
rdp { an iterator-based reursivedesent parser generator with treepromotion operatorsAdrian JohnstoneA.Johnstone�rhbn.a.ukElizabeth SottE.Sott�rhbn.a.ukDepartment of Computer Siene,Royal Holloway, University of London,Egham, Surrey, TW20 0EX, UKAbstratrdp is a parser generator whih aepts Itera-tor Bakus Naur Form produtions deoratedwith attributes and ANSI-C ations and pro-dues reursive desent parsers. It has speialsupport for the generation of tree-based inter-mediate forms, built-in symbol table handlingfor the implementation of ontext-sensitiveomponents of the language syntax and a sup-port library that inludes a generalised graphhandling module that an output graphs in aform suitable for use with well known visuali-sation tools.Keywords: Parser generator, EBNF, iterator, derivationtree, tree promotion operator, LL(1) grammarIntrodutionrdp is a parser generator that aepts ontext-freegrammar spei�ations written in Iterator BakusNaur Form (IBNF) and outputs reursive desentparsers written in ANSI-C. rdp is targeted at neo-phyte users but inludes the following features thatmake it a powerful tool in the hands of the moreexperiened:� a grammar spei�ation language that om-prises standard BNF extended by a single on-strut (alled an iterator) that subsumes asspeial ases the optional phrase, Kleene lo-sure and positive losure found in traditionalextensions to BNF,

� automati onstrution of derivation trees,� a set of promotion operators whih may be usedto produe redued derivation trees that on-form to ommon Abstrat Syntax Tree forms,� a built-in graph-handling library with an in-terfae to the VCG [San95℄ graph visualisationtool,� a paramaterisable sanner whih supports run-time extension of the keyword set of the lan-guage to be parsed,� built-in handling of multiple symbol tables,� straightforward handling of named synthesisedand inherited attributes that may be aessedby semanti ations written in ANSI-C orC++, and� speial semanti rules that are instantiated in-line using ANSI-C maros.rdp itself, and the language proessors it gener-ates, use standard library modules to manage sym-bol tables, sets, graphs, memory alloation, textbu�ering, ommand line argument proessing andsanning. The rdp sanner is programmed by load-ing tokens into a symbol table at the start of eahrun. In this way, the rdp sanner an be used tosupport runtime extensible language features, suhas user de�ned operators in Algol-68.rdp o�ers a high level of integration between itsomponent parts. An unusual feature of rdp is thatit produes omplete runnable programs with built-in help information and ommand line swithes thatare spei�ed as part of the IBNF �le. In this senserdp output is far more shrink-wrapped than theusual parser generators whih an be a great helpto new users. rdp also provides integrated I/O: thetext bu�ering routines and built-in sanner worktogether to automatially handle nested �les, errormessage reporting and text data bu�ering.rdp generates itself from an IBNF �le whih de-sribes the syntax of rdp's IBNF soure languageand spei�es semanti ations. This demonstratesthe bootstrapping tehnique used for porting om-pilers to new arhitetures. The rdp distributionomes with extensive doumentation whih inludesa tutorial manual for new users and a large ase

study in whih a family of interpreters and ompil-ers are developed.Iterator BNFrdp language spei�ations use the standard no-tions of ontext-free grammar rules �rst employedin the Algol-60 report [Ba60℄. Rule names are un-quoted alphanumeri identi�ers and keywords aredelimited by single quotes. In addition to the usualnotions of sequening and alternation from BNFrdp provides a generalised iterator operator. Theonstrution('body') 2 � 4 'separator'mathes the following stringsbody separator bodybody separator body separator bodybody separator body separator body separator bodythat is, between two and four instanes of body sep-arated by the token separator. The general formof the iterator is(valid subprodution) lo � hi tokenwhih spei�es that the rdp-generated parser shouldmath the body represented by valid subprodutionbetween lo and high times interspersing eah in-stane with one instane of the separating token.A hi value of zero means `without limit', that is theiteration will ontinue arbitrarily.Either, or both, of hi and lo may be absent inwhih ase they default to zero. The separatingtoken may be set to the speial token # whih rep-resents `nothing' or the empty string (sometimesrepresented by �). In this ase no separating tokenis looked for.Traditional EBNF forms rdp supports the tradi-tional Wirth-style EBNF onstruts [Wir77℄ for op-tional, do-�rst and Kleene losure brakets as short-hands for speial ases of the iterator onstrut. Wehave extended Wirth's set with a positive losureoperator. The orrespondenes are shown in Ta-ble 1. None of them arries a separating token, andall of them have lower bounds of zero or one andupper bounds of one or zero (without limit).

Using iterators to implement lists Delimited listsare ommon in high level languages. Consider, forinstane, a funtion all in C made up of a paren-thesised omma-delimited list of identi�ers:fun(param1, param2, param3)If we have an rdp rule ID whih mathes a C-styleidenti�er, one way of writing an rdp spei�ation ofa funtion all is:fun_all ::= ID '(' param_list ')'.param_list ::= [ID param_tail ℄.param_tail ::= [',' ID param_tail ℄.whih uses reursion to math an arbitrary numberof parameters. We an use the { ... } iteratorbrakets and give a more ompat desription:fun_all ::= ID '(' param_list ')'.param_list ::= [ID {',' ID } ℄.Here the reursion has been replaed by iteration.Using the iterator operator with the optional de-limiter token we an further ompat this tofun_all ::= ID '(' param_list ')'.param_list ::= [(ID) � ',' ℄.or justfun_all ::= ID '(' [(ID) � ',' ℄ ')'.Attributes and semanti ationsTable driven parsers usually maintain an attributestak whih may be aessed by semanti ations inthe running parser to synthesize run-time attributevalues. Careful use of the attribute stak may alsoallow implementation of inherited attributes. Oneof the key advantages of reursive desent parsers isthat inherited and synthesized attribute passing be-tween grammar rules maps naturally onto the fun-tion parameter and funtion return value meha-nisms in onventional programming languages. Therdp tutorial and ase study manuals [JS97f, JS97a℄show how this mapping is exploited to provide in-dividual named (rather than numbered) attributesalong with strongly type heked inherited and syn-thesized attribute handling without requiring a sep-arate attribute stak.rdp rules may have a return type whih is usedto pass the value of a synthesized attribute up the

do-�rst (...) ! (...) 1�1 #positive losure (one-or-many) < ... > ! (...) 1�0 #optional (zero-or-one) [... ℄ ! (...) 0�1 #Kleene losure (zero-or-many) { ... } ! (...) 0�0 #Table 1 Iterator:braket orrespondenesderivation tree. Inherited attributes are de�ned us-ing typed parameters. All types refer to type namesde�ned in the underlying ANSI-C implementationwhih may inlude user de�ned type names (inlud-ing the use of aggregates). Semanti ations areANSI-C fragments enlosed in [* *℄ brakets thatare simply opied into the generated parser verba-tim. For instane, the rulea_rule(x1:integer x2:integer):integer::='a' [* result = x1; *℄{ 'b' [* result = x2; *℄}.mathes a single a followed by zero or more b's. Ifno b's are seen then a_rule returns the value of thex1 parameter, otherwise the value of x2 is returned.The rule maps to the following ANSI-C skeleton:integer a_rule(integer x1, integer x2){ /* ..ode to math a.. */result = x1;if (urrent is b){ /* ..ode to math multiple b's.. */result = x2;}return result;}The value returned by a_rulemay be aessed ina rule that alls a_rule by appending an attributename to the all:upper_rule ::= a_rule(0 1): saw_b.Here, the synthesized attribute saw_b will be set to1 if rule a_rule mathed any b's, otherwise saw_bwill be set to 0.

Default ations For iterators with a lower boundof zero (whih inlude [℄ and { }) it is oftenonvenient to have a semanti ation that is exe-uted only if the iterator mathes �, that is a defaultation that is exeuted if the syntax mathed by theiterator is not found. Suh ations are de�ned byfollowing the iterator with a olon and an ation:rule_with_default ::='a' ['b' [* printf("Found a 'b'\n"); *℄℄ : [* printf("No 'b' found\n"); *℄This rule mathes the strings ab and a, printingappropriate messages.Integrated library featuresrdp-generated parsers use a set of general purposesupport modules known olletively as rdp_supp.There are seven parts to rdp supp: a hash odedsymbol table handler whih allows multiple tablesto be managed with arbitrary user data �elds; aset handler whih supports dynamially resizablesets; a graph manager whih allows arbitrary di-reted graphs to be onstruted and manipulated,with a faility to output any graph in a form thatmay be read and visualised by the VCG [San95℄tool on Windows and Unix/X-windows systems; amemory manager whih wraps fatal error handlingaround the standard ANSI C heap alloation rou-tines; a text handler whih provides line bu�eringand string management without imposing arbitrarylimits on input line length; a ommand line argu-ment parsing pakage that allows Unix style optionsto be implemented in a standardised way; and san-ner support routines for handling tokens in reursivedesent parsers.Symbol tables Symbol tables are fundamental tothe implementation of almost all useful translators

sine in pratie the language aepting power ofontext free grammars must be augmented withontext sensitive type heks. In addition, inter-preters require storage spae for their run-time vari-ables and assoiated attributes, and an eÆientsymbol table organisation is ritial to the perfor-mane of suh tools. The rdp_supp library inludesa hash-oded symbol table handler interfaed to therdp soure language via the SYMBOL_TABLE delara-tion. An arbitrary number of symbol tables may bedelared, eah with user de�ned data �elds and auser de�ned reord omparison funtion. An arbi-trary number of nested sope levels are supported.Generalised graph handling The rdp graph han-dling pakage provides a general framework forbuilding graph data strutures that may then beoutput in a form suitable for display with theVCG (Visualisation of Compiler Graphs) tool.rdp generated parsers an be set to automat-ially build derivation trees in a form suitablefor human viewing. VCG runs on Windows 3.1,Windows-95 and Unix/X-windows systems. Weare grateful to the author of VCG for permis-sion to supply VCG with rdp: you an feth aopy of VCG from the home FTP site for rdp(ftp://ftp.ds.rhbn.a.uk/pub/rdp)Sanning The rdp sanner uses the same ompiledonstruts as the generated parser funtions ratherthan employing traditional Finite Automata basedtehniques. Alphanumeri keywords and puntua-tion are reognised via longest-math omparisonswith the ontents of the sanner's symbol tablewhih is loaded at startup with the tokens refer-ened in the assoiated IBNF grammar. This dy-namially organised sanner allows new operatorsand keywords to be added to the sanner's set dur-ing translation, a feature designed to support theuse of Algol-68 style operator de�nitions (as op-posed to the more restrited overloading of oper-ators allowed in C++). The sanner is tightly inte-grated with a text bu�ering pakage that managesthe ow of soure text through the translator andprovides a range of messaging and text handlingservies.

Help and ommand line proessing funtionsOne of the aims of rdp is to allow neophyte usersto get a omplete translator up and running inthe minimum of time by produing a omplete,runnable program that inludes built-in help pro-essing at ommand line level and ustomisablehandling of ommand line swithes. The generatedparsers automatially inlude proessing for a setof standard ommand line arguments and the usermay additionally speify ommand line swith us-ing diretives in the IBNF soure �le. The results ofommand line proessing are available as attributeswithin the running translator.Derivation tree onstrution and ma-nipulationrdp-generated parsers an automatially build om-plete derivation trees whih an be used as the basisof an intermediate form suitable for input to tree-walking ode generators and optimisers. The treesare onstruted using the graph library, and there-fore an also be output to a text �le and displayedusing the VCG graph visualisation tool.Full derivation trees onsume a lot of spae, andoften ontain nodes that are of little use in subse-quent language proessing. In pratie, translationtools use simpler Abstrat Syntax Trees (ASTs) butthere is rather little agreement on the formal de�ni-tion of an AST, and in pratie most language tooldesigners design an ad ho representation whih isbuilt on the y during the parsing phase. By em-bedding semanti ations in the spei�ation it is,of ourse, possible to adopt this approah with rdp-generated parsers, but rdp provides a set of pro-motion operators whih allow ommon AST formsto be automatially generated from the derivationtree. The advantage of this approah is that thegrammar diretly ditates the shape of the modi�edderivation tree whereas traditional AST's are onlyloosely related to the atual derivation tree. As aresult, maintaining a language proessor based onthe traditional twin-trak grammar and AST stru-tures requires two independent tree-like forms to bedesribed whereas in rdp the grammar itself ful�llsboth funtions.

TREEprogram ::= { statement ';'^ }.statement ::= ID '='^^ e1.e1 ::= e2^^ { ('+'^^^ | '-'^^^) e2 }. (* Add or subtrat (LA) *)e2 ::= e3^^ { ('*'^^^ | '/'^^^) e3 }. (* Multiply or divide (LA) *)e3 ::= e4^^ | ('+'^^ | '-'^^) e3. (* Monadi positive or negative *)e4 ::= e5 ['**'^^ e4 ℄:^^. (* Exponentiate (RA) *)e5::= ID^^ (* Variable or ... *)['('^ (e1)�','^ ')'^ ℄ | (* ... funtion all *)INTEGER^^ | (* Numeri literal *)'('^ e1^^ ')'^. (* Braketed subexpression *)Figure 1 An rdp expression grammar showing tree promotion operatorsModifying tree onstrution with promotion op-erators There are four promotion operators. The^ (promote underneath) operator fores the nodeto be promoted to the parent node but the par-ent node's �elds overwrite those of the node beingpromoted. The resulting node beomes the urrentparent for subsequent operations. The ^^ (promoteon top of) operator fores the node to be promotedto the parent node and the parent node's �elds areoverwritten by those of the node being promoted.The resulting node beomes the urrent parent forsubsequent operations. The ^^^ (promote above)operator fores the node to be promoted so as tobeome the parent of the urrent parent, that is itis inserted above the urrent parent rather than asa hild of the urrent parent. The resulting insertednode beomes the urrent parent for subsequent op-erations. The ^_ (no promotion) operator is used toapply the normal behaviour to a nonterminal whosedefault behaviour has been overridden.Eah grammar element (terminal or nonterminal)in an rdp grammar has an attahed promotion oper-ator whih spei�es the way that the orrespondingtree nodes will be built into the tree during a parse.The default operation is ^_, so in e�et any gram-mar element without an expliit promotion operatorwill be inserted into the derivation tree as a hildof the urrent parent. The grammar shown in Fig-ure 1 desribes a small operator language with bothleft and right assoiative operators. Figure 2 showsthe full derivation tree that results from using thisgrammar to parse the stringa = 2;b = a - 1 - 2 * (4 - 3) **4 ** 5 ** 6 / --+- 7;

Figure 3 shows the redued derivation tree thatis produed when the promotion operators in thegrammar are enabled.DoumentationFour manuals desribe the rdp system and its ap-pliations. The user guide [JS97d℄ desribes therdp soure language, ommand swithes and errormessages. Serious usage of rdp-generated parsersrequires an understanding of the support libraryrdp_supp whih is doumented in a ompanion re-port [JS97e℄. A third, tutorial, report assumes noknowledge of parsing, grammars or language de-sign and shows how to use rdp to develop a smallalulator-like language [JS97f℄. The emphasis inthe tutorial guide is on learning to use the basirdp features and ommand line options. A largease study is doumented in [JS97a℄ whih extendsthe language desribed in the tutorial guide withdetails of a syntax heker, an interpreter and aompiler along with an assembler and simulator fora syntheti arhiteture whih is used as the om-piler target mahine.AvailabilityThe rdp soure ode is publi domain and has beensuessfully built using Borland C++ version 3.1and Mirosoft C++ version 7 on MS-DOS, BorlandC++ version 5.1 on Windows-95 and Windows-NT,GNU g and g++ running on OSF/1, Ultrix, MS-DOS, Linux and SunOS, and Sun's own a runningon Solaris. Users have also reported straightforwardports to the Amiga, Maintosh and Arhimedes sys-tems. rdp has been in use at a variety of indus-

Figure 2 Full derivation tree for expression grammar

Figure 3 A redued derivation tree

trial and aademi sites sine 1994 for both teah-ing and the generation of prodution translators.The urrent version (1.5) is the sixth funtional-ity release and the authors would like to aknowl-edge the many suggestions for features and improve-ments that have been provided by our users.rdp may be fethed using anonymous ftp toftp.ds.rhbn.a.uk. Unix users should down-load the �le pub/rdp/rdp1_5.tar. MS-DOS, Win-dows 3.1 and Windows-95 users should down-load pub/rdp/rdp1_5.zip. The rdp distribu-tion may also be aessed via the rdp Web pagehttp://www.ds.rhbn.a.uk/researh/languages.Future workThe rdp iterator and tree onstrution features havelead to further work on generalised baktrakingparsers that will form the basis of a new tool ur-rently under development provisionally alled thePermutation Grammar Toolbox (PGT). We havereported elsewhere on the theoretial and pra-tial aspets of our generalised reursive desentparsers [JS97b, JS97, JS98℄ and the Web site hostsreports and prototype versions of the generalisedparser generator.Referenes[Ba60℄ J. W. Bakus. The syntax and semantis ofthe proposed International Algebrai Lan-guage of the Zurih ACM-GAMM onfer-ene. In R. Oldenburg, editor, Pro. Inter-nat'l Conf. Information Proessing, UN-ESCO, Paris, 1959, pages 125{132, Lon-don, 1960. Butterworths.[JS97a℄ Adrian Johnstone and Elizabeth Sott. De-signing and implementing language trans-lators with rdp { a ase study. TehnialReport TR-97-27, Royal Holloway, Univer-sity of London, Computer Siene Depart-ment, Deember 1997.[JS97b℄ Adrian Johnstone and Elizabeth Sott.Generalised reursive desent. Part 1: lan-guage design and parsing. Tehnial Re-port TR-97-18, Royal Holloway, University

of London, Computer Siene Department,Otober 1997.[JS97℄ Adrian Johnstone and Elizabeth Sott.Generalised reursive desent. Part 2:some underlying theory. Tehnial Re-port TR-97-19, Royal Holloway, Universityof London, Computer Siene Department,Otober 1997.[JS97d℄ Adrian Johnstone and Elizabeth Sott.rdp { a reursive desent ompiler om-piler. User manual for version 1.5. Tehni-al Report TR-97-25, Royal Holloway, Uni-versity of London, Computer Siene De-partment, Deember 1997.[JS97e℄ Adrian Johnstone and Elizabeth Sott.rdp supp { support routines for the rdpompiler ompiler version 1.5. TehnialReport TR-97-26, Royal Holloway, Univer-sity of London, Computer Siene Depart-ment, Deember 1997.[JS97f℄ Adrian Johnstone and Elizabeth Sott. Atutorial guide to rdp for new users. Tehni-al Report TR-97-24, Royal Holloway, Uni-versity of London, Computer Siene De-partment, Deember 1997.[JS98℄ Adrian Johnstone and Elizabeth Sott.Generalised reursive desent parsing andfollow determinism. In Kai Koskimies, ed-itor, Pro. 7th Intnl. Conf. Compiler Con-strution (CC'98), Leture notes in Com-puter Siene 1383, pages 16{30, Berlin,1998. Springer.[San95℄ Georg Sander. VCG Visualisation of Com-piler Graphs. Universit�at des Saarlan-des, 66041 Saarbr�uken, Germany, Febru-ary 1995.[Wir77℄ Niklaus Wirth. What an we do about theunneessary diversity of notation for syn-tati de�nitions. Communiations of theACM, 20(11), November 1977.

