
A tutorial guide to rdp for new usersAdrian Johnstone Elizabeth Scott
Technical ReportCSD {TR { 97 { 24December 20, 1997
!()+,-./0123456Department of Computer ScienceEgham, Surrey TW20 0EX, England

Abstractrdp is a system for implementing language processors. It takes as input anEBNF-like speci�cation of a language together with a speci�cation, written in C,of behaviour which should result when fragments of the language are recognised.rdp produces as output a program written in C, which parses fragments of thespeci�ed language and carries out the speci�ed corresponding actions. Thusrdp can produce, for example, compilers (the actions specify the correspondingtarget code), interpreters (the actions evaluate the input fragments) and prettyprinters (the actions reformat the input fragments).
This document is cAdrian Johnstone and Elizabeth Scott 1997.Permission is given to freely distribute this document electronically andon paper. You may not change this document or incorporate parts of itin other documents: it must be distributed intact.The rdp system itself is cAdrian Johnstone but may be freely copiedand modi�ed on condition that details of the modi�cations are sent tothe copyright holder with permission to include such modi�cations infuture versions and to discuss them (with acknowledgement) in futurepublications.The version of rdp described here is version 1.50 dated 16 August 1997.Please send bug reports and copies of modi�cations to the authors at theaddress on the title page or electronically to A.Johnstone@rhbnc.ac.uk.

Contents1 An overview of translation 12 Basic parsing issues 52.1 Specifying a language 52.2 Formal grammars and rdp 62.3 Building and running a parser 72.4 Make�les 102.5 rdp parsers and recursive descent parsing 112.5.1 Left-most derivations 112.5.2 Selecting an alternate 122.6 The rdp scanner 132.6.1 rdp scanner tokens 132.6.2 De�ning a language which permits comments 153 Extended BNF 173.1 Standard EBNF 183.2 rdp's IBNF 203.3 Derivations in IBNF 214 Restrictions on rdp grammars 254.1 Deterministic choice on alternates 254.2 first sets 264.3 Parsing with first sets 274.4 The problem with � rules 274.5 follow sets 284.6 LL(1) grammars 294.7 Overriding the LL(1) restrictions 294.8 Inspecting the first and follow sets 315 The mini grammar 356 Semantic actions 376.1 The function based implementation of rdp-generatedparsers 376.2 Semantic actions { an example 396.3 Semantic actions in empty grammar rules 426.4 Semantic actions and the iterator construct 44

ii CONTENTS6.5 Left associative operators 456.6 Expression semantics in mini 476.7 Inherited attribute de�nition 476.7.1 Semantic actions for IF statements 487 Symbol tables in rdp 517.1 Hash coded symbol tables 517.2 Assignment 527.3 Identi�er declaration 537.4 Using undeclared variables 548 A mini interpreter 55A Acquiring and installing rdp 59A.1 Installation 59A.2 Build log 61

Chapter 1An overview of translationComputer programs are often written in a so-called `high level' language suchas C or FORTRAN. Most human programmers �nd high level languages easierto use than the `low level' machine oriented languages. However, in order for amachine to execute a program it must be translated from the high level languagein which it is written to the native language of that machine. A compiler is aprogram which takes as input a program written in one language and producesas output an equivalent program written in another language.Computer languages are very simple compared to the languages employed ineveryday human communication. This makes the task of writing a compiler lessintimidating|at present computer programs that translate from one humanlanguage to another are rather unsatisfactory because the subtle rules that un-derpin human languages are not completely understood, and so mis-translationsare common.Although computer languages are designed to be simple to understand andtranslate, real computer languages still present signi�cant problems. Some-times, especially with very old languages such as FORTRAN and COBOL, thedi�culties in translation arise from the imperfect understanding that the earlylanguage designers had of the translation process. More modern languages,such as Pascal and Ada are to a large extent designed to be easy to translate.The discovery that it was possible to design a language which could be trans-lated in linear time (that is the translation time is proportional to the lengthof the text to be translated) and yet still appear readable to humans was animportant result of early work on the theory of programming language syntax.Other problems are not so easily circumvented. It turns out, for instance,that the ability to directly modify machine addresses provided by the C lan-guage's pointer arithmetic operations makes it very di�cult for a `smart' trans-lator to produce e�cient translations for conventional computers, and the samefacilities create even more serious problems when attempting to produce codethat will run on a parallel computer. This kind of di�culty arises from a fun-damental design decision taken at the time the language is �rst speci�ed, andcannot easily be undone.

2 AN OVERVIEW OF TRANSLATIONSubdividing the translation problemComputer language translation is traditionally viewed as a process with twomain parts: the front end conversion of a high level language text written ina language such as C, Pascal or Ada into an intermediate form, and the backend conversion of the intermediate form into the native language of a computer.This approach is useful because it turns out that the challenges encountered inthe design of a front end di�er fundamentally from the problems posed by backend code generation and separating out the problems makes it easier to thinkabout the overall task.The language to be translated forms the input to the front end and is calledthe source language. The output of the back end is called the target language.In the special (but very common) case of a translator that outputs machinecode for a particular computer, the target language is usually called the objectcode.Interpreters, compilers and in-betweenSometimes the subdivision of the translation problem into front and back endsis explicit in the translator program, but not always. An interpreter is a spe-cial kind of language translator that executes actions as it translates. Mostoperating system command shells are of this form: each command is executedas it is encountered. In such a system there is no readily discernible back endor intermediate form although it can still be useful to think of the program asperforming front and back end tasks. The macro languages found in most wordprocessors, along with simple programming languages such as BASIC are mostoften implemented as interpreters.The intermediate form must provide enough generality to cope with thevarious source and target languages. Fortunately, front end processors for dif-ferent languages sometimes display striking similarities. For instance, at a verycrude level the variable declaration constructs in C and Pascal are quite similar.Their use of if-then-else selection is almost identical. It is perfectly possi-ble to design an intermediate form that can cope with both C- and Pascal-likestructures.Using this organisation, a compiler for a given language can be moved to anew computer architecture by writing a new back end to take account of thedi�ering instruction sets. More rarely, a new programming language syntaxcan be quickly implemented on a given architecture by building a new frontend and using an existing back end. This saving in engineering e�ort can bevery important in commercial compiler systems, even though it may requirean intermediate form that is more complex than that required for a singlesource/target language pair.Automated front end productionMany of the theoretical issues surrounding front end translation were solvedduring the 1960's and 1970's, and it is possible to reduce most of the imple-

3mentation e�ort for a new front end to a clerical exercise that may itself beturned into a computer program. Compiler-compilers are programs that takethe description of a programming language, and output the source code of aprogram that will recognise, and possibly act upon, phrases written in that lan-guage. The availability of such tools has fed back into programming languagedesign. It is very hard to use such tools to generate translators for languagessuch as FORTRAN, but more recent languages are usually designed in sucha way as to facilitate the use of compiler-compilers. The description of theprogramming language to be input to a compiler-compiler is usually given ina variant of the generative grammar formalism which was introduced in the1950's by Chomsky. The formalismwas �rst applied to the speci�cation of pro-gramming languages by John Backus and Peter Naur and in recognition of thisthe notation used is often called Backus-Naur Form (or BNF). In this guide weshall give an introduction to BNF and the particular version, IBNF, acceptedby our compiler-compiler. A full discussion of BNF can be found in standardtexts such as [ASU86] or [AU72], and further discussion of our particular IBNFcan be found in the associated user manual [JS97b].Back end designCode generation, the primary task of the back end, is much less well understoodthan front end translation. The basic task is the selection of machine codesequences that correctly represent the meaning of the source language phrases.In general we will want to generate code which executes either as quickly aspossible, or requires as little space as possible, or both (these two aims may ormay not conict). So far no single unifying theoretical model has appeared, andmany compilers use a `bag of tricks' in the back end that is hard to systematise.As a result, books on compiler design often focus mainly on the front end wherethe problems are more tractable and the tools more useful.rdp is a program which takes an IBNF speci�cation of a language and, providedthe speci�cation has certain properties, generates a compiler which translatesfrom the speci�ed language in to C. rdp can be used to generate both compilers,interpreters and simple parsers for languages. In this tutorial document we givea low level introduction to parser generation using rdp. The associated casestudy manual [JS97a] discusses larger examples in which rdp is used to generatea compiler for a small language. Full details of the facilities available in rdpcan be found in the associated users' manual [JS97b].

Chapter 2Basic parsing issuesrdp-generated parsers use a recursive descent parsing technique with one symbolof lookahead. In order for such parsers to work correctly the speci�cation (gram-mar) which is input to rdp must have certain properties. A full description ofthese properties will be given in Chapter 4. In this chapter we review enough ofthe theory of grammars, language speci�cation, and parsing to understand theuse of rdp at a basic level. We also describe, in a step-by-step fashion, the wayin which rdp can be used to generate a parser for a speci�ed language, usinga language whose elements are arithmetic expressions as an example. At theend of the chapter we describe the built in rdp scanner, which is copied into allrdp-generated parsers.We assume that you have already got and unpacked the rdp software pack,and that you have built the standard modules (for example by typing make).Your main rdp directory should contain subdirectories rdp_doc and rdp_supp.For instructions on how to get and install the rdp software pack see Appendix Aat the end of this manual.Throughout this guide we shall illustrate our discussion with example gram-mars. The grammars which are given titles in the text are included in the rdpdistribution pack in the subdirectory tut_exs so you can use rdp to generatethe corresponding parsers.2.1 Specifying a languageIt is standard practice to use formal grammars to specify languages. For exam-ple, S ::= S '+' S | S '*' S | E .E ::= 'a' | 'b' .is a set of grammar rules which generates a language of sums and products, forexample, a+b*a+a or a.A grammar consists of a set N of non-terminals, a set T of terminals, anda set P of grammar rules of the formA ::= �1 | �2 | : : : | �n

6 BASIC PARSING ISSUESwhere A is an element of N and each �i is a string of elements from N and T.One of the non-terminals, S say, is singled out and called the start symbol.In the above grammar, the non-terminals are S, E, the terminals are +,*,a,b,and the start symbol is S.How does a grammar specify a language?We derive one string from another by replacing a non-terminal with a stringfrom the right hand side of its grammar rule. So if we have a ruleA ::= ::: j j ::: :we can replace A by . We use the symbol) for a derivation, and we write�A�)��.If � and � are strings, we say that � can be derived from �, and we write� �)� , if there is a sequence �)�1) : : :)�n)�:For the example above we haveS) S + S) E + S) a + S) a + S + S) a + S * S + S) a + b * S + S) a + b * E + S) a + b * a + S) a + b * a + E) a + b * a + band so S �) a+ b � a+ b.The language speci�ed by a grammar is the set of strings of terminals whichcan be derived from its start symbol. We say that u 2T� is a sentence if S �)u.(Here T� denotes the set of strings of elements of T and includes the emptystring �, so if T=fa; b;+g thenT� = f�; a; b;+; aa; ab; a+; ba; bb; b+;+a;+b;++; aaa; aab; : : :g.)The language generated by the grammar above is the set of all sums andproducts of a's and b's.2.2 Formal grammars and rdpOnly the grammar rules are actually input to rdp. The following conventionsare used by rdp to deduce the remaining aspects of the grammar: the left hand

Building and running a parser 7side of the �rst grammar rule is the start symbol, the terminal symbols areenclosed in single quotes, and each grammar rule is terminated by a full stop.The above example is an example input for rdp (although it should be notedthat rdp will not automatically generate a parser for this example because it isleft recursive | see below).Given a `suitable' input grammar (we shall explain what suitable means inthis context in Chapter 4), rdp generates a parser which takes as input a stringu of terminals and either reports success, if u is a sentence in the language ofthe grammar, or issues an error message. (If the input grammar is not suitablerdp issues a diagnostic identifying the aspect(s) of the grammar with which itcannot cope.)In the rest of this chapter we shall describe how to get rdp to generate aparser from a simple grammar. It is not possible to use rdp to generate a correctparser for the expression grammar given above, because this grammar is not`suitable' in the sense that we have just discussed. So we shall use the followinggrammar (which speci�es the same language as the original) as an example.(** expr1.bnf **)S ::= E Y.Y ::= ['+' S].E ::= T X.X ::= ['*' E].T ::= 'a' | 'b'.We need to note here that rdp does not directly accept `epsilon' rules (i.e. rulesof the form A ::= �, where � denotes the empty string). The notation [�] isused to represent �j�. So, for example,Y ::= ['+' S]. corresponds to Y ::= '+' S | �.2.3 Building and running a parserIn this section we shall use the grammar expr1.bnf to describe the basic pro-cedure for getting rdp to generate a parser.To build and run parsers using rdp we must �rst compile the support librarymodules. The exact command to do this depends on the C compiler that you areusing. If, for instance your compiler was called CC then the following commandswould compile the modules:CC -c -Irdp_supp rdp_supp/arg.cCC -c -Irdp_supp rdp_supp/graph.cCC -c -Irdp_supp rdp_supp/memalloc.cCC -c -Irdp_supp rdp_supp/scan.cCC -c -Irdp_supp rdp_supp/scanner.cCC -c -Irdp_supp rdp_supp/set.cCC -c -Irdp_supp rdp_supp/symbol.cCC -c -Irdp_supp rdp_supp/textio.c

8 BASIC PARSING ISSUESThe -c ag here tells the C compiler to just run as far as producing an object�le and to not attempt to link the module into an executable program. The-Irdp_supp ag tells the compiler to look for include �les in the rdp_suppsubdirectory.In general you will have to replace the CC with the name of your compiler,possibly along with some special ags. The following table gives some examples:please refer to your compiler documentation if the combination of operatingsystem and compiler you use is not listed here.If you are using. . . then replace CC with . . .GNU C on Unix gccGNU C++ on Unix g++Borland C V5.0 on MS-DOS bccBorland C++ V5.0 on MS-DOS bcc -PBorland C V5.0 on Windows-95 bcc32Borland C++ V5.0 on Windows-95 bcc32 -POnce the support library has been built, we can edit a .bnf �le, process itusing rdp and then compile the resulting parser before linking with the supportlibrary modules and testing the parser against a string �le.To build and run a parser for a language with gcc running under Unix andusing the Emacs editor we might use the following commands,emacs expr1.bnfrdp -oexpr1 expr1gcc -Irdp_supp -c expr1.cgcc expr1.o arg.o graph.o memalloc.o scan.o scanner.o set.osymbol.o textio.oemacs expr1.strexpr -v expr1.strTo build and run a parser for a language with Borland C++ 5.0 runningunder Windows-95 and using the standard DOS editor we use the followingcommands,edit expr1.bnfrdp -oexpr1 expr1bcc32 -P -Irdp_supp -c expr1.cbcc32 expr1.obj arg.obj graph.obj memalloc.obj scan.objscanner.obj set.obj symbol.obj textio.objedit expr1.strexpr -v expr1.strWe now look at these commands line-by-line. We can type the above gram-mar into a �le using our editor (either emacs or edit here). If we call the �leexpr1.bnf say, then we can input it to rdp as follows.rdp -oexpr1 expr1

Building and running a parser 9This causes rdp to produce a parser, called expr1.c and written in C, for thelanguage speci�ed by the grammar. The ag -o directs rdp to call the �le it pro-duces expr1.c; the default name for the output, which will be used if you leaveout the -o ag, is rdparser.c. Note, all the examples discussed in this manualare included in the rdp distribution in the subdirectory examples\rdp_tut. Ifyou wish to use these directly you will need to give the pathrdp -oexpr1 examples\rdp_tut\expr1We then compile this �le using a C compiler to produce an object �leexpr1.obj. The following command assumes that the compiler is BorlandC++:bcc32 -P -Irdp_supp -c expr1.cThe ag -I instructs the compiler to look in the subdirectory rdp_supp for theadditional header �les that it needs and the -c ag tells the compiler to onlyproduce an object �le and not to invoke the linker at this stage.The �nal parser needs to use the various support routines which are providedwith the rdp package. Some of these support modules are discussed later in thismanual, and all the support modules are fully documented in the accompanyingsupport manual [JS97c]. Here we shall just generate an executable parser bylinking in the appropriate support modules, without explaining their functions.bcc32 expr1.obj arg.obj graph.obj memalloc.obj scan.objscanner.obj set.obj symbol.obj textio.objThis produces an executable version of the parser, called expr1.exe on DOSand Windows systems or just plain expr1 on Unix systems.We can then create a test �le, expr1.str say, that contains a string for thegenerated parser to check, and run it through the parser using the commandexpr1 -v expr1.strThe -v ag runs the generated parser in verbose mode so that it gives informa-tion about the execution. For example, if expr1.str isa + b * a + bthe following should be produced as a result of the above command:rdparserGenerated on Apr 14 1997 9:56:55 and compiled on Apr 14 1997 at 9:32:21******: 0.008 CPU seconds usedIf we give the generated parser a string which is not in the language it issuesa suitable error message. For example, on input a b we getrdparserGenerated on Apr 14 1997 9:56:55 and compiled on Apr 14 1997 at 9:32:211: Error 1 (expr.str) Scanned 'b' whilst expecting one of EOF, '*', '+'1: a b1: --1******: Fatal - error detected in source file

10 BASIC PARSING ISSUESand on input a + + b we getrdparserGenerated on Apr 14 1997 9:56:55 and compiled on Apr 14 1997 at 9:32:211: Error 1 (expr.str) Scanned '+' whilst expecting one of 'a', 'b'1: a + + b1: ----1******: Fatal - error detected in source fileIn both cases the generated parser issues an error message which prints outthe section of the input string which has caused the trouble, indicates wherein the string the parse has failed, and issues a list of symbols that would havebeen legitimate at the point of the error.2.4 Make�lesThe rdp distribution pack contains a make�le which you can use to build andrun the parsers. It is called makefile and is in the main rdp directory.The make�le contains options for running rdp under Unix, DOS, SunOSand Windows-95, using gcc, acc 2.0, Borland C 3.1, Borland C++ 5.0, andMicrosoft 'C' 7.0. All that is necessary to use a particular con�guration is toremove the commenting `#' from the appropriate section. For example, to rungcc under Unix uncomment the commands# Configuration for gcc on Unix. Also works for g++ if you set CC = g++CC = gccOBJ = .oEXE =DIFF = diff -sRM = rmCP = cpSUPP_DIR = ./rdp_supp/CFLAGS = -I$(SUPP_DIR) -Wmissing-prototypes -Wstrict-prototypes-fno-common -Wall -ansi -pedantic -gLINK = $(CC) -o ./MATHS = -lmHERE = ./OBJ_ONLY = -c# End of gcc on Unix configurationThere is a section in the make�le which allows it to be used to build aparser for any suitable input grammar. The grammar should be typed into a�le with a .bnf extension, myfile.bnf say. This �le is then used by settingGRAMMAR=myfile as part of the command line instructions to make (see below).The make�le runs rdp on the input �le, compiles the corresponding C �le, linksit with the appropriate support �les, and �nally runs the executable parser ona �le myfile.str containing a test string. Typingmake GRAMMAR=examples\rdp_tut\expr1 parserunder DOS generates the following:

rdp parsers and recursive descent parsing 11MAKE Version 4.0 Copyright (c) 1987, 1996 Borland Internationalrdp examples\rdp_tut\expr1bcc32 -Irdp_supp\ -A -c -P -w -c rdparser.cBorland C++ 5.0 for Win32 Copyright (c) 1993,1996 Borland Internationalrdparser.c:bcc32 -erdparser.exe rdparser.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objBorland C++ 5.0 for Win32 Copyright (c) 1993,1996 Borland InternationalTurbo Link Version 1.6.72.0 Copyright (c) 1993,1996 Borland Internationalrdparser -v -Vparser.vcg -l examples\rdp_tut\expr1.strrdparserGenerated on Dec 28 1997 9:08:55 and compiled on Dec 27 1997 at 8:41:23******:1: a + b * a + b******: 0 errors and 0 warnings******: 0.038 CPU seconds usedrdp has built a parser for expr1.bnf and run it on the �le expr1.str, whichin this case happened to contain the string a + b * a + b.2.5 rdp parsers and recursive descent parsingrdp generates parsers which use a recursive descent technique. The goal ofa parser is to construct a derivation of a given input string. In order to userdp it is necessary to have an understanding of the recursive descent techniquewhich its parsers use. In this section we outline the basic ideas of top-downone-symbol-lookahead parsing in order to motivate our choice of examples. Re-cursive descent is considered in more detail in Chapter 4.2.5.1 Left-most derivationsrdp-generated parsers use a top down approach; that is, they start with thestart symbol and attempt to construct a derivation step-by-step from the left.The parsers also use a left-most depth-�rst approach; that is, at each step in theconstructed derivation the left-most non-terminal in the string is expanded.Consider the grammar expr1.bnfS ::= E Y.Y ::= ['+' S] .E ::= T X.X ::= ['*' E] .T ::= 'a' | 'b'.As it uses a top down depth �rst approach, an rdp-generated parser for theabove grammar would construct the following derivation of a + b * a:S) E Y) T X Y) a X Y) a Y) a + S) a + E Y

12 BASIC PARSING ISSUES) a + T X Y) a + b X Y) a + b * E Y) a + b * T X Y) a + b * a X Y) a + b * a Y) a + b * abut would not construct the following (legitimate) derivation of a:S) EY) E) TX) T) a2.5.2 Selecting an alternateWhen there is more than one alternate in a grammar rule recursive descentparsers need an algorithm for deciding which of the alternates to choose. Forexample, in the �rst derivation above at the pointS) E Y) T X Yit was necessary to decide whether to replace T by a or b at the next step.This decision was made by looking at the current input symbol. This will bediscussed formally below but it may help the reader at this point to consider thefollowing informal discussion. As the parse begins the �rst symbol of the stringto be parsed is read from the input bu�er. This is the current input symbol.If the parse is to succeed, eventually this symbol must appear at the beginning(left hand end) of a string generated during the derivation. When this happensthe current input symbol has been matched, and the next symbol is read fromthe input bu�er, becoming the current input symbol. Eventually this mustbe matched to the second symbol in a string generated during the derivation,and so on. This reading and matching process carries on until the last symbolfrom the input bu�er is matched to the last symbol of a string generated bythe derivation. At this point the parse has succeeded. If this point cannot bereached then the parse has failed.The value of the current input symbol is the only information the parser hasfor use in selecting the alternate to be inserted at the next derivation step. So ifparser success is to be guaranteed, this information must be su�cient to decidebetween the alternates. For this reason, rdp will not generate a parser from agrammar in which two or more alternates from the same grammar rule havethe same �rst symbol. For example, we could not use an rdp parser generatedfrom the grammarS ::= E Y.Y ::= ['+' S] .E ::= T X.X ::= ['*' E] .T ::= 'a' 'a' | 'a' 'b'.To see why this grammar is unsatisfactory consider the string ab + aa. At thepoint S) E Y) T X Y

The rdp scanner 13in an attempted parse of this string it is not possible to decide, just by lookingat the current input symbol a, which of the alternates aa and ab to use toreplace T.In the original grammar,S ::= S '+' S | S '*' S | E .E ::= 'a' | 'b' .two of the alternates in the rule for S have S as their �rst symbol. This isone reason why this grammar cannot be used with rdp and a modi�ed versionexpr1.bnf was used as an example in the previous sections.A complete description of grammars which admit rdp-generated parsers isgiven in Chapter 4.2.6 The rdp scannerSo far we have not discussed how rdp-generated parsers match characters in aninput �le to terminals in the grammar. To use rdp e�ectively it is necessaryto know a little about the initial phase of compilation usually called lexicalanalysis or scanning.2.6.1 rdp scanner tokensA parser usually considers sentences in a language at token, or `word', level. Itis presented with streams of tokens which have to be structured into sentences.In reality, a sentence is presented as a stream of characters, or `letters', andthese characters must �rst be grouped together into words. This is usually thejob of the scanner in a compiler.Tokens are not quite the same thing as words. A token often correspondsto a set of words. For example, we describe the set of integers using the tokenINTEGER and the set of C style identi�ers using the token ID. Sometimes tokensdo correspond exactly to words. For example, the token 'if' corresponds justto the string which forms the keyword if.So a token is the name of a set of strings of characters; this set is called thepattern of the token. We say that a string of characters matches a token if itbelongs to the pattern of that token. A string which matches a token is calleda lexeme of the token. For example, a token op may correspond to the less-than, greater-than, less-or-equals, and greater-or-equals strings. In this case,the pattern of op is the set f <; >; <=; >= gthe string <= matches op, the string << doesn't match op, and <= is a lexemeof op.rdp has a scanner which it uses to process its input �les. This scanner isautomatically built into any parser that rdp generates, so rdp-generated parserscome with a hard wired scanner giving the user access to certain standardpatterns.

14 BASIC PARSING ISSUESSimple tokensAny string of characters between single quotes is treated by the scanner as atoken which matches exactly that string. So 'a' matches the sequence a and'while' matches the sequence while, and the singleton set fag is the patternof 'a' and fwhileg is the pattern of 'while'.The tokens INTEGER and REALThe token INTEGER matches C style integers such as 145 and 0xFE, and REALmatches any C style real number, such as 1.45 and 1.45e3. We can use the tokenINTEGER to modify the expression grammar given in Section 2.3 to generate allstrings of integer expressions, sums and products of integers.(** expr2.bnf **)S ::= E Y.Y ::= ['+' S].E ::= T X.X ::= ['*' E].T ::= INTEGER.The STRING() tokensMost languages allow string literals |alphanumeric strings enclosed between,for example, single or double quotes. For example, the C commandprintf("string") ;causes the characters string to be printed.rdp allows you to use a paramaterisable token STRING('delimiter charac-ter') which matches all sequences of letters and underscores enclosed by thedelimiter character. The symbol which is to delimit the strings must itself bequoted. For example,rule ::= STRING('"') .matches strings between double quotes. So"this is a string" "string1" "another_string"are all lexemes of the token STRING('"').To distinguish a single quote from the token quotes we use the \ character.So rule ::= STRING('\'') .matches strings between single quotes, e.g.'this is a string' 'string1' 'another_string'

The rdp scanner 15What if we want to include the delimiting character in the actual string?Two consecutive delimiters represent the delimiter symbol itself. So, for exam-ple, 'this string''s delimiter is '''matches the token STRING('\'') and the Pascal statementwriteln('this string''s delimiter is ''') ;would cause this string's delimiter is 'to be printed on the screen.It is possible that a language designer would like to use an escape symbolto access non-printing characters. This is fully documented in the user manual[JS97b], here we just show its use for printing a delimiter symbol. Strings ofthe form"this string is delimited by \" and has a special escape symbol"match the rdp token STRING_ESC('"' '\\').We can now add strings and a print facility to the expression grammarwhichallow the user to print messages and the results of calculations.(** expr3.bnf **)S ::= S1 | 'print' '(' [String][S1] ')' .S1 ::= E Y .Y ::= ['+' S1].E ::= T X.X ::= ['*' E].T ::= INTEGER.String ::= STRING_ESC('"' '\\') .A parser for this grammar accepts the inputprint("the result is " 10*8+5)2.6.2 De�ning a language which permits commentsMost programming languages allow the programmer to include comments inthe code. These comments are designed to help a human reader of the codeto understand it but are not part of the instructions to the computer. Suchcomments should be ignored by the translator, and hence need to be �lteredout at some point.In the traditional model of compilation the scanner removes any commentsfrom the input before it is passed to the parser. The rdp scanner can recogniseand remove comments and this facility is also available in rdp-generated parsers.The user must specify the form that comments in their language will take. Thisis done by including the appropriate COMMENT primitive in the input grammar.For example, we can add C style comments to the language of integer ex-pressions described in Section 2.6.1. The parser generated for the grammar

16 BASIC PARSING ISSUES(** expr4.bnf **)S ::= E Y .Y ::= ['+' S].E ::= T X.X ::= ['*' E].T ::= INTEGER.comment ::= COMMENT('/*' '*/') .accepts the following input:/* Test input for expression grammar *//*this string should be accepted*/3 + 5 * 8/* multiplication will be done first */ + 10/* this string should fail */10 7The above input will generate a parser error in the expression parser, and tosee if the �rst part is correct it would be useful to be able to comment out thesecond part.In C comments may not nest, but it is possible to de�ne languages withnesting comments using grammars which will be accepted by rdp. For example,an rdp-generated parser for the grammar(** expr5.bnf **)S ::= E Y .Y ::= ['+' S].E ::= T X.X ::= ['*' E].T ::= INTEGER.comment ::= COMMENT_NEST('(*' '*)') .accepts the following input:(* Test input for expression grammar *)(*this string should be accepted*)3 + 5 * 8(* multiplication will be done first *) + 10(* (* this string should fail *)10 7 *)

Chapter 3Extended BNFrdp grammars can have a more exible type of grammar rule than standardBNF allows. One of the major limitations of standard BNF is that it is onlypossible to write out �nitely many alternates. It is common practice in manyareas of computer science to use regular expressions as a concise notation forsets of strings. This allows certain in�nite sets to be speci�ed, and saves tediouswriting out of large �nite sets.For example, the grammarS ::= 'a' f '+' 'a' g .de�nes the language of sums of a's,a; a+ a; a + a+ a; a+ a+ a+ a; : : :and S ::= ('a' | 'b' | 'g')('c' | 'd' | 'h') .de�nes the language ac; ad; ah; bc; bd; bh; gc; gd; ghIn the �rst case we have speci�ed that a string in the language can contain 0or arbitrarily many + symbols. To give an equivalent speci�cation in standardBNF we would need to add extra grammar rules, for exampleS ::= 'a' X .X ::= ['+' 'a' X] .In the second case, to give an equivalent speci�cation in BNF we would eitherneed to add additional rules or extra alternatesS ::= 'a''c' | 'a''d' | 'a''h' | 'b''c' | 'b''d' | 'b''h'| 'g''c' | 'g''d' | 'g''h' .(Note: the �rst grammar can actually be written more concisely using rdp'siterator expression, see below.)

18 EXTENDED BNFIt is usual to allow the set of alternates on the right hand side of a grammarrule to speci�ed using a regular expression and in this case we describe thenotation as being extended BNF (EBNF). The rdp grammar rules can containthe common forms of regular expression, we have already seen the use of [] todenote one-or-zero copies of the enclosed string, and zero-or-many copies can bedenoted using fg. rdp also supports a more general form of regular expressionwhich allows upper and lower limits on the number of repeats of strings. In thischapter we shall describe the full extended BNF that rdp grammars can use.We begin with the standard constructs, and then describe rdp's generalisedexpressions.3.1 Standard EBNFStrings and symbolsAny singly quoted string is a regular expression, it represents the set which justcontains itself. Thus we can write grammar rules of the formrule ::= 'fred' .The singly quoted strings are the tokens of the grammar.Any string of alphanumeric characters is a regular expression. Thus we canwrite grammar rules of the formrule ::= name1 .These are the non-terminals of the grammar.ConcatenationIf r and s are regular expressions then so is rs, and the elements of the set rsare strings obtained by concatenating a string from r and a string from s. So,for example, we can write grammar rules of the formrule ::= 'a' name1 'b1'AlternationIf r and s are regular expressions then so is rjs, and the elements of the set rjsare strings in r together with the strings in s. So, for example, we can writegrammar rules of the formrule ::= 'a' name1 | B | 'b1' .The concatenation operation has higher priority than the alternate operation.So 'a' 'b' | B 'c' is the set f'a''b', B'c'gnot the set f'a''b''c', 'a'B'c'g.

Standard EBNF 19ParenthesesIf r is a regular expression then so is (r), and the elements of the set (r) areexactly the elements of r. Parentheses have higher priority than all the otheroperations and their role is to allow other priorities to be overridden. So, forexample,rule ::= 'a' ('b' | B) 'c' .is equivalent torule ::= 'a' 'b' 'c' | 'a' B 'c' .and torule ::= 'a' rule_1 'c' .rule_1 ::= 'b' | B .Zero or oneWe use square brackets to indicate `one or none'. If r is a regular expressionthen so is [r], and the elements of the set [r] are the elements of r together withthe empty string. So, we can write grammar rules of the formrule ::= [expr] .which is equivalent to the rulerule ::= expr | � .Zero or manyWe use braces to indicate `zero or many'. If r is a regular expression then sois frg, and the elements of the set frg are the strings formed by concatenatingzero or more strings from r together. So, for example, we can write rules of theform rule ::= f'a'g'b' .which is equivalent to the (in�nite) rulerule ::= 'b' | 'a''b' | 'a''a''b' | 'a''a''a''b' | ...We can write more complicated grammar rules, for examplerule ::= ('a' | 'c')f'a' | 'c'g .which is equivalent to the (in�nite) rulerule ::= 'a' | 'c' | 'a''a' | 'a''c' | 'c''a' | 'c''c'| 'a''a''a' | 'a''a''c' | 'a''c''a' | 'a''c''c'| 'c''a''a' ...

20 EXTENDED BNFOne or manyWe use angle brackets to indicate `one or many'. If r is a regular expressionthen so is < r >, and the elements of the set < r > are the strings formed byconcatenating one or more strings from r together. So, for example, we canwrite rules of the formrule ::= <'a'> .which is equivalent to the rulerule ::= 'a' | 'a''a' | 'a''a''a' | 'a''a''a''a' ...3.2 rdp's IBNFWe call the particular extended form of BNF which rdp uses an iterator BNF orIBNF. In this section we describe the additional construct @ which distinguishesIBNF from standard EBNF.Sometimes we need to specify strings of certain lengths. For example, wemay want to specify the strings of up to eight a's and b's. We could do thisby writing out all the strings in the standard BNF style, but there are 511 ofthem! This language can be speci�ed in rdp input grammars using the rulerule ::= ('a' | 'b')0@8# .Here, the symbol # is being used to denote the absence of a token. It is nec-essary because the iterator operator can also be used to specify a separatorbetween symbols. Integer arithmetic expressions are sequences of integers with+'s between them, for example 17 + 80 + 9 + 27. This can't be expressedsimply using braces {} because the �rst integer in the list doesn't have a pre-ceeding +, i.e. we can't just write f'+' INTEGERg. (Of course, we can writeINTEGER{'+' INTEGER} but if the are semantic actions associated with the callsto INTEGER then these will need to be repeated.) The rdp grammar rulerule ::= (INTEGER)2@8'+' .describes the integer sums which have between two and eight operands.Formal de�nition of the @ operatorEach of the last four regular expressions in the EBNF description in section 3.1is a special case of a regular expression which is based on the parameterisedoperator @. We de�ne iterator expressions as follows:1. Any regular expression is an iterator expression2. If r is an iterator expressions then so is (r) l@h 0x0, where l and h areintegers and 0x0 is a token or the special symbol #.The elements of the set (r) l@h 0x0 are strings which are the concatenationof between l and h strings from r, alternated with x if it is not #. (In the casewhere h = 0 there must be at least l strings from r but there is no upper limiton this number.)

Derivations in IBNF 21Examples and correspondencesThe following rule allows us to declare function prototypes which contain arbi-traily long comma delimited lists of parametersrule ::= ID '(' (ID)0@0',' ')' .This rule matches things likeMy_Function(var1, var2, var3) or print()Note: For rdp the upper and lower limits are written next to the @ operator,rather than subscripted.The following is a list of the correspondences between IBNF and standardEBNF constructs.rule ::= (r)0@0#. corresponds to rule ::= f r g.rule ::= (r)1@0#. corresponds to rule ::= < r >.rule ::= (r)0@1#. corresponds to rule ::= [r].rule ::= (r)1@1#. corresponds to rule ::= (r).We are now in a position to give an rdp grammar for the language of integerexpressions, including - and /. This forms part of the mini grammar whichwill be discussed in later chapters.(** expr6.bnf **)e1 ::= e2 {'+' e2 | '-' e2 } .e2 ::= e3 {'*' e3 | '/' e3 } .e3 ::= '+' e4 | '-' e4 | e4 .e4 ::= ID | INTEGER | '(' e1 ')' .An rdp-generated parser for this grammar accepts grammar strings of the form,for example,10 * (-4 + 6 * (-5)) / (sum - 27).3.3 Derivations in IBNFIn the previous section we have described the strings generated by rdp's iter-ator constructs. However, to understand what rdp is actually doing, to makefull sense of the error messages it produces, and to use semantic actions (seeChapter 6) it is necessary to understand the IBNF constructs in terms of thederivations they produce.Basically, recursive descent parsers call a routine, or function, at each stepin the derivation being constructed. Each step corresponds to the replacementof a non-terminal by one of the alternates from its grammar rule. Thus thereis e�ectively a routine for each alternate of each rule. rdp makes an internalsubrule for each alternate. For example, rdp represents the grammarrule ::= 'a' '+' rule | 'b' .

22 EXTENDED BNFinternally asrule ::= rdp_rule_0 | rdp_rule_1 .rdp_rule_0 ::= 'a' '+' rule .rdp_rule_1 ::= 'b' .If an alternate contains an iterator construct and something else then rdptakes the iterator construct out and makes a new rule for it. For example, rdprepresents the grammarrule ::= 'a' ('b')0@4',' .internally asrule ::= 'a' rdp_rule_0 .rdp_rule_0 ::= ('b')0@4',' .Recall that parantheses are special case of the iterator operator. E�ectively, ifif you writerule ::= (r) .rdp automatically inserts an iterator construct and translates the rule torule ::= (r)1@1# .So including parantheses in a rule will cause rdp to generate an new corre-sponding internal subrule. For example, rdp represents the grammarrule ::= 'a' ('b' | 'c') 'd' .internally asrule ::= 'a' rdp_rule_2 'd' .rdp_rule_2 ::= rdp_rule_1 | rdp_rule_0 .rdp_rule_1 ::= 'b' .rdp_rule_0 ::= 'c' .rdp treates single iterator constructs as though they were rules with anaternate for each possible string. In other wordsrule ::= ('a')1@6'+' .behaves in the same way asrule ::= 'a' | 'a''+''a' | ...| 'a''+''a''+''a''+''a''+''a''+''a' .

Derivations in IBNF 23Recursion issuesThe language fa; aa; aaa; aaaa; : : :g can be described in three obvious ways inrdp's IBNF, using right recursion, using left recursion and using the iteratorconstruct:rule ::= 'a' [rule] .rule ::= [rule] 'a' .rule ::= ('a')1@0#(In fact rdp will not generate a parser from the second grammarbecause it is notleft factored, see Chapter 4, but we shall use it here to illustrate the constrast inapproaches.) It would be possible to implement the iterator operator recusivelyso it behaved like the �rst rule. In this case a derivation of aaa would have theform rule) a rule) a a rule) a a a rule) a a aIn the case of the left recursive representation, a derivation of aaa would havethe formrule) rule a) rule a a) rule a a a) a a aHowever, iterator constructs, as their name implies, are actually implementedin rdp using iteration sorule ::= ('a')1@0#behaves as though it were the (in�nite) rulerule ::= 'a' | 'a''a' | 'a''a''a' | ...As a result, a derivation of aaa in the iterator grammar has the formrule) a a aThese issues are important when using semantic actions in the grammar, seeChapter 6, because they determine when in the parse the actions are executed.

Chapter 4Restrictions on rdp grammarsAs we discussed in Chapter 2, rdp generates parsers which use a recursive de-scent technique. This means that there are restrictions on the grammars whichadmit rdp-generated parsers. If rdp is presented with a grammar which breaksthese restrictions then it will issue a diagnostic message explaining the natureof the problem and indicating the place in the grammar where it occurs. Inorder to understand these messages and to use rdp e�ectively, it is necessary tounderstand the conditions which input grammars must satisfy. In this chapterwe consider these conditions in detail. We shall use the grammar expr1.bnfS ::= E Y.Y ::= ['+' S].E ::= T X.X ::= ['*' E].T ::= 'a' | 'b'.introduced in Chapter 2, to illustrate the discussion.4.1 Deterministic choice on alternatesAt each step in the parsing process, the parser replaces a non-terminal witha string from the right hand side of that non-terminal's grammar rule. Whenthere is more than one alternate in a grammar rule the parser needs an algorithmfor deciding which of the alternates to choose. This decision is made by lookingat the current input symbol. In order to see how this is done we need to considerthe parsing process in more detail.Strings which can appear in derivations that begin with the start symbolare called sentential forms. So in the following S, �1, : : :, �n are all sententialforms: S) �1) : : :) �n:By the current sentential form at a stage in a parser execution we shall meanthe sentential form which was constructed at the previous step. So �n is thecurrent sentential form at the stage at which a parser has constructed the abovederivation steps.

26 RESTRICTIONS ON RDP GRAMMARSSuppose that the input string xyxyz is being parsed. The parser is gener-ating a left-most derivation of the string, thus in the �rst steps of the processthe parser is replacing the �rst symbol of the current sentential form and isattempting to construct a sentential form which looks like x�. Suppose thatthe parser has constructed the stepsS) �) �) that , the current sentential form, begins with the non-terminal X and thatX has associated grammar ruleX ::= �1 j �2 j �3 j �4 :At the next step the parser should only replaceX with �1 if there is some deriva-tion �1 �)x�01 or if �1 �)�. In any other case it will be impossible to completethe derivation if �1 is chosen to replace X .For example, suppose that we are using the expression grammar expr1.bnfto parser the string a+b and that the construction has reached the stageS) EY) TXYIf at the next step T were to be replaced by b, givingS) EY) TXY) bXYit would be impossible to complete the derivation and generate a+b.4.2 first setsThe above discussion highlights the need to know which terminals can appearat the beginning of something derivable from a given string . Such terminalsbelong to the so-called first set of . Formally we de�ne first() to be theset of terminals which can begin a string derivable from , together with � if �)�.For the example expr1.bnf at the beginning of the chapter we havefirst(a) = fagfirst(T) = fa; bg = first(E) = first(S)first(X) = f�; �gfirst(EY) = fa; bg = first(TX).The general description of first sets is:firstT() = f t 2 T j �)t0gfirst() = (firstT() [f�g; if �)�,firstT(); otherwise.Notice that if t is a terminal thenfirst(t) = ftg = first(t)for any string .rdp-generated parsers maintain a list of the first sets, and their contents,for each alternate in each grammar rule of the grammar. The parsers use thesesets to decide with which alternate to replace a given non-terminal.

Parsing with first sets 274.3 Parsing with first setsAs the parse proceeds, the �rst few symbols of the current sentential form willcorrespond exactly to an initial portion of the input string. The parser reads inthe input string symbol-by-symbol, starting from the left of the string. Whenthe �rst symbol in the input string appears at the front of the current sententialform the parser reads in the next symbol from the input. At each stage in theparsing process the parser tries to replace the left-most non-terminal in thecurrent sentential form with an alternate that has the current input symbol inits first set. For example, suppose that the input string is xyxyz, that theparser has so far constructed the derivationS) �1) : : :) �m) xyxX;and that X has associated grammar ruleX ::= �1 j �2 j �3 j �4 :The current input symbol is y and so the parser needs to replace X by whichever alternate has y in its first set.If no alternate has this property, and if X does not derive �, then thederivation cannot be completed and the parse has failed. If more than onealternate has this property then the parser cannot decide how to proceed.Thus it is necessary for grammars which are to have rdp-generated parsersto have the disjoint first set property. In fact, grammars that are input tordp need to have a slightly stronger property than this, which we will describein the next three sections.4.4 The problem with � rulesWe have seen in the previous section that rdp requires each grammar rule inthe input grammar to have alternates with disjoint first sets. That is, ifX ::= � j � :then the intersection of the first sets must be empty, i.e. first(�)\first(�) =; (here ; denotes the emptyset, the set fg which has no elements). However,if the grammar contains � rules (grammar rules of the form A ::= :::j � j:::)then this property may not be enough to allow the parser to determine whichalternate to use.Consider the grammarS ::= 'b' A 'a' .A ::= ['a'] .If an rdp-generated parser for this grammar is given input ba and has con-structed the steps S) bAa

28 RESTRICTIONS ON RDP GRAMMARSthen the current input symbol is a and since A)a the parser may take this asthe next step, giving S) bAa) baawhich cannot be extended to generate ba. However, if the parser performed thestep A)� then we would get a successful parseS) bAa) baWhy not make choosing the � step the default? If the parser is given inputbaa then choosing the � alternate would result in failure. The problem is thatthe parser cannot decide whether to use � just by looking at the current inputsymbol a.We can see the general problem by considering again the example, fromthe previous section, in which the input string is xyxyz, the parser has so farconstructed the derivationS)�1) : : :)�m)xyxX;and X has associated grammar ruleX ::= �1 j �2 j �3 j �4 :Suppose also that �4 �)�. We could replace X with �4 at the next step in thederivation and hope to complete the derivation from the string . If it is alsothe case that one of the other alternates, �1 say, has y in its first set then wecan't decide whether to use �1 or �4 to replace X .If �4 were used in the next step of the derivation and the parse were to besuccessful then we would have to have y 2 first() and hence �)y0 for somestring 0. This would mean thatS �)xyxX �)xyxXy0and hence that y can follow X in some sentential form. Thus we are led toconsider the so-called follow sets.4.5 follow setsThe convention for recursive descent parsers is that the � generating rule, �4in the above example, will only be chosen if there is no alternate that has anappropriate first set. This will be a correct strategy if none of the elements inthese first sets can also follow X in a sentential form. This is what is requiredfor the above example because the existence of a successful derivation using �4would mean that y could follow X , and hence the non-overlap between firstsets and elements that can follow X would mean that no alternate had beenchosen on application of the first set criterion.Thus we are interested in the set of terminals which can follow X in somesentential form.

LL(1) grammars 29In the expression grammar expr1.bnf we haveS �) E+ S; S �) T � EY; S �) T+ S;in factfollowT(E) = f+gfollowT(T) = f�;+gFormally, for any non-terminal A in any grammar we de�nefollowT(A) = ft 2 T j S �)�At�g:If A can occur at the end of a sentential form then the follow set of A alsocontains a special end-of-�le symbol EOF. Then we havefollow(A) = (followT(A) [fEOFg; if S �)A,followT(A); otherwise.So for the expression grammar expr1.bnf we havefollow(X) = f+; EOFg4.6 LL(1) grammarsGrammars which have the properties that� no two distinct alternates in one grammar rule have common elements intheir first sets,� and that if a non-terminalX derives � then the first sets of the alternatesin its grammar rule must be disjoint from the follow set of Xare called LL(1) grammars. Formally, a grammar is LL(1) if1. if X ::= :::j � j:::j � j::: t hen first(�) \ first(�) = ;2. if X ::= :::j � j::: and X �)� then first(�) \ follow(X) = �.rdp requires its input grammars to be LL(1) (although there is one specialcase involving the iterator construct in rdp's IBNF). If the input grammar isnot LL(1) then rdp issues an error message detailing which rule(s) is causingthe problem.4.7 Overriding the LL(1) restrictionsThere are some constructs in some programming languages which cannot beexpressed in an LL(1) grammar. A classic example is the if..then..elsestatement and its variants. For example, using the following grammar

30 RESTRICTIONS ON RDP GRAMMARS(** ifelse1.bnf **)S ::= 'if' B 'then' S X | 'STOP' | 'SKIP' .X ::= ['else' S] .B ::= 'true' | 'false' .there are two distinct derivations of the stringif true then if false then STOP else SKIPWhen the parser has constructed the following portion of a derivationS)if B then SX)if true then SX)if true then if B then S X Xthere is no way to decide whether to replace the �rst X by � or by 'else' S.If the above grammar is input to rdp the following message is generated:******: Error - LL(1) violation - ruleX ::= X .contains null but first and follow sets both include: 'else'******: Error - LL(1) violation - rulerdp_X_1 ::= ['else' S] .contains null but first and follow sets both include: 'else'******: Error - LL(1) violation - rulerdp_X_2 ::= ['else' S] .contains null but first and follow sets both include: 'else'******: Fatal - Run aborted without creating output files- rerun with -F to overrideFrom the point of view of parsing, the choice is irrelevant because either willresult in a successful completion of the derivation. (Of course, the user needs toknow which choice will be made so that appropriate semantics can be inserted.The rdp default actions are explained in detail in Chapter 7 of [JS97b].)We can force rdp to create a parser by running it with the ag -F. There isa target parserf in the make�le which calls rdp with the -F ag. Typingmake GRAMMAR=examples\rdp_tut\ifelse1 parserfexcutes the command rdp -F -oifelse1 examples\rdp_tut\ifelse1and generates the following message:******: Error - LL(1) violation - ruleX ::= X .contains null but first and follow sets both include: 'else'******: Error - LL(1) violation - rulerdp_X_1 ::= ['else' S] .contains null but first and follow sets both include: 'else'******: Error - LL(1) violation - rulerdp_X_2 ::= ['else' S] .contains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 3 errors and 1 warningBorland C++ 5.0 for Win32 Copyright (c) 1993,1996 Borland International

Inspecting the first and follow sets 31rdparser.c:bcc32 -erdparser.exe rdparser.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objBorland C++ 5.0 for Win32 Copyright (c) 1993,1996 Borland InternationalTurbo Link Version 1.6.72.0 Copyright (c)1993,1996 Borland Internationalrdparser -v -Vrdparser.vcg -l examples\rdp_tut\ifelse1.strrdparserGenerated on Dec 6 1997 8:55:27 and compiled on Dec 4 1997 at 9:22:37******:1: if true then if false then STOP else SKIP******: 0 errors and 0 warnings******: 0.000 CPU seconds usedNotice that this time instead of issuing a fatal error message, rdp has issueda warning and generated the �les. (Since the -F ag overrides rdp's safetychecks it should be used with caution.)4.8 Inspecting the first and follow setsrdp allows you to look at the first and follow sets that it has created fora particular grammar. This is useful if the grammar is not LL(1) because it ispossible to see where the o�ending sets overlap. It also means that rdp can beused as a tool for constructing first and follow sets for any given grammar.This is particularly useful for follow sets whose construction by hand is quiteerror prone.Using the ag -e causes rdp to print out in BNF format the grammar rulesthat it is using internally, to detail the first set for each alternate and theSTOP set (the follow set together with EOF) for each non-terminal. Typingrdp -e examples\rdp_tut\expr1results in the following output. (Here, the non-terminals are shown as functionsfor reasons which are explained in Chapter 6.)E(void):void ::= rdp_E_0() .First set is {'a', 'b'}Stop set is {EOF, '+'}Production is called 2 timesS(void):void ::= rdp_S_0() .First set is {'a', 'b'}Stop set is {EOF}Production is called 2 timesT(void):void ::= rdp_T_0() | rdp_T_1() .First set is {'a', 'b'}Stop set is {EOF, '*', '+'}Production is called onceX(void):void ::= rdp_X_2() .First set is {(NULL) '*'}

32 RESTRICTIONS ON RDP GRAMMARSStop set is {EOF, '+'}Production is called onceY(void):void ::= rdp_Y_2() .First set is {(NULL) '+'}Stop set is {EOF}Production is called oncerdp_E_0(void):void ::= T() X() .First set is {'a', 'b'}Stop set is {EOF, '+'}Production is called oncerdp_S_0(void):void ::= E() Y() .First set is {'a', 'b'}Stop set is {EOF}Production is called oncerdp_T_0(void):void ::= RDP_T_a() .First set is {'a'}Stop set is {EOF, '*', '+'}Production is called oncerdp_T_1(void):void ::= RDP_T_b() .First set is {'b'}Stop set is {EOF, '*', '+'}Production is called oncerdp_X_0(void):void ::= RDP_T_17 /* * */() E() .First set is {'*'}Stop set is {EOF, '+'}Production is called oncerdp_X_1(void):void ::= [rdp_X_0()].First set is {(NULL) '*'}Stop set is {EOF, '+'}Production is called oncerdp_X_2(void):void ::= rdp_X_1() .First set is {(NULL) '*'}Stop set is {EOF, '+'}Production is called oncerdp_Y_0(void):void ::= RDP_T_18 /* + */() S() .First set is {'+'}Stop set is {EOF}Production is called oncerdp_Y_1(void):void ::= [rdp_Y_0()].First set is {(NULL) '+'}Stop set is {EOF}Production is called once

Inspecting the first and follow sets 33rdp_Y_2(void):void ::= rdp_Y_1() .First set is {(NULL) '+'}Stop set is {EOF}Production is called once

Chapter 5The mini grammarIn this chapter we give an rdp IBNF de�nition mini1.bnf of a small language.The language allows variable declarations and assignment of integer arithmeticexpressions to those variables. Addition, subtraction, multiplication and divi-sion are all left associative, and multiplication and division have higher prioritythan addition and subtraction. There are also unary plus, +, and minus, -,signs, and an exponentiation operator, ^, which is right associative. It allowsbranching via an if statement, and variable assignment and declaration. TheC-style = sign is used for assignment. There is a print statement which canprint sequences of strings and values of expressions. Strings are delimited bydouble quotes ("), and comments are enclosed in Pascal-style brackets (* *)and can be nested.(** mini1.bnf **)program ::= {([var_dec | statement]) ';' }.var_dec ::= 'int' (ID ['=' e1])@','.statement ::= ID '=' e0| 'if' e0 'then' statement ['else' statement]| 'print' '(' (e0 | String)@',' ')'.e0 ::= e1 ['>' e1 | '<' e1 | '>=' e1 |'<=' e1 | '==' e1 | '!=' e1].e1 ::= e2 {'+' e2 | '-' e2 } .e2 ::= e3 {'*' e3 | '/' e3 } .e3 ::= '+' e4 | '-' e4 | e4 .e4 ::= e5 ['^' e1] .e5 ::= ID | INTEGER | '(' e1 ')' .comment ::= COMMENT_NEST('(*' '*)').String ::= STRING_ESC('"' '\\') .The 'if'... alternate in the grammar rule for statement is inherentlyambiguous. Thus the above grammar is not LL(1). When the grammar isinput to rdp it will issue an error message and terminate. If rdp is run withthe ag -F this will force rdp to produce a parser from the above grammar.

36 THE MINI GRAMMARrdp -F examples\rdp_tut\mini1******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' statement] .contains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningThe generated parser will resolve the ambiguity in `if' statements by using`longest match'. The e�ect of this is that an `else' clause will be assumed tomatch the nearest `then' to the left. In other wordsif a<b then if c==d then c=1 else d=1 ;will be parsed asif a < b then (if c == d then c = 1 else d = 1) ;not as if a < b then (if c == d then c = 1) else d = 1 ;

Chapter 6Semantic actionsSo far we have only described how to use rdp to generate a parser for a lan-guage. Parsers allow us to test whether a given string is in the language,but what we actually want is to execute some behaviour when a sentence isrecognised. For example, a compiler, on recognising a sentence, constructs anequivalent sentence (one with the same meaning) in some speci�ed target lan-guage. An interpreter, on recognising a sentence, executes it. A pretty printer,on recognising a sentence, reformats it and then prints it out in what is usuallya more readable form.rdp can be used to generate parsers which do useful work of these types.The basic approach is that semantic actions are inserted in the grammar rules;these actions are executed by the generated parser when the rule is used.Attributes are used to pass information between rules and can be used withinsemantic actions. Two kinds of attributes are supported by rdp: inheritedattributes which are passed as parameters into rules and synthesized attributesthat act like return values from rules.In this chapter we describe how various aspects of these mechanisms workfor rdp-generated parsers. A full description of rdp semantic actions can befound in [JS97b]. In this guide we just illustrate the basic ideas and point outsome of the things to be wary of.We begin with a little discussion of the function call based approach whichis used to implement rdp-generated parsers. We then consider a particularexample of semantic action use, consider the iterator construct in more detailand give an introduction to the use of inherited attributes.6.1 The function based implementation of rdp-generatedparsersThe input for rdp is a language speci�cation, grammar.bnf say, written inIBNF. rdp writes a C program, grammar.c say, based on the IBNF it is given.This program contains a function for each non-terminal in the grammar. Thecode for each function depends on the right hand side of the grammar rule forthe non-terminal. In a simple rdp parser the functions take no input and returnnothing.

38 SEMANTIC ACTIONSSuppose that the input grammar is(** functn1.bnf **)S ::= INTEGER E .E ::= '+' E | '-' E | INTEGER .The rdp-generated �le functn1.cwill contain two functions void S() and voidE() and a function scan_() which reads the next input symbol and stores it ina global variable current_input_symbol 1. The function S() can be thoughtof as beginning with a call to a scanner function scan_test(INTEGER) whichtests the current input symbol to see if it is an integer. If it is an integer thenthis symbol has been correctly parsed in which case scan_() is called to readin the next input symbol and then the function E() is called to continue theparse.void S(void){scan_test(INTEGER);scan_();E();}The function E() contains a branch statement with a branch for each ofthe three alternates in its grammar rule. The current input symbol is testedagainst the first set of each alternate and then the corresponding branchis executed. In this case scan_test('+') is called and if it returns with amatch to the current input symbol, the next input symbol is read and then E()is called again. If the match is not found then scan_test('-') is called. Ifthis matches then the next input symbol is read and E() is called, otherwisescan_test(INTEGER) is called. If this matches then the next input symbol isread, no other action is required. If this does not match then the input stringis not in the language and a suitable error message is issued.The complete parser simply calls scan_() to read in the �rst input symboland then calls the function for the start symbol, in this case S().When rdp generates a C �le from the above grammar it provides a lot ofother code to, for example, set up a symbol table and issue error messages. Thefollowing is a severely �lleted version of the �le functn1.c created using thecommandrdp -ofunctn1 examples\rdp_tut\functn11This global variable is actually a record text scan data with a �eld which is a union oneof whose entries holds the lexeme of the input symbol. To simplify this exposition we shallthink of this entry as a global variable which we shall call current input symbol .)

Semantic actions { an example 39/*** Parser generated by RDP on Nov 02 1997 09:33:36 from functn1.bnf**/.../* Parser forward declarations and macros */static void E(void);void S(void);/* Parser functions */static void E(void){if (scan_test('+')) {scan_();E(); }elseif (scan_test('-')) {scan_();E(); }elseif (scan_test(INTEGER)) { scan_(); }else { /* report error in input */ }}void S(void){scan_test(INTEGER);scan_();E();}int main(...) {...scan_();S(); /* call parser at top level */...}/* End of functn1.c */6.2 Semantic actions { an exampleThe following grammar can be input to rdp:(** functn2.bnf **)S:integer ::= INTEGER:val1 [* result = val1 ; *]('+' S:val2 [* result = val1 + val2 ; *] | ';')The underlying grammar rule isS ::= INTEGER ('+' S | ';') .which generates sums of integers terminated by a semi-colon. The additionaldetails are attribute names (following colons :) and actions (between brackets

40 SEMANTIC ACTIONS[* *]). We shall see below that the attributes cause the corresponding parserfunctions to return values rather than void results, so we have integer S(),and the actions are inserted verbatim into the code for S(). We now describethese e�ects in detail.The parser functions associated with each non-terminal in the grammar canbe made to return a value. The type of this value is indicated after a colonon the left hand side of the corresponding grammar rule. So, the declaration:integer which appears on the left hand side of the rule causes the functionS() to return an (unsigned) integer which is de�ned as a C unsigned long.The identi�er which holds the value to be returned is always called result.Thus the function has the forminteger S(void){integer result;scan_test(INTEGER);scan_();if (scan_test('+')) {scan_() ;val2 = S(); }else...return result ;}The grammar writer will often want to give the returned value from a rou-tine a local name, so that it can be used. This is done by putting a colon andthen the chosen local name after the symbol which generated the call to theroutine. For example, the declaration S():val2 in functn2.bnf instructs theparser to write the value returned by the call to S() to a variable called val2.The value of a token such as INTEGER may also be given a local name, again byputting a colon and then the chosen local name after the token. For example,INTEGER:val1 causes the value of the INTEGER just scanned, which was writ-ten to current_input_symbol by scan_(), to be copied to val1. Thus thefunction S() can be thought of as having the forminteger S(void) {integer result;long int val1;integer val2;scan_test(INTEGER);val1 = current_input_symbol;scan_();if (scan_test('+')) {scan_();val2 = S();}else

Semantic actions { an example 41...return result;}The statements which appear between the brackets [*...*] in functn2.bnfare fragments of C code. As the parser constructs a derivation it executes thefragments, as it meets them. This is done by inserting the code fragmentsverbatim in the parser function at the place where they are encountered. Forexample, the action after INTEGER is inserted before the call to scan_test(+)and the second action is inserted after the call to S(). Thus we can think ofS() as having the forminteger S(void) {integer result;long int val1;integer val2;val1 = current_input_symbol;scan_test(INTEGER);scan_();result = val1 ;if (scan_test('+')) {scan_();val2 = S();result = val1 + val2 ; }elseif (scan_test(';')) { scan_(); }else /* error report */return result;}To gain experience of these ideas the you might like to add an extra grammarrule and associated semantic action which prints out the value of an expression.(** functn3.bnf **)S ::= E:val [* printf("%i\n", val); *] .E:integer ::= INTEGER:val1 [* result = val1; *]('+' E:val2 [* result = val1 + val2; *] | ';') .Running the generated parser on the string 2+3+6; e�ectively causes the fol-lowing code to be executed (the indentation indicates the nesting level of theparser function producing the output)val1 = 2result = val1

42 SEMANTIC ACTIONS/* code from subcall to E() */val1 = 3result = val1/* code from second subcall to E() */val1 = 6result = val1val2 = result /* val2 == 6 */result = val1 + val2val2 = result /* val2 == 9 */result = val1 + val2return result /* return 11 */The following output should be produced:Generated on May 01 1997 17:15:40 and compiled on Apr 30 1997 at 13:02:55******:1: 2 + 3 + 6;11******: 0 errors and 0 warnings******: 0.020 CPU seconds used6.3 Semantic actions in empty grammar rulesThe following grammar generates strings which are sums of integers that arenot terminated by a semi-colon.(** arith1.bnf **)E:integer ::= INTEGER:val1 [* result = val1 *]['+' E:val2 [* result = val1 + val2; *]] .This corresponds to a parser function which is essentially of the forminteger E(void) {integer result;long int val1;integer val2;scan_test(INTEGER);val1 = current_input_symbol;scan_();result = val1;if (scan_test('+')) {scan_();val2 = E();result = val1 + val2;}return result;}

Semantic actions in empty grammar rules 43The semantic actions inserted inside IBNF square brackets [] are only ex-ecuted if the non-epsilon part of the bracket is executed. In other words, theabove grammar is treated likeE:integer ::= INTEGER:val1 [* result = val1 *]('+' E:val2 [* result = val1 + val2; *] | epsilon).not likeE:integer ::= INTEGER:val1 [* result = val1 *]('+' E:val2 [* result = val1 + val2; *]| epsilon [* result = val1 + val2; *]) .Often we need to execute a semantic action when an empty rule is used, forexample to initialise a variable. Semantic actions which are to be executed onapplication of an empty rule (so called default rules) are appended to the squarebrackets using a colon. For example, the grammar(** arith2.bnf **)E:integer ::= INTEGER:val1['+' E:val2 [*result=val1+val2;*]]:[*result=val1;*]behaves likeE:integer ::= INTEGER:val1('+' E:val2 [* result = val1 + val2; *]| epsilon [* result = val1; *]) .and corresponds to a parser function which is essentially of the forminteger E(void) {integer result;long int val1;integer val2;scan_test(INTEGER);val1 = current_input_symbol;scan_();if (scan_test('+')) {scan_();val2 = E();result = val1 + val2; }else {/* default action processing */result = val1 ; }return result;}

44 SEMANTIC ACTIONS6.4 Semantic actions and the iterator constructIterators are implemented as `while loops'. At the beginning of each executionof the loop the left hand side of the iterator operator is executed as though itwere an alternate of a grammar rule. The next input symbol is then comparedto the delimiter (right hand side) of the iterator operator. If there is a matchthen the while loop is executed again.For example, the rule(** iter1.bnf **)E ::= ('a' | 'b') 0@0 ',' .can be thought of as corresponding to a parser function of the formvoid E(void) {while (1) {if (scan_test('a')) { scan_(); }else {if (scan_test('b')) { scan_(); }else /* error */ }if (current_input_symbol != ',') break;scan_();}}which accepts, for example, a,a,b,a and a.Part of the point of an iterator construct is that it does not involve sub-function calls, thus semantic actions are executed immediately after the corre-sponding token is parsed, i.e. `on the way down', rather than when the functioncall is complete, i.e. `on the way back up'.Semantic actions can be placed in the left hand argument of the iteratorand after the delimiter using a colon. The latter action is executed only ifthe iterator does not consume any input symbols, i.e. if the low count is 0and it matches the empty string. (This is the same feature as [...]:[*...*]described in the previous section.)In the following example semantic actions are being used to count the num-bers of a's, b's and delimiter ;'s in a given input string. For example, on inputa,b,b,b,a,a,a,a,a,b,a we get******:1: a, b, b, b, a, a, a, a, a, b, a7, 4, 10******:The number of delimiters should be one less than the sum of the numbers ofa's and b's, except in the case of the empty string when all the numbers shouldbe 0. Thus a separate action is executed in this case.

Left associative operators 45(** iter2.bnf **)E ::= [*int left=0, right=0, delim=-1;*]('a'[*left++; delim++;*] | 'b'[*right++; delim++;*])0@0 ',':[* delim=0;*][* printf("%i, %i, %i\n", left, right, delim);*] .This can be thought of as corresponding to a parser function of the formvoid E(void) {int left=0, right=0, delim=-1;if (scan_test('a') | scan_test('b')) {while (1) {if (scan_test('a')) {scan_();left++; delim++; }elseif (scan_test('b')) {scan_();right++; delim++; }else /* error */if (current_input_symbol != ,) break;scan_();} }else { delim=0; }printf("%i, %i, %i\n", left, right, delim);}6.5 Left associative operatorsRecall the grammar arith2.bnfE:integer ::= INTEGER:val1['+' E:val2 [*result=val1+val2;*]]:[*result=val1;*]If we run the parser generated from this grammar on the string 2 + 3 + 6the sum will e�ectively be calculated in a right associative manner, i.e. 2 + (3+ 6). This is acceptable since addition is associative and the result is the samein either case. However, if we used the same approach to specify subtractionwe would get counter-intuitive outcomes. Running rdp with the grammar(** arith3.bnf **)S ::= E:val [* printf("%i\n", val) ; *] .E:integer ::= INTEGER:val1['-' E:val2 [*result=val1-val2;*]]:[*result=val1;*] .and then running the resulting parser on the string 2 - 3 - 6 produces

46 SEMANTIC ACTIONSGenerated on May 3 1997 7:01:20 and compiled on Apr 30 1997 at 8:02:55******:1: 2 - 3 - 65******: 0 errors and 0 warnings******: 0.058 CPU seconds usedThe result is 2-(3-6) = 5 rather than the expected (2-3)-6 = -7.We consider three ways of specifying a grammar so that operators such as'-' are left associative.One is to use inherited attributes, and will be discussed in the next section.Another is to use a left recursive de�nition. We could begin with the gram-marS ::= E .E ::= [E '-'] INTEGER.then annotate it to giveS ::= E .E:integer ::= [* int flag = 1; *] [E:valB '-']:[* flag = 0; *]INTEGER:valA [* if(flag){result = valB - valA;}else {result=valA;}; *].A correct parser based on this grammar would give subtraction left associativesemantics but because the grammar is left recursive rdp cannot generate acorrect parser from it.A third way of enforcing left associativity is to use the iterator construct.An rdp-generated parser from the grammar(** arith4.bnf **)S ::= E:val [* printf("%i\n", val) ; *] .E:integer ::= INTEGER:result{'-' INTEGER:val2 [*result=result-val2;*] } .(which has underlying form E ::= INTEGER { - INTEGER }.) e�ectively ex-ecutes the following steps on input 2 - 3 - 6, giving the required evaluation.current_input_symbol = 2 ;result = current_input_symbol ; /* result == 2 */current_input_symbol = 3 ;val2 = current_input_symbol ;result = result - val2 ; /* result == 2-3 */current_input_symbol = 6 ;val2 = current_input_symbol ;result = result - val2 ; /* result == (2-3)-6 */

Expression semantics in mini 476.6 Expression semantics in miniWe can use the techniques discussed in the previous section to add semanticactions to the grammar rules which de�ne expressions in mini.(** miniexp.bnf **)USES("mexp_aux.h")S ::= e1:val [* printf("%i\n", val); *] .e1:integer ::= e2:result {'+' e2:val [* result = result + val; *]| '-' e2:val [* result = result - val; *] }.e2:integer ::= e3:result{'*' e3:val [* result = result * val; *]| '/' e3:val [* if(val==0){text_message(TEXT_FATAL,"divide by zero attempted\n");}else {result = result / val;}; *] } .e3:integer ::= '+' e4:result | '-' e4:val [*result = -val;*] | e4:result .e4:integer ::= e5:result ['^' e4:val[*result = (integer) pow((double) result, (double) val);*]].e5:integer ::= ID | INTEGER:result | '(' e1:result ')' .The exponent operator ^ is implemented using the C maths library functionpow(). The rdp directive USES(�le) tells rdp to include the contents of �le inthe generated parser. In our case the �le mexp_aux.h contains the commandto include the maths library.#include <math.h>The �le mexp_aux.h can also be used to declare global variables which can thenbe used in the semantic actions.6.7 Inherited attribute de�nitionRecall the grammar(** arith3.bnf **)S ::= E:val [* printf("%i\n", val) ; *] .E:integer ::= INTEGER:val1['-' E:val2 [*result=val1-val2;*]]:[*result=val1;*].from the previous section. This generates sequences of di�erences of integers,but it calculates the result using right associativity.To get left associativity using the right recursive `subtraction' grammarS ::= E .E ::= INTEGER [- E].we need to add semantic actions in such a way that val1, the value of the �rstINTEGER, is passed into the function called for the following E.We can pass parameters into function calls by inserting them in parenthe-ses after the appropriate non-terminal. For example, consider the followingannotation of the right recursive `subtraction' grammar

48 SEMANTIC ACTIONS(** arith5.bnf **)S:integer ::= INTEGER:val E(val):result [*printf("%i\n",result);*].E(lhs:integer):integer ::= ['-' INTEGER:val [* val = lhs - val; *]E(val):result]:[* result = lhs; *].An rdp-generated parser for this grammar would e�ectively execute the follow-ing steps on input 2 - 3 - 6val = 2 ;lhs = val; /* lhs == 2 */val = 3 ;val = lhs - val;lhs = val ; /* lhs == 2-3 */val = 6;val = lhs - val;lhs = val; /* lhs = (2-3)-6 */result = lhs; /* result = (2-3)-6 */Running the rdp-generated parser for arith5.bnf on the input 2 - 3 - 6should produce the following:Generated on May 18 1997 9:19:07 and compiled on May 12 1997 at 9:15:30******:1: 2 - 3 - 6-7******: 0 errors and 0 warnings******: 0.034 CPU seconds usedThus we see that rdp rules can have parameters passed into them. Each rdprule name may be followed by a parenthesised list of identifier:type pairswhich are instantiated into the parser rule as value parameters, so thatinherited_rule(x : integer y: real) ::= 'a' 'b'.maps tointeger inherited_rule(integer x, real y) { ... }6.7.1 Semantic actions for IF statementsA common use of inherited attributes is to pass information into a rule thatwill be used to switch semantic actions o� and on.The if statement in the mini grammar has two subclauses, one that shouldbe executed if a speci�ed conditional is true and another that should be ex-ecuted if the conditional is false. We achieve this by passing a parameter into all statements and ensuring that the semantic actions associated with thestatement are only executed if the parameter is true.

Inherited attribute de�nition 49(** mini2.bnf **)USES("mexp_aux.h")program ::= {([var_dec | statement(1)]) ';' }.XSvar_dec ::= 'int' (ID ['=' e1])@','.statement(flag:integer) ::=ID '=' e1 [*if(flag){/* assignment will go here*/;};*]| 'if' e0:cnd 'then' [* cnd = cnd && flag;*] statement(cnd)['else' [*cnd =!cnd&&flag;*] statement(cnd)]| 'print''(' (e0:val [* if(flag){printf("%i\n", val);};*]| String:str[*if(flag){printf("%s\n", str);};*])@',' ')'.e0:integer ::= e1:result['>' e1:val [*result = result > val;*]| '<' e1:val [*result = result < val;*]| '>=' e1:val [*result = result >= val;*]| '<=' e1:val [*result = result <= val;*]| '==' e1:val [*result = result == val;*]| '!=' e1:val [*result = result != val;*]].e1:integer ::= e2:result {'+' e2:val [* result += val; *]| '-' e2:val [* result -= val; *] } .e2:integer ::= e3:result{'*' e3:val [* result *= val; *]| '/' e3:val [* if(val==0){text_message(TEXT_FATAL,"divide by zero attempted\n");}else {result = result / val;}; *] } .e3:integer ::= '+' e4:result | '-' e4:val [*result = -val;*] | e4:result.e4:integer ::= e5:result ['^' e4:val[*result = (integer) pow((double) result, (double) val);*]].e5:integer ::= ID | INTEGER:result | '(' e1:result ')' .comment ::= COMMENT_NEST('(*' '*)').String:char* ::= STRING_ESC('"' '\\'):result .In the grammar rule for program the call to statement is passed a constantvalue 1 because its associated semantic actions should always be executed. Theactions associated with the assignment and print alternates of the statementgrammar rule will be executed if the parent statement is called with a `true'ag. (Some of the actions have not actually been written because we need to usea symbol table which will be discussed in Chapter 7.) The actions associatedwith the �rst sub-statement in the `if' alternate will be executed if both thegoverning condition and the ag in the parent statement are true.If we run an rdp-generated parser for the above grammar on input

50 SEMANTIC ACTIONSif 1>2 then print(1, "true") else print(2, "false") ;we get output of the form******:2false1: if 1>2 then print(1, "true") else print(2, "false") ;******: 0 errors and 0 warnings******: 0.145 CPU seconds used

Chapter 7Symbol tables in rdpWe have already mentioned that rdp-generated parsers deal with tokens, andthat there is a built-in scanner which groups the input stream into token lex-emes. The parser must keep track of the lexemes which match each token. Forexample, the parser only needs to know that the token it is currently dealingwith is ID, but in the �nal output code we need to restore the actual iden-ti�er originally given. So this information must be stored somewhere. Also,at various stages in the input program an identi�er will have a speci�c asso-ciated value, and usually an associated type. This information is held by anrdp-generated parser in a symbol table.rdp has a built-in symbol table building library. The user can write parserswhich use symbol tables by including calls to the rdp symbol table libraryfunctions. In this chapter we shall give a basic guide to using this library.7.1 Hash coded symbol tablesThe symbol table is declared by the user in the BNF �le which de�nes theirlanguage. The following is an example of a declaration of a symbol table whichcould be used in a parser for the mini language.SYMBOL_TABLE(mini 101 31symbol_compare_stringsymbol_hash_stringsymbol_print_string[* char* id; integer i; *])The �rst parameter, in this case mini, is the name of the symbol table. A novicerdp user can just use the above incantation, putting in the name they require,but in order to have some understanding of the di�erent components of thede�nition it is necessary to have an elementary understanding of hash tables.(More detailed information on rdp symbol tables can be found in [JS97b].)Symbol tables need to be of arbitrary size, since we do not know in advancehow many identi�ers we will encounter during a particular parse. The rdp-generated symbol tables are based on linked lists, organised to make looking up

52 SYMBOL TABLES IN RDPa value reasonably e�cient. Rather than a single list, a symbol table actuallyhas several lists, called buckets. So, for example, instead of having one list oflength about 100, we may have 10 lists each of length about 10 and, provided weknow which list to search, looking up an entry could be a factor of 10 quicker.This is the principle of a hash table. The bucket in which a particular entryshould be stored is calculated from that entry by a hash function. The idea isthat the hash function should assign approximately the same number of entriesto each of the buckets.
delta delay drain dozy- - -- countboingadrian bcountangle beta-- ----Perhaps the simplest hash function for a string is to add together the ASCIIvalues for all of the characters in the string, and then take the modulus of theresult with the number of sub-lists available. It turns out that this functionworks best if there are a prime number of sublists. An even better result isachieved if another number, coprime with the number of lists is factored in ateach addition.The rdp symbol table library contains a hash function of this type, calledsymbol_hash_string. To use it in an rdp-generated parser just declare it inthe symbol table de�nition, as above. The two numbers 101 and 31 in thede�nition are the primes that the hash function is to use.Every record in the symbol table has a key �eld which is used to access thatrecord. symbol_compare_string is a function which is used by rdp's symboltable library to compare an input string with these keys when accessing records.At the end of the symbol table de�nition, between the [* *] brackets, arethe data �elds which contain the actual information held for each entry in thesymbol table. The mini symbol table holds the identi�ers of a mini program,and these all have type integer. So there are two data �elds; the �rst holdsthe lexeme of the token and the other contains its (integer) value.7.2 AssignmentThe construct ID = e1 in the mini grammar is intended to assign the valueof the expression e1 to the identi�er which is the particular lexeme of ID. Whenan assignment is carried out the new value is placed in the appropriate �eldin the symbol table. This is done by using semantic actions in the rule whichde�nes identi�er declaration.

Identi�er declaration 53statement ::= ID:name '=' e1:val [* mini_cast(symbol_lookup_key(mini, &name, NULL))->i = val; *]The call to ID returns the lexeme which matched that instance of ID, andthe symbol table is `keyed' on this value. The rdp symbol library functionsymbol_lookup_key() looks up the entry in the symbol table which is keyedon name. In this entry, the �eld i holds the value of the identi�er and thesemantic action above assigns the value of e1, returned in a variable called val,to the �eld i.When an identi�er is to be assigned the value of another identi�er, or whenan expression involves an identi�er,fred_copy = fred ;total = sub_total + 15;then the values of these identi�ers need to be extracted from the symbol table.This is also done using symbol_lookup_key().e5:integer ::= ID:name [* result = mini_cast(symbol_lookup_key(mini, &name, NULL))->i; *]The return type of a function such as symbol_lookup_key() depends in parton the user-de�ned structure of the entries in the symbol table, and thus is not�xed. To cope with this symbol_lookup_key() actually returns a void pointer,which is then cast to the appropriate type by a function table_cast(). Thisfunction is constructed automatically by rdp. The reader who is not con�dentin dealing with C-style void pointers need not worry about it. Just encasecalls to functions such as symbol_lookup_key() in a call to table cast() andeverything will be dealt with automatically.7.3 Identi�er declarationThe constructvar_dec ::= 'int' ID:name ['=' e1:val] .in the mini grammar allows identi�ers to be declared. The e�ect of a declarationis intended to be that an entry in the symbol table is created for that identi�er.There is an option to assign a value to the identi�er at the same time as it isdeclared. These e�ects can be achieved using the symbol table library functionsymbol_insert_key().var_dec ::= 'int' ID:name ['=' e1:val] [* mini_cast(symbol_insert_key(mini, &name, sizeof(char*),sizeof(mini_data)))->i = val;*].

54 SYMBOL TABLES IN RDPThe function symbol_insert_key() reserves enough space for both the keywhich will be used to access the particular entry and for the actual data whichwill be stored. These values depend on the data types speci�ed by the user intheir input grammar. In the case of mini we have speci�ed that the key will bea string (the lexeme recognised by the scanner) and that the data will containthat string and an integer value. The size of the key is the third parameter ofsymbol_lookup_key(), and the size of the entry is the fourth parameter. Thedata �elds enclosed between [* *] brackets in a declaration of a symbol table,table say, is referred to as table data by rdp. Thus sizeof(mini_data) is thevalue required as the fourth parameter in our example.7.4 Using undeclared variablesThe symbol table can be used to resolve context sensitivities. In mini we intendthat an identi�er cannot be used before it is declared. However, to excludesomething of the formfred = 3 ;int fred ;from a language usually requires a context sensitive grammar. So insteadwe allow such constructs but then issue an error message when an attemptis made to execute semantic actions on such input. We use the fact thatsymbol_lookup_key() returns NULL if it doesn't �nd a particular entry in thesymbol table.statement ::= ID:name '=' e1:val[* if (symbol_lookup_key(mini, &name, NULL) == NULL)text_message(TEXT_ERROR,"Undeclared variable '%s'\n", name);else { mini_cast(symbol_lookup_key(mini, &name, NULL))->i = val;}*]

Chapter 8A mini interpreterWe are now in a position to give a full decorated grammar, mini_itp.bnf,for the mini language. Running this grammar through rdp generates a parserwhich acts as an interpreter for programs written in the mini language.(** mini_itp.bnf **)USES("mexp_aux.h")SYMBOL_TABLE(mini 101 31symbol_compare_stringsymbol_hash_stringsymbol_print_string[* char* id; integer i; *])program ::= {([var_dec | statement(1)]) ';' }.var_dec ::= 'int' (ID:name ['=' e1:val][* mini_cast(symbol_insert_key(mini, &name, sizeof(char*),sizeof(mini_data)))->i = val;*])@','.statement(flag:integer) ::=ID:name '=' e1:val[* if(flag)if (symbol_lookup_key(mini, &name, NULL) == NULL)text_message(TEXT_ERROR, "Undeclared variable '%s'\n", name);else {mini_cast(symbol_lookup_key(mini, &name, NULL))->i = val; }*]| 'if' e0:cnd 'then' [* cnd = cnd && flag;*] statement(cnd)['else' [*cnd =!cnd&&flag;*] statement(cnd)]| 'print''(' (e0:val [* if(flag){printf("%i\n", val);};*]| String:str[*if(flag){printf("%s\n", str);};*])@',' ')'.

56 A MINI INTERPRETERe0:integer ::= e1:result['>' e1:val [*result = result > val;*]| '<' e1:val [*result = result < val;*]| '>=' e1:val [*result = result >= val;*]| '<=' e1:val [*result = result <= val;*]| '==' e1:val [*result = result == val;*]| '!=' e1:val [*result = result != val;*]].e1:integer ::= e2:result {'+' e2:val [* result += val; *]| '-' e2:val [* result -= val; *] } .e2:integer ::= e3:result{'*' e3:val [* result *= val; *]| '/' e3:val [* if(val==0){text_message(TEXT_FATAL,"divide by zero attempted\n");}else {result = result / val;}; *] } .e3:integer ::= '+' e4:result | '-' e4:val [*result = -val;*] | e4:result.e4:integer ::= e5:result ['^' e4:val[*result = (integer) pow((double) result, (double) val);*]].e5:integer ::= ID:name[* if (symbol_lookup_key(mini, &name, NULL) == NULL)text_message(TEXT_ERROR,"Undeclared variable '%s'\n", name);else { result = mini_cast(symbol_lookup_key(mini, &name, NULL))->i; }*]| INTEGER:result | '(' e1:result ')' .comment ::= COMMENT_NEST('(*' '*)').String:char* ::= STRING_ESC('"' '\\'):result .If we input the above grammar to rdprdp -F examples\rdp_tut\mini_itpbcc32 -P -Irdp_supp -c rdparser.cbcc32 -erdparser.exe rdparser.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objrdparser examples\rdp_tut\mini_itp.strrunning the resultant parser on the input(****** mini_itp.str ******)int fred = 1 ;print("value of fred = ", fred) ;int me = fred + 1 ;print("value of me = ", me) ;me = fred * me + 6/3*5 ;

57print("value of me = ", me) ;undefined = 4 * me ;fred = undefined + 4 ;then the following output is printed on the screen.value of fred =1value of me =2value of me =12 9: Error (examples\rdp_tut\mini_itp.str) Undeclared variable 'undefined'10: Error (examples\rdp_tut\mini_itp.str) Undeclared variable 'undefined'******: Fatal - errors detected in source fileThe parser has evaluated each statement, printing out error messages when un-declared variables are used { as speci�ed in the semantic actions in the grammar.In this sense the program produced by rdp is an interpreter; no executablecode from the mini input statements remains when the interpreter has �nishedrunning. In the associated case study document [JS97a] the mini grammar isextended and given di�erent semantic actions so that rdp generates a compilerfrom the grammar rather than an interpreter.

Appendix AAcquiring and installing rdprdp may be fetched using anonymous ftp to ftp.dcs.rhbnc.ac.uk. If youare a Unix user download pub/rdp/rdpx_y.tar or if you are an MS-DOS userdownload pub/rdp/rdpx_y.zip. In each case x_y should be the highest numberin the directory. You can also access the rdp distribution via the rdp Webpage at http://www.dcs.rhbnc.ac.uk/research/languages/rdp.shmtl. Ifall else fails, try mailing directly to A.Johnstone@rhbnc.ac.uk and a tape ordisk will be sent to you.A.1 Installation1. Unpack the distribution kit. You should have the �les listed in Table A.1.2. The make�le can be used with many di�erent operating systems andcompilers.Edit it to make sure that it is con�gured for your needs by uncommentingone of the blocks of macro de�nitions at the top of the �le.3. To build everything, go to the directory containing the make�le and typemake. The default target in the make�le builds rdp, the mini_syn syn-tax analyser, the minicalc interpreter, the minicond interpreter, theminiloop compiler, the minitree compiler an assembler called mvmasmand its accompanying simulator mvmsim, a parser for the Pascal languageand a pretty printer for ANSI-C. The tools are run on various test �les.None of these should generate any errors, except for LL(1) errors causedby the mini and Pascal if statements and warnings from rdp about un-used comment() rules, which are normal.make then builds rdp1, a machine generated version of rdp. rdp1 is thenused to reproduce itself, creating a �le called rdp2. The two machinegenerated versions are compared with each other to make sure that thebootstrap has been successful. Finally the machine generated versions aredeleted.4. If you type make clean all the object �les and the machine generatedrdp versions will be deleted, leaving the distribution �les plus the new

60 ACQUIRING AND INSTALLING RDP00readme.1_5 An overview of rdpmakefile Main rdp make�leminicalc.bnf rdp speci�cation for the minicalc interpreterminicond.bnf rdp speci�cation for the minicond interpreterminiloop.bnf rdp speci�cation for the miniloop compilerminitree.bnf rdp speci�cation for the minitree compilermini_syn.bnf rdp speci�cation for the mini syntax checkerml_aux.c miniloop auxiliary �leml_aux.h miniloop auxiliary header �lemt_aux.c minitree auxiliary �lemt_aux.h minitree auxiliary header �lemvmasm.bnf rdp speci�cation of the mvmasm assemblermvmsim.c source code for the mvmsim simulatormvm_aux.c auxiliary �le for mvmasmmvm_aux.h auxiliary header �le for mvmasmmvm_def.h op-code de�nitions for MVMpascal.bnf rdp speci�cation for Pascalpretty_c.bnf rdp speci�cation for the ANSI-C pretty printerpr_c_aux.c auxiliary �le for pretty_cpr_c_aux.h auxiliary header �le for pretty_crdp.bnf rdp speci�cation for rdp itselfrdp.c rdp main source �le generated from rdp.bnfrdp.exe 32-bit rdp executable for Win-32 (.zip �le only)rdp.h rdp main header �le generated from rdp.bnfrdp_aux.c rdp auxiliary �lerdp_aux.h rdp auxiliary header �lerdp_gram.c grammar checking routines for rdprdp_gram.h grammar checking routines header for rdprdp_prnt.c parser printing routines for rdprdp_prnt.h parser printing routines header for rdptest.c ANSI-C pretty printer test source �letest.pas Pascal test source �letestcalc.m minicalc test source �letestcond.m minicond test source �letestloop.m miniloop test source �letesttree.m minitree test source �lerdp_doc\rdp_case.dvi case study TEX dvi �lerdp_doc\rdp_case.ps case study Postscript sourcerdp_doc\rdp_supp.dvi support manual TEX dvi �lerdp_doc\rdp_supp.ps support manual Postscript sourcerdp_doc\rdp_tut.dvi tutorial manual TEX dvi �lerdp_doc\rdp_tut.ps tutorial manual Postscript sourcerdp_doc\rdp_user.dvi user manual TEX dvi �lerdp_doc\rdp_user.ps user manual Postscript sourcerdp_supp\arg.c argument handling routinesrdp_supp\arg.h argument handling headerrdp_supp\graph.c graph handling routinesrdp_supp\graph.h graph handling headerrdp_supp\memalloc.c memory management routinesrdp_supp\memalloc.h memory management headerrdp_supp\scan.c scanner support routinesrdp_supp\scan.h scanner support headerrdp_supp\scanner.c the rdp scannerrdp_supp\set.c set handling routinesrdp_supp\set.h set handling headerrdp_supp\symbol.c symbol handling routinesrdp_supp\symbol.h symbol handling headerrdp_supp\textio.c text bu�er handling routinesrdp_supp\textio.h text bu�er handling headerexamples\... examples from manualsTable A.1 Distribution �le list

Build log 61executables. If you type make veryclean then the directory is cleanedand the executables are also deleted.A.2 Build logThe output of a successful make�le build on MS-DOS is shown below. Notethe warning messages from rdp on some commands: these are quite normal.cc -Irdp_supp\ -c rdp.crdp.c: cc -Irdp_supp\ -c rdp_aux.crdp_aux.c:cc -Irdp_supp\ -c rdp_gram.crdp_gram.c:cc -Irdp_supp\ -c rdp_prnt.crdp_prnt.c:cc -Irdp_supp\ -c rdp_supp\arg.crdp_supp\arg.c:cc -Irdp_supp\ -c rdp_supp\graph.crdp_supp\graph.c:cc -Irdp_supp\ -c rdp_supp\memalloc.crdp_supp\memalloc.c:cc -Irdp_supp\ -c rdp_supp\scan.crdp_supp\scan.c:cc -Irdp_supp\ -c rdp_supp\scanner.crdp_supp\scanner.c:cc -Irdp_supp\ -c rdp_supp\set.crdp_supp\set.c:cc -Irdp_supp\ -c rdp_supp\symbol.crdp_supp\symbol.c:cc -Irdp_supp\ -c rdp_supp\textio.crdp_supp\textio.c:cc -erdp.exe rdp.obj rdp_*.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objrdp -F -omini_syn mini_syncc -Irdp_supp\ -c mini_syn.cmini_syn.c:cc -emini_syn.exe mini_syn.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objmini_syn testcalcrdp -F -ominicalc minicalccc -Irdp_supp\ -c minicalc.cminicalc.c:cc -eminicalc.exe minicalc.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminicalc testcalca is 7b is 14, -b is -147 cubed is 343rdp -F -ominicond minicond******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' _and_not statement] .

62 ACQUIRING AND INSTALLING RDPcontains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c minicond.cminicond.c:cc -eminicond.exe minicond.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminicond testconda is 7b is 14, -b is -147 cubed is 343z equals az does not equal ardp -F -ominiloop miniloop******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' statement] .contains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c miniloop.cminiloop.c:cc -Irdp_supp\ -c ml_aux.cml_aux.c:cc -eminiloop.exe miniloop.obj ml_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objrdp -F -omvmasm mvmasmcc -Irdp_supp\ -c mvmasm.cmvmasm.c:cc -Irdp_supp\ -c mvm_aux.cmvm_aux.c:cc -emvmasm.exe mvmasm.obj mvm_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objcc -Irdp_supp\ -c mvmsim.cmvmsim.c:cc -emvmsim.exe mvmsim.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminiloop -otestloop.mvm testloopmvmasm -otestloop.sim testloop******: Transfer address 00001000mvmsim testloop.sima is 7b is 14, -b is -147 cubed is 343z equals az does not equal aa is 3a is 2a is 1-- Halted --rdp -F -ominitree minitree******: Error - LL(1) violation - rulerdp_statement_2 ::= ['else' statement] .contains null but first and follow sets both include: 'else'

Build log 63******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c minitree.cminitree.c:cc -Irdp_supp\ -c mt_aux.cmt_aux.c:cc -eminitree.exe minitree.obj m*_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objminitree -otesttree.mvm testtreemvmasm -otesttree.sim testtree******: Transfer address 00001000mvmsim testtree.sima is 7b is 14, -b is -147 cubed is 343z equals az does not equal aa is 3a is 2a is 1-- Halted --rdp -opascal -F pascal******: Error - LL(1) violation - rulerdp_statement_9 ::= ['else' statement] .contains null but first and follow sets both include: 'else'******: Warning - Grammar is not LL(1) but -F set: writing files******: 1 error and 1 warningcc -Irdp_supp\ -c pascal.cpascal.c:cc -epascal.exe pascal.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objpascal testrdp -opretty_c pretty_ccc -Irdp_supp\ -c pretty_c.cpretty_c.c:cc -Irdp_supp\ -c pr_c_aux.cpr_c_aux.c:cc -epretty_c.exe pretty_c.obj pr_c_aux.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objpretty_c testtest.c,2133,12267,5.75fc test.c test.bakComparing files test.c and test.bakFC: no differences encountereddel test.bakrdp -F -ordp1 rdpcc -Irdp_supp\ -c rdp1.crdp1.c: cc -erdp1.exe rdp1.obj rdp_*.obj arg.obj graph.obj memalloc.objscan.obj scanner.obj set.obj symbol.obj textio.objcopy rdp1.c rdp2.crdp1 -F -ordp1 rdp

64 ACQUIRING AND INSTALLING RDPfc rdp1.c rdp2.cComparing files rdp1.c and rdp2.c****** rdp1.c** Parser generated by RDP on Dec 20 1997 21:05:05 from rdp.bnf******* rdp2.c** Parser generated by RDP on Dec 20 1997 21:05:02 from rdp.bnf*******

Bibliography[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: prin-ciples techniques and tools. Addison-Wesley, 1986.[AU72] Alfred V. Aho and Je�rey D. Ullman. The Theory of Parsing, Trans-lation and Compiling, volume 1 | Parsing of Series in AutomaticComputation. Prentice-Hall Inc., 1972.[JS97a] Adrian Johnstone and Elizabeth Scott. Designing and implement-ing language translators with rdp { a case study. Technical ReportTR-97-27, Royal Holloway, University of London, Computer ScienceDepartment, December 1997.[JS97b] Adrian Johnstone and Elizabeth Scott. rdp - a recursive descent com-piler compiler. user manual for version 1.5. Technical Report TR-97-25, Royal Holloway, University of London, Computer Science Depart-ment, December 1997.[JS97c] Adrian Johnstone and Elizabeth Scott. rdp supp { support routinesfor the rdp compiler compiler version 1.5. Technical Report TR-97-26,Royal Holloway, University of London, Computer Science Department,December 1997.

