
Weyl’s Predicative Classical Mathematics as a
Logic-Enriched Type Theory?

Robin Adams and Zhaohui Luo

Dept of Computer Science, Royal Holloway, Univ of London
{robin,zhaohui}@cs.rhul.ac.uk

Abstract. In Das Kontinuum, Weyl showed how a large body of clas-
sical mathematics could be developed on a purely predicative founda-
tion. We present a logic-enriched type theory that corresponds to Weyl’s
foundational system. A large part of the mathematics in Weyl’s book
— including Weyl’s definition of the cardinality of a set and several re-
sults from real analysis — has been formalised, using the proof assistant
Plastic that implements a logical framework. This case study shows how
type theory can be used to represent a non-constructive foundation for
mathematics.

Key words: logic-enriched type theory, predicativism, formalisation

1 Introduction

Type theories have proven themselves remarkably successful in the formalisation
of mathematical proofs. There are several features of type theory that are of
particular benefit in such formalisations, including the fact that each object
carries a type which gives information about that object, and the fact that the
type theory itself has an inbuilt notion of computation.

These applications of type theory have proven particularly successful for
the formalisation of intuitionistic, or constructive, proofs. The correspondence
between terms of a type theory and intuitionistic proofs has been well studied.
The degree to which type theory can be used for the formalisation of other
notions of proof has been investigated to a much lesser degree.

There have been several formalisations of classical proofs by adapting a proof
checker intended for intuitionistic mathematics, say by adding the principle of
excluded middle as an axiom (such as [Gon05]). But the metatheoretic properties
of the type theory thus obtained, and to what degree that theory corresponds to
the practice of classical mathematics, are not well known. For the more exotic
schools of mathematics, such as predicativism, the situation is still worse.

We contend that the intuitions behind type theory apply outside of intuition-
istic mathematics, and that the advantages of type theory would prove beneficial

? This work is partially supported by the UK EPSRC research grants GR/R84092 and
GR/R72259 and EU TYPES grant 510996.

when applied to other forms of proof. It is equally natural in classical mathemat-
ics to divide mathematical objects into types, and it would be of as much benefit
to take advantage of the information provided by an object’s type in a classical
proof. The notion of computation is an important part of classical mathematics.
When formally proving a property of a program, we may be perfectly satisfied
with a classical proof, which could well be shorter or easier to find.

We further contend that it is worth developing and studying type theories
specifically designed for non-constructive mathematical foundations. For this
purpose, the systems known as logic-enriched type theories (LTTs), proposed by
Aczel and Gambino [AG02,GA06], would seem to be particularly appropriate.

LTTs can be considered in a uniform type-theoretic framework that supports
formal reasoning with different logical foundations, as proposed in [Luo06]. In
particular, this may offer a uniform setting for studying and comparing differ-
ent mathematical foundations, in the way that predicate logic has in traditional
mathematical logic research. For example, when building a foundational system
for mathematics, we must decide whether the logic shall be classical or con-
structive and whether impredicative definitions are allowed, or only predicative.
Each of the four possible combinations of these options has been advocated as a
foundation for mathematics at some point in history. The four possibilities are:

– Impredicative classical mathematics. This is arguably the way in which
the vast majority of practising mathematicians work (although much of their
work can often also be done in the other settings). Zermelo-Fraenkel Set
Theory (ZF) is one such foundation.

– Impredicative constructive mathematics. Impredicative types theories
such as CC [CH88] and UTT [Luo94], or CIC [BC04] provide its foundations.

– Predicative classical mathematics. This was the approach taken by Weyl
in his influential monograph of 1918, Das Kontinuum [Wey18].

– Predicative constructive mathematics. Its foundations are provided,
for example, by Martin-Löf’s type theory. [NPS90,ML84].

Our type-theoretic framework provides a uniform setting for formalisation of
these different mathematical foundations.

In this paper, we present a case study in the type-theoretic framework: to
construct an LTT to represent a non-constructive approach to the foundation
of mathematics; namely the predicative, classical foundational system of math-
ematics developed by Weyl in his monograph Das Kontinuum [Wey18]. We de-
scribe a formalisation in that LTT of several of the results proven in the book.

Weyl presents in his book a programme for the development of mathemat-
ics on a foundation that is predicative; that is, that avoids any definition which
involves a ‘vicious circle’, where an object is defined in terms of a collection of
which it is a member. The system presented in the book has attracted interest
since, inspiring for example the second-order system ACA0 [Fef00], which plays
an important role in the project of Reverse Mathematics [Sim99]. It is a promi-
nent example of a fully developed non-mainstream mathematical foundation,
and so a formalisation should be of quite some interest.

We begin this paper describing in Section 2 in detail the version of Weyl’s
foundational system we shall be using. We then proceed in Section 3 to de-
scribe a logic-enriched type theory within a modified version of the logical
framework LF1 [Luo94]. We claim that this logic-enriched type theory faith-
fully corresponds to the system presented in Section 2. The formalisation it-
self was carried out in a modified version of the proof assistant Plastic [CL01],
an implementation of LF. We describe the results proven in the formalisa-
tion in Section 4. The source code for the formalisation is available online at
http://www.cs.rhul.ac.uk/~robin/weyl.

2 Weyl’s Predicative Foundations for Mathematics

Hermann Weyl (1885–1955) contributed to many branches of mathematics in
his lifetime. His greatest contribution to the foundations of mathematics was
the book Das Kontinuum [Wey18] in 1918, in which he presented a predicative
foundation which he showed was adequate for a large body of mathematics.

The concept of predicativity originated with Poincaré [Poi06], who advocated
the vicious circle principle: a definition of an object is illegitimate if it is defined
by reference to a totality that contains the object itself. Thus, we may not
quantify over all sets when defining a set (as with Russell’s famous ‘set of all
sets that do not contain themselves’); we may not quantify over all real numbers
when defining a real number (as with the least upper bound of a set of reals); and
so forth. A definition which involves such a quantification is called impredicative;
one which does not, predicative. The advocacy of the exclusion of impredicative
definitions has been given the name predicativism.

However much philosophical sympathy we may feel with predicativism, we
may worry that, since impredicative definitions are so common in mathematical
practice, their exclusion may require us to abandon too much of the mathemat-
ical corpus. Weyl’s book provides evidence that this is not necessarily the case.
In it, he shows how many results that are usually proven impredicatively can be
proven predicatively; and that, even for those results that cannot, one can often
prove predicatively a weaker result which in practice is just as useful. He does
this by laying out a predicative foundation for mathematics, and developing a
fairly large body of mathematics on this foundation.

A further discussion of the background to and content of Weyl’s monograph
can be found in Feferman [Fef98].

2.1 Weyl’s Foundational System

We shall now present the version of Weyl’s foundational system on which we
based the formalisation. It differs from the semi-formal system described in Das
1 The logical framework LF here is the typed version of Martin-Löf’s logical frame-

work [NPS90]. It is different from the Edinburgh LF [HHP93]: besides the formal
differences, LF is intended to be used to specify computation rules and hence type
theories such as Martin-Löf’s type theory [NPS90] and UTT [Luo94]. A recent study
of logical frameworks can be found in [Ada04].

Kontinuum in several details. In particular, we have extended Weyl’s system with
several features which are redundant in theory, but very convenient practically;
these shall be described in the paragraphs headed ‘Extensions to Weyl’s system’
below. Our notation in this section also differs considerably from Weyl’s own.

Before turning to the formal details, we begin with a discussion of the intu-
itions behind Weyl’s system, which is constructed following these principles:

1. The natural numbers are accepted as a primitive concept.
2. Sets and relations can be introduced by two methods: explicit predicative

definitions, and definition by recursion over the natural numbers.
3. Statements about these objects are either true or false.

Regarding point 2, we are going to provide ourselves with the ability to define
sets by abstraction: given a formula φ[x] of the system, to form the set

S = {x | φ[x]} . (1)

In order to ensure that every such definition is predicative, we restrict which
quantifiers can occur in the formula φ[x] that can appear in (1): we may quantify
over natural numbers, but we may not quantify over sets or functions. In modern
terminology, we would say that φ[x] must contain only first-order quantifiers.

Weyl divides the universe of mathematical objects into collections which he
calls categories. These categories behave very similarly to the types of a modern
type theory. (This is no coincidence: Weyl was influenced by many of the ideas in
Russell’s theory of types when constructing his system.) For example, there shall
be the category of all natural numbers, and the category of all sets of natural
numbers. We give a full list of the categories present in the system below.

The categories are divided into basic categories, those that may be quantified
over in a definition of the form (1); and the ideal categories, those that may not.
The category of natural numbers shall be a basic category; categories of sets and
categories of functions shall be ideal categories. In modern terminology, the basic
categories contain first-order objects, while the ideal categories contain second-,
third- and higher-order objects.

He proceeds to divide the propositions of his system into the small2 proposi-
tions, those which involve quantification over basic categories only, and so may
occur in a definition of the form (1); and the large propositions, those which
involve quantification over one or more ideal category, and so may not.

In more detail, here is our version of Weyl’s foundational system.

Categories There are a number of basic categories and a number of ideal cate-
gories, each of which has objects.

1. There are basic categories, including the basic category N of natural numbers.

2 Weyl chose the German word finite, which in other contexts is usually translated
as ‘finite’; however, we agree with Pollard and Bole [Wey87] that this would be
misleading.

2. Given any categories A1, . . . , Am and B1, . . . , Bn, we may form the ideal
category (A1×· · ·×Am) → Set (B1 × · · · ×Bn) of functions of m arguments
that take objects of categories A1, . . . , Am, and return sets of n-tuples of
objects of categories B1, . . . , Bn. The number m may be zero here; the
number n may not.
(These were the only categories of functions present in Das Kontinuum. For
the purposes of our formalisation, we have added categories of functions
A→ B for any categories A and B; see ‘Extensions’ below.)
For example, taking m = 0 and n = 1 allows us to form the category Set (B),
the category of all sets whose elements are of category B. Taking m = 1 and
n = 2 allows us to form the category A → Set (B × C), the category of all
functions which take an object from A and return a binary relation between
the categories B and C.

Propositions

1. There are a number of primitive relations that hold between the objects of
these categories:
– the relation ‘x is the successor of y’ (Sxy) between natural numbers;
– the relation ‘x = y’ between objects of any basic category;
– the relation 〈y1, . . . , yn〉 ∈ F (x1, . . . , xm) where F is of category (A1 ×
· · · ×Am) → Set (B1 × · · · ×Bn), xi of category Ai and yi of Bi.

2. The small propositions are those that can be built up from the primitive
relations using the operations of substituting objects of the appropriate cat-
egory for variables, the propositional connectives ¬, ∧, ∨ and →, and the
universal and existential quantifications over the basic categories.

3. The propositions are those that can be built up from the primitive relations
using substitution of objects for variables, the propositional connectives and
quantification over any categories.

Objects

– Explicit Definition Given any small proposition φ[x1, . . . , xm, y1, . . . , yn],
we may introduce an object F of category (A1×· · ·×Am) → Set (B1 × · · · ×Bn)
by declaring

F (x1, . . . , xm) = {〈y1, . . . , yn〉 | φ[x1, . . . , xm, y1, . . . , yn]} (2)

Making this declaration has the effect of introducing the axiom

∀x,y(y ∈ F (x) ↔ φ[x,y]) . (3)

Principle of Iteration This principle allows us to define functions by recur-
sion over the natural numbers; given a function F from a category S → S, we
can form a function G of category S ×N → S by setting G(X,n) = Fn(X).
G is thus formed by iterating the function F .

More formally, let S be a category of the form Set (B1 × · · · ×Bn). Given an
object F of category (A1 × · · · ×Am × S) → S, we may introduce an object
G of category (A1 × · · · ×Am × S × N) → S by declaring

G(x1, . . . , xm, X, 0) = X
G(x1, . . . , xm, X, k + 1) = F (x1, . . . , xm, G(x1, . . . , xm, X, k))

}
(4)

where xi is affiliated with category Ai, X with S, and k with N.
Making these declarations has the effect of introducing the axiom

∀x,y(y ∈ G(x, X, 0) ↔ y ∈ X) (5)

∀x,y, a, b(Sab→ (y ∈ G(x, X, b) ↔ y ∈ F (x, G(x, X, a)))

Axioms The theorems of Weyl’s system are those that can be derived via classical
predicate logic from the following axioms:

1. The axioms for the equality relation on the basic categories.
2. Peano’s axioms for the natural numbers (including proof by induction).
3. The axioms (3) and (5) associated with any definitions (2) and (4) that have

been introduced.

We note that there is a one-to-one correspondence, up to the appropriate
equivalence relations, between the objects of category C = (A1 × · · · × Am) →
Set (B1 × · · · ×Bn); and the small propositions φ[x1, . . . , xm, y1, . . . , yn], with
distinguished free variables xi of category Ai and yi of category Bi. Given any
F of category C, the corresponding small proposition is y ∈ F (x). Conversely,
given any small proposition φ[x,y], the corresponding object F of category C is
the one introduced by the declaration F (x) = {y | φ[x,y]}.

Extensions to Weyl’s System For the purposes of this formalisation, we
have added features which were not explicitly present in Weyl’s system, but
which can justifiably be seen as conservative extensions of the same. We shall
allow ourselves the following.

1. We shall introduce a category A×B of pairs of objects, one from the category
A and one from the category B. A × B shall be a basic category when A
and B are both basic, and ideal otherwise. This shall allow us, for example,
to talk directly about integers (which shall be pairs of natural numbers) and
rationals (which shall be pairs of integers).

2. We shall introduce a category A → B of functions from A to B for all
categories (not only the case where B has the form Set (· · ·)).
A → B shall always be an ideal category. For the system to be predica-
tive, quantification over functions must not be allowed in small propositions;
quantifying over A → N, for example, would provide an effective means of
quantifying over Set (A). (Recall that, classically, the power set of X and the
functions from X to a two-element set are in one-to-one correspondence.)

Weyl instead defined functions as particular sets of ordered pairs, and showed
in detail how addition of natural numbers can be constructed. For the pur-
poses of formalisation, it was much more convenient to provide ourselves with
these categories of functions, and the ability to define functions by recursion,
from the very beginning.

We shall permit ourselves to use a function symbol ‘s’ for successor, rather
than only the binary relation Sxy.

We have diverged from Weyl’s system in two other, more minor, ways which
should be noted. We choose to start the natural numbers at 0, whereas Weyl
begins at 1; and, when we come to construct the real numbers, we follow the
sequence of constructions N −→ Z −→ Q −→ R rather than Weyl’s N −→
Q+ −→ Q −→ R.

3 Weyl’s Foundation as a Logic-Enriched Type Theory

What immediately strikes a modern eye reading Das Kontinuum is how similar
the system presented there is to what we now know as a type theory; almost the
only change needed is to replace the word ‘category’ with ‘type’. In particular,
Weyl’s system is very similar to a logic-enriched type theory (LTT for short).

The concept of an LTT, an extension of the notion of type theory, was pro-
posed by Aczel and Gambino in their study of type-theoretic interpretations of
constructive set theory [AG02,GA06]. A type-theoretic framework, which for-
mulates LTTs in a logical framework, has been proposed in [Luo06] to support
formal reasoning with different logical foundations. In particular, it adequately
supports classical inference with a notion of predicative set, as described below.

An LTT consists of a type theory augmented with a separate, primitive
mechanism for forming and proving propositions. We introduce a new syntactic
class of formulas, and new judgement forms for a formula being a well-formed
proposition, and for a proposition being provable from given hypotheses.

An LTT thus has two rigidly separated components or ‘worlds’: the datatype
world of terms and types, and the logical world of proofs and propositions, for
describing and reasoning about the datatype world.3 In particular, we can form
propositions by quantification over a type; and prove propositions by induction.

In this work, we shall also allow the datatype world to depend on the logical
world in just one way: by permitting the formation of sets. Given a proposition
φ[x], we shall allow the construction of the set {x | φ[x]} in the datatype world;
thus, a set shall be a term that depends on a proposition. (Note that these sets
are not themselves types.) This shall be the only way in which the datatype
world may depend on the logical world; in particular, no type may depend on a
proposition, and no type, term or proposition may depend on a proof.

3 This is very much in line with the idea that there should be a clear separation
between logical propositions and data types, as advocated in the development of
type theories ECC and UTT [Luo94].

1. Rules of Deduction for Type and El

Γ valid

Γ ` Type kind

Γ ` A : Type

Γ ` El (A) kind

Γ ` A = B : Type

Γ ` El (A) = El (B)

2. Rules of Deduction for Prop and Prf

Γ valid

Γ ` Prop kind

Γ ` P : Prop

Γ ` Prf (P) kind

Γ ` P = Q : Prop

Γ ` Prf (P) = Prf (Q)

Fig. 1: Kinds Type and Prop in LF′

We start by extending the logical framework LF with a kind Prop, standing
for the world of logical propositions. Then, we introduce a type for each cate-
gory: a construction in Prop for each method of forming propositions; a type
universe U of names of the basic categories; and a propositional universe prop
of names of the small propositions. Thus constructed, the LTT with predicative
sets corresponds extremely closely to Weyl’s foundational system.

3.1 Logic-Enriched Type Theories in Logical Frameworks

There exist today many logical frameworks, designed as systems for representing
many different type theories. It requires only a small change to make a logical
framework capable of representing LTTs as well.

For this work, we have used the logical framework LF [Luo94], which is the
basis for the proof checker Plastic [CL01]. LF provides a kind Type and a kind
constructor El. To make LF capable of representing LTTs, we add a kind Prop
and a kind constructor Prf . We shall refer to this extended framework as LF′.

Recall that a logical framework, such as LF or LF′, is intended as a metalan-
guage for constructing various type theories, the object systems. The frameworks
consist of kinds and objects. The object systems are constructed in the frame-
work by representing their expressions by certain objects. An LTT consists of
terms and types (in the datatype world), and propositions and proofs (in the
logical world). We shall build an LTT in LF′ by representing:

– the types by the objects of kind Type;
– the terms of type A by the objects of kind El (A);
– the propositions by the objects of kind Prop;
– the proofs of the proposition φ by the objects of kind Prf (φ).

The rules of deduction for these new kinds Prop and Prf (· · ·) are given in
Figure 1, along with the rules those for Type and El, for comparison.

These new kinds allow us to form judgements of the following forms:

– Γ ` φ : Prop, indicating that φ is a well-formed proposition;
– Γ ` P : Prf (φ), indicating that P is a proof of the proposition φ;

– Γ, p1 : Prf (φ1) , . . . , pn : Prf (φn) ` P : Prf (ψ), indicating that ψ is
derivable from the hypotheses φ1, . . . , φn, with the object P encoding the
derivation; this was denoted by Γ ` φ1, . . . , φn ⇒ ψ in [AG02].

When formalizing a piece of mathematics using an LTT, the provable propo-
sitions are those φ for which Prf (φ) is inhabited. We state each theorem by
forming the appropriate object φ of kind Prop, and then show that it is prov-
able by constructing an object P of kind Prf (φ). (Due to its novelty, we shall
not omit the constructor Prf in this paper.)

We also obtain judgements of the form Γ ` φ = ψ : Prop. Judgements of
this last form express that φ and ψ are intensionally equal propositions — that
is, that ψ can be obtained from φ by a sequence of reductions and expansions
of subterms. This is not to be confused with logical equivalence; intensional
equality is a much stronger relation. The distinction is similar to that between
judgemental equality (convertibility) and propositional equality between terms.

We recall that a type theory is specified in LF by declaring a number of
constants with their kinds, and declaring several computation rules to hold be-
tween objects of some kinds of LF. An LTT can be specified in LF′ by making
the above declarations for each constructor in its datatype component, and also
declaring:

– for each logical constant (connective or quantifier) we wish to include, a
constant of kind (· · ·)Prop;

– for each rule of deduction, a constant of kind (· · ·)Prf (φ)
– some computation rules for propositions, of the form (· · ·)(φ = ψ : Prop)

It was essential for this work that the logical framework we use be capable of
representing computation rules. A framework such as Twelf [PS99], for example,
would not be suitable for our purposes.

LTTs and Type Theories Compared When using a type theory for formalisation,
we identify each proposition with a particular type, and show that a theorem is
provable by constructing a term of the corresponding type. The way we prove
propositions in an LTT by constructing an object of kind Prf (· · ·) is very sim-
ilar. However, there are two important differences to be noted:

– We have separated the datatypes from the propositions. This allows us to
add axioms without changing the datatype world. We can, for example, add
the axiom Pierce (Fig. 2) without thereby causing all the function types
((A→ B) → A) → A to be inhabited.

– We do not have any computation rules on proofs. Further, a proof cannot
occur inside a term, type or proposition. We are thus free to add any axioms
we like to the logic: we know that, by adding the axiom Pierce (say), we shall
not affect any of the properties of the reduction relation, such as decidability
of convertibility or strong normalisation.

Natural Numbers

N : Type
0 : N
s : (N)N

EN : (C : (N)Type)(C0)((x : N)(Cx)C(sx))(n : N)Cn
IndN : (P : (N)Prop)(Prf (P0))((x : N)(Prf (Px))Prf (P (sx)))(n : N)Prf (Pn)

EN C a b 0 = a : El (C0)
EN C a b (sn) = b n (EN C a b n) : El (C(sn))

Implication

⊃ : (Prop)(Prop)Prop

⊃ I : (P : Prop)(Q : Prop)((Prf (P))Prf (Q))Prf (⊃P Q)

⊃E : (P : Prop)(Q : Prop)(Prf (⊃P Q))(Prf (P))Prf (Q)

Pierce’s Law

Pierce : (P : Prop)(Q : Prop)(((Prf (P))Prf (Q))Prf (P))Prf (P)

Fig. 2: Declaration of an LTT in LF′

3.2 Natural Numbers, Products, Functions and Predicate Logic

We can now proceed to construct a logic-enriched type theory that corresponds
to the foundational system Weyl presents in Das Kontinuum.

Our starting point is an LTT that contains, in its datatype component, a
type N of natural numbers, as well as non-dependent product and function types
A × B and A → B; and, in its logical component, classical predicate logic. We
present some of the declarations involved in its specification in Figure 2, namely
those involving natural numbers (including EN, which permits the definition of
functions by recursion, and IndN, which permits propositions to be proven by
induction) and implication. The other types and logical constants follow a similar
pattern. We also include a version of Pierce’s Law to ensure the logic is classical.

3.3 Type Universes and Propositional Universes

We have now introduced our collection of categories: they are the objects of kind
Type. We still however need to divide them into the basic and ideal categories.

The device we need to do this is one with which we are familiar: that of a
type universe. A type universe U (à la Tarski) is a type whose objects are names
of types. Intuitively, the types that have a name in U are often thought of as
the ‘small’ types, and those that do not (such as U itself) as the ‘large’ types.
Together with U , we introduce a constant T such that, for each name a : U ,
T (a) is the type named by a.

For our system, we provide ourselves with a universe whose objects are the
names of the basic categories. We thus need a universe U that contains a name

1. The Type Universe 2. The Propositional Universe

U : Type prop : Prop
T : (U)Type V : (prop)Prop

N̂ : U ⊥̂ : prop
×̂ : (U)(U)U ⊃̂ : (prop)(prop)prop

T (N̂) = N : Type ∀̂ : (a : U)((Ta)prop)prop
T (×̂a b) = ×(Ta) (Tb) : Type '̂ : (a : U)(Ta)(Ta)prop

V (⊥̂) = ⊥ : Prop
Propositional Equality V (⊃̂p q) = ⊃(V p) (V q) : Prop

V (∀̂a p) = ∀(Ta) [x : Ta]V (px) : Prop
' : (A : U)(TA)(TA)Prop V ('̂a s t) = '(Ta) s t

' I : (A : U)(a : TA) 'A a a
' E : (A : U)(P : (TA)Prop)(a, b : TA)

(Prf ('A a b))(Prf (Pa))Prf (Pb)

Fig. 3: A Type Universe and a Propositional Universe

for N, and a method for constructing a name for A × B out of a name for A
and a name for B. This is done in Figure 3(1). We also introduce a relation of
equality for every basic category.

Now we need to divide our propositions into the small propositions and the
large propositions. To do so, we use the notion in the logical world which is
analagous to a type universe: a propositional universe.

We wish to introduce the collection prop of names of the small propositions;
that is, the propositions that only involve quantification over small types. It is
not immediately obvious where this collection should live.

We choose to declare prop : Prop, instead of prop : Type. Now, it must
be admitted that prop is not conceptually a proposition; it does not assert any
relation to hold between any mathematical objects. However, it seems to make
little practical difference which choice is made. Choosing to place prop in Prop
provides a pleasing symmetry with U and Type, and prop seems to belong more
to the logical world than the datatype world. Until more foundational work on
LTTs has been done, we accept this compromise: prop is a ‘proposition’, each of
whose ‘proofs’ is a name of a small proposition.4

As with the type universe, when we introduce a propositional universe prop
we provide ourselves with a constant V such that, for each name p : prop, V (p)
is the proposition named by p. We also provide constants that reflect equality,
the propositional connectives, and quantification over the basic types. The dec-
larations are given in Figure 3(2). Note that the propositional universe provides
us with our first examples of computation rules for propositions.

4 Other alternatives would be to introduce a new top-kind to hold prop, or to make
prop itself a top-kind. We do not discuss these here.

Set : (Type)Type
set : (A : Type)((A)prop)Set (A)
∈ : (A : Type)(A)(Set (A))prop

∈A a (set A P) = Pa : prop

Fig. 4: The Predicative Notion of Set

We have built prop as a universe à la Tarski; that is, its objects are names of
small propositions. Plastic does not provide the necessary mechanism for defining
prop as a universe à la Russell, where its objects would be the small propositions
themselves. We suspect that the choice would make no practical difference.

3.4 The Predicative Notion of Set

We now have all the machinery necessary to be able to introduce typed sets. For
any type A, we wish to introduce the type Set (A) consisting of all the sets that
can be formed, each of whose members is an object of type A. (Thus we do not
have any sets of mixed type.) We take a set to be introduced by a small predicate
over A; that is, an object of kind (A)prop, a function which takes objects of A
and returns (a name of) a small proposition.

We therefore make the declarations given in Figure 4:

– Given any type A, we can form the type Set (A). The terms of Set (A) are
all the sets that can be formed whose elements are terms of type A.

– Given a small proposition φ[x] with variable x of type A, we can form the
set {x : φ[x]}. Formally, given a name p[x] : prop of a small proposition, we
can form ‘setA ([x : A]p[x])’, which we shall write as {x : V (p[x])}.

– If a : A and X : Set (A), we can form the proposition ∈ AaX, which we
shall write as a ∈ X.

– Finally, we want to ensure that the elements of the set {x : φ[x]} are precisely
the terms a such that φ[a] is true. This is achieved by adding our second
example of a computation rule on propositions, the last line on Figure 4,
which we may read as: a ∈ {x : φ[x]} computes to φ[a].

As Set (A) is always to be an ideal category, we do not provide any means for
forming a name of Set (A) in U .

These sets are not themselves types; they are terms of type Set (· · ·). The
membership condition a ∈ A is a proposition, not a typing judgement. In par-
ticular, we distinguish between a type A and the set {x : A | >} of type Set (A).

A similar construction could be carried out in an LTT if we wished to work in
an impredicative setting, simply by replacing prop with Prop throughout Figure
4. This would allow us to form the set {x : φ[x]} for any proposition φ[x]. (See
[Luo06] for more details.) Thanks to the similarity of the two approaches, much
if not all of the work done in the predicative system could be reused in the
impredicative system. We shall return to this point in Section 4.2.

4 Formalisation in Plastic

We have formalised this work in a version of the proof assistant Plastic [CL01],
modified by Paul Callaghan to be an implementation of LF′. We have produced
a formalisation which includes all the definitions and proofs of several of the
results from Weyl’s book.

In Plastic, all lines that are to be parsed begin with the character >; any line
that does not is a comment line. A constant c may be declared to have kind
(x1 : K1) · · · (xn : Kn)K by the input line

> [c[x1:K1] · · · [xn:Kn] : K];

We can define the constant c to be the object [x1 : K1] · · · [xn : Kn]k of kind
(x1 : K1) · · · (xn : Kn)K by writing

> [c[x1:K1] · · · [xn:Kn] = k : K];

In both these lines, the kind indicator :K is optional, and is usually omitted.
We can make any argument implicit by replacing it with a ‘meta-variable’ ?,

indicating that we wish Plastic to infer its value.
These are the only features of the syntax that we shall use in this paper.

4.1 Results Proven

Cardinality of Sets In Weyl’s system, we can define the predicate ‘the set X
has exactly n members’ in the following manner, which shows the power of the
principle of iteration.

Given a basic category A, define the function K : N → Set (Set (A)) by
recursion as follows. The intention is that K(n) is the set of all sets X : Set (A)
that have at least n members.

K(0) = {X | >}
K(n+ 1) = {X | ∃a(a ∈ X ∧X \ {a} ∈ K(n))}

In Plastic, this is done as follows:

> [at_least_set [tau : U] = E_Nat ([_ : Nat] Set (Set (T tau)))
> (full (Set (T tau)))
> [n : Nat] [Kn : Set (Set (T tau))] set (Set (T tau))
> [X : Set (T tau)] ex tau [a : T tau]
> and (in (T tau) a X) (in ? (setminus’ tau X a) Kn)];

We define the proposition ‘X has at least n members’ to be X ∈ K(n).

> [At_Least [tau : U] [X : Set (T tau)] [n : Nat]
> = In ? X (at_least_set tau n)];

For n a natural number, define the cardinal number n to be {x | x < n}.

> [card [n : Nat] = set Nat [x : Nat] lt x n];

Define the cardinality of a set A to be |A| = {n | A has at least sn members}.

> [cardinality [tau : U] [A : Set (T tau)]
> = set Nat [n : Nat] at_least tau A (succ n)];

We can prove the following result:

The cardinality |X| of a set X is either {x | >} or n for some n.

We thus have two classes of cardinal numbers: n for finite sets, and {x | >}, which
we denote by ∞, for infinite sets. (There is thus only one infinite cardinality in
Das Kontinuum.) We define ‘X has exactly n members’ to be |X| ≈ sn, where
≈ denotes the following equivalence relation on sets:

X ≈ Y ≡ ∀x(x ∈ X ↔ x ∈ Y) .

> [infty = full Nat];
> [Exactly [tau : U] [A : Set (T tau)] [n : Nat]
> = Seteq Nat (cardinality tau A) (card (succ n))];

With these definitions, we can prove results such as the following:

1. If A has at least n elements and m ≤ n, then A has at least m elements.
2. If A has exactly n elements, then m ≤ n iff A has at least m elements.
3. If A has exactly m elements, B has exactly n elements, and A and B are

disjoint, then A ∪B has exactly m+ n elements.

We have thus provided definitions of the concepts ‘having at least nmembers’
and ‘having exactly n members’ in such a way that the sets

{X | X has at least n members} and {X | X has exactly n members}

are definable predicatively. This would not be possible if we defined ‘X has
exactly n elements’ as the existence of a bijection between X and sn; we would
have to quantify over the ideal category A→ N. It also cannot be done as directly
in a predicative system of second order arithmetic such as ACA0 [Sim99].

Construction of the Reals The set of real numbers is constructed by the
following process. We first define the type of integers Z, with a defined relation
of equality ≈Z. We then define a rational to be a pair of integers, the second of
which is non-zero. That is, for q : Z× Z, we define ‘q is rational’ by

〈x, y〉 is rational ≡ y 6≈Z 0 .

We proceed to define equality of rationals q ≈Q q′, addition, multiplication and
ordering on the rationals.

A real is a Dedekind cut of rationals; that is, an object R of the category
Set (Z× Z) that:

– is a domain of rationals; if q ∈ R and q ≈Q q′, then q′ ∈ R;
– is closed downwards; if q ∈ R, and q′ < q, then q′ ∈ R;
– has no maximal element; for every rational q ∈ R, there exists a rational
q′ ∈ R such that q < q′;

– and is neither empty nor full; there exists a rational q such that q ∈ R, and
a rational q′ such that q′ /∈ R.

Equality of reals is defined to be extensional equality restricted to the rationals:

R ≈R S ≡ ∀q(q is rational → (q ∈ R↔ q ∈ S))

We note that, in this formalisation, there was no way to define the collection
of rationals as a type, say as the ‘sigma-type’ ‘(Σq : Z × Z)q is rational’. This
is because our LTT offers no way to form a type from a type Z × Z and a
proposition ‘q is rational’.

Real Analysis Weyl was keen to show that his predicative system was strong
enough to be used for mathematical work by demonstrating that, while several
traditional theorems cannot be proven within it, we can usually prove a version
of the theorem that is only slightly weaker.

For example, it seems not to be provable predicatively the least upper bound
principle: that every set A of real numbers bounded above has a least upper
bound l. Impredicatively, we would define l to be the union of A. This cannot
be done predicatively, as it involves quantification over real numbers. However,
we can prove the following two statements, one of which is usually enough for
any practical purpose:

1. Every set S of rational numbers bounded above has a unique (real) least
upper bound l. Take l = {q ∈ Q | (∃q′ ∈ S)q < q′}.

2. Every sequence r1, r2, . . . of real numbers bounded above has a unique least
upper bound l. Take l = {q ∈ Q | (∃n : N)q ∈ rn}.

These involve only quantification over the rationals and the natural numbers,
respectively. (We note that either of these is equivalent to the least upper bound
principle in an impredicative setting.)

The first is enough to prove the classical Intermediate Value Theorem:

If f : Set (Z× Z) → Set (Z× Z) is a continuous function from the reals
to the reals, and f(a) < v < f(b) for some reals a, b, v with a < b, then
there exists a real c such that a < c < b and f(c) = v.

Weyl proves this proposition by taking c to be the least upper bound of the set
of all rationals q such that a < q < b and f(q) < v. For the formalisation, it was
more convenient to define directly: c = {q ∈ Q | (∃q′ ∈ Q)q < q′ < b∧f(q′) < v}.

4.2 An Impredicative Development

As mentioned in Section 3.4, it would not be difficult to modify this formulation
to get a development of the same theorems in an impredicative system. All we
have to do is remove the distinction between large and small propositions.

Recall that our propositional universe was introduced by the constructors in
Figure 3(2). In principle, we could simply replace these with

prop = Prop V = [x : Prop]Prop

⊥̂ = ⊥ ⊃̂ =⊃

∀̂ = [A : U]∀(TA) '̂ ='

However, at present plastic becomes unstable when definitions are made at the
top-kind level such as prop = Prop.

Alternatively, we can add two impredicative quantifiers to prop, together
with their computation rules:

∀ : (A : Type)((A)prop)prop V (∀AP) = ∀A([x : A]V (Px))

∃ : (A : Type)((A)prop)prop V (∃AP) = ∃A([x : A]V (Px))

Now prop, which determines the collection of propositions over which sets
can be formed, covers the whole of Prop. We can form the set {x | φ[x]} for any
well-formed proposition φ[x]. However, all our old proof files still parse.5 Once
this change has been made, we can go on to prove the statement that every set
of real numbers bounded above has a least upper bound.

It would be interesting to develop impredicative analysis in our setting, and
to study the reuse of proof development.

5 Conclusion

We have conducted a case study in Plastic of the use of a type-theoretic frame-
work to construct a logic-enriched type theory as the basis for a formalisation of
a non-constructive system of mathematical foundations, namely that presented
in Weyl’s Das Kontinuum. As a representation of Weyl’s work, it is arguably
better in some ways than such second-order systems as ACA0 [Fef00], since we
can form a definition of the cardinality of a set that is much closer to Weyl’s
own. The formalisation work required only a minor change to the existing log-
ical framework implemented in Plastic, allowing us to preserve all the features
of Plastic with which we were already familiar.

Future work includes comparison of the type-theoretic framework with other
systems such as ACA0. It would also be interesting to carry out the impredicative
development of analysis in our setting, reusing the predicative development.

It has been brought to our attention that logic-enriched type theories may
be closely related to the notion of the internal language of a topos. A precise
relationship between the two is to be further explored.
5 The same effect could also be made by changing the construction of U , making it

equal to Type; or by making both these changes (to prop and U).

Acknowledgements Thanks go to Paul Callaghan for his efforts in extending Plas-
tic, and Peter Aczel for his comments during his visit to Royal Holloway. Thanks
also go to the anonymous referees for very detailed and helpful comments.

References

[Ada04] R. Adams. A Modular Hierarchy of Logical Frameworks. PhD thesis, Univer-
sity of Manchester, 2004.

[AG02] P. Aczel and N. Gambino. Collection principles in dependent type theory. In
P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs
and Programs: International Workshop, TYPES 2000, volume 2277 of LNCS,
pages 1–23. Springer-Verlag, 2002.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program De-
velopment: Coq’Art: The Calculus of Inductive Constructions. Texts in The-
oretical Computer Science. Springer, 2004.

[CH88] Th. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76(2/3), 1988.

[CL01] P. C. Callaghan and Z. Luo. An implementation of typed LF with coercive
subtyping and universes. J. of Automated Reasoning, 27(1):3–27, 2001.

[Fef98] S. Feferman. Weyl vindicated. In In the Light of Logic, pages 249–283. Oxford
University Press, 1998.

[Fef00] S. Feferman. The significance of Hermann Weyl’s Das Kontinuum. In V. Hen-
dricks et al, editor, Proof Theory – Historical and Philosophical Significance,
Vol 292 of Synthese Library. 2000.

[GA06] N. Gambino and P. Aczel. The generalised type-theoretic interpretation of
constructive set theory. J. of Symbolic Logic, 71(1):67–103, 2006.

[Gon05] G. Gonthier. A computer checked proof of the four colour theorem, 2005.
[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.

Journal of the Association for Computing Machinery, 40(1):143–184, 1993.
[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science.

Oxford University Press, 1994.
[Luo06] Z. Luo. A type-theoretic framework for formal reasoning with different logical

foundations. In M. Okada and I. Satoh, editors, Proc of the 11th Annual Asian
Computing Science Conference. Tokyo, 2006.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf’s

Type Theory: An Introduction. Oxford University Press, 1990.
[Poi06] H. Poincaré. Les mathématiques et la logique. Revue de Métaphysique et de

Morale, pages 13:815–35, 14:17–34, 14:294–317, 1905–1906.
[PS99] F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical

framework for deductive systems. In H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction (CADE-16), volume
1632 of LNCS, pages 202–206. Springer-Verlag, 1999.

[Sim99] S. Simpson. Subsystems of Second-Order Arithmetic. Springer-Verlag, 1999.
[Wey18] H. Weyl. Das Kontinuum. 1918. Translated as [Wey87].
[Wey87] H. Weyl. The Continuum: A Critical Examination of the Foundation of Analy-

sis. Thomas Jefferson University Press, Kirksville, Missouri, 1987. Translated
by S. Pollard and T. Bole.

