write out expanded IBNF 37

CONTENTS iii-E add rule name to error messages 38-f �lter mode 38-F force creation of output �les 38-l make a listing 38-ofilename write output to �lename 39-p make parser only 39-R add rule entry and exit messages 39-s echo each scanner symbol as it is read 39-S print summary symbol table statistics 39-tn tab expansion width 39-Tn text bu�er size in bytes for scanner 40-v set verbose mode 40-V dump derivation tree in VCG format 407.3 Options understood by rdp-generated parsers 418 rdp global variables 438.1 Monitoring parser status at runtime 43rdp error return 43rdp outputfilename 43rdp pass 43rdp sourcefilename 43rdp tree 43rdp verbose 448.2 De�ning the message stream 448.3 Adding reserved words to the dangerous identi�er list 449 Derivation tree construction and visualisation 459.1 Derivation trees 469.1.1 A larger example 479.2 Tree generation directives 51TREE([* data *]) 51EPSILON TREE([* data *]) 51ANNOTATED EPSILON TREE([* data *]) 519.3 Using VCG to visualise derivation trees 5110 Tree manipulation 5510.1 Normal tree construction 5510.2 Modifying tree construction with promotion operators 5610.2.1 Promote underneath parent 5610.2.2 Promote on top of parent 5610.2.3 Promote above parent 5610.2.4 Insert here (no promotion) 5710.3 Valid contexts for promotion operators 5710.4 A complete example 5810.4.1 Removing syntactic sugar 5810.4.2 Making operators parent nodes to their operands 5810.4.3 Handling left associative operators 61

iv CONTENTS11 Error and informational messages 6311.1 Fatal errors 6411.2 Errors 6511.3 Warnings 6911.4 Informational messages 6912 Understanding and debugging rdp-generated parsers 7312.1 The header �le 7312.2 The rdp scanner 7312.2.1 The token enumeration 7412.2.2 Interaction between the scanner and the parser 7512.3 The main �le 7612.3.1 Implementing parser functions 7612.4 Selecting alternate productions 7912.5 Parsing iterators 8012.6 Debugging rdp-generated parsers 8112.7 Errors reported by rdp when parsing a speci�cation 8112.8 LL(1) errors reported by rdp during the analysis phase 8212.9 Re�ning a grammar 8312.10Debugging semantic actions 84A Acquiring and installing rdp 87A.1 Installation 87A.2 Build log 89

List of Figures1.1 rdp design
ow 42.1 rdp syntax 89.1 A simple derivation tree 479.2 Derivation tree for expression grammar 499.3 A modi�ed derivation tree 509.4 E�ect of the TREE directive 519.5 E�ect of the EPSILON TREE directive 529.6 E�ect of the ANNOTATED EPSILON TREE directive 5210.1 Simple expression: full tree 5910.2 Simple expression: result of adding promotion operators 6010.3 Right associative operator tree 6110.4 Left associative operator tree 6212.1 Extracts from an rdp-generated header �le 7412.2 Extracts from an rdp-generated parser main �le 77

List of Tables2.1 Reserved identi�er pre�xes 103.1 Iterator:bracket correspondences 144.1 rdp character and string escape sequences 185.1 Scanner primitive attribute types 237.1 Standard command line options 40A.1 Distribution �le list 88

Chapter 1Introductionrdp is a system for implementing language processors. Compilers, assemblersand interpreters may all be speci�ed in the rdp source language (an extendedBackus-Naur Form featuring iterators along with support for inherited andsynthesized attributes which may be accessed from within C-language semanticactions). These speci�cations may then be processed by the rdp command toproduce a program written in ANSI C which can be compiled by any ANSIstandard C compiler. It is possible to use rdp write, for example, compilers(by using the semantic actions to specify the corresponding target code), inter-preters (by using the semantic actions to evaluate input fragments) and prettyprinters (by using the actions to reformat the input fragments).This report describes the rdp source language, command switches and er-ror messages. Serious usage of rdp-generated parsers requires an understand-ing of the support library rdp supp which is documented in a companion re-port [JS97b]. A third, tutorial, report assumes no knowledge of parsing, gram-mars or language design and shows how to use rdp to develop a small calculator-like language [JS97c]. The emphasis in the tutorial guide is on learning to usethe basic rdp features and command line options. A large case study is docu-mented in [JS97a] which extends the language described in the tutorial guidewith details of a syntax checker, an interpreter and a compiler along with an as-sembler and simulator for a synthetic architecture which is used as the compilertarget machine.The rdp source code is public domain and has been successfully built usingBorland C++ version 3.1 and Microsoft C++ version 7 on MS-DOS, BorlandC++ version 5.1 on Windows-95, GNU gcc and g++ running on OSF/1, Ultrix,MS-DOS, Linux and SunOS, and Sun's own acc running on Solaris. Users havealso reported straightforward ports to the Amiga, Macintosh and Archimedessystems.1.1 Specifying languages to rdpParser generator tools like rdp usually work from speci�cations written usingvariant of the generative grammar formalismwhich was introduced in the 1950'sby Chomsky. The formalism was �rst applied to the development of program-

2 INTRODUCTIONming languages by John Backus and Peter Naur in the design of Algol-60 andthe notation used is called Backus-Naur Form (or BNF) [Bac60] in commemo-ration of that pioneering work. For technical reasons, programming languagesand other synthetic computer languages rarely use the full power of generativegrammars but instead are based on a restricted kind of generative grammarcalled a context free grammar.BNF is su�cient to describe context free grammars, but most real toolsadd extensions to the basic notion which might be thought of as shorthandsfor commonly occurring BNF idioms. These extended BNF's come in severalvarieties, but the basic idea is to combine the notion of regular expressions withthe core BNF notation in such a way as to provide compact ways of specifyingrepetition within the strings of a language. This allows language speci�cationsto be smaller, and may allow the parser generator to easily exploit structurewithin the rules so as to improve e�ciency.The particular extended BNF used by rdp is called Iterator Backus-NaurForm or IBNF. An iterator is a generalisation of the kinds of regular expres-sions found in other forms of extended BNF. In addition to supporting thetraditional BNF extensions, iterators allow list-like structures within languagesto be conveniently speci�ed.You can �nd an introduction to the basic notions of generative grammars,BNF and IBNF in the �rst chapters of the rdp tutorial manual [JS97c]. A fulldescription of the capabilities of IBNF is given below.1.2 Acceptable languagesrdp generates parsers that work using recursive descent. It requires grammarsto be LL(1) (or something very close to LL(1)), that is they must be unam-biguously parsable using a single token of lookahead and there must be no leftrecursive rules. This is not a signi�cant constraint for modern languages likeAda, Pascal and C which were to some extent designed with a view to easyparsing. On the other hand, some languages are just too di�cult|you shouldprobably forget all about using rdp to write a FORTRAN parser, for instance.The main advantages of recursive descent parsing are� fast (linear time) parsing,� the availability of standardised error recovery mechanisms and� the straightforward one-to-one relationship between the code in the parserand the rules in the grammar speci�cation. This makes it straightforwardto debug the grammar, because a C language debugger may be used tostep through the parser functions and, equivalently, to step through thegrammar rules.If the language you present to rdp is not LL(1), rdp issues detailed diagnos-tics explaining which tokens and rules are giving the trouble. It is possible towrite algorithms that translate certain non-LL(1) grammars automatically to

Support modules 3LL(1) form, but rdp does not attempt to perform any such transformations be-cause that might produce an obscure parser that was no longer directly relatedto the input grammar.rdp is itself a language processor, and the rdp source language has a gram-mar that is almost LL(1). In fact rdp is `written in itself'| an early versionof the system was hand written and later versions developed from a grammardescription written in rdp's own source language. This process (developing newversions of a tool by writing each new version in the language acceptable to theold version of the tool) is called bootstrapping and is a common technique incompiler development.1.3 Support modulesrdp-generated parsers use a set of general purpose support modules collectivelyknown as rdp_supp. There are seven parts to rdp supp:� a hash coded symbol table handler which allows multiple tables to bemanaged with arbitrary user data �elds (symbol.c),� a set handler which supports dynamically resizable sets (set.c),� a graph manager which allows arbitrary directed graphs to be constructedand manipulated, with a facility to output any graph in a form that maybe read and visualised by the VCG [San95] tool on Windows and Unix/X-windows systems (graph.c),� a memory manager which wraps fatal error handling around the standardANSI C heap allocation routines (memalloc.c),� a text handler which provides line bu�ering and string management with-out imposing arbitrary limits on input line length (textio.c),� a command line argument parsing package that allows Unix style optionsto be implemented in a standardised way (arg.c),� scanner support routines for handling tokens in recursive descent parsers(scan.c and scanner.c).Writing e�ective language processors in rdp requires a detailed understand-ing of these modules. The rdp_supp routines are documented in [JS97b].1.4 System
owThe steps involved in producing a new language processor for a mythical newlanguage myth using the rdp parser generator are1. Create a �le myth.bnf containing an Iterator Backus-Naur Form (IBNF)speci�cation of the myth language. Decorate the grammar with attributesand C-language fragments describing semantic actions. By convention,large semantic routines are kept in a �le called the auxiliary �le with aname like myth_aux.c.

4 INTRODUCTION
�� ���� ���� ��link�� ��

compile myth�� ���� ��rdp -omyth myth�� ���� ��
compile myth aux

?
???

??
@@@R���	@@@R���	

myth.bnf myth aux.cmyth.h myth.crdp supp modules myth object myth aux objectmyth executable�� ��myth test�� ��??test.mthtest.out
���������)PPPPPPPPPq

Figure 1.1 rdp design
ow

System
ow 52. Process myth.bnf with rdp to produce myth.c, the rdp-generated parserfor our language myth.3. Compile myth.c and myth_aux.c with an ANSI C compiler.4. Link the myth object �le with the rdp_supp modules and any other re-quired semantic routines.5. Run the resulting executable on test.mth, a test program for the mythlanguage.This process is illustrated in Figure 1.1.A complete sequence of commands to generate and build an rdp based parserusing Unix commands might beedit myth.bnf Create BNF �leedit myth_aux.c Create auxiliary �le (optional)rdp -omyth myth Use rdp to generate the parsercc -c myth.c Compile the generated C parsercc -c myth_aux.c Compile the auxiliary �lecc -omyth myth.o myth_aux.o arg.o graph.o memalloc.o scan.oscanner.o set.o symbol.o textio.o Link object �lesedit test.mth Create a test �le contaning a myth programmyth test.mth Run the executable parser on the test �leThe following chapters include reference documentation on rdp commandline parameters, a full description of the rdp iterator BNF source language, adiscussion of the use of derivation trees with the VCG tool, and a summary ofall rdp error messages. Any serious use of rdp will require familiarity with thesupport library which is described in a companion report [JS97b]. Extensivetutorial documentation, suitable for both novice and expert users, will be foundin the tutorial guide [JS97c] and in the case study documented in [JS97a].

Chapter 2IBNF { the rdp source languageThis chapter introduces the basic syntax of Iterator Backus-Naur Form (IBNF)which is the language in which rdp speci�cations are written. Figure 2.1 showsthe syntax of the rdp source language written in IBNF. An rdp source �le isa collection of rules and directives. Directives are used to parameterise thegrammar, often by setting default values for command line switches. Rules areIBNF grammar rules describing the syntax of the target language. Below wedescribe basic BNF. In the next chapter we describe the extended forms whichare accepted by rdp.2.1 Grammars and BNFIt is standard practice to use formal grammars to specify computer languages.We give a very brief summary of the notation here. You can �nd more detailin the tutorial manual [JS97c] and in standard texts on compiler design.A grammar consists of a set N of non-terminals, a set T of tokens, and aset P of grammar rules. Non-terminals are written as strings which must startwith an alphabetic character or an underscore, and may then continue withalphabetic, numeric or underscore characters. Tokens are written as singlyquoted strings.Each grammar rule is of the formrule_name ::= rule expression.where rule_name is a non-terminal and the rule expression is a collection of se-quences of grammar symbols. These sequences are called alternate productionsof the grammar rule.For example,S ::= S '+' S | S '*' S | E .E ::= 'a' | 'b' .is a set of grammar rules which generates a language of sums and products,for example, a+b*a+a or a. In this grammar, the non-terminals are S, E, theterminals are +,*,a,b, and the start symbol is S.In basic BNF the rule expression is described by writing out the sequencesand separating them using a vertical bar (|). IBNF also allows certain sets of

8 IBNF{THE RDP SOURCE LANGUAGEunit ::= { rule | dir}.dir ::= 'ARG_BOOLEAN' '(' ID (ID | code) String ')' |'ARG_NUMERIC' '(' ID (ID | code) String ')' |'ARG_STRING' '(' ID (ID | code) String ')' |'ARG_BLANK' '(' String ')' |'CASE_INSENSITIVE' |'INCLUDE' '(' code ')' |'OUTPUT_FILE' '(' String ')' |'MAX_ERRORS' '(' INTEGER ')' |'MAX_WARNINGS' '(' INTEGER ')' |'PARSER' '(' ID ')' |'PASSES' '(' INTEGER ')' |'POST_PARSE' '(' code ')' |'PRE_PARSE' '(' code ')' |'SUFFIX' '(' String ')' |'SHOW_SKIPS' |'SYMBOL_TABLE' '(' ID INTEGER INTEGER ID ID ID code ')' |'TITLE' '(' String ')' |'TAB_WIDTH' '(' INTEGER ')' |'TEXT_SIZE' '(' INTEGER ')' |'USES' '(' String ')'.rule ::= ID ['(' { ID [':' ID {'*'}] } ')'] [':' ID {'*'}] ['!'] '::=' prod '.' .prod ::= (seq)@'|' .seq ::= < (item_ret [':' ID] | item_inl) ['!'] > .item_ret ::= ID '(' { (INTEGER | REAL | String | ID) } ')' |token |'CHAR' '(' token ')' |'CHAR_ESC' '(' token token ')' |'STRING' '(' token ')' |'STRING_ESC' '(' token token ')' |'COMMENT' '(' token token ')' |'COMMENT_VISIBLE' '(' token token ')' |'COMMENT_NEST' '(' token token ')' |'COMMENT_NEST_VISIBLE' '(' token token ')' |'COMMENT_LINE' '(' token ')' |'COMMENT_LINE_VISIBLE' '(' token ')'.item_inl ::= code ['@' INTEGER] |'('prod')' ['@' [INTEGER ['..' INTEGER]] (token | '#')] |'{'prod'}' (* Kleene closure *) |'['prod']' (* Optional *) |'<'prod'>' (* Positive closure *).token ::= STRING_ESC('\'' '\\').String ::= STRING_ESC('"' '\\').code ::= COMMENT_VISIBLE('[*' '*]').comment ::= COMMENT('(*' '*)').Figure 2.1 rdp syntax

Layout and comments 9alternates to be represented using regular expression like structures. We shalldiscuss the details of these IBNF expressions in Chapter 3.We derive one sequence of grammar symbols from another by replacinga non-terminal (rule name) with a sequence from the right hand side of itsgrammar rule. For example, given the grammarstart ::= 'a' start | 'b'.we can derive 'a''b' from 'a'start by replacing start with 'b'. We write'a' start) 'a' 'b'We can perform a series of derivations one after the other:start) 'a' start) 'a' 'a' start) 'a' 'a' 'b'In this case we writestart �) 'a' 'a' 'b'.The language generated by the grammar is the set of sequences of tokenswhich can be derived from the start symbol.In the rest of this chapter and in Chapter 3 we shall describe the detailedcapabilities of IBNF.2.2 Layout and commentsThe rdp IBNF source language is free-format, that is whitespace and newlinescan be used anywhere between lexemes to provide a neat layout.It is possible to insert comments into an rdp IBNF source �le. IBNF com-ments are delimited by (* *) brackets and may appear in any position thatwhite space is legal. Comments may be nested: the maximum nesting level islimited only by available memory. For example,S ::= S '+' S | (* Sum *)S '*' S | (* Product *)E . (* Constant terms *)E ::= 'a' | 'b' .2.3 Identi�ersTokens are singly quoted strings and rule names are identi�ers in the rdp sourcelanguage. User de�ned rdp identi�ers must start with an alphabetic characteror an underscore (_) and can contain only alphanumeric characters or under-scores. In general, rdp identi�ers must obey the rules for ANSI C identi�ers.Internally, rdp uses many identi�ers and it would be catastrophic if a userde�ned, say, a rule name that clashed with an internal library routine's name.To stop this happening rdp reserves several pre�xes which may not be used

10 IBNF {THE RDP SOURCE LANGUAGEarggraphmemrdpscansetsymboltextTable 2.1 Reserved identi�er pre�xesto start an identi�er. The list of reserved pre�xes is shown in Table 2.1: theycorrespond to the function name pre�xes used in the support library.As well as checking for reserved pre�xes, rdp also checks user de�ned iden-ti�ers against a list of C keywords and library names to ensure that clashesdo not occur at compile time: de�ning a production called printf for instancewould cause the library printf() routine to become invisible with very con-fusing results. You can add names to this list by modifying the de�nition ofRDP_RESERVED_WORDS in �le rdp_supp/rdp_aux.h.rdp itself sets no limit on the length of identi�ers subject to there still beingroom left in the text bu�er, but note that many C compilers only recognise the�rst 32 characters of an identi�er as signi�cant and some linkers only recognisethe �rst eight characters. In some contexts rdp can generate identi�ers thatare extensions of a user-de�ned identi�er, so it might be wise to keep youridenti�ers to less than 20 characters in length. rdp is case sensitive, so Adrianis a di�erent identi�er to adrian.2.4 Grammar rule formatEach grammar rule must only be de�ned once, in other words there can onlybe one rule for each rule name.Any non-terminal in a sequence on the right hand side of a rule must alsoappear on the left hand side of some rule, i.e. must be a rule name. However,forward references are allowed (that is, rule names may appear on the righthand side of a rule before they appear on the left hand side). Such forwardreferences are resolved using a two pass parser.Every rule must terminate with a full stop (period). Neither empty rulesnor empty alternate productions are allowed: there are special constructionsfor describing rules that expand to the empty string and these are described inChapter 3.

Chapter 3IBNF extended formsIn this chapter we shall describe the full generality of grammar rules which canbe written in rdp-IBNF (the rdp source language).3.1 SequencesA grammar rule might have a single sequence on its left hand side. A sequenceis simply the concatenation of the tokens and rule names which make up thatsequence:seq1 ::= seq2 seq2 'z'.seq2 ::= 'a' 'b' 'c'.These two productions de�ne a small language that will be recognised bythe corresponding rdp-generated parser. The complete language comprises thefollowing set which contains just one string:f abcabcz g3.2 Alternate productionsAlternative sequences on the right hand side of a rule are written out separatedby vertical bars (|) which we call the alternation operator. Alternation haslower priority than sequencing, so the rulerule ::= 'a' 'b' | 'c' 'd' .describes the sequences fab, cdg, not the sequences fabd, acdg.The alternation operator can be used to separate any type of rule expression.For example, we can writerule ::= 'a' {rule 'b'} | ['c'].(The constructs fg and [] are described below.)For a grammar to be acceptable to rdp, no two alternates in the same rulecan generate sequences that begin with the same token. For example, if

12 IBNF EXTENDED FORMSrule_name ::= ... | alternate1 | ... | alternate2 |then we cannot havealternate1 �) 'a' string1, alternate2 �) 'a' string2for any token 'a'. This is because rdp-generated parsers may only look onetoken ahead, and must be able to make a deterministic choice of alternates onthis basis. rdp will issue an LL(1) error if it cannot disambiguate alternateproductions.Hence,seq1 ::= 'a' 'b' | 'a' 'c'.is not legal, butseq2 ::= 'a' seq3.seq3 ::= 'b' | 'c'.speci�es the same language and is acceptable to rdp.3.3 Recursionrdp allows most directly recursive and indirectly recursive rules, but left recur-sive rules of either type generate LL(1) errors. This is because a left recursiverule will generate a similarly left recursive set of function calls, which will neverterminate, sorec1 ::= 'a' rec1 | 'b'.is legal, butrec1 ::= rec1 'a' | 'b'.is not.3.4 Do-�rstParentheses (...) may be used to override the relative priority of alternationand sequencing, so the language fabd, acdg may be described witha ::= 'a' ('b' | 'c') 'd' .In fact any the contents of any (. . .), [. . .], {. . .} or <. . .> bracket pair isevaluated immediately, that is all bracket pairs have maximum priority.3.5 Zero-or-one occurrences (optional sub-productions)Optional parts of a grammar are enclosed in square brackets [...]. The setof tokens that may appear �rst in an optional phrase must not include anytokens that can appear immediately after an optional phrase. This is becauserdp-generated parsers may only look one token ahead. If there is a token thatcould be both the �rst in the optional phrase and be the �rst token of thephrase after the optional phrase then the parser will not know which rule tofollow. rdp will issue an error in this case.

Zero-or-many occurrences (Kleene closure) 133.6 Zero-or-many occurrences (Kleene closure)Iteration may be directly represented (without using recursion) by curly braces{...} which is a shorthand for `zero or many' occurrences of the iterator body.The set of tokens that may appear �rst in a string derived from the repeatconstruct must not include any tokens that can appear immediately after thatrepeat construct. This is because rdp-generated parsers may only look onetoken ahead. If there is a token that could be both the �rst token in a stringderived from the repeat construct and be the �rst token of a string derived fromthe sequence following that repeat construct then the parser will not know whichrule to follow. rdp will issue an error in this case.3.7 One-or-many occurrences (positive closure)Angle brackets <...> form a shorthand for `one or many' occurrences of theiterator body. The set of tokens that may appear �rst in a string derived fromthe repeat construct must not include any tokens that can appear immediatelyafter that repeat construct. This is because rdp-generated parsers may onlylook one token ahead. If there is a token that could be both the �rst tokenin a string derived from the repeat construct and be the �rst token of a stringderived from the sequence following that repeat construct then the parser willnot know which rule to follow. rdp will issue an error in this case.3.8 The iterator operator @rdp provides a generalised iterator operator which subsumes the standard ex-tended BNF brackets described above. The construction('body') 2 @ 4 'separator'matches the following stringsbody separator bodybody separator body separator bodybody separator body separator body separator bodythat is, between two and four instances of body separated by the token separator.The general form of the iterator is(valid subproduction) lo @ hi tokenThis speci�es that the rdp-generated parser should match the body representedby valid subproduction between lo and high times interspersing each instancewith one instance of the separating token. A hi value of zero means `withoutlimit', that is the iteration will continue arbitrarily.Either, or both, of hi and lo may be absent in which case they default tozero. The separating token may be set to the special token # which means`nothing' or the empty string (sometimes represented by �). In this case noseparating token is looked for.

14 IBNF EXTENDED FORMS(...) ! (...) 1@1 #< ... > ! (...) 1@0 #[...] ! (...) 0@1 #{ ... } ! (...) 0@0 #Table 3.1 Iterator:bracket correspondencesThe IBNF brackets described in the previous sections are in fact just short-hands for special cases of the iterator construct. The correspondences are shownin Table 3.1. None of them carries a separating token, and all of them havelower bounds of zero or one and upper bounds of one or zero (without limit).3.9 Using iterators to implement listsDelimited lists are common in high level languages. Consider, for instance, afunction call in C:func(param1, param2, param3)In general, parameter lists are comma-delimited lists of identi�ers. If we havean rdp rule ID which matches a C-style identi�er, one way of writing an rdpspeci�cation of a function call is:func_call ::= ID '(' param_list ')'.param_list ::= [ID param_tail].param_tail ::= [',' ID param_tail].This uses recursion to match an arbitrary number of parameters. We canuse the { ... } iterator brackets and give a more compact description:func_call ::= ID '(' param_list ')'.param_list ::= [ID {',' ID }].Here the recursion has been replaced by iteration.Using the iterator operator with the optional delimiter token we can furthercompact this tofunc_call ::= ID '(' param_list ')'.param_list ::= [ID @ ','].or justfunc_call ::= ID '(' [ID @ ','] ')'.

Chapter 4Scanner elements4.1 IntroductionUnder the traditional model of compilation parsers operate on the grammar ofa language, and a separate scanner or lexical analyser reads the input charac-ters and groups them into tokens which are then passed on to the parser forprocessing.It is possible to build the scanning phase into the parser by specifying thelanguage down to character level in the grammar. In practice this is bothtedious and di�cult because the grammar speci�cation required may not satisfythe LL(1) requirements. Another traditional role of the scanner is to removecomments from the input �le. It is also possible to remove comments at parserlevel by adding appropriate rules to the grammar, but this is both tedious andine�cient.rdp does not use a scanner generator, relying instead on a hard wired scannerwhen it reads an IBNF input �le. This same hard wired scanner is automaticallyattached to the front end of rdp-generated parsers and the user can access thisscanner by putting certain built in token names and parser directives into theirIBNF grammars. In addition, the inclusion of the scanner allows the generatedparsers to e�ciently perform bu�ering and error reporting on their source �les.Although the scanner is essentially pre-de�ned, aspects of it are paramater-isable, and it can be made to handle the constructs in most high level languages.For example, it is possible to de�ne a language in which strings are enclosedin single quotes (Pascal style) and to de�ne a language in which strings areenclosed in double quotes (C style). This is because, as we shall see below, thehard wired token which matches strings takes a parameter which is the stringdelimiter.The scanner also has primitives which allow commenting styles to be speci-�ed in a language. These primitives are paramaterisable to allow, for example,Pascal like comments, which are enclosed in braces, and C++ like comments,which begin // and terminate at the end of the line.We now give a summary of the types of hard wired tokens available in thescanner, and the tokens and strings (lexemes) that they match, along with thefamily of comment de�nition primitives.

16 SCANNER ELEMENTS� simple character sequences such as 'fred' are tokens and they match thecorresponding lexeme or string (fred in this case),� the token ID matches C-style identi�ers such as adr123 and _temp,� the token INTEGER matches C-style integer literals such as 145 and 0xFE(a hexadecimal integer),� the token REAL matches C-style real literals such as 1.45, 1., 1.45e3 and1.45E-02,� the token STRING('\'') matches Pascal style strings where two adjacentquotes are read as a quote mark in the string, as in 'Adrian''s book',� the token STRING_ESC('"' '\\')matches C-style strings where as escapecharacter is used to introduce quote marks and other special charactersinto the string, as in "\"Good\" she said",� the token EOLN matches the end of line marker,� a variety of comment styles are supported including both nestable andnon-nestable comment brackets along with comments that start with atoken and terminate at the end of line.Keyword tokensA keyword token is any character string delimited by single quotes, such as'>=' 'while' and '++'. This token matches just the string itself, so 'while'matches the string of letters while. Just as in a C string, the backslash char-acter can be used as an escape character so that the token ' is represented as'\''. Empty tokens ('') and tokens containing non-printing characters suchas 'long int' and 'bad_code\8' are illegal.In the following sections we describe hard wired tokens which can be usedin an input grammar for rdp.ID tokenThe token ID matches any string comprising an alphabetic character (a..z andA..Z) or an underscore (_) followed by any number of alphabetic, numeric orunderscore characters, such as temp, temp123 or _temp_123.INTEGER tokenThe token INTEGER matches any valid C-style integer such as 145 and 0xFE(a hexadecimal integer). In an extension to standard C-style integers, youmay insert underscore characters within a numeric literal so as to improvereadability: hence 999_999_999 is valid. The scanner builds a long unsignedvalue from the digits.

Introduction 17REAL tokenThe token REAL matches any valid C-style real literal, such as 1.45, 1., 1.45e3and 1.45E-02. In an extension to standard C-style integers, you may insertunderscore characters within a numeric literal so as to improve readability:hence 999_999.999 is valid. The scanner builds a double value from the digits.STRING(open) tokenSimple strings are speci�ed with a single token which marks both the openingand closing quote. Two consecutive quotes are used to represent an embeddedquote character.If there exists a rule likestring1 ::= STRING('\'').then the scanner will look for Pascal-style strings delimited by single quotes,such as 'adrian' which returns adrian and 'adrian''s book' which returnsadrian's book. Similarlystring2 ::= STRING('|').accepts strings such as |adrian| and |the symbol || is used for alternation|which returns the symbol j is used for alternation.STRING ESC (open escape) tokenThere is no way to directly represent control characters with a simple STRINGprimitive. rdp escaped strings support the full range of ANSI standard C escapesequences although trigraph sequences are not available. The speci�cation ofthe string includes an opening token and the escape token, so that strings in Ccan be recognised withstringc ::= STRING_ESC('"' '\\').Table 4.1 shows the special escape sequences. In addition, any combination\y, where y is a character not shown in Table 4.1, is replaced by the charactery1. For octal numbers there must be exactly 1, 2 or 3 digits. For hex numbersany sequence of valid hexadecimal digits will be accepted regardless of length.Both upper and lower case hex digits will be accepted.CHAR(open) tokenSingle characters are speci�ed with one token which marks both the openingand closing quote. Two consecutive quotes are used to represent an embeddedquote character.If there exists a rule likestring1 ::= CHAR('\'').then the scanner will look for Pascal-style character literals delimited by singlequotes, such as 'a' which returns the single character a.1Note that in ANSI standard C the result of such an escape sequence is unde�ned.

18 SCANNER ELEMENTSEscape Replacement Namesequence character\a BEL alert\b BS backspace\f FF form feed\n NL newline\r CR carriage return\t HT horizontal tab\v VT vertical tab\\ \ backslash\" " double quote\ooo character with octal code ooo\xhh character with hex code hhTable 4.1 rdp character and string escape sequencesCHAR ESC(open escape) tokenThere is no way to directly represent control characters within a simple CHARprimitive. rdp escaped character literals support the full range of ANSI stan-dard C escape sequences although trigraph sequences are not available. Thespeci�cation of the literal includes an opening token and the escape token sothat, for instance, C-language character literals can be recognised withstringc ::= CHAR_ESC('\'' '\\').Table 4.1 shows the special escape sequences. Any combination \y, where yis a character not shown in Table 4.1, is replaced by the character y2. For octalnumbers there must be exactly 1, 2 or 3 digits. For hex numbers any sequenceof valid hexadecimal digits will be accepted regardless of length. Both upperand lower case hex digits will be accepted.EOLN tokenEOLN matches a newline marker. If you do not use the EOLN primitive anywherein your grammar, then newlines are suppressed and treated as whitespace bythe scanner.4.2 Describing comments to the scannerMost programming languages include a commenting facility. If rdp is to gener-ate a parser for a language which has a commenting facility then the comment-ing style required must be speci�ed in the language grammar. In this section2Note that in ANSI standard C the result of such an escape sequence is unde�ned.

Describing comments to the scanner 19we shall describe the primitives which allow the built in scanner which is in-cluded in an rdp-generated parser to detect and remove comments. However,to motivate the de�nitions of these primitives, we �rst give a brief discussionon various commenting conventions.Specifying comments in grammars is a rather tricky area. The usual practiceis to allow comments wherever whitespace is legal in the language, and tosuppress comments in the scanner so that they are not visible in the phrase levelgrammar. If comments are to be visible in the phrase level grammar then thereeither there must be a call to a comment rule after every token in the phraselevel grammar or else comments must be restricted to certain contexts. Thislatter option was tried early on in the development of free-format languages(for instance in Algol-60) but was soon found to introduce inconvenient andunnecessary restrictions on program layout.There are several varieties of commenting conventions in use. The mostcommon in block structured languages is to use opening and closing commentbrackets such as {...} or the alternate form (*...*) in Pascal, or /*...*/ inC. In both these languages, comments are not nestable, that is/* This is a C comment/* with a nested comment inside it */which is illegal */is illegal in C. The �rst */ will be taken as closing o� the �rst /*, and thesecond */ will generate an error. However, there are languages which do allownested comments, and some C compilers (such as Borland C++ 3.1) allownested comments to be switched on in C.A third style of comment speci�cation is to use a token to introduce thecomment which terminates at the line end. This form is the standard in non-free format languages such as assemblers and FORTRAN, and has made abelated comeback in free format languages such as Ada and C++.There is some dispute as to which style is best, and some languages o�ermore than one. The argument for nested comments is that they allow sectionsof code to be easily `commented out', that is removed from a compilation. Theargument against is that it is easy to overlook a comment bracket and notrealise that a block has actually been commented out. Commenting out byprepending, say, -- to each line as in Ada certainly makes disabled code standout and any good editor will allow simple macros to be written which add anddelete comment pre�xes to a block of code.A �nal complication with comments is that under some circumstances theyneed to be visible to the phrase level grammar. This is particularly so forlanguages that support pragmas which are special comments usually used toswitch compiler features on and o�, replicating the functionality of commandline arguments.rdp provides a family of six comment primitives, which may be intermixed.If you use more than one comment primitive then of course they must all havedi�erent opening tokens so that the parser can tell them apart purely on thebasis of their opening tokens. The full set is

20 SCANNER ELEMENTSCOMMENT(OPEN CLOSE) Everything between OPEN and �rst CLOSE.COMMENT VISIBLE(OPEN CLOSE) Everything between OPEN and �rst CLOSE.COMMENT NEST(OPEN CLOSE) Everything between OPEN and matching CLOSE.COMMENT NEST VISIBLE(OPEN CLOSE) Everything between OPEN and matching CLOSE.COMMENT LINE(OPEN) Everything between OPEN and the line end.COMMENT LINE VISIBLE(OPEN) Everything between OPEN and the line end.The ..._VISIBLE primitives return the body of the comment to the phraselevel grammar and so may be used for pragmas. The normal primitives discardthe comments in the scanner, treating them identically to white space.Comment close tokens can only be a maximum of two characters long, andconform to the usual token rules, that is empty tokens and tokens containingwhite space are not allowed.

Chapter 5Attributes and semantic actionsA basic rdp-generated parser acts as a syntax checker for the speci�ed language,which is a useful but rather limited function. By including embedded semanticactions within a parser speci�cation we can force the running parser to executeparticular functions as it recognises portions of the input text string. In generalthese semantic actions will need to be able to interact with the parsing processproper. A calculator, for instance, will need to be able to parse numbers andoperators and then execute the appropriate semantic actions. In detail, theaction to add two numbers together will need to know not just that a numberhas been parsed, but what its value was. This information is transmitted intosemantic actions by using synthesized attributes which act a little like the returnvalues of a function in a conventional programming language.Occasionally, the semantic actions may need to in
uence the future be-haviour of the parser, and so rdp also supports the use of inherited attributeswhich act a little like parameters to the rules that make up a language speci�-cation.This chapter provides a very brief overview of the action and attributede�nition features of rdp. A much more extensive discussion of the designof language processors using these features will be found in the rdp tutorialmanual [JS97c] and example case study [JS97a].5.1 An introductory exampleHere is a very simple example grammar that can be input to rdp. We shallexamine the runtime behaviour of the parser generated by rdp from this gram-mar. start:integer ::= INTEGER:val1 '+'expr:val2 [* result = val1 + val2; *].expr:integer ::= INTEGER:val1 '*'INTEGER:val2 [* result = val1 * val2; *].Imagine that the generated parser is asked to parse the string 2 + 4 * 5.As the parse proceeds, the parser calls the functions associated with each gram-mar symbol it encounters. The return type declarations of the form :integer

22 ATTRIBUTES AND SEMANTIC ACTIONSwhich appear on the left hand sides of the rules cause the functions for startand expr to return a value of type integer. The identi�er which holds thevalue to be returned is always called result.The parser begins by calling the function for the start symbol, start. Thisthen calls the scanner routine for INTEGER, which will return the value of theinteger recognised, in this case the value 2. The synthesized attribute declaration:val1 which appears after the INTEGER scanner directive instructs the parserto write the value returned by the call to the INTEGER scanner primitive into alocal variable called val1.The parser then recognises + and then calls the function corresponding togrammar rule expr. This function parses the phrase 4*5, writing the values 4and 5 to the local variables val1 and val2 respectively. The last section of theexpr routine then executes the semantic action which is enclosed between [*and *] brackets. The e�ect of this is to write the value 20 to the prede�nedidenti�er result, and this value is then returned as the expr routine is exited.The synthesized attribute declaration :val2 which is appended to the sym-bol expr in the rule for start instructs the parser to write the returned valuefrom expr to the identi�er val2, so in this case 20 is assigned to val2. Thesemantic action at the end of the start rule is then executed so that the �nalreturn value, held in result, is 22.We now give a fuller description of attribute and semantic action use inrdp-generated parsers.5.2 Synthesized attribute de�nitionEach rdp rule and token can optionally return a single attribute. A rule thatdoes not return an attribute is implemented in the C code for the generatedparser as a void function with the same name as the rule, sosimple_rule ::= 'a' 'b'.maps tovoid simple_rule(void){ ...}If the rule name is followed by a colon and a data type, then a functionreturning that type is declared along with a local variable called result, alsoof the same type as the function, which is used to hold the return value.attributed_rule: integer ::= 'a' 'b'.maps tointeger attributed_rule(void){ integer result;

Synthesized attribute types for scanner primitives 23Primitive Return type Return valueID string characters making up the identi�erINTEGER unsigned integer unsigned integer value of literal constantREAL real
oating point value of literal constantSTRING string characters making up the stringSTRING ESC string characters making up the stringCOMMENT VISIBLE string characters making up the commentCOMMENT NEST VISIBLE string characters making up the comment nestCOMMENT LINE VISIBLE string characters making up the commentTable 5.1 Scanner primitive attribute types...return result;}The return value in result can be loaded using semantic actions, or directlyfrom the return value of a rule call: the following are both valid ways of gettinga value into result.rule1: integer ::= INTEGER:value [* result = value; *].rule2: integer ::= INTEGER:result.Note that the data type integer is de�ned to be a synonym for long intin the parameter �le scan.h held in the rdp supp subdirectory.The data type can consist of a single identi�er followed by one or more stars(to indicate indirection). If you need a rule to return a complex datatype, suchas a struct, then use a typedef to de�ne a synonym for it.Multiple attributes can be returned from a rule by packing them into astruct or array. You will need to implement the code to do this yourself.5.3 Synthesized attribute types for scanner primitivesThe scanner primitives have built in attribute types which may be used toretrieve, for instance, the string associated with an identi�er or the numericvalue of a REAL or INTEGER. The full set of primitives, their return types andreturn values is summarised in Table 5.1.5.4 Using synthesized attributesSynthesized attribute values are created by appending a colon and a nameto a symbol on the right hand side of a grammar rule. rdp declares a localvariable with the same name, and of the type speci�ed by the return type of thegenerated parser function for that symbol. After the generated parser has calledthe function for a symbol, the return value is loaded into the local variable,making it available to subsequent semantic actions. Synthesized attributes ceaseto exist when a parser function is exited.

24 ATTRIBUTES AND SEMANTIC ACTIONSrule ::= ID:name attributed_rule:value.where attributed_rule has been de�ned as returning an integer attribute,maps tovoid rule(void){ string name;integer value;...}Values will be loaded into the variables name and value after the correspondingphrases have been parsed.If a rule that returns a result is called without an attribute name beingdeclared then the result is simply thrown away.5.5 Inherited attribute de�nitionrdp rules can have parameters passed into them. Each rdp rule name may befollowed by a parenthesised list of identifier:type pairs which are instanti-ated into the parser rule as value parameters, so thatinherited_rule(x:integer y:real):integer ::= 'a' 'b'.maps tointeger inherited_rule(integer x, real y){ ...}The most common use of inherited attributes is to pass information into arule that will be used to enable semantic actions. In the rdp case study [JS97a],an interpreter for an enhanced version of the mini language is used to illustratethe application of inherited attributes to the implementation of an if . . .then. . . else statement.In general, parser rules can have both inherited attributes and return asingle synthesized attribute.5.6 Semantic actionsC-code fragments may be added to rdp-generated parsers by enclosing them in[*. . .*] brackets in the IBNF speci�cation. These brackets do not nest, and noescape sequence is needed. The contents of each bracket pair is simply copieddirectly to the parser without any intervening spaces. If for some reason youwant to get the string something*]else into the output you can write it as[*something**] [*]else*]The usual purpose of semantic actions is to manipulate the values of at-tributes passed into the rule by other rules or scanner tokens.

Error checking of semantic actions 255.7 Error checking of semantic actionsNo syntax checking of code fragments occurs when rdp generates a parser sincerdp is not itself a C compiler. As a result, any syntactic or logical errors thatyou introduce into the generated parser will not be detected until it is compiledor run. If you have a problem and are not clear whether it is the semantics orthe grammar that is causing it then try running rdp with the -p option, whichsuppresses semantic action insertion, to check whether your grammar correctlyparses a test �le.5.8 Default actions for iterators that match the empty stringAn iterator with a lower bound of zero (which of course includes the { } and[] shorthands) may match against nothing, or to put it another way thebody of the iterator may not be entered. In such cases, it is useful to be ableto specify a semantic action that acts as a default, that is, an action that isexecuted only when the body is not entered. rdp-IBNF allows such a defaultaction to be appended to an iterator or bracket with a lower bound of zero byinserting a colon.Consider the grammarstart ::= 'a' { 'b' } 'c'.which generates the language comprising zero or more instances of b bracketedby a and c. The following grammar prints out a message when presented withthe input string ac.start ::= 'a' { 'b' }:[* printf("No b's in string"); *] 'c'.The construct { }:[* default action *] de�nes a default action that isonly executed when the body of the iterator is not entered, i.e. the { }brackets are matched against the empty string �.Defaults can also be attached to full iterators as in:start ::= ID 0@8 ',':[* printf("No identifiers seen"); *] .5.9 Semantic rulesSemantic actions are often quite large pieces of code, and they can obscure the
ow of the grammar by overwhelming the IBNF. In addition, it is confusing toread a single speci�cation that contains code operating on di�erent levels| inthis case the high level IBNF and the low level C syntax.rdp allows you to parcel up large semantic actions into rules of their own,whose right hand sides contain only semantic actions, which are inserted inlineinto the appropriate function in the generated parser. This allows semanticactions to be described away from the actual instantiation point with no lossof e�ciency.A semantic rule is a special form of grammar rule that contains only se-mantic actions.

26 ATTRIBUTES AND SEMANTIC ACTIONSConsider this grammar fragment:statement ::= ID:name '=' e1:value[* symbol_lookup_id(name)->data.i = value; *] |'print' '(' (e1:value [* printf("%i",value); *] |string:str [* printf("%s", str+1); *])@','')'.Using semantic rules this may be reworked asstatement ::= ID:name '=' e1:value _1 |'print' '(' (e1:value _2 | string:str _3)@',' ')'._1 ::= [* symbol_lookup_id(name)->data.i = value; *]._2 ::= [* printf("%i",value); *]._3 ::= [* printf("%s", str+1); *].The version incorporating the semantic rules splits the semantics out from thesyntax de�nition making the grammar rather more readable.5.10 Semantic actions in multi-pass parsersBy default, rdp-generated parsers make a single pass over the input text, exe-cuting semantic actions on the
y. Many programming languages are designedto be parsed in this way: in C and Pascal for instance identi�ers must bedeclared before use to allow single pass translation.Some translation tasks are hard to accomplish in a single pass. rdp itself,for instance, is a translator for a language that does not require identi�ers to bedeclared before use. In fact rdp makes two passes over a .bnf �le: on the �rstpass all of the rule names are collected together and any rules that have beendeclared more than once are reported. On the second pass any references toundeclared rules can be detected. Other examples of translators that typicallyuse more than one pass are assemblers and other low level languages that allowidenti�ers to be de�ned and used in arbitrary order.rdp allows multiple pass parsers to be created easily. If a PASSES(n) decla-ration is inserted into a .bnf �le then rdp will make n passes over the text (seesection 6.1). Usually, semantic actions in multi-pass translators are designedto be executed on particular passes. Within a multi-pass parser, the globalvariable rdp_pass holds the current pass number (see section 8.1) which maybe used to �lter actions. A semantic action such as[* if (rdp_pass == 2) printf("Executing actions on second pass"); *]will only generate output on pass two. It would be tiresome to have to insertthese kinds of if statements into every semantic action of a multi-pass parser,so rdp allows speci�cation of the pass on which an action is to be executed.This semantic action is equivalent to the previous one:

Semantic actions in multi-pass parsers 27[* printf("Executing actions on second pass"); *]@2By appending an expression of the form @n to an action then it is restricted toexecution on pass n. rdp implements selective execution by simply wrappingthe appropriate if statement around the action. An action without a trailing@ expression will be executed on all passes.

Chapter 6Directivesrdp directives are used to parameterise the parser: for instance most of thestandard command line switches have default values which can be set up usingdirectives. Other features controlled by directives include the instantiation ofsymbol tables in the generated parser with the SYMBOL_TABLE directive and thede�nition of new command line switches which can be added using the ARG_...family of directives. In addition, some global values such as the case sensitivityof the target language can be initialised using directives.6.1 Flow control directivesINCLUDE("�lename")IBNF descriptions can span several �les. The INCLUDE directive pulls in another.bnf �le in exactly the same way as the #include preprocessor command in C.Included �les can be nested to arbitrary depth: the only limit is the amount ofavailable memory available to hold the list of nested �le descriptor blocks.6.2 Parser setup directivesUSES("�lename")All rdp-generated parsers automatically include the header �les for the scanner,text handler, memory manager, argument handler, graph handler, symbol tableand set handling modules. Any user header �les (such as the myth_aux.h �lefrom the example in Figure 1.1) can be speci�ed using this directive. MultipleUSES directives may be issued, one for each included �le, to generate a sequenceof #include preprocessor directives in the C parser source �le. The #includedirectives will appear in the same order as they are declared in the IBNF source�le and will be followed with #include"�lename.h"where �lename is the nameof the C parser header �le. Token names for the grammar and symbol tabledata structures are de�ned in this header �le.

30 DIRECTIVESTITLE("string")The title of the generated parser, as reported in verbose mode and at the topof the help message is set using this directive. If no TITLE directive appears inan IBNF description then the default title of rdparser will be used.SUFFIX("string")The default �letype for the generated parser is set using the SUFFIX directive.rdp automatically appends a period (.) and the su�x to any source �le namethat is speci�ed without a �letype. The string argument speci�ed to the SUFFIXdirective should not contain the leading period.If no SUFFIX directive appears in an IBNF description then �letype process-ing is disabled and the user �lename will be used literally.PARSER(start)The parser start rule is declared using this directive. If no PARSER directiveappears in the grammar then the �rst rule encountered is taken to be the startrule.PRE PARSE([* action *])The rdp-generated parser main() function checks command line arguments,initialises various subsystems and then makes a call to the parser function cor-responding to the �rst IBNF rule found. If a PRE PARSE directive is found inthe IBNF description then the C language action is copied into the main()function immediately before the call to the parser.POST PARSE([* action *])The rdp-generated parser main() function checks command line arguments,initialises various subsystems and then makes a call to the parser function cor-responding to the �rst IBNF rule found. If a POST PARSE directive is foundin the IBNF description then the C language action is copied into the main()function immediately after the call to the parser.OUTPUT FILE("�le")The default value of the output �lename for the generated parser is set usingOUTPUT FILE. It can be overridden on the command line with a -o directive. Ifno OUTPUT FILE directive appears in the grammar then a default output nameof rdparser is used.PASSES(count)Normally the rdp-generated parser contains a main() function that simply callsthe function corresponding to the �rst IBNF rule, and then returns control tothe user. For some applications, such as assemblers, it is convenient to have

Parser setup directives 31the parser called multiple times. If a PASSES directive is encountered then theparser call is wrapped in a for loop causing the parser to be called count times.The internal variable rdp_pass may be referenced in semantic actions to checkwhich pass is currently executing.Note that the POST_PARSE routine is not called until all passes are complete,and that any listing requested by a -l command line option is not generateduntil the last pass.SYMBOL TABLE(name size prime compare hash print [* data *])rdp-generated parsers make use of the hash coded symbol table package symbolwhich is described in [JS97b]. Each symbol table takes� a name which must be a valid C identi�er,� an integer size which is the number of hash buckets to allocate,� an integer prime which would ideally be a large prime number less thansize,� the name of a compare function,� the name of a hash function,� the name of a print function,� a list of data �elds.name can be any identi�er not used elsewhere in the grammar. The size ofthe table should be set to about 30{50% of the expected number of symbols tobe placed in the table. The table will work correctly even if size is very smallcompared to the number of symbols but performance will su�er. prime mustbe coprime (i.e. not sharing any common factors greater than 1) with size forthe standard hashing functions to work well.compare, hash and print are pointers to functions that understand the layoutof the user data. If your user data consists of a pointer to a string and a setof other �elds, and if that string is the symbol table key (a common situation)then the standard routines supplied as part of the symbol package may be used.The data �elds are a list of semicolon delimited data declarations which arecopied into the body of a struct by rdp.For simple tables that are keyed on a string the following directive workswell: SYMBOL_TABLE(mytable 101 31symbol_compare_stringsymbol_hash_stringsymbol_print_string[* char* id; integer i; *])

32 DIRECTIVESFor each SYMBOL_TABLE directive, rdp creates global variable name whichpoints to the table and then initialises it by calling symbol_new_table() beforebeginning the parse. In the header �le, rdp also creates a data structure fromthe data �elds and uses a typedef to create a name of the form name_data bywhich it may be called. Finally, a cast macro called name_cast is de�ned.6.3 Command line argument de�nition directivesrdp builds ready-to-run parsers that include an automatically generated helpfacility: if a user mistypes a command line when trying to run an rdp-generatedparser then a fatal error message will be issued which includes a condensedguide to the command line switches supported by the parser. By default, rdp-generated parsers support the command line arguments shown in Table 7.1.Extra command line arguments may be added using a family of four directives.They map onto the library functions declared in rdp_supp\arg.c which aredescribed in the support library manual [JS97b]. The rdp source �le rdp.bnfprovides a large example of the use of command line argument de�nitions.ARG BOOLEAN(key identi�er key string)Add a boolean command line argument. key should be a single alphabeticcharacter. identi�er is the name of a variable that will be automatically declaredin the generated parser and initialised to zero. key string is a descriptive stringthat will be reproduced if the help message is displayed.For example, this declarationARG_BOOLEAN(X x_flag "Set X flag")will add a -X command line argument and insert a variable called x_flag intothe parser. The x_flag variable will be initialised to false (zero), and theneach instance of -X will invert the
ag: hence a parse invocation of the formrdparser -X myfile will cause x_flag to be set to true (1).ARG NUMERIC(key identi�er key string)Add a numeric command line argument. key should be a single alphabeticcharacter. identi�er is the name of a variable that will be automatically declaredin the generated parser and initialised to zero. key string is a descriptive stringthat will be reproduced if the help message is displayed.For example, this declarationARG_NUMERIC(N n_value "Set value of n")will add a -N command line argument and insert a variable called n_value intothe parser. The n_value variable will be initialised to zero and then a parserinvocation of the form rdparser -N25 myfile will cause n_value to be set tothe value of the numeric parameter (25 in this case).

Command line default directives 33ARG STRING(key identi�er key string)Add a string command line argument. key should be a single alphabetic char-acter. identi�er is the name of a variable that will be automatically declaredin the generated parser and initialised to the empty string (""). key string is adescriptive string that will be reproduced if the help message is displayed.For example, this declarationARG_STRING(S s_value "Set value of s")will add a -S command line argument and insert a variable called s_value intothe parser. The s_value variable will be initialised to zero and then a parserinvocation of the form as rdparser -Sstring myfile will cause s_value tobe set to the value of the string parameter (string in this case).ARG BLANK(key string)Add a blank argument. No actual command line switch is instantiated: thisdeclaration is used to add a line to the help message. key string is a descriptivestring that will be reproduced if the help message is displayed.6.4 Command line default directivesTAB WIDTH(count)This directive sets the default number of spaces to expand tabs to when pro-ducing listings. If no TAB_WIDTH directive appears in the IBNF source then 8is assumed. It may be over-ridden with the -t command line directive.TEXT SIZE(count)This directive sets the default size of the scanner's text bu�er in bytes. If noTEXT_SIZE directive appears in the IBNF source then 20,000 is assumed. Itmay be overridden with the -T command line directive.Note that your operating system and compiler may impose their own limitson the size of the bu�er: for instance MS-DOS 16-bit compilers often limit thesize of a single heap object to 64K bytes, which acts as an e�ective limit tothe size of the text bu�er. rdp will exit with a fatal memory allocation error ifyou exceed the operating system limit. You can usually get a good idea of thelimitations of your system by looking at the de�nition of the ANSI C datatypesize_t which is used to represent the size of memory objects. If, as in BorlandC++ version 3.1, size_t is a 16 bit number then the 64K limit applies.MAX ERRORS(count)This directive sets the maximum number of errors that will be reported beforeparsing is aborted. If no MAX_ERRORS directive appears in the IBNF source then25 is assumed.

34 DIRECTIVESMAX WARNINGS(count)This directive sets the maximum number of warnings that will be reportedbefore parsing is aborted. If no MAX_WARNINGS directive appears in the IBNFsource then 100 is assumed.6.5 Scanner directivesCASE INSENSITIVEBy default, rdp-generated parsers are case sensitive. For languages such as Pas-cal which are case insensitive, the scanner may be set by a CASE_INSENSITIVEdirective so as to force all characters outside of strings and comments, includ-ing tokens and identi�ers, to be lower case. Since conversion is from upper tolower case, tokens in the IBNF description of a case insensitive language shouldbe written in lower case. The �le pascal.bnf supplied in the standard rdpdistribution provides an example of the use of this directive.SHOW SKIPSAfter detecting an error, rdp-generated parsers consume input until a token thatmight reasonably be used to restart the parse is found. This process is knownas skipping, and if a SHOW_SKIPS directive appears in the IBNF description thenan extra warning message is enabled that marks the end of the skipped passage.This is useful when debugging error handling.6.6 Tree generation directivesFor completeness, this section summarises the directives that enable automatictree generation. For fuller documentation, please refer to Chapter 9.TREE([* data *])Switch on tree generation and (optionally) de�ne extra data �elds to be added toeach tree node. The trees will have epsilon nodes deleted: leaf nodes containingepsilon are simply removed and internal epsilon nodes are removed with theirchildren being promoted to be at the same level as the internal epsilon nodewas at before pruning. Fuller documentation on tree generation will be foundin Chapter 9.EPSILON TREE([* data *])Switch on tree generation and (optionally) de�ne extra data �elds to be addedto each tree node. Epsilon nodes will be left in the tree. Fuller documentationon tree generation will be found in Chapter 9.

Tree generation directives 35ANNOTATED EPSILON TREE([* data *])Switch on tree generation and (optionally) de�ne extra data �elds to be added toeach tree node. Epsilon nodes will be left in the tree as with the EPSILON TREEdirective but each such node will be annotated with the string #:name wherename is the name of the subrule that generated the epsilon. Fuller documenta-tion on tree generation will be found in Chapter 9.

Chapter 7Running rdpThis chapter describes the rdp command line options. rdp reads a single IBNFsource �le (of default �letype .bnf) and writes out a header �le and a parser�le. If no output �lename is supplied then the �les are written to rdparser.hand rdparser.c respectively.The rdp command accepts parameters which can either be option switcheswhich are denoted by a leading minus sign (-) followed by a letter, or �lenamearguments which are anything else. Options and �lenames can be intermixed:it is not necessary to place the �lename after the options. rdp expects a single�lename| if you issue multiple �lenames then only the leftmost one will beused.All rdp options are processed in strict left to right order. This is signi�cantbecause some options can override the actions of other options: in such casesthe rightmost instance of an option will override any earlier ones.7.1 rdp �lename parametersAny rdp parameter that does not consist of minus sign (-) followed by a non-whitespace character will be taken as a �lename.The rdp scanner attempts to add a default �letype to the �lename youspecify. It starts at the rightmost character, and looks backwards for a period(.). If it encounters one before it �nds the start of the �lename or an instanceof either the Unix or MS-DOS directory separators (/ and \) then it assumesthat you have supplied your own �letype and leaves the �lename untouched. Ifit does not �nd a period then it appends .bnf to your �lename.7.2 rdp option parameters-e write out expanded IBNFThis option enables an extended listing mode that causes rdp to render all ofits internal and external rules as human readable BNF, as well as enumeratingthe �rst and follow sets for each rule, and giving a count of the number of timesthe rule is called in the grammar, that is the number of times a particular rulenames appears on the right hand side of rules.

38 RUNNING RDPAn internal rule (or subrule) is the expansion of one of the rdp extended ruletypes that are described in Chapter 3: the (. . .), [. . .], {. . .} or <. . .> bracketpairs or the expansion of an iterator operator @. Each internal rule inherits itsparent rule's name with the string rdp prepended and the string _n appended,where n is a unique integer.This option usually generates a lot of output, but can be very educationalwhen analysing �rst and follow sets for simple languages.-E add rule name to error messagesWhen debugging a grammar it is sometimes helpful to know which rule wasbeing processed when an error occurred. If you regenerate the parser usingrdp and add the -E
ag to the rdp command line, then the message In rule'name' is prepended to all syntax errors displayed by the generated parserwhere name is the name of the active rule at the time the error was found.-f �lter modeIn �lter mode, input is read from the standard input and written to the standardoutput. The -f option sets the input to stdin (either the keyboard, or theoutput of a previous operation within a pipe) and the output to stdout, butsubsequent -o options or �lenames can be used to override this. Similarly, thisoption overrides any previous -o option.-F force creation of output �lesAny ambiguities or left recursion in the supplied grammar will cause rdp toreport LL(1) error messages, and inhibit production of the output �les. Mostreal languages have at least one ambiguity (the if . . . then . . . else problem)and several others (such as C) have ambiguities based on the use of identi�ers indi�erent contexts. Careful design of the source grammar can result in correctlyworking parsers even in the face of these ambiguities because rdp will acceptthe �rst matching production alternate in a rule, in which case the -F optioncan be used to force rdp to produce its output �les.-l make a listingUsually, only lines containing syntax errors are echoed to the screen whilstan rdp-generated parser is running. When a -l option is issued each lineof the source �le is echoed to the message stream as it is read. Usually themessage stream is the standard error stream, but you can change this by alteringthe macro TEXT_MESSAGES which is de�ned in textio.h and recompiling thewhole system. It is also possible to change the message stream at run timeusing the text_redirect() routine: see the support manual [JS97b] for moreinformation.

rdp option parameters 39-ofilename write output to �lenameBy default rdp creates output �les rdparser.h and rdparser.c. When a -ooption is issued, the characters immediately following the o up to the nextwhitespace character are taken as the �lename. Any �letype is stripped o�,and the remaining characters are used as a �lename body.-p make parser onlyIt is often useful to be able to disable semantic actions and produce a pure parserso as to debug the grammar without interference from embedded C semanticactions. The -p option causes rdp to suppress the writing of semantic actionsinto the parser source code which may then be compiled into a pure syntaxchecker.-R add rule entry and exit messagesWhen debugging a grammar it is useful to be able to get a trace of the parser'sexecution path. One way to do this is to add semantic actions to each rule whichprint out a message on entry to the rule and on exit. It would be tedious to dothis by hand: the -R option instructs rdp to automatically add these messagesfor all rules. This option can cause generated parsers to produce voluminousoutput.-s echo each scanner symbol as it is readWhen debugging scanners it can be very helpful to get a diagnostic dump ofeach lexeme as it is passed to the parser. This option produces one line ofoutput per lexeme and is only recommended for detailed debugging since itgenerates a lot of output.-S print summary symbol table statisticsrdp-generated parsers use hash coded symbol tables that are declared in theIBNF source �le. The number of hash buckets in each table is speci�ed by theuser in the grammar and should be kept large enough to keep the number ofentries per bucket below about four or �ve for e�cient parsing. The -S optionprints out a histogram of bucket utilisation frequencies and the mean bucketutilisation �gure for each declared table. Note that the scanner uses one tableinternally to hold the keywords from the IBNF speci�cation, and statistics forthat table are printed too. If the tables are becoming congested then increasethe size in the corresponding SYMBOL_TABLE() directive (see section 6.2) andregenerate.-tn tab expansion widthWhen echoing lines read in by the scanner it is important that tabs are correctlyexpanded or the user's formatting may be lost. rdp supports �xed tab stops

40 RUNNING RDP-f Filter mode-l Make a listing-ofilename Write output to filename-s Echo scanner symbols-S Print symbol statistics-tn Tab expansion width-Tn Text bu�er size-v Set verbose mode-Vfilename Write derivation tree to filename in VCG formatTable 7.1 Standard command line optionsevery n characters where n defaults to 8, but may be set to some other valuewith a -t option.-Tn text bu�er size in bytes for scannerThe rdp scanner allocates a �xed text area at initialisation time. The textbu�er is used e�ciently, but will eventually �ll up when parsing long �les. The-T option may be used to override the default text bu�er size for the runningparser.Note that your operating system and compiler may impose their own limitson the size of the bu�er: for instance MS-DOS 16-bit compilers often limit thesize of a single heap object to 64K bytes, which acts as an e�ective limit tothe size of the text bu�er. rdp will exit with a fatal memory allocation error ifyou exceed the operating system limit. You can usually get a good idea of thelimitations of your system by looking at the de�nition of the ANSI C datatypesize_t which is used to represent the size of memory objects. If, as in BorlandC++ version 3.1, size_t is a 16 bit number then the 64K limit applies.-v set verbose modeIn verbose mode rdp issues a running commentary on its progress, reporting allstages of the grammar checking process. All rdp-generated parsers also reportCPU time usage in verbose mode. The value of the verbose
ag (o if it is absenton the command line and 1 if it is present) is held in global variable rdp_verbosewhich may be examined from within semantic actions. This feature can be usedto provide extra output from generated parsers in verbose mode.-V dump derivation tree in VCG formatrdp-generated parsers built from speci�cations that include one of the threeTREE directives automatically build derivation trees using the graph manipula-tion support library. These trees can be output in a textual form that is suitablefor reading into the VCG compiler graph visualisation tool [San95]. Activationof this option causes the tree to be dumped out at the end of the �nal parser

Options understood by rdp-generated parsers 41pass. Further details on tree construction and manipulation will be found inChapter 9.7.3 Options understood by rdp-generated parsersAll rdp-generated parsers automatically include all of the option
ags listed intablestandard. In addition, extra options can be speci�ed in the grammar usingthe ARG directives described in the next chapter.

Chapter 8rdp global variables8.1 Monitoring parser status at runtimeEach rdp-generated parser has a set of global variable de�nitions written intoit that are initialised before the parser start rule is called. Semantic actions inthe parser �le can access these variables.rdp error returnThe contents of this variable supply an error return status to the operatingsystem on normal completion. By default it is set to zero but semantic actionsmay set it to any value. A fatal error always returns a fatal status to theoperating system regardless of the contents of this variable.rdp outputfilenameThe value of the -o output �le command line switch, or "-" if a -f argumentwas last seen.rdp passThe current pass number. Passes are numbered 1 to n where n is the numberde�ned in the PASSES() directive. Pass expressions of the form @n may beappended to semantic actions to control which pass they are executed on.rdp sourcefilenameThe value of the source �lename supplied on the command line.rdp treeA pointer to the root of the derivation tree for parsers generated from speci�-cations that include one of the TREE directives.

44 RDP GLOBAL VARIABLESrdp verboseThe value of the verbose mode
ag. By default it is set to 0, but if a -vcommand line switch in encountered it is set to 1.8.2 De�ning the message streamThe initial destination for messages created by the text_message() and text_printf()functions is controlled by the value of the TEXT_MESSAGES macro. By defaultthis is de�ned to be stderr, the standard error stream. On MS-DOS in partic-ular it is sometimes useful to rede�ne this to be stdout because of the di�cultyof capturing the standard error stream to a �le. The message stream can alsobe redirected in mid-parse using the text_redirect() routine. See the supportlibrary manual [JS97b] for further details.8.3 Adding reserved words to the dangerous identi�er listrdp checks that all your identi�ers are valid C identi�ers that will not clash withC or C++ reserved words. The macro RDP_RESERVED_WORDS which is de�nedin rdp_aux.h speci�es the list of reserved words. The standard distributioncontains the ANSI reserved words and a few standard library functions. Youcan add strings to this list in any order: you might have your own standardlibrary functions, for instance. Checking for reserved words is e�cient|at theend of parsing a complete IBNF speci�cation all of the identi�ers will be inthe rdp symbol table. During the grammar checking phase rdp looks to see ifany of the words speci�ed in RDP_RESERVED_WORDS is in the symbol table, andissues error messages accordingly. Hence checking time is linear in the numberof reserved words and is independent of the length of the source text.

Chapter 9Derivation tree construction andvisualisationSome translation tasks are di�cult to perform during a parse, even if a multi-pass parser is employed. In such cases, it is normal to construct an internalrepresentation of the source text during parsing which may be traversed e�-ciently, and to use an intermediate form for tasks such as optimisation.High quality compilers can perform many di�erent code improvement trans-formations as part of an optimisation phase. Typically, optimisations work byrelating together separate parts of the source text and so are very di�cult toimplement in a single pass compiler which only `sees' a very small part of theinput at any one time.Take for example, common sub-expression elimination which is one of themost commonly applied optimisations. Consider two 2-dimensional arrays de-clared asint a[10][20], b[10][20];We can copy one element of b to the corresponding position in a as follows:a[i][j] = b[i][j];This simple assignment actually hides two indexing calculations which wecan render explicitly in C using address arithmetic. In detail the computer hasto perform this calculation:*(a + (i*10) + j) = *(b + (i*10) + j);Here, the index i is multiplied by the width of the array (10 in this case) andthen added to the value of j and the base address of a to get the machine locationof element a[i][j], and then essentially the same calculation is performed to�nd the location of b[i][j].A single pass compiler is pretty much limited to producing this kind of repet-itive code, but a compiler which is capable of gathering together informationfrom potentially widely separated parts of the source program can implementthe common sub-expression separately, producing this more e�cient code:int temp = (i*10) + j;*(a + temp) = *(b + temp);

46 DERIVATION TREE CONSTRUCTION AND VISUALISATIONIf a multiple pass translator is to be used then it is usual to construct a datastructure in memory that represents the input program in a manner which maybe e�ciently processed. Simply storing the original program text is ine�cientbecause discovering a derivation for an input text is time consuming | that isafter all the primary function of the parsers that rdp constructs and it wouldclearly be wasteful to run the process several times1.Leaving aside issues of e�ciency, making multiple independent passes overthe source text does not of itself allow us to make connections between widelyseparated parts of the text because the parsers generated by rdp only look ata single symbol at a time: they do not of themselves keep track of completesentences or program statements. However, rdp can be set to build a deriva-tion tree whilst it performs a parse. This tree re
ects explicitly relationshipsbetween symbols in the source program, and since it is held as a pointer-baseddata structure rather than as a single long text string, it can be traversed andrearranged e�ciently.9.1 Derivation treesInformally, a derivation tree is a trace of the parser's behaviour during a partic-ular parse. The derivation tree is constructed top down, left to right by creatinga new tree node every time a nonterminal or terminal is matched. Every non-terminal when matched creates a new internal tree node and every terminalwhen matched causes a new tree leaf node to be added. In addition, when aniterator with a lower bound of zero (or the shorthands [...] and { ... })match the empty string � (or # in rdp syntax) an empty tree leaf node is added.The idea is that the nodes created whilst matching the body of a nonterminalwill be attached as children of the node corresponding to that nonterminal.This rather complicated recipe is best illustrated with an example. Let usrevisit the example used in section 5.1 which describes a minimilist grammarwhich can generate arithmetic expressions made up of an addition followed bya multiplication:start ::= INTEGER '+' expr.expr ::= INTEGER '*' INTEGER.When presented with the source string 3 + 6 * 7 the parser generated byrdp from the above grammar will construct the tree shown in Figure 9.1.In this example, tree construction starts by making a root node labeledstart. The scanner then matches an INTEGER with lexeme 3 and so a suitableINTEGER leaf node is added to the tree. The token + is then matched andanother leaf node is added. At this point in the parse, the parser function for1Of course, just because making multiple passes over the source code is a wasteful process itneed not stop us using it where applicable and rdp provides the PASSES directive for preciselythis purpose. Simple multi-pass applications, such as the implementation of a translatorfrom a machine's assembly language to its machine code, may usefully exploit this strategy.You can read about the design and implementation of such as assembler in the case studymanual [JS97a].

Derivation trees 47
Figure 9.1 A simple derivation treerule start calls the function corresponding to rule expr so a matching childnode is added that then becomes the parent node for subsequent leaf nodes.This picture was made with the VCG (Visualisation of Compiler Graphs)tool [San95] which you can obtain from the rdp archive as described in ap-pendix A. Any rdp-generated parser that uses the automatic tree generationcapability described in this chapter may be displayed on screen and printedusing VCG if you are running under Windows or X-windows on Unix. You will�nd further information on using VCG in section 9.3.Derivation trees grow rather rapidly. In the standard rdp distribution thereis grammar for the Pascal language (pascal.bnf) and a corresponding test �le(test.pas) containing 283 lines of Pascal. The tree produced contains 7167nodes, one of which has 67 children. It is quite di�cult to visualise these largestructures although VCG provides useful navigation facilities.9.1.1 A larger exampleLet us examine a grammar which describes a language of assignment expres-sions. We allow the usual four arithmetic operators along with exponentiation(denoted by the operator **), monadic + and - operators and parenthesisedexpressions. The exponentiation operator is right associative and the otheroperators are left associative.program ::= { statement ';' }.statement ::= ID '=' e1.e1 ::= e2 { ('+' | '-') e2 }. (* Add or subtract *)e2 ::= e3 { ('*' | '/') e3 }. (* Multiply or divide *)e3 ::= e4 | ('+' | '-') e3. (* Monadic positive or negative *)e4 ::= e5 ['**' e4]. (* Exponentiate *)e5::= ID (* Variable or ... *)['(' (e1)@',' ')'] | (* ... function call *)INTEGER | (* Numeric literal *)'(' e1 ')'. (* Bracketed subexpression *)Figure 9.2 shows the result of using this grammar to parse the stringa = 2;

48 DERIVATION TREE CONSTRUCTION AND VISUALISATIONb = a - 1 - 2 * (4 - 3) ** 4 ** 5 ** 6 / --+- 7;This large tree displays several interesting features. The �rst thing to noteis that the trees are designed to be read in a depth-�rst, left-to-right fashion.One useful side e�ect of this is that if the rectangular terminal nodes are writtenout in left-to-right order we recover the original string. This list of leaf nodesis sometimes called the yield of a tree.It can also be useful to examine a horizontal section of the tree. Whenprinted, the trees display all nodes having the same depth in the tree on thesame horizontal line. Since the depth in the tree is dictated by the numberof nested grammar rules active at any given point in the parse, a horizontalstrip can tell you what was matched within a single body. The very top of thetree shown in Figure 9.2 for instance shows that the �rst rule expanded by theparser was program and the expansion was statement ; statement ;Rules e1, e2 and e4 in our grammar each have the form of a call to anonterminal followed by an optional phrase as in:e2 ::= e3 { ('*' | '/') e3 }.When an optional phrase matches the empty string � (or # in rdp terminology)an empty node is added to the tree, and the tree shown in Figure 9.2 showsmany examples of this.Finally, note that di�erent forms of operator speci�cation generate di�erenttree forms. In this case, the operators speci�ed using { } iterator brack-ets such as (+, -, * and /) generate horizontal runs of operators as in thesub-expression b=a-1-2. On the other hand, operators speci�ed using rightrecursion such as ** generate a descending sequence of nodes.Since the full derivation tree is so large, it is conventional to discard someparts of the tree, retaining only those nodes that convey information neededby later stages of processing. rdp provides a set of promotion operators thatallow nodes to be moved back up the tree, potentially overlaying earlier nodes.The operators are described later in this chapter, and you will �nd large scaleexamples of their use in the rdp case study document [JS97a]. To give youa
avour of what is possible, Figure 9.3 shows the result of applying thesepromotion operators to the tree shown in Figure 9.2.The modi�ed derivation tree has been obtained by1. moving certain arithmetic operator terminals up so that they overlay theirparents,2. deleting some tokens which are redundant in the tree representation suchas ;, (and),3. deleting all empty (�) nodes left after the previous steps have been per-formed.In addition, we ensure that chains of left associative arithmetic operators areconverted to left descending sub-trees in a way that is symmetric with the rightdescending sub-trees used in the original tree to represent the right associativeexponentiation operator,

Derivation trees 49

Figure 9.2 Derivation tree for expression grammar

50 DERIVATION TREE CONSTRUCTION AND VISUALISATION

Figure 9.3 A modi�ed derivation tree

Tree generation directives 51
Figure 9.4 E�ect of the TREE directive9.2 Tree generation directivesBy default, rdp-generated parsers do not generate trees because the tree con-struction process does impose some overhead on the parsing process, and forsimple single pass parsers this would be extravagant. Tree generation is switchedon by adding one of the three tree directives to a grammar and then regeneratingthe parser by running the grammar through rdp.TREE([* data *])Switch on tree generation and (optionally) de�ne extra data �elds to be added toeach tree node. The trees will have epsilon nodes deleted: leaf nodes containingepsilon are simply removed and internal epsilon nodes are removed with theirchildren being promoted to be at the same level as the internal epsilon nodewas at before pruning.EPSILON TREE([* data *])Switch on tree generation and (optionally) de�ne extra data �elds to be addedto each tree node. Epsilon nodes will be left in the tree.ANNOTATED EPSILON TREE([* data *])Switch on tree generation and (optionally) de�ne extra data �elds to be added toeach tree node. Epsilon nodes will be left in the tree as with the EPSILON TREEdirective but each such node will be annotated with the string #:name wherename is the name of the subrule that generated the epsilon.Figures 9.4{9.6 show the di�erent e�ects of these directives when added tothe expression grammar given above and used to parse the string a=2;9.3 Using VCG to visualise derivation treesAll rdp-generated parsers accept the -V�lename command line switch. Forparsers that have been generated from grammars that do not include one of

52 DERIVATION TREE CONSTRUCTION AND VISUALISATION
Figure 9.5 E�ect of the EPSILON TREE directive

Figure 9.6 E�ect of the ANNOTATED EPSILON TREE directive

Using VCG to visualise derivation trees 53the three TREE directives this switch simply generates a warning message, butfor parsers that do have tree generation enabled a text �le will be createdcontaining a speci�cation of the derivation tree in the language understood byVCG. If the optional �lename is speci�ed then this will be the name of theVCG �le, otherwise the default name of rdparser.vcg will be used.On MS-Windows and Unix systems running X-windows the VCG tool maybe started by typingvcg rdparser.vcgor the equivalent for your own �le name. VCG will read the tree in (which maytake a little while for a large tree) and then draw it on the screen. You can useVCG's navigational facilities to move around within the tree, zoom in and out,and print out the whole tree or a portion of it. VCG is a powerful tool and youshould read the VCG manual supplied with the VCG distribution to get a fullunderstanding of the tool. We are grateful to the author of VCG for permissionto distribute it with rdp.

Chapter 10Tree manipulationFull derivation trees consume a lot of space, and often contain nodes that areof little use in subsequent language processing. Most books on compiler the-ory describe concrete and abstract syntax trees (often called AST's). There israther little agreement on the formal de�nition of an AST, and in practice mostlanguage tool designers design an ad hoc representation which is built on the
y during the parsing phase. By embedding semantic actions in the speci�ca-tion of an rdp-generated parser it is, of course, possible to adopt this approachusing rdp, but rdp provides a set of promotion operators which allow commonAST forms to be automatically generated from the derivation tree. The advan-tage of this approach is that the grammar itself directly dictates the shape ofthe modi�ed derivation tree whereas traditional AST's are only loosely relatedto the actual derivation tree. As a result, maintaining a language processorbased on the traditional twin-track grammar and AST structure requires twoindependent tree-like forms to be described whereas in rdp the grammar itselfful�lls both functions. The disadvantage is that the rdp promotion operatorsare not very easy to use, and we view them as somewhat experimental at thisstage. The authors would be interested to hear of user experiences, both goodand bad.10.1 Normal tree constructionThe promotion operators are applied on the
y during tree construction, andit is possible for a sequence of nodes to be promoted above each other. A fullunderstanding of the e�ects of the promotion operators therefore requires anunderstanding of the order in which the tree is constructed.At any given time during a parse there will be a current parent, that isa particular tree node which is the one to which children are being added.Immediately before a parse begins a root node representing the �rst call to theparser function for the start production is created and this is made the currentparent. In the absence of promotion operators, subsequent tree growth occursas a result of one of three processes:1. Whenever a terminal is encountered within a rule a new node is addedas a child of the current parent labeled with the terminal's lexeme. The

56 TREE MANIPULATIONcurrent parent does not change, therefore matches against terminals causetree nodes to be added from from left to the right without changing thelevel.2. Whenever an optional subphrase arising from [...] or {...} brackets orfrom an iterator with a low count of zero matches against the null string�, an epsilon node is added as a child of the current parent. The currentparent does not change.3. Whenever a nonterminal is encountered within a rule, a new child node isadded to the current parent and labeled with the name of that nontermi-nal and that node is made the current parent for any nodes that are createdas a result of matches against that nonterminal's productions. When theparser �nishes matching against that nonterminal's productions, the orig-inal current parent is restored.The e�ect of these rules is to go down one level in the tree each time a non-terminal is encountered and to go back up a level as the parser completes thematching of each production.10.2 Modifying tree construction with promotion operatorsThe rdp promotion operators act so as to modify the rules above. There arefour possible operators:10.2.1 Promote underneath parentThe ^ (promote underneath) operator forces the node to be promoted to theparent node but the parent node's �elds overwrite those of the node beingpromoted. The resulting node becomes the current parent for subsequent op-erations.10.2.2 Promote on top of parentThe ^^ (promote on top of) operator forces the node to be promoted to theparent node and the parent node's �elds are overwritten by those of the nodebeing promoted. The resulting node becomes the current parent for subsequentoperations.10.2.3 Promote above parentThe ^^^ (promote above) operator forces the node to be promoted so as tobecome the parent of the current parent, that is it is inserted above the currentparent rather than as a child of the current parent. The resulting inserted nodebecomes the current parent for subsequent operations.

Valid contexts for promotion operators 5710.2.4 Insert here (no promotion)The ^_ (no promotion) operator forces the node to be inserted under the currentparent in the usual way, that is the ^_ operator forces the rules described in theprevious section to be observed for the grammar element to which the operatoris applied. The current parent is unchanged. This operator is usually only usedto apply the normal behaviour to a nonterminal whose default behaviour hasbeen overridden, as described in the next section.10.3 Valid contexts for promotion operatorsPromotion operators may be applied in four contexts:1. immediately after a terminal:a::=b '+'^^ c.in which case it indicates that the corresponding terminal node should bepromoted,2. immediately after a nonterminal on the right hand side of a rule:a::=b^^ '+' c.in which case it indicates that the corresponding nonterminal node shouldbe promoted,3. immediately after a nonterminal on the left hand side of a rulea^^::=b '+' c.in which case it speci�es that the default promotion for instances of thatnonterminal on the right hand side of rules should be changed from ^_(the normal default) ,4. in the default action clause of an optional phrase arising from [] or{ } brackets or from an iterator with a low count of zero:a::=[b '+' c]:^^.in which case it indicates that any epsilon node created as a result ofmatching the optional phrase against the null string � should be promoted.Each grammar element (terminal or nonterminal) in an rdp grammar hasan attached promotion operator which speci�es the way that the correspondingtree nodes will be built into the tree during a parse. The default operation is^_, so in e�ect any grammar element without an explicit promotion operatorattached has an implicit ^_ operator following it, and such a node will beprocessed according to the rules given in the previous section1.1For nonterminals only, new defaults may be established by applying a promotion operatorto the left hand side of the rule de�nition.

58 TREE MANIPULATION10.4 A complete exampleIn this section we show how to apply the promotion operators to the grammarfor a simple expression-based language. The original grammar (without pro-motions) was given above and generates trees of the form shown in Figure 9.2.This modi�ed grammar was used to produce the much more space-e�cient treeshown in Figure 9.3.TREEprogram ::= { statement ';'^ }.statement ::= ID '='^^ e1.e1 ::= e2^^ { ('+'^^^ | '-'^^^) e2 }. (* Add or subtract (LA) *)e2 ::= e3^^ { ('*'^^^ | '/'^^^) e3 }. (* Multiply or divide (LA) *)e3 ::= e4^^ | ('+'^^ | '-'^^) e3. (* Monadic positive or negative (RA) *)e4 ::= e5 ['**'^^ e4]:^^. (* Exponentiate (RA) *)e5::= ID^^ (* Variable or ... *)['('^ (e1)@','^ ')'^] | (* ... function call *)INTEGER^^ | (* Numeric literal *)'('^ e1^^ ')'^. (* Bracketed subexpression *)10.4.1 Removing syntactic sugarThe simplest application of the promotion operators is to simply remove unnec-essary tokens from the tree. The ^ operator has this e�ect because it promotesthe node up under the current parent. Since the resulting node contains thelabel from the original parent, the contents of the new node is e�ectively dis-carded. Using this operator, then, allows syntactic sugar to be deleted from thelanguage. In this grammar, the parenthesis tokens in rule e5 have been treatedthis way. In essence, parentheses in a programming language are usually usedto represent nesting of some sort, and of course a tree allows nesting to be struc-turally shown simply by making the contents of a parenthesised expression intoa child node. There is no reason, therefore, for the parentheses to be retained inthe tree. Another example of redundant syntactic sugar is the semicolon usedto terminate statements and this is similarly deleted.Here is a small example that shows the e�ect of promoting the parenthesesup under their parents:s ::= e ['+' s].e ::= t ['*' e].t ::= INTEGER | '('^ s ')'^.Figure 10.1 shows the full tree that will be produced without the promotionoperators when parsing the string (2+3)*4, and Figure 10.2 shows the resultof adding the promotions.10.4.2 Making operators parent nodes to their operandsClassically, parse trees represent arithmetic expressions for diadic operators asbinary trees with each operator node having two children corresponding to its

A complete example 59

Figure 10.1 Simple expression: full tree

60 TREE MANIPULATION

Figure 10.2 Simple expression: result of adding promotion operators

A complete example 61
Figure 10.3 Right associative operator treeoperands. We get this e�ect in rdp by promoting the operator node onto theparent nonterminal node using the ^^ operator. This is illustrated in rule e4which shows the implementation of the right associative (RA) exponentiationoperator **. In detail, it turns out that the � node created at the end of a runof RA operators must be promoted too: hence the default promotion in rulee4. Here is a simpli�ed grammar illustrating the construction of a right as-sociative operator tree. The result of parsing the string 2**3**4 is shown ifFigure 10.3.s ::= e ['**'^^ s]:^^.e ::= INTEGER^^ | '('^ s^^ ')'^.10.4.3 Handling left associative operatorsArithmetic expressions containing left associative (LA) operators present a littlemore di�culty which is perhaps unfortunate since LA operators are the norm.From the parsing point of view the recursive rules used to recognise a LAoperator create their tree nodes in the `wrong' order and simply promoting theoperator token node onto its parent yields a tree whose semantics do not matchthat of normal algebraic usage. The correct solution is to promote the operatortoken to the node above its parent, thus building that part of the tree in whatamounts to a bottom-up fashion. This approach is illustrated in rules e1 ande2 above.Here is a simpli�ed grammar illustrating the construction of a left associativeoperator tree. The result of parsing the string 2-3-4 is shown if Figure 10.4.s ::= e^^ {'-'^^^ e}.e ::= INTEGER^^ | '('^ s^^ ')'^.

62 TREE MANIPULATION

Figure 10.4 Left associative operator tree

Chapter 11Error and informational messagesAll rdp error messages are issued via the text_message() routine which is partof the textio package described in [JS97b]. The routine supports four classesof message:� fatal errors which cause immediate termination of the run,� errors which cause termination of the run after grammar analysis unlessthe -F
ag is set,� warnings which may indicate a problem that should be checked and� informational messages which provide feedback only and do not indicatea problem.In each case, a message may or may not cause an echo of the current scannerinput line, followed by an arrow indicating the current position of the scanner.A typical message looks like this:33: Error 1 (zzz.bnf): unexpected character 0x2C ',' in source file33: bad , syntax ,33: ----1In this case an illegal character has been found in the source �le. Up to nineerror messages per line of source code may be reported, with the error messagesthemselves followed by an echo of the line in error and a marker line showingthe location of the errors.In detail, whenever rdp detects a syntax error in the source IBNF it printsout a line of the �le with a digit marking the last character of the �rst tokenafter the token that caused the error. This can be confusing if the error token isthe last on a line, because the next line will be printed with an arrow pointingto the start of the line.Fatal, error and warning messages are preceded by the relevant messageseverity. Informational messages are only preceded by a space character. Thismakes it easier to spot the errors by scanning the leftmost column of the outputlisting.The rest of this chapter lists all rdp error messages in alphabetical order byclass. Some of these messages can also be reported by rdp-generated parsers.

64 ERROR AND INFORMATIONAL MESSAGES11.1 Fatal errorserrors detected in source fileThis message is issued at the end of syntax analysis if syntax errors have beenreported. It causes termination of the run before the POST_PARSE routine iscalled.internal error - expecting alternateThe internal data structures representing the grammar have become corrupted.This error can only occur as a result of a programming error within rdp: pleasesubmit a bug report to A.Johnstone@rhbnc.ac.uk which includes an exampleIBNF �le that generates the error along with a note of your computer model,operating system name and version and compiler vendor and version.internal error - unexpected alternate in sequenceThe internal data structures representing the grammar have become corrupted.This error can only occur as a result of a programming error within rdp: pleasesubmit a bug report to A.Johnstone@rhbnc.ac.uk which includes an exampleIBNF �le that generates the error along with a note of your computer model,operating system name and version and compiler vendor and version.internal error - unexpected kind foundThe internal data structures representing the grammar have become corrupted.This error can only occur as a result of a programming error within rdp: pleasesubmit a bug report to A.Johnstone@rhbnc.ac.uk which includes an exampleIBNF �le that generates the error along with a note of your computer model,operating system name and version and compiler vendor and version.no rule definitions foundThe source �les processed by rdp did not contain any rule de�nitions, so thereis nothing to do.no source file specifiedNo �lename was found on the command line, and a -f (�lter mode)
ag hadnot been issued. rdp prints a summary help message after issuing this error.run aborted without creating output files - rerun with -F to overrideErrors were detected during grammar analysis and so no output �les were cre-ated. Many languages (including C and Pascal) contain at least one ambiguousrule (the if...then...else problem) and so when you are sure that all otherproblems in your grammar have been eradicated, rerun rdp with a -F
ag whichwill override this message and generate the output �les.

Errors 65source file not foundThe source �le does not exist, or is read locked against the user. rdp andrdp-generated parsers print a summary help message after issuing this error.unable to open header output file '�lename' for writingrdp was unable to open the named header �le for writing. This may be becausethere is no disk space left, or there may already exist a �le of that name thatis write protected.unable to open parser file '�lename' for writingrdp was unable to open the named parser �le for writing. This may be becausethere is no disk space left, or there may already exist a �le of that name thatis write protected.unable to open VCG file '�lename' for writingrdp was unable to open the named VCG output �le speci�ed with a -V switchfor writing. This may be because there is no disk space left, or there mayalready exist a �le of that name that is write protected.unrecognised option -crdp or a generated parser found a command line switch it did not understand.After issuing this message rdp prints out a summary help page.11.2 Errorscomment delimiter tokens must be less than three characters longDue to the rather crude state machine used during comment parsing, commentclose delimiter tokens must be one or two characters long, so the Algol-68comment. . . tnemmoc brackets can not be handled (and quite right too in manypeople's opinion).doubly declared symbol 'name'name appears more than once on the left hand side of a rule de�nition. Mergethe rules using alternates.empty tokens are not allowed: use [...] insteadrdp does not allow use of the explicit null token ''. Only the iteration operator@, the zero-or-more bracket { } and optional bracket [] can introduce nullrules into the grammar.

66 ERROR AND INFORMATIONAL MESSAGESidentifier 'name' begins with a reserved nameAll rdp internal identi�ers begin with one of a set of ten reserved pre�xes listedin Table 2.1. To avoid clashes between user identi�ers and these internal names,rdp rejects any user de�ned identi�ers that begin with one of those pre�xes.Error 1 (�lename): expecting one of 'token1', ...line containing an error-------1This is the generic rdp syntax error report. After printing the error messagesthe line containing the errors is echoed to the error stream along with a pointerline. The pointer line contains up to nine digits that each mark the token afterthe token that has generated an error.identifier 'name' is a C++ reserved word or library identifierSurprising compile time errors would result from declaring a rule called, forinstance register because register is, of course, a C reserved word and maytherefore not be used as a function name. All identi�ers in the IBNF �le arechecked against a list of dangerous names which includes all C keywords anda few of the more common library functions. You can add extra names to thelist by adding extending the de�nition of parameter RDP_RESERVED_WORDS in�le rdp_aux.hillegal grammar element: a colon may not appear hereA syntax error in the rdp source �le has been detected.illegal grammar element: a real may not appear hereA syntax error in the rdp source �le has been detected.illegal grammar element: an integer may not appear hereA syntax error in the rdp source �le has been detected.illegal grammar element: expressions may not return valuesA syntax error in the rdp source �le has been detectedillegal grammar element: perhaps you intended to write 'string'A syntax error in the rdp source �le has been detected. A double quote delim-ited string has been found where only a single quote delimited string is allowed.include file '�lename' not foundThe named include �le does not exist, or is read locked against the user.

Errors 67iteration count too lowThe rdp rule example ::= ('a' 'b')4@6# 'z' matches the following strings:ababababzabababababzababababababzrdp performs this match by iterating in the ('a' 'b') sub-rule at leastfour and at most six times. In detail, rdp iterates round the body and thenchecks the number of times it matched ('a' 'b') when it eventually �nds anon-match in the input. If rdp �nds that it went round less than four times, itissues this message. So, in general, the message indicates that there were toofew instances of the sub-rule in the input to meet the iterator speci�cation.iterator high count must be greater than low countAn iterator of the form (body)5@3 is illegal because it requires body to bematched at least �ve, but no more than three, times which is meaningless.LL(1) violation - rule 'name' alternates``alternate''and ``alternate''share these start tokens:tokensThis is the most common LL(1) problem: a pair of alternates share at leastone start terminal and so cannot be disambiguated by the parser. A simpleexample isbad_first ::= 'a' 'b' 'c' | 'a' 'd'.The error can often be eliminated by factorising the grammar, for examplegood_first ::= 'a' ('b' 'c' | 'd').LL(1) violation - rule 'name1' and 'name2' are both nullableA construction like ['a'] ['b'] is ambiguous because rdp could match eitherbracket against a null input string.LL(1) violation - rule 'name'contains null but first and follow sets both include:tokensWhen deciding whether to enter an iteration or optional bracket the parsermust be able to distinguish between tokens that belong to the rules inside thebracket and those that belong to the rules following the brackets. If there areany tokens in both the �rst and follow sets for the subrule then the parsercannot disambiguate the brackets.A simple example is

68 ERROR AND INFORMATIONAL MESSAGESbad_null ::= 'x' {'a' 'b' 'c'} 'a'.The error can sometimes be eliminated by refactorising the grammar, for ex-amplegood_null ::= 'x' 'a' {'b' 'c' 'a'}.LL(1) violation - rule 'name' is left recursiveIn top-down parsers, immediate or indirect left recursion creates an in�nite loopand must be eliminated.LL(1) violation - rule 'rule' is nullable but contains the nullablesubrule ruleIt is illegal to nest nullable sub-rules (constructs such as { ['a' 'b'] })because rdp generated parsers could match either the inner square brackets orthe outer braces to a null string. Rewrite as { 'a' 'b' }.LL(1) violation - subrule 'name' is emptyThe IBNF syntax analyser will accept a rule of the formbad ::= 'a' 'b' | [* semantic action *] | 'z'.but this is not meaningful IBNF, because the middle alternate will never beentered. In fact, this is e�ectively an empty alternate as far as the parser isconcerned which is also illegal.The only context in which alternates containing only semantic actions areallowed is the special case of a semantic rule. See section 5.9 for details.obsolete directive:obsolete directive: HASH PRIME replaced by SYMBOL TABLE at version 1.4obsolete directive: HASH SIZE replaced by SYMBOL TABLE at version 1.4obsolete directive: INTERPRETER mode deleted at version 1.4obsolete directive: POST PROCESS renamed POST PARSE at version 1.3obsolete directive: PRE PROCESS renamed PRE PARSE at version 1.3obsolete directive: SET SIZE deleted at version 1.4obsolete scanner primitive: ALT ID deleted at version 1.4obsolete scanner primitive: NEW ID deleted at version 1.4obsolete scanner primitive: NUMBER renamed INTEGER at version 1.3A grammar for a previous version of rdp has been parsed. Replace obsoletedirectives and primitives.rule name is emptyA rule with no body has been declared.

Warnings 69string delimiter tokens must be exactly one character longDue to the rather crude state machine used when parsing strings, the closetoken must be exactly one character long. We would be interested to hear ifyou have an application that requires multi-character string delimiters.tokens must not contain spaces or control charactersWhite space is stripped by the scanner, so a token de�nition in the IBNF �lethat contained white space or non-printing characters could never be matchedby the scanner.undeclared symbol 'name'A rule name has been referenced that is not de�ned elsewhere in the currentset of input �les.11.3 Warningsgrammar is not LL(1) but -F switch set: writing filesThis message appears instead of the fatal abort message when the -F switch isused.rule 'name' will not appear in the output fileIt is sometimes useful to de�ne rules that are not explicitly referenced in thegrammar, typically to specify comment and string de�nitions. rdp searchesthe entire grammar recursively from the start rule looking for unused rules andmarks them so that no equivalent code is produced in the parser output �les.This avoids warning messages from the C compiler about the unused functionde�nitions.11.4 Informational messagescount CPU seconds usedIn verbose mode all rdp-generated parsers report CPU time consumption withthis message at the end of the run. Note that the �gure is a measure of mill time,not elapsed time. The accuracy of the �gure depends on your implementationof the ANSI C clock() routine. Some PC libraries are known to be a littleunreliable on this score.count rules, count tokens, count actions and count subrulesIn verbose mode, rdp reports summary grammar statistics with this message.A subrule is the expansion of a grammar bracket.

70 ERROR AND INFORMATIONAL MESSAGESadding continuation token 'token'The rdp scanner matches punctuation tokens (i.e. tokens made up of non-alphanumeric characters) by repeatedly looking in the scanner symbol tableand matching the longest token it can �nd. This strategy requires that allsubstrings of a token be in the symbol table, so that the token ::= requiresthat :: and : are also loaded. A continuation token is any token required formatching that has not already been declared by the user.checking for clashes with reserved wordsrdp checks all rule and attribute names to ensure that they are valid C identi�ersthat do not clash with C reserved words or library names. The list of nameschecked by rdp is maintained in macro RDP_RESERVED_WORDSwhich is de�ned in�le \rdp_supp\rdp_aux.h. You can add names to this list by appending themto the macro de�nition. Note that the order of de�nition is not signi�cant.checking for continuation tokensThe rdp scanner matches punctuation tokens (i.e. tokens made up of non-alphanumeric characters) by repeatedly looking in the symbol table and match-ing the longest token it can �nd. This strategy requires that all substrings of atoken be in the symbol table, so that the token ::= requires that :: and : arealso loaded. A continuation token is any token required for matching that hasnot already been declared by the user. This message is issued in verbose modeat the start of continuation checking.checking for disjoint first setsrdp checks that rules are LL(1) by ensuring that the start sets of all alternatesare disjoint for each rule in the grammar. This message is issued in verbosemode at the start of disjoint set checking.checking for empty alternatesSyntactically it is possible for an rdp grammar to contain only semantic actionseven when it is not part of a semantic rule. rdp checks all alternates and reportsthis error whenever it �nds a rule that has no tokens in it. This message is issuedin verbose mode at the start of empty checking.checking for nested nullable rulesrdp checks that rules are not ambiguous as a result of nesting nullable subrulessuch as {body} or [body] within each other. This message is issued in verbosemode at the start of null rule checking.

Informational messages 71checking nullable rulesrdp checks that rules are LL(1) by ensuring that the �rst and follow sets ofeach rule that can match the null token are disjoint. This message is issued inverbose mode at the start of null rule checking.dumping derivation tree to VCG file to '�lename'This message is issued immediately before writing the VCG derivation tree �le.dumping header file to '�lename'This message is issued immediately before writing the header �le.dumping parser file to '�lename'This message is issued immediately before writing the main parser �le.entered 'rule-name'When an rdp-generated parser is generated using the -R option, the parser isenhanced to output trace information when run. Each time a grammar rule isactivated, the parser prints out an entry and an exit message which can be usedto track the nesting of parser function calls during a run.exited 'rule-name'When an rdp-generated parser is generated using the -R option, the parser isenhanced to output trace information when run. Each time a grammar rule isactivated, the parser prints out an entry and an exit message which can be usedto track the nesting of parser function calls during a run.follow sets stabilised after count passesFollow set calculation usually requires a number of passes over the whole gram-mar. The number of passes depends on both the complexity of the grammarand the order in which the rules are listed. We would be interested in receivinga copy of any real grammar that requires more than twenty passes.generating first setsThis message is issued immediately before the start of �rst set generation.generating follow setsThis message is issued immediately before the start of follow set generation.

72 ERROR AND INFORMATIONAL MESSAGESno continuation tokens neededThe rdp scanner matches punctuation tokens (i.e. tokens made up of non-alphanumeric characters) by repeatedly looking in the symbol table and match-ing the longest token it can �nd. This strategy requires that all substrings of atoken be in the symbol table, so that the token ::= requires that :: and : arealso loaded. A continuation token is any token required for matching that hasnot already been declared by the user. This message is issued in verbose modeat the end of continuation checking if no such tokens were needed.updating follow setsAfter the main grammar analysis takes place, rdp adds the �rst sets to thefollow sets for iteration brackets {...} which aids error recovery. The followsets then need to be recalculated.

Chapter 12Understanding and debuggingrdp-generated parsersIn this chapter we give a simpli�ed overview of the structure of an rdp-generatedparser along with some advice on using rdp's facilities to monitor the executionof a running parser.rdp writes out two �les whenever it successfully generates a parser|aheader �le with a su�x of .h and a main �le with a su�x of .c. These �les aredesigned to be human-readable so that inserted semantic actions may be tracedby stepping through the parser with a conventional debugger. The purpose ofthis section is to explain the basic techniques that are used within a parser bylooking at real rdp-generated code.We shall begin by looking at the parser generated by rdp for this smallgrammar.start ::= INTEGER '+' expr.expr ::= INTEGER '*' INTEGER.12.1 The header �leThe header �le contains declarations for datatypes that might be needed foruse in semantic actions, such as any symbol table or tree data �elds declared inthe user's .bnf �le. It also contains an enum declaration corresponding to thetokens declared in the grammar (described in more detail in the next section)and a macro which expands to the number of passes used in this parser. Theheader �le for our example grammar is shown in Figure 12.1.12.2 The rdp scannerTraditional parser generators work only at the level of language tokens, andit is the user's responsibility to supply a suitable lexical analyser that digeststhe source text into a stream of tokens for consumption by the parser proper.One way of providing this lexical analysis function is to use a lexical analysergenerator, which is rather like a scaled down parser generator with featurestargeted speci�cally at the construction of lexical analysis functions. rdp does

74 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERS#include "scan.h"/* Maximum number of passes */#define RDP_PASSES 1/* Token enumeration */enum{RDP_T_17 /* * */ = SCAN_P_TOP, RDP_T_18 /* + */,RDP_TT_TOP};/* Parser start production */void start(void);Figure 12.1 Extracts from an rdp-generated header �lenot need a separate lexical analyser generator: the parser generator and thelexical analyser are integrated together under the control of a single IBNFspeci�cation.When analysing a grammar, rdp extracts information about tokens anduses it to parameterise the built-in scanner. This is convenient, but you shouldbe aware that the rdp scanner is not completely general| in many versionsof the BASIC language, for instance, string identi�ers begin with a dollar signand it is not possible to write an rdp grammar that enforces this rule exactly1.The scanner itself is a function called scan_() the source for which residesin rdp_supp/scanner.c. In principle new kinds of lexical structure can bede�ned by adding in new sections of code, but this turns out to require a goodunderstanding of rdp's internals so you might like to contact the authors foradvice before embarking on this course.12.2.1 The token enumerationrdp makes a list of all the tokens used and then writes out a C enumera-tion which has the e�ect of allocating a unique integer value to representeach token. All grammars automatically include the scanner elements listedin Chapter 4 and so the �rst sixteen or so elements of the token enumera-tion are allocated to the scanner primitives. The scanner element enumera-tion enum scan_primitive_type is de�ned in rdp_supp\scan.h: each elementname comprises the string SCAN_P_ concatenated with the name of the scannerelement as used within the rdp-IBNF language.enum scan_primitive_type{1It is easy to de�ne an identi�er such as id ::= '$' ID. but this will accept `identi�ers'with a space between the $ sign and the rest of the identi�er.

The rdp scanner 75SCAN_P_IGNORE, SCAN_P_ID, SCAN_P_INTEGER, SCAN_P_REAL,SCAN_P_CHAR, SCAN_P_CHAR_ESC,SCAN_P_STRING, SCAN_P_STRING_ESC,SCAN_P_COMMENT, SCAN_P_COMMENT_VISIBLE,SCAN_P_COMMENT_NEST, SCAN_P_COMMENT_NEST_VISIBLE,SCAN_P_COMMENT_LINE, SCAN_P_COMMENT_LINE_VISIBLE,SCAN_P_EOF, SCAN_P_EOLN, SCAN_P_TOP};There are two elements in this enumeration which do not correspond withreal scanner elements. The �rst SCAN_P_IGNORE is used by the scanner when it�nds an illegal character or a comment in the source �le. It is a signal to thescanner to `go round again' and attempt to �nd a new, valid, token. The parserproper will never see an instance of this pseudo-token because the scanner willkeep restarting until it �nds something other than an IGNORE element.The second pseudo-element is SCAN_P_TOP which simply takes a value onemore than the highest real scanner element. Its value is then used to initialisethe �rst element of the user-de�ned token enumeration written to the header�le: enum {RDP_T_17 /* * */ = SCAN_P_TOP, RDP_T_18 /* + */, ...This ensures that the scanner elements and the tokens from the grammarare mapped to a contiguous sequence of integer values.12.2.2 Interaction between the scanner and the parserThe parser calls the scanner function scan_() each time it needs to read a newtoken from the input �le. The scanner begins by reading and discarding anywhitespace characters (such as tabs, spaces and, for parsers which do not use theEOLN scanner element newline characters). The scanner then reads charactersuntil a complete lexeme has been recognised. It loads a global variable calledtext_scan_data with a string containing the lexeme itself and an integer valuefrom the token enumeration indicating which token the scanner has recognised.In what follows we shall refer to this global variable as the scanner variable.The scanner variable is a structure containing several �elds, not all of whichare used by every token. The �le scan.h contains the relevant de�nitions. Inthe case of scanner elements such as INTEGER which can return a synthesizedattribute value, the scanner is also responsible for calculating the attribute andloading that into the scanner variable.The scanner itself makes use of the routines in the text handling librarytext.c to read the source input �le, deal seamlessly with nested input �les andhandle the generation of an output listing.After the scanner variable has been loaded, the scanner returns control tothe parser which must decide which rule expansion to use next on the basisof the contents of the scanner variable and the present state of the derivation.The scanner variable e�ectively provides a single token of lookahead, and as

76 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERSsuch must be loaded before a parser function is started. In rdp, as in mosttop-down parsers, the parser functions assume that the scanner variable hasbeen correctly initialised before entry to the parser function and the functiontakes responsibility for leaving the scanner variable correctly set up for thenext parser function. This leads to a somewhat counter-intuitive organisationin which the scanner is called at the end of each parser function rather than atthe beginning. In the next section we shall look at the details of a completeparser which will make this point clearer.12.3 The main �leThe rdp-generated main �le contains the parser proper. Figure 12.2 showsextracts from the main �le for the grammar given at the beginning of thischapter. The full �le contains declarations and initialisation code for the firstand stop sets for each parser function. You can read more about the calculationof these sets in the tutorial manual [JS97c] or in most standard compiler texts.Apart from the initialisation code, an rdp-generated main �le contains ex-actly one function for each nonterminal declared in the grammar (called theparser function for that nonterminal) plus a main() function that initialises thetext and scanner subsystems before calling the function corresponding to thestart nonterminal. Each parser function must� assume that a (possibly empty) section at the beginning of the inputhas already been read by the scanner and matched against rules in thegrammar by the parser functions,� assume that the scanner variable has already been loaded with the �rsttoken to be matched against the current parser function's rule in thegrammar,� by looking at the current contents of the scanner variable decide which ofthe alternate productions within the rule is to be matched,� match the rule against the input, calling the scanner each time a token issuccessfully matched so as to advance to the next token,� ensure that at the end of a successful match the scanner variable is loadedwith the �rst token to be matched by the succeeding parser function,� in the case of an unsuccessful match generate an error message and at-tempt to read tokens from the input until the parser function sees a plau-sible place for parsing to continue.12.3.1 Implementing parser functionsParser functions make use of three functions from the scanner module:� void scan_(void) the scanner function which has been described above,

The main �le 77static void expr(void){ { scan_test(NULL, SCAN_P_INTEGER, &expr_stop);scan_();scan_test(NULL, RDP_T_17 /* * */, &expr_stop);scan_();scan_test(NULL, SCAN_P_INTEGER, &expr_stop);scan_();scan_test_set(NULL, &expr_stop, &expr_stop);}}void start(void){ { scan_test(NULL, SCAN_P_INTEGER, &start_stop);scan_();scan_test(NULL, RDP_T_18 /* + */, &start_stop);scan_();expr();scan_test_set(NULL, &start_stop, &start_stop);}}int main(){..... /* Some initialisation code omitted */for (rdp_pass = 1; rdp_pass <= RDP_PASSES; rdp_pass++){..... /* Pass level initialisation (including source file opening) omitted */scan_();start(); /* call parser at top level */if (text_total_errors() != 0)text_message(TEXT_FATAL, "error%s detected in source file\n", text_total_errors() == 1 ? "" : "s");}text_print_total_errors();..... /* Clean up code omitted */return rdp_error_return;} Figure 12.2 Extracts from an rdp-generated parser main �le

78 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERS� int scan_test(const char *production, const int valid, set_ * stop)and� int scan_test_set(const char *production, set_ * valid, set_ * stop).The two ..._test functions check the contents of the scanner variableagainst a supplied parameter called valid. The only di�erence between themis that scan_test checks against a single valid token value and scan_test_setchecks against a set of of valid tokens.The two parameters production and stop are used to control the generationof error messages in the case of a mismatch. If only a simple test is requiredthen both parameters will be set to NULL, but if the stop parameter is non-nullthen when the test function �nds a mismatch between the current token andthe valid token or token set it issues an error message before returning false.Immediately after issuing the error message an attempt is made to resynchronisethe input stream by using the scanner to read and discard tokens until a tokenis found that is in the stop set. All stop sets are initialised to contain at leastthe end-of-�le token so that the synchroniser will not go into an in�nite loop atthe end of of the source �le. In detail, the stop set for a parser function is thefollow set for the corresponding grammar rule union the end of �le token. Youcan use the -e
ag to instruct rdp to display the stop sets for each nonterminalof a grammar. The production parameter is a simple character string that rdpuses to pass the name of the currently executing parser function to the errorhandling routine. It is always NULL unless the -E
ag has been used to ask rdpto add the current rule name to error messages.The body of the start production shows how these routines are used inpractice. The corresponding grammar rule isstart ::= INTEGER '+' expr.and rdp writes out the following linesscan_test(NULL, SCAN_P_INTEGER, &start_stop);scan_();scan_test(NULL, RDP_T_18 /* + */, &start_stop);scan_();expr();scan_test_set(NULL, &start_stop, &start_stop);The function call scan_test(NULL, SCAN_P_INTEGER, &start_stop) asks forthe current scanner variable to be tested against SCAN_P_INTEGER and if a validinteger such as 23 or 0xFF is not found then orders an appropriate error messageto be issued after which the input should be resynchronised on the set of tokensstart_stop. Assuming the test did succeed then the scanner is called to get thenext token which is tested against RDP_T_18 (the token enumeration symbol forthe + lexeme). If that succeeds then the expr() parser function is called. Thelast thing that each parser function does is to test that the scanner variable hasbeen loaded with a token that can validly follow the corresponding nonterminalby testing against its _stop set.

Selecting alternate productions 7912.4 Selecting alternate productionsIf a grammar rule has more than one alternate production then the firstsets for the productions are used to control the selection of a production formatching. Here is a small grammar that illustrates the process:multi ::= A 'b' 'c' | X 'y'.A ::= 'a' | 'aa'.X ::= 'x' | 'y'.When rdp processes a grammar rule with multiple alternate productions itgives each of them a name comprising the pre�x rdp_ followed by the nameof the rule followed by an integer which is incremented after each use. Thetwo alternate productions in rule multi are therefore called rdp_multi_0 andrdp_multi_1. rdp will calculate first sets which it names rdp_multi_0_firstand rdp_multi_1_first.The generated parser function for rule multi is as follows.void multi(void){ { if (scan_test_set(NULL, &rdp_multi_0_first, NULL)){ A();scan_test(NULL, RDP_T_b, &multi_stop);scan_();scan_test(NULL, RDP_T_c, &multi_stop);scan_();}elseif (scan_test_set(NULL, &rdp_multi_1_first, NULL)){ X();scan_test(NULL, RDP_T_y, &multi_stop);scan_();}elsescan_test_set(NULL, &multi_first, &multi_stop) ;scan_test_set(NULL, &multi_stop, &multi_stop);}}The if statements here act as gateways to the di�erent branches of thethe rule. If the current value of the scanner variable is a token that is inrdp_multi_0_first then the �rst branch will be taken and parser function A()will be called. If not, then the scanner variable is tested against rdp_multi_1_firstand if successful then the second branch is taken. If neither branch is taken thenan error has occurred and the production of an error message is forced by testingthe scanner variable against the first set for the whole rule multi_first.

80 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERS12.5 Parsing iteratorsAn iterator is created either explicitly by using the iterator operator @ or byusing one of the four bracket forms (), [], { } and \verb< >+. As foralternate productions, rdp gives each a unique name and calculates a first setfor it. The high and low iteration counts, the delimiter token and the first setfor the iterator are then used to control the parsing with the help of a whileloop. Here is an iterator rule that uses most of the features of the iteratoroperator:iter ::= ('a')3@4 'b'.The generated parser function for rule iter is as follows.void iter(void){ { { /* Start of rdp_iter_1 */unsigned long rdp_count = 0;while (1){ { scan_test(NULL, RDP_T_a, &iter_stop);scan_();}rdp_count++;if (rdp_count == 4) break;if (SCAN_CAST->token != RDP_T_b) break;scan_();}if (rdp_count < 3) text_message(TEXT_ERROR_ECHO,"iteration count too low\n");} /* end of rdp_iter_1 */scan_test_set(NULL, &iter_stop, &iter_stop);}}A local variable rdp_count is declared to keep a count of the number oftimes the body of the iterator has been successfully matched. The iterator loopis implemented as an `in�nite' while (1) loop which contains break statementsthat can cause control to be transferred out of the loop This rather inelegantarrangement is used because there are several di�erent conditions that can causeloop termination and it is more e�cient to simply break out of the loop thanto, say, set a
ag to be tested at the bottom of the loop.On entry to the iterator loop, the code performs a match against the bodyof the iterator rule: in this case a simple match against the token a. Upon suc-cessful matching, the counter rdp_count is incremented and if its value exceedsthe high limit for the iterator (4 in this case) then the loop terminates. Oth-erwise a test is performed to see if the current scanner symbol is the delimiter

Debugging rdp-generated parsers 81token for the iterator (b in this case). If not, the loop terminates otherwise theiterator body is matched again. Once the iterator loop does �nally exit, a testis made to ensure that the loop counter exceeds the low value for the iterator,otherwise an error message is issued.rdp applies a series of optimisations to the generation of iterator parserfunctions which are not documented in detail here. As a simple example: if theiterator high and low values are integers in the range of 0. . . 1 then it is nevernecessary to keep a track of the number of iterator loops so the code associatedwith the variable rdp_count is omitted. Although these optimised forms of theiterator template all di�er from the version documented, each iterator functionfollows the same general form and is
agged up in the code with a commentof the form /* Start of rdp_... */. You might �nd it interesting to trydi�erent kinds of iterator and examine the generated code.12.6 Debugging rdp-generated parsersDebugging a machine generated parser is always more challenging than debug-ging a normal human-written program because of the multiple levels at whicherrors can be introduced and the di�culty of distinguishing between an errorin the grammar proper and an error in the semantic actions inserted into thegrammar. In this section we shall distinguish between the di�erent kinds oferror that can arise in terms of the point within the process at which the errorwill be detected and give advice on the use of rdp's facilities to make the taskof diagnosing the cause the error easier. Errors can be detected at the followingtimes.� During the initial parse of the IBNF speci�cation as a result of syntaxerrors or because of illegal use of rdp's features, such as requesting aniterator of the form 4@3 in which the low bound is higher than the highbound.� During the grammar analysis phase, in which LL(1) violations of variousforms may be reported.� During string testing of the parser. The generated parser may turn out toaccept inputs that are not legal in the intended language or reject inputsthat are. In either case, this indicates a mismatch between the languagethe designer had in mind and the language speci�ed by the grammarprocessed by rdp.� During testing of the semantic actions of a parser.12.7 Errors reported by rdp when parsing a speci�cationSyntax errors in the IBNF speci�cation are detected by rdp and reported usingthe standard error reporting mechanism. New users are most often caught outby one of the following common errors.

82 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERS1. Using the Pascal-style assignment operator := instead of the rdp-IBNF`expands-to' symbol ::=.2. Omitting the full stop (period) at the end of each production.3. Quoting nonterminals instead of terminals.4. Quoting scanner elements. A grammar containing a rule of the formitem ::= ID | 'INTEGER'. is perfectly acceptable to rdp but will notmatch to integers: it will attempt to match against the keyword INTEGERinstead.5. Putting in super
uous commas within parameter lists and directives. rdp-IBNF does not use the comma in any context.12.8 LL(1) errors reported by rdp during the analysis phaserdp will, of course, reject grammars that have empty alternates or that makeuse of production rules that have not been declared since it assumes that thesegrammars are incomplete. rdp will also reject a grammar that contains twoor more de�nitions for the same rule. You must combine such multiple rulestogether with the alternate operator (|).There is a set of errors that rdp may detect whilst analysing a grammar.Even a well formed grammar (in the sense of the previous paragraph) may beunacceptable because rdp-generated parsers can only handle grammars thatmay be parsed top-down using a single symbol of lookahead. In practice thismeans that at every point in the grammar where a running parser may have tochoose between two or more courses of action it must be able to make a decisionsimply by looking at the single lookahead token held in the scanner variable.The three broad classes of problem and the best approach to their correctionare as follows.� Left recursive rules, that is ones that may call themselves before consum-ing any input tokens are not allowed. Many left recursive constructionscan be recast as iterators and thus converted to acceptable grammars.Left recursion removal is a common requirement if you are adapting gram-mars that were developed for bottom up parser generators such as YACC,because these tools do allow left recursive rules.There do exist standard algorithms for left recursion removal. Unfortu-nately these algorithms in general remove the left recursion but introduceother forms of LL(1) error into the resulting grammar so they are not apanacea, in spite of the claims occasionally made in their favour. In factsome left recursive grammars have no simple counterpart which is LL(1)although in practice most grammars can be massaged into the necessaryform.The most common source of such problems is in the description of operatorexpressions with left and right associativity. We suggest that you study

Re�ning a grammar 83the examples in the tree generation chapter of this manual and in thetutorial manuals, and copy the techniques used there.� Alternate productions within a rule must start with di�erent tokens, thatis their first sets must be disjoint. A rule such asbad ::= 'a' 'b' 'c' | 'a' 'y' 'z'.has two alternate productions both of which starts with the token a. Itcan be recast using left factorisation to be acceptable to rdp as follows:good ::= 'a' ('b' 'c' | 'y' 'z').� Iterators with a low bound of zero (and that includes the [] and { }bracket shorthands) can match the empty string. If the body of theiterator can start with tokens that can also follow the iterator then theparser cannot know, in general, whether the existence of such a token onthe input indicates that it should step into or step over the iterator. Asa result, for rules and iterators that can match epsilon, the first andfollow sets must be disjoint.12.9 Re�ning a grammarOnce you have a compiled parser, you may �nd that it does not behave as youintended. If your parser rejects strings that it `ought' to accept, or acceptsstrings that it should reject then before tracing the code try checking that allalternates are correctly separated by alternate operators (|). In a long list ofalternates it is easy to leave one of the bars o�:alpha ::= 'a' |'b''c' |'d' .This rule does not accept the language f a, b, c, d g which is perhaps whatwas intended but rather the language f a, bc, d g.Assuming that no typographic errors are found at this stage then it will benecessary to trace the behaviour of the parser. rdp provides a range of levelsat which tracing may be performed.Examining scanner lexemes with the -s
agIf you run the generated parser with a -s
ag, the scanner will report thevalue of every lexeme seen by the parser. This is particularly useful if yourcommenting convention is causing the problem or if the handling of newlines issuspect. We recommend that you use the -l option in tandem with -s so asto generate a line-by-line listing as well, otherwise it can become hard to followthe output.

84 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERSAdding rule names to error messages with the -E
agJust seeing the stream of lexemes processed by the parser gives little informationon the state of the parser at the point of error. If you regenerate the parser withrdp and add a -E
ag to the rdp command line then all syntax error messagesproduced by the generated parser will include the name of the rule that wasbeing matched when the error occurred. This can be a great help in trackingdown the part of the grammar that is in error. Note that the use of this
ag isvery di�erent to that of the -s
ag above: all rdp-generated parsers have the-s
ag built in but the -E
ag is a command to rdp that governs the way thatit generates the parser, so you must regenerate the parser from scratch to seeits e�ect.Enabling a full parser trace with the -R
agIf all else fails, you can instruct rdp to generate extremely verbose parsers thatissue a message very time a parser function is entered or exited. This allows acomplete parse to be traced, but can generate very long listings.Tracing with VCGAn alternative way of tracing a parse is to enable tree generation using one ofthe directives described in Chapter 9 and examine the parse tree with VCG,although you will of course need to be using a computer that supports VCG(such as a PC running Windows or an X-windows Unix system).12.10 Debugging semantic actionsrdp blindly copies semantic actions in the IBNF speci�cation into the generatedparser and does not attempt to check them for syntactic or logical correctness. Ifyou write a syntactically incorrect action, by for instance omitting the semicolonat the end of a C-language statement then it is only when you attempt tocompile the generated parser that you will receive an error message, and thedetails of the message you receive depends on the particular compiler that youare using.Inhibiting semantic actions with the -p
agYou are strongly advised to check that your parser is functioning correctly asa standalone parser before attempting to check the semantics. To make thiseasier, rdp has an option to suppress the copying of semantic actions into thegenerated parser main �le: if you generate the parser by running rdp with the-p
ag then all semantic actions in the IBNF �le will be ignored.Tracing parsers with a debuggerOnce the semantic actions have been introduced into the parser then it is best touse the debugging facilities of your compiler to trace the behaviour of the parser.

Debugging semantic actions 85We have successfully used the Microsoft and Borland integrated developmentenvironments and, on Unix, the gdb debugger with the GNU compilers. Wesuggest that you set a breakpoint on the parser function corresponding to thestart rule and then single step through the parser whilst looking at a shortinput string.Examining the contents of symbol tables with the -S
agIf your parser makes use of the built-in symbol table handler then you can orderthe parser to print out the contents of its hash-coded symbol tables at the endof a run by adding a -S
ag to the command line. This is useful for checkingthat identi�ers are being added correctly and also to ensure that the tables arenot becoming congested. We recommend that the length of each hash bucketis kept to around three{four on average. Longer chains indicate that the size ofthe table should be increased, although the tables will operate correctly even ifthey are overfull: there will simply be a performance penalty.

Appendix AAcquiring and installing rdprdp may be fetched using anonymous ftp to ftp.dcs.rhbnc.ac.uk. If youare a Unix user download pub/rdp/rdpx_y.tar or if you are an MS-DOS userdownload pub/rdp/rdpx_y.zip. In each case x_y should be the highest numberin the directory. You can also access the rdp distribution via the rdp Webpage at http://www.dcs.rhbnc.ac.uk/research/languages/rdp.shmtl. Ifall else fails, try mailing directly to A.Johnstone@rhbnc.ac.uk and a tape ordisk will be sent to you.A.1 Installation1. Unpack the distribution kit. You should have the �les listed in Table A.1.2. The make�le can be used with many di�erent operating systems andcompilers.Edit it to make sure that it is con�gured for your needs by uncommentingone of the blocks of macro de�nitions at the top of the �le.3. To build everything, go to the directory containing the make�le and typemake. The default target in the make�le builds rdp, the mini_syn syn-tax analyser, the minicalc interpreter, the minicond interpreter, theminiloop compiler, the minitree compiler an assembler called mvmasmand its accompanying simulator mvmsim, a parser for the Pascal languageand a pretty printer for ANSI-C. The tools are run on various test �les.None of these should generate any errors, except for LL(1) errors causedby the mini and Pascal if statements and warnings from rdp about un-used comment() rules, which are normal.make then builds rdp1, a machine generated version of rdp. rdp1 is thenused to reproduce itself, creating a �le called rdp2. The two machinegenerated versions are compared with each other to make sure that thebootstrap has been successful. Finally the machine generated versions aredeleted.4. If you type make clean all the object �les and the machine generatedrdp versions will be deleted, leaving the distribution �les plus the new

88 ACQUIRING AND INSTALLING RDP00readme.1_5 An overview of rdpmakefile Main rdp make�leminicalc.bnf rdp speci�cation for the minicalc interpreterminicond.bnf rdp speci�cation for the minicond interpreterminiloop.bnf rdp speci�cation for the miniloop compilerminitree.bnf rdp speci�cation for the minitree compilermini_syn.bnf rdp speci�cation for the mini syntax checkerml_aux.c miniloop auxiliary �leml_aux.h miniloop auxiliary header �lemt_aux.c minitree auxiliary �lemt_aux.h minitree auxiliary header �lemvmasm.bnf rdp speci�cation of the mvmasm assemblermvmsim.c source code for the mvmsim simulatormvm_aux.c auxiliary �le for mvmasmmvm_aux.h auxiliary header �le for mvmasmmvm_def.h op-code de�nitions for MVMpascal.bnf rdp speci�cation for Pascalpretty_c.bnf rdp speci�cation for the ANSI-C pretty printerpr_c_aux.c auxiliary �le for pretty_cpr_c_aux.h auxiliary header �le for pretty_crdp.bnf rdp speci�cation for rdp itselfrdp.c rdp main source �le generated from rdp.bnfrdp.exe 32-bit rdp executable for Win-32 (.zip �le only)rdp.h rdp main header �le generated from rdp.bnfrdp_aux.c rdp auxiliary �lerdp_aux.h rdp auxiliary header �lerdp_gram.c grammar checking routines for rdprdp_gram.h grammar checking routines header for rdprdp_prnt.c parser printing routines for rdprdp_prnt.h parser printing routines header for rdptest.c ANSI-C pretty printer test source �letest.pas Pascal test source �letestcalc.m minicalc test source �letestcond.m minicond test source �letestloop.m miniloop test source �letesttree.m minitree test source �lerdp_doc\rdp_case.dvi case study TEX dvi �lerdp_doc\rdp_case.ps case study Postscript sourcerdp_doc\rdp_supp.dvi support manual TEX dvi �lerdp_doc\rdp_supp.ps support manual Postscript sourcerdp_doc\rdp_tut.dvi tutorial manual TEX dvi �lerdp_doc\rdp_tut.ps tutorial manual Postscript sourcerdp_doc\rdp_user.dvi user manual TEX dvi �lerdp_doc\rdp_user.ps user manual Postscript sourcerdp_supp\arg.c argument handling routinesrdp_supp\arg.h argument handling headerrdp_supp\graph.c graph handling routinesrdp_supp\graph.h graph handling headerrdp_supp\memalloc.c memory management routinesrdp_supp\memalloc.h memory management headerrdp_supp\scan.c scanner support routinesrdp_supp\scan.h scanner support headerrdp_supp\scanner.c the rdp scannerrdp_supp\set.c set handling routinesrdp_supp\set.h set handling headerrdp_supp\symbol.c symbol handling routinesrdp_supp\symbol.h symbol handling headerrdp_supp\textio.c text bu�er handling routinesrdp_supp\textio.h text bu�er handling headerexamples\... examples from manualsTable A.1 Distribution �le list

Build log 89executables. If you type make veryclean then the directory is cleanedand the executables are also deleted.A.2 Build logThe output of a successful make�le build on MS-DOS is shown below. Notethe warning messages from rdp on some commands: these are quite normal.cc -Irdp_supp\ -c rdp.crdp.c: cc -Irdp_supp\ -c rdp_aux.crdp_aux.c:cc -Irdp_supp\ -c rdp_gram.crdp_gram.c:cc -Irdp_supp\ -c rdp_prnt.crdp_prnt.c:cc -Irdp_supp\ -c rdp_supp\arg.crdp_supp\arg.c:cc -Irdp_supp\ -c rdp_supp\graph.crdp_supp\graph.c:cc -Irdp_supp\ -c rdp_supp\memalloc.crdp_supp\memalloc.c:cc -Irdp_supp\ -c rdp_supp\scan.crdp_supp\scan.c:cc -Irdp_supp\ -c rdp_supp\scanner.crdp_supp\scanner.c:cc -Irdp_supp\ -c rdp_supp\set.crdp_supp\set.c:cc -Irdp_supp\ -c rdp_supp\symbol.crdp_supp\symbol.c:cc -Irdp_supp\ -c rdp_supp\textio.crdp_supp\textio.c:cc -erdp.exe rdp.obj rdp_*.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objrdp -F -omini_syn mini_syncc -Irdp_supp\ -c mini_syn.cmini_syn.c:cc -emini_syn.exe mini_syn.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objmini_syn testcalcrdp -F -ominicalc minicalccc -Irdp_supp\ -c minicalc.cminicalc.c:cc -eminicalc.exe minicalc.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminicalc testcalca is 7b is 14, -b is -147 cubed is 343rdp -F -ominicond minicond******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' _and_not statement] .

90 ACQUIRING AND INSTALLING RDPcontains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c minicond.cminicond.c:cc -eminicond.exe minicond.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminicond testconda is 7b is 14, -b is -147 cubed is 343z equals az does not equal ardp -F -ominiloop miniloop******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' statement] .contains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c miniloop.cminiloop.c:cc -Irdp_supp\ -c ml_aux.cml_aux.c:cc -eminiloop.exe miniloop.obj ml_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objrdp -F -omvmasm mvmasmcc -Irdp_supp\ -c mvmasm.cmvmasm.c:cc -Irdp_supp\ -c mvm_aux.cmvm_aux.c:cc -emvmasm.exe mvmasm.obj mvm_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objcc -Irdp_supp\ -c mvmsim.cmvmsim.c:cc -emvmsim.exe mvmsim.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminiloop -otestloop.mvm testloopmvmasm -otestloop.sim testloop******: Transfer address 00001000mvmsim testloop.sima is 7b is 14, -b is -147 cubed is 343z equals az does not equal aa is 3a is 2a is 1-- Halted --rdp -F -ominitree minitree******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' statement] .contains null but first and follow sets both include: 'else'

Build log 91******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c minitree.cminitree.c:cc -Irdp_supp\ -c mt_aux.cmt_aux.c:cc -eminitree.exe minitree.obj m*_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminitree -otesttree.mvm testtreemvmasm -otesttree.sim testtree******: Transfer address 00001000mvmsim testtree.sima is 7b is 14, -b is -147 cubed is 343z equals az does not equal aa is 3a is 2a is 1-- Halted --rdp -opascal -F pascal******: Error - LL(1) violation - rulerdp_statement_9 ::= ['else' statement] .contains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c pascal.cpascal.c:cc -epascal.exe pascal.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objpascal testrdp -opretty_c pretty_ccc -Irdp_supp\ -c pretty_c.cpretty_c.c:cc -Irdp_supp\ -c pr_c_aux.cpr_c_aux.c:cc -epretty_c.exe pretty_c.obj pr_c_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objpretty_c testtest.c,2133,12267,5.75fc test.c test.bakComparing files test.c and test.bakFC: no differences encountereddel test.bakrdp -F -ordp1 rdpcc -Irdp_supp\ -c rdp1.crdp1.c: cc -erdp1.exe rdp1.obj rdp_*.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objcopy rdp1.c rdp2.crdp1 -F -ordp1 rdp

92 ACQUIRING AND INSTALLING RDPfc rdp1.c rdp2.cComparing files rdp1.c and rdp2.c****** rdp1.c** Parser generated by RDP on Dec 20 1997 21:05:05 from rdp.bnf******* rdp2.c** Parser generated by RDP on Dec 20 1997 21:05:02 from rdp.bnf*******

Bibliography[Bac60] J. W. Backus. The syntax and semantics of the proposed Interna-tional Algebraic Language of the Zurich ACM-GAMM conference. InR. Oldenburg, editor, Proc. Internat'l Conf. Information Processing,UNESCO, Paris, 1959, pages 125{132, London, 1960. Butterworths.[JS97a] Adrian Johnstone and Elizabeth Scott. Designing and implementinglanguage translators with rdp { a case study. Technical Report TR-97-27, Royal Holloway, University of London, Computer Science Depart-ment, December 1997.[JS97b] Adrian Johnstone and Elizabeth Scott. rdp supp { support routinesfor the rdp compiler compiler version 1.5. Technical Report TR-97-26,Royal Holloway, University of London, Computer Science Department,December 1997.[JS97c] Adrian Johnstone and Elizabeth Scott. A tutorial guide to rdp fornew users. Technical Report TR-97-24, Royal Holloway, University ofLondon, Computer Science Department, December 1997.[San95] Georg Sander. VCG Visualisation of Compiler Graphs. Universit�atdes Saarlandes, 66041 Saarbr�ucken, Germany, February 1995.

