
5. Scripting Languages

Outline

• JavaScript – client side scripting language

• JavaScript Functions and Events

• Event handling

• Using JavaScript

• Working with HTML Document Object Model (DOM)

• Rollover graphics

• Form validation

• Pop-up windows and dialogs

• PHP – server side scripting language

• PHP basics

• Variables, arrays

• Program control

• File handling

• Form handling

2

Web Applications

3

What makes a web site dynamic?

• Interactivity – adapt and react to the
visitor’s actions as quick as possible.

• Synchronicity – bring together relevant
information from a variety of sources.

• Flexibility – give the visitor different ways
to find information in the site.

• Adaptability – adjust to cater to
individual visitor’s needs.

• Activity – uses motion and sound to
draw user’s attention to changes on the
site.

4

Introduction to JavaScript

• NOT Java
• JavaScript was developed by Netscape

• Java was developed by Sun

• The growth of the WWW has resulted in a demand for
dynamic and interactive web sites.

• Designed to ‘plug a gap’ in the techniques available for
creating web-pages
• Client-side dynamic content – support control of a browser and

interactions with users

• JavaScript is a scripting language
• a scripting language is a lightweight programming language

• Interpreted: scripts execute without preliminary compilation

• There are many different kinds of scripting languages –
JavaScript, Jscript, VBScript…

• JavaScript is THE most popular scripting language on
the internet, and works in all major browsers.

5

JavaScript Capabilities

• JavaScript was designed to add interactivity to HTML

pages

• JavaScript is a simple language for fairly simple tasks

• Best suited for tasks which run for a short time

• Most commonly used to manipulate pieces of the Document

Object Model (DOM)

• Everyone can use JavaScript without purchasing a

license

• JavaScript gives HTML designers a programming tool to:

• Improve the user interface of a website

• Make your site easier to navigate

• Easily create interactivity

• Replace images on a page without reloading the page

• Validate user input
6

A Simple JavaScript
<html>

<head> <title>First JavaScript Page</title>
</head>

<body>

<h1>First JavaScript Page</h1>

<script type="text/javascript">

<!--

document.write("<hr />");

document.write("Hello World Wide Web");

document.write("<hr />");

-->

</script>

</body>

</html>

• To insert a script in an HTML page, we use the <script>
tag.

• Use the type attribute to define the script language.

• Write output to the web page: document.write("text”) or
document.writeln("text”).

7

Where is JavaScript placed?

• Scripts in the body section
• Scripts will be executed when the page loads.

• When a script is placed in the body section it can generate the content
of the page

• Scripts in the head section
• Scripts will be executed when they are called, or when an event is

triggered.

• When a script is placed in the head section, it is ensured that the script
is loaded before anyone uses it.

• Scripts in both the body and the head section
• You can place an unlimited number of scripts in your document.

• You can have scripts in both the body and the head section.

8

Need for a Source File

• If the JavaScript code is fairly short, you are
recommended to include the code in the XHTML/HTML
document.

• Otherwise it is best to have it in a separate file:
•To add clarity to an XHTML/HTML document.

•To share JavaScript code across multiple HTML documents.

•src attribute – specifies the location of an external script

<html>

<head>

<title>First JavaScript Program</title>

</head>

<body>

<script type="text/javascript" src="your_source_file.js"></script>

</body>

</html>
9

Hide JavaScript from Incompatible

Browsers

• Not all browsers support JavaScript.
• e.g. NN1, IE2, character-based lynx.

• Adding comments
• Single line comments start with //.

• Multi-line comments start with /* and end with */.

• The noscript element is used to define an alternate content (text)
if a script is NOT executed.

<script type="text/javascript”>

<!– begin hiding JavaScript

// single-line comment, /* … */ multiple-line comment

End hiding JavaScript

// -->

</script>

<noscript>

Your browser does not support JavaScript.

</noscript>

10

Screen Output and Keyboard Input

• The default object for JavaScript is the window object currently

being displayed

• There are three methods that create dialog boxes for specific

kinds of user interaction - alert(), prompt() and confirm().

• You can use alert() to display textual information to the user

(simple and concise).

• String argument is the input

• The user can simply click OK to close it.

<head>

<script type="text/javaScript”>

alert(“An alert triggered by JavaScript”);

</script>

</head>

11

Three Methods
<script type="text/javascript">

alert("This is an Alert method");

confirm("Are you OK?");

prompt("What is your name?");

prompt("How old are you?","20");

</script>

• These cause the browser to wait for a user response

• prompt() uses a second parameter to define the default value
12

JavaScript Basics

• JavaScript syntax is very similar to that of Java

• JavaScript has

• variables, objects and functions (methods)
• you don’t have to assign a variable to a data type

• blocks of code { }

• input forms and dialog boxes

• conditional structures
(if...then...else)

• iterative structures (while... and

for...)

• JavaScript has events associated with HTML

elements 13

The Basics: Arrays

• Arrays in JavaScript are objects that have some special
functionality

• Array declarations:
var values = new Array(100);

var nums = [3, 6, 66, 3, 8, 10, 99];

Var days = [“Monday”,”Tuesday”,”Wednesday”];

• Example

• Note that arrays begin at index 0(zero)

• Note that variables may be included in strings using +

var nums = new Array(1,2,3);

document.writeln(“first value: " + nums[0] + “
”);
document.writeln(“second value: " + nums[1] + “
”);

document.writeln(“third value: " + nums[2] + “
”);

14

The Basics: for loops

for(initialise counter; test condition; increment)

{
 do something;
}

var i;

var myArray = [1,1,2,3,5,8,13];

for(i=0; i<myArray.length(); i++) {

 document.writeln("value is " + myArray[i]);

 document.writeln("
");

}

Note that you can use the length() function to get the

number of values in an array, e.g.

Var arrayLength = myArray.length();

15

do {something} while (condition is true);

while loops and do while loops

count=0;

while(count < 5) {

 document.writeln("value is " + count);

 document.writeln("
");

 count = count + 1;

}

count=0;

do {

 document.writeln("value is " + count);

 document.writeln("
");

 count = count + 1;

} while (count < 5);

while (condition is true) {do something }

16

The Basics: if statements

if (condition) {do something}
if(scoreA > scoreB) {

 document.writeln("The winner is A")

}

if(scoreA > scoreB) {

 document.writeln("The winner is A")

}

else if (scoreA < scoreB) {

 document.writeln("The winner is B")

}

else {

 document.writeln("Everyone's a winner")

}

17

Global and Local Variables

• Any variables declared within a function are local to that

function

• Any variables declared outside a function are global –

they may be used anywhere in the program/page

• You cannot use variables declared as local outside of the

function they are declared in

• If you wanted you could use only global variables – but

this is very bad programming practice.

• If a variable that is defined both as a local variable and as

a global variable, appears in a function, the local variable

has precedence.

18

<head><script type="text/javascript">

 <!--

 var global_one = 1; var global_two = 100;

 function doSomething(){

 //local_one can only be used here!

 var local_one = 10; var global_two = 10;

 document.writeln("local_one="+local_one+"
");

 //can also use global_one - its a global variable

 document.writeln("global_one="+global_one+"
");

 document.writeln("global_two="+global_two+"
");

 }

 -->

 </script>

 </head><body>

 <script type="text/javascript">

 doSomething();

 //I can use global_one here - not local_one

 document.writeln("global_one="+global_one+"
");

 document.writeln("global_two="+global_two);

 </script></body>

Example

What is the Value of global_two?

19

Class and Object
• One of the most important features of JavaScript - enables modular

programs.
• Objects are based on Classes; variables, functions, statements are contained in a structure

called class.

• You can use the “new” operator to create instances of objects of a
particular class or object type.

• variable = new objectType(parameters)

• This objectType() is called constructor.

• E.g. Date is a predefined JavaScript class.

• Assign the current date and time to objA objA = new Date()

Object Description

Array Creates new array objects

Boolean Creates new Boolean objects

Date Retrieves and manipulates dates and times

Error Returns run-time error information

Function Creates new function objects

Math Contains methods and properties for performing mathematical calculations

Number Contains methods and properties for manipulating numbers.

String Contains methods and properties for manipulating text strings
20

Some More Basics

Can use Math class for powerful

built in functions:

• abs(value) - returns the

absolute value (modulus)

• sin(value)/cos(value)/t

an(value) - trigonometric

functions

• random() - returns a

pseudorandom number

between 0 and 1

• pow(value,power) – result

of value raised to power

• sqrt(value) – returns square

root of the number e.g. var

result =

Math.sqrt(number);

String Manipulation

 charAt(index) e.g.

myString.charAt(index);

 returns the character at position index

 concat(string) e.g. both =

str1.concat(str2);

 concatenates two strings

 length() e.g. size =

str1.length();

 returns the number of characters

 split(separator) e.g. bits

= str.split(“.”);

 breaks the string apart whenever it

encounters the separator character

(pieces returned in an array)

21

Functions

• Functions are integral to JavaScript and functions are typically

called in response to user actions

• This adds interactivity to pages

• Functions have to be declared within the head of a document

• Can then be used anywhere in a document (in the body, in another

function, etc)

<head>

 <title>Example 1</title>

 <script type="text/javascript">

 <!--

 function showMessage()

 {

 document.writeln(“<h3>Hi There..</h3>");

 }

 //Can also write more functions here if required..

 -->

 </script>

</head>

<body>

 <script type="text/javascript">

 showMessage();

 </script>

</body>
22

Functions
• A function definition consists of the function’s header

(having the reserved word function) and a compound
(body) statement that describes its action.

• You can reuse functions within the same script, or in
other documents.

• To create a function you define its name, any values
(“arguments”), and some statement.

• Some functions return a value to the calling
expression
• Functions that will return a result must use the return statement.

• A function is not executed before it is called.

• Built-in and user-defined functions

23

Built-In Functions

• Functions provided by the language and you cannot
change them to suit your needs.

• Some of the built-in functions in JavaScript are shown
here:
• eval - eval(expr)

• eval takes a string as its argument and evaluates the expression or
statements

• eval(“24*4/8”)=12

• isFinite

• Determines if a number is finite

• isNaN

• Determines whether a value is “Not a Number”

• parseInt

• parseInt("124") will return 124.

• Converts string literals to integers, no number  NaN.

• parseFloat

• Finds a floating-point value at the beginning of a string.
24

Events

• Use of JavaScript for Web programming is to detect certain activities of
the browser and the user

• Events are the actions that occur as a result of browser activities or
user interaction with web pages.

• Such as the user performs an action (mouse click or enters data)

• We can validate the data entered by a user in a web form

• Communicate with Java applets and browser plug-ins

• Events are normally used in combination with functions, and the
function will not be executed before the event occurs!

• Event Categories

• Keyboard and mouse events

• Capturing a mouse event is simple

• Load events

• The page first appears on the screen: “Loads”, leaves: “Unloads”, …

• Form-related events

• onFocus() refers to placing the cursor into the text input in the form.

• Others

• Errors, window resizing.

25

Events defined by JavaScript

HTML elements HTML
tags

JavaScript defined
events

Description

Link <a> click

dblClick

mouseDown

mouseUp

mouseOver

Mouse is clicked on a link

Mouse is double-clicked on a link

Mouse button is pressed

Mouse button is released

Mouse is moved over a link

Image load

abort

error

Image is loaded into a browser

Image loading is abandoned

An error occurs during the image loading

Area <area> mouseOver

mouseOut

dblClick

The mouse is moved over an image map area

The mouse is moved from image map to outside

The mouse is double-clicked on an image map

Form <form> submit

reset

The user submits a form

The user refreshes a form

… … … …

26

Event Handlers

• When an event occurs, a code segment that is executed
in response to a specific event is called “event handler”.

• Event handler names are quite similar to the name of
events they handle.

• Different event triggers are associated with different
HTML elements.
• E.g the event handler for the “click” event is “onclick”.

• The process of connecting an event handler to an event
is called registration.

• HTML elements support attributes for specifying code to
run when a particular event happens.
• Attribute name specifies event type.

• Attribute value specifies code to run.

• Examples:
My link

Another Link

27

Selected Event Handlers

• onClick: when the mouse button is clicked on an
element (used with the button and link elements)

• onMouseOver/onMouseOut: when the mouse moves
into/ out of an element (used with the link, image and
layer elements).

• onMouseDown/onMouseUp: when the mouse button is
pressed/released.

• onload/onunload: when browser loads/finishes with a
document (used with the body element).

• onFocus/onBlur : when an element is
selected/deselected (i.e. another element is selected) with
the mouse (used with the input, select, textarea
and button elements).

• onSubmit: when the submit button pressed in a form
(used with the form element).

28

A simple event handler

• <form method="post" action="">
 <input type="button"
 name="myButton"
 value="Click me"
 onclick="alert('You clicked the button!');">
</form>
• The button is enclosed in a form

• method tells how to send the form data; action tells where to send it

• The tag is input with attribute type="button"

• The name can be used by other JavaScript code

• The value is what appears on the button

• onclick is the name of the event being handled

• The value of the onclick element is the JavaScript code to execute

• alert pops up an alert box with the given text

29

onClick Event Handler

<html>

<head>

<title>onClick Event Handler Example</title>

<script type="text/javascript”>

function warnUser(){ return confirm(“RHUL students?”); }

</script>

</head>

<body>

RHUL
Students access only

</body>

</html>

30

<head>

 <script type="text/javascript">

 <!--

 function change(col) {

 if(col=="red") {

 document.bgColor = col;

 }

 if(col=="blue") {

 document.bgColor = col;

 }

 }

 //-->

 </script>

</head>

<body>

 <form>

 <input type="button" value="Red" onClick=change("red")>

 <input type="button" value="Blue" onClick=change("blue")>

 </form>

</body>

onclick

example

31

onLoad Event Handler

<html>

<head>

<title>onLoad and onUnload Event Handler Example</title>

</head>

<body onLoad=“alert(‘Welcome User’);”

onUnload=“alert(‘Thanks for visiting the page’);”>

Load and UnLoad event test.

</body>

</html>

32

onMouseOver and onMouseOut

Event Handlers

<html>

<head>

<title>onMouseOver and onMouseOut event handler</title>

</head>

<body>

<a href= "link.html"

onMouseOver = "status = ‘Now mouse is over the link’; return true"

onMouseOut = "status = ‘Mouse has moved out’; return true">

A Link Page

</body>

</html>

33

Change Background Color

<html><head>

<script type="text/javascript">

function bgChange(bg)

{ document.body.style.background=bg; }

</script></head>

<body>Mouse over these table cells, and the background color will change

<table width="300" height="100">

 <tr>

 <td onmouseover="bgChange('red')"

 onmouseout="bgChange('transparent')" bgcolor="red">

 </td>

 <td onmouseover="bgChange('blue')"

 onmouseout="bgChange('transparent')" bgcolor="blue">

 </td>

 <td onmouseover="bgChange('green')"

 onmouseout="bgChange('transparent')" bgcolor="green">

 </td>

</tr>

</table>

</body></html> 34

Document Object Model (DOM)
• Using JavaScript we can directly manipulate parts of a web

page – making pages dynamic and interactive

• How is this done?
• JavaScript regards a webpage as a collection of objects

• We can manipulate object properties – thus manipulating the
appearance of the web page

• Objects are arranged into a hierarchy of objects called the
Document Object Model (DOM)

• At the top of the hierarchy is the window object – this is
your browser window

• The document object is a child of the window object – this
is the current webpage being displayed

35

DOM

• You can attach event handlers to HTML elements with

very little knowledge of the DOM

• However, to change what is displayed on the page

requires knowledge of how to refer to the various

elements

• The basic DOM is a W3C standard and is consistent

across various browsers

• More complex features are browser-dependent

• The highest level element (for the current page) is

window, and everything else descends from that

• Every JavaScript variable is a field of some object

• In the DOM, all variables are assumed to start with “window.”

• All other elements can be reached by working down from there

36

The DOM

hierarchy

37

Referring to Document Objects
• Each object has properties allowing us to access the lower level

objects in the hierarchy.

• e.g., document.forms returns an array of forms in the document.

• Normally an array of objects is returned, and we access a specific

one (e.g., first form) using array subscripting.

• document.forms[0]

• We can access the input elements using "elements":

• document.forms[0].elements[0]

• DOM 1 has a set of very general methods for accessing any

element on the page. E.g.,

• document.getElementById(ID) – ID specified by id attribute

• <p id=“para1”>Welcome to our web page!</p>

• document.getElementById(‘para1').

• document.getElementsByTagName(Name)

• Also general properties such as "parentNode”, “firstChild”, and

“lastChild".
38

The “window” Object

• It is the highest-level object in the JavaScript browser object hierarchy.
• It is also the default object and is created automatically when a page is loaded.

• Since it is the default object, we may omit writing window explicitly.

• document.write(“a test message”);

• window.document.write(“a test message”);

• It also includes several properties and methods for us to manipulate the page.

Property Description

length An integer value representing the number of frames in the window

name A string value containing the name of a window

parent A string value containing the name of the parent window

status A string value representing status bar text

Method Description

alert(text) Pop up a window with "text” as the message

close() Closes the current window

open(url) Open a new window populated by a URL.

setTimeout(expression, time) Executes an expression after the elapse of the interval time.

39

The “document” Object
• It is one of the important objects in any window or frame.

• The document object represents a web document or a page in a browser

window.

Property Description

bgColor A string value representing the background color of a document

alinkColor A string value representing the color for active links

Location A string value representing the current URL

Title A string value representing the text specified by <title> tag

Method Description

clear() Clears the document window

write(content) Writes the text of content to a document

writeln() Writes the text and followed by a carriage return

open() Open a document to receive data from a write() stream

close() Closes a write() stream

40

Manipulating the document object

• Each object has certain properties and methods

• The document object has the following properties/methods:

writeln – method to write out to the page

write – method to write out to the page

bgColor – change the body background colour property

fgColor – change the body foreground colour property

• The following program accesses and manipulates properties of the
document object
<html>

 <head></head>

 <body bgColor="red">

 <script type="text/javascript">

 <!--

 var backcolour = document.bgColor;

 document.write("The background colour is: "+backcolour);

 alert(“Press to change from "+backcolour+" to yellow");

 document.bgColor = "yellow";

 document.writeln("
Colour is now "+document.bgColor);

 -->

 </script>

 </body>

</html>

41

Example: Simple Calculator

<head><script type="text/javascript">

 <!--

 function addNumbers() {

 var num1 = document.forms[0].elements[0].value;

 var num2 = document.forms[0].elements[1].value;

 var result = parseInt(num1) + parseInt(num2);

 alert("Result: " + result);

}

 //-->

 </script></head><body>

 <form method="POST">

 Number 1 <input type="text" name="number_1">

 Number 2 <input type="text" name="number_2">

 <input type="button" value="Add“
onClick="addNumbers()">

 </form></body>
42

Example: Simple Calculator

• Pressing the button fires event onClick

• This calls addNumbers()

• Values entered into the text boxes are read using:
 var num1 = document.forms[0].elements[0].value;

 var num2 = document.forms[0].elements[1].value;

• These values are initially strings

• They are converted to
 Integers using parseInt()

43

Further modification of DOM objects

• We can also access, modify and set the style attribute of

page elements

• We first give an element a unique id

• We modify style attributes with reference to this id

• Through the id we can also alter the document content

of an element e.g. we may change the text between

some <p> tags or tags, etc

• Note that we can also associate events with tags such

as <p> and , etc

44

Example 1
<html>

 <head>

 <script type="text/javascript">

 <!--

 function move(x,y) {

 para1.innerHTML="A bit bigger!";

 para1.style.fontSize = 40;

 }

 -->

 </script>

 </head>

 <body>

 <p id="para1" onClick="move(50,100)">

 Some words

 </p>

 </body>

</html>

• innerHTML sets or gets all of the markup

 and content within a given element.

• style object represents an individual style statement.
45

Example 2
<html>

 <head>

 <title>Location</title>

 <style>

 #para1 {position: absolute}

 </style>

 <script type="text/javascript">

 <!--

 function move(elementid,x,y) {

 elementid.style.left = x;

 elementid.style.top = y;

 elementid.innerHTML="I moved";

 elementid.style.fontSize = 40;

 }

 -->

 </script>

 </head>

 <body>

 <p id="para1" onMouseOver="move(this,50,100)">

 Some words

 </p>

 </body>

</html> 46

Event Propagation (DOM2)
• An event object is created at a node in the document tree.

• For that event, the node is called the target node.

• Capturing phase: the event starts at the document root
node and propagates down the tree to the target node
• An event may be pre-processed, handled or redirected by any

intervening object.

• Execution of any appropriate handlers at the target node

• Bubbling phase: in which events fired in child elements
“bubble” up to the child’s event handler, then to the
parent’s event handler.
• If you intend to handle an event in a child element, you might need

to cancel the bubbling of the event in the child element’s event-
handling code by using the cancelBubble property of the event
object.

• Example

<p>

document

47

setInterval and clearInterval

• Used to call JavaScript code repeatedly at a specified time

interval

setInterval(code, interval)

clearInterval(interval_Id)

• code is a string of JavaScript code (in quotes)

• interval is time in milliseconds

• interval_Id is the value returned by setInterval

 To delay the execution of code, use setTimeout and

clearTimeout (same parameters)

 These four methods are all window methods, and provide a solid

backbone for most animation techniques in DHTML.

48

Example 3

Animation

<style>

 #para1 {position: absolute;

 color : red;

 font-size : 40pt}

 </style>

 <script type="text/javascript">

 var x = 20, xshift = 1;

 function move(elementId) {

 x = x + xshift;

 elementId.style.left = x;

 if (x > 150) {

 xshift = -1;

 elementId.innerHTML = "Goodbye!";

 elementId.style.color = "blue";

 }

 if (x < 20) {

 xshift = 1;

 elementId.innerHTML = "Hello!";

 elementId.style.color = "red";

 }

 }

 </script>

49

Animation

<body onLoad="intervalId = setInterval('move(para1)',10)"

 onClick="clearInterval(intervalId)">

 <p id="para1" >

 Hello!

 </p>

</body>

50

Roll-over Graphics
• Perhaps the most visible (and popular) use of JavaScript involves roll-

over graphics

• A rollover is an image that changes its appearance when the mouse
moves over it, and returns to its original state when the mouse moves
away

• We can access the filename for the first image on a page like this:

 Var imageFileName=document.images[0].src;

• We can therefore change the image like this:

 document.images[0].src = newFileName;

• We can use the onMouseOver and onMouseOut event handlers to
update the image file name: <html>

<head></head>

<body>

<img src="cat_1.jpg"

onMouseOver="document.images[0].src='cat_2.jpg' "

onMouseOut="document.images[0].src='cat_1.jpg' ">

</body>

</html>

51

Rollovers example

<html>

<head></head>

<body>

<img src="cat_1.jpg"

onMouseOver="document.images[0].src='cat_2.jpg' "

onMouseOut="document.images[0].src='cat_1.jpg' ">

</body>

</html>

We can also put this in a hyperlink:

The example above is the most common use of a rollover image

52

Google Maps API

• A web mapping service application and technology
provided by Google

• Bringing the power of Google Maps to your website or
application

• Google map API is available to you in JavaScript

• Main reference:
• https://developers.google.com/maps/documentation/javascript/reference

• Samples:
• https://developers.google.com/maps/documentation/javascript/examples/

• Other APIs are available to be used, some of which are

free.

53

https://developers.google.com/maps/documentation/javascript/reference
https://developers.google.com/maps/documentation/javascript/examples/

Form Validation in JavaScript

• The right way to use JavaScript is as an optional extra to
improve user-friendliness

• All form submissions are validated on the server

• If the reader has JavaScript available, an initial validation
is done on the client, to check for simple errors such as
missing information or non-numeric characters in a
numeric field.

• The reader gets faster feedback than waiting for a
response from the server.

• The essence is thus that JavaScript validation is always
optional.

• Since the validation must be on the server anyway, it is
not necessary to insist that the user must have
JavaScript.

54

Form Validation

Client-side form validation

(usually with JavaScript embedded

in the Web page)

Server-side form validation

 (usually performed by a PHP

or ASP script)

55

Do’s and Don’ts

• There are two ways of implementing validation, of
which the better one is hardly ever used!

1. Acceptable: validate the entered data when the submit
button is pressed.

2. Better in most cases, especially with large forms:
validate on a field-by-field basis, and revalidate the
whole form when the submit button is pressed. This
also makes it easy to alter the user in cases where
entered data is perhaps, but not certainly, incorrect –
for example unusual characters in an email address,
or a birth year of 1891.

DON’T

• Have the validation in JavaScript only, and not on the
server.

• Simply assume the user has JavaScript

56

form objects

• Any data entered into a HTML form is contained in a form

object

• An array forms[] contains all the form objects on a page

• Data from the first form on the page is contained in the first
array element, e.g. forms[0]

• Data from the second form on the page is contained in the
second element forms[1]

• A forms object contains another array, called

elements[]

• An element refers to an input type, e.g. text, password,

checkbox, radio,…

• Input types are organised inside elements[] in the order

they appear in the specific form

57

form and element objects

document

forms[0]

forms[1]

elements[0]

elements[1]

elements[0]

elements[1]

elements[2]

text

submit

button

button

submit

• For example, a page has two forms. The first form

has a text input and a submit button. The second

form has two standard buttons and a submit button.

58

Where Does This Lead Us?

• We now have access to data entered into a form.

• JavaScript is typically used to do initial checks on

form data before sending it to a server, e.g.:
• Ensures all fields are filled in

• Ensures that valid email addresses/URLs are entered

• The JavaScript program taking the form input can

also be standalone – it doesn’t have to send the data

onto a server (see Simple Calculator Example).

• NB: Server side code may be written in PHP or Perl

(and others)

59

Form Validation in JavaScript

Process of form validation

1. User fills in details and clicks on submit

2. A JavaScript function is called to check the form

 Have all necessary fields been filled in?

 Do fields have correct values?

3. Result of function is returned through onclick event

handler

 If return value is true – form is submitted

 If return value is false – form is not submitted

60

Identifying by Names

• It is possible to access elements by name

• We can give names to specific HTML elements

• We can then access the properties of that element by referencing its name

• This is an alternative to referencing an element via its array location.

<head><script type="text/javascript">

 <!--

 function addNumbers() {

 var num1 = document.myForm.number_1.value;

 var num2 = document.myForm.number_2.value;

 var result = parseInt(num1) + parseInt(num2);

 alert("Result: " + result);

 }

 //-->

 </script></head><body>

 <form name = "myForm" method="POST">

 Number 1 <input type="text" name="number_1">

 Number 2 <input type="text" name="number_2">

 <input type="button" value="Add" onClick="addNumbers()">

 </form></body>
61

Example: Verifying Form Input

• We can use JavaScript to check forms before

sending data to a server

• In this example:
• The onSubmit event handler is fired when the submit button is

pressed

• This calls function verifyForm()

• This returns false if there is missing data and alerts the user

• If it does not return false then the form data is sent to
processForm.php

62

<head>

<script type="text/javascript">

 <!--

 function verifyForm() {

 if(myForm.username.value == "") {

 alert("Please enter a name");

 return false;}

 if(myForm.address.value == "") {

 alert("Please enter an address");

 return false;}

 }

 //-->

 </script>

</head>

<body>

 <form name="myForm" method="POST" action="processForm.php"

onSubmit="return verifyForm()">

 Name: <input type="text" name="username">

 Address:<input type="text" name="address">

 <input type="submit" value="Send">

 </form></body>

Example

63

A More Advanced Form

• Lets look at a more advanced form
• Multiple input types

• Passes form object to function readForm as a parameter

• The script reads the form data and writes it to a new
window. We name this window win

• Also note:
• checked is used to determine whether or not a check box is

selected or not

• The select element called rating contains an array of

options[]

• selectedIndex is used to record the option selected

64

<form name="feedbackForm"

 onSubmit="readForm(this)">

<h2>Tell us what you think</h2>

Name: <input type="text" name="username">

Address: <input type="text" name="address" size="35">

<table><tr><td>

How did you find this web site?:

Friend<input type="checkbox" name="how1" value="friend">

Google<input type="checkbox" name="how2" value="google">

Other <input type="checkbox" name="how3" value="other">

</td><td>

How do you rate this site?

<select name="rating">

<option value="good">Good

<option value="bad">Bad

<option value="ugly">Ugly

</select>

</td></tr></table>

<h3>Thank you</h3>

<input type="submit" value="Send">

<input type="reset" value="Clear">

</form>

The Form

65

function readForm(theForm)

{

 var i, optIdx, rating;

 win = window.open("","messageWin");

 win.document.writeln("<h2>The name is: "

 +theForm.username.value+ "</h2>");

 win.document.writeln("<h2>The address is: "

+theForm.address.value+ "</h2>");

 win.document.writeln("<h2>You found us by: </h2>");

 if(theForm.how1.checked){

 win.document.writeln("
"+theForm.how1.value);

 }

 if(theForm.how2.checked){

 win.document.writeln("
"+theForm.how2.value);

 }

 if(theForm.how3.checked){

 win.document.writeln("
"+theForm.how3.value);

 }

 opIdx = theForm.rating.selectedIndex;

 rating = theForm.rating.options[opIdx].value;

 win.document.writeln("<h2>Rating: " +rating+ "</h2>");

}

The Script

66

A message window created in

response to user input

Example Output

67

Using Windows
• In the previous JavaScript validation examples, we used

alert() to inform the user that an error had occurred.

• This might not always be suitable

• JavaScript lets you open, write to and close additional
windows.

• Much more user friendly.

• To open a new window:

myRef=open(url, name, features)
• myRef: a reference to the new window

• url: url of contents of the window (use “” if you want the window to
be blank

• name: this can be used with the HTML TARGET attribute

• features: a list of desired browser features

• e.g. toolbar, location, status, scrollbars, resizable, width, height, top, left

var myWin=open(“help.html”, “help”, “scrollbars, width=400,
height=200”); 68

Opening New Windows

• We can also use the open method to open pages in

new windows – often used for advertising/pop-ups

<html><head>

<script type="text/javascript">

<!--

open("http://www.bbc.co.uk");

-->

</script>

</head>

<body>

<h1>This page loads another page</h1>

</body></html>
69

Using Windows

• Once you have opened a (blank) window, you can use

the document.write() method to add content

myWin=open("", "Hello", "scrollbars");

myWin.document.write("<h1>HELLO!!!</h1>
");

• Use the close() method to close a window.

• Helpful if the user is presented with a close button.

myWin.document.write("<form><input type=button

value=‘Close Window’ onClick=‘self.close()’></form>“);

70

JavaScript Summary

The basics of JavaScript:

• Variable, Data Types, Flow Control, Loops

• Function, Event, Objects

• JavaScript permits you to:

• Make pages more dynamic

• Validate HTML form input

• Manipulate objects

• Combine with DOM to build DHTML pages

71

Javascript Libraries

• As with most other programming languages,

Javascript allows usage of external libraries.

• Many exist, one of the most popular ones is

jQuery

• http://jquery.com/

• There are many examples available on the web,

and once again w3schools.com has a whole

section about it

• Check and then try out some examples

72

http://jquery.com/

PHP Hypertext Preprocessor (PHP)
• Rasmus Lerdorf – 1994 developed to allow him to track

visitors to his Web site

• PHP is an open-source product

• PHP is an acronym for Personal Home Page, or PHP:
Hypertext Preprocessor

• PHP is used for form handling, file processing and
database access

 Overview of PHP

• PHP is a server-side scripting language whose scripts
are embedded in HTML documents
• PHP files may contain text, HTML tags and scripts

• PHP files are returned to the browser as plain HTML

• PHP files have a file extension of ".php", ".php3", or ".phtml"

• PHP syntax is similar to that of JavaScript
• PHP is dynamically typed and purely interpreted

73

How PHP works

74

General Characteristics

• PHP code can be specified in a HTML document
internally or externally:
• Internally: <?php ...?>

• A PHP scripting block can be placed anywhere in the document.

• On servers with shorthand support enabled, you can start a scripting
block with <? and end with ?>.

• Externally: <?php include ("myScript.php"); ?>

• A PHP file normally contains HTML tags, just like an
HTML file, and some PHP scripting code.

• Comments - three different kinds (like Java)
 // ...comments

 # ... comments

 /* ...comments */

• Compound statements are formed with braces

• Each code line in PHP must end with a semicolon.

• Compound statements cannot be blocks
75

Variables
• Every variable name begin with a $ and then followed by a letter or an

underscore "_"

• $variable_name = Value;

• Variable names are case-sensitive and cannot start with a digit.

• Variable Types

• Integer, Double, Boolean (TRUE or FASLE), String and (Array and Object)

• In PHP a variable does not need to be declared before being set.

• PHP automatically converts the variable to the correct data type,
depending on how they are set.

• String variables are used for values that contains character strings.

• Text enclosed in either single (‘ ‘) or double (“ “) quotes.

• Using double quotes, the variable $hello is evaluated within the quotes

<?php

$hello = "Hello World!";

$a_number = 4; $anotherNumber = 8.5;

echo "My answer is $hello
";

//result is: My answer is Hello World!

?>
76

Arrays

• Each element in the array has its own ID so that it can be

easily accessed.

• There are three different kind of arrays:

• Numeric array - An array with a numeric ID key

• Array operations are exactly the same as those found in JavaScript,

e.g. $array[0]="Smith"; $array[1] = "Brown"; $array[2]="Red";

• Associative array - An array where each ID key is associated

with a value

• Each item is indexed with a key value and the key must be a unique

string, e.g. $array["friend"]="Smith"; $array["son"] = "Peter"; or

$array=array("friend" => "Smith", "son"=>"Peter");

• Multidimensional array - An array containing one or more arrays

• e.g. $array[0][0]="Fido"; $array[0][]="Brown"; $array[0][2]="quite";

$array[1][0]="Rover"; $array[1][]="White"; $array[1][]="noisy";

• Example

77

Array Functions

• PHP supplies a rich set of build-in functions which can be
used to operate on arrays.
• array_keys(array) returns an array containing all of keys from the

associated array

• array_merge(arr1, arr2, …) merges all of the arrays which are given as
parameters

• array_reverse(array) returns a new array which contains all the elements
in reverse order

• asort(array) sorts an associated array and in doing so preserves the
association between each key and its value.

• each(array) returns the next key:value pair from an array

• sizeof(array) returns the number of elements in the array

• sort(array) sorts the elements in the array into ascending order and returns
the sorted list

78

Output

• Output from a PHP script is HTML that is sent to the
browser

• HTML is sent to the browser through standard output

• There are three ways to produce output: echo, print, and
printf
• echo and print take a string, but will coerce other values to strings

• echo "whatever"; # Only one parameter

• echo("first
", $sum) # More than one

• print "Welcome to my site!"; # Only one

• <?php $str = "Hello"; $number = 213; printf("%s world. Day number
%u",$str,$number); ?>

• PHP code is placed in the body of an HTML document

79

Program Control

• Logical operations (text and numerical)

• Provided the same set of branching and looping constructs
as many other language (e.g. Java)
• if …[elseif …] else

• while

• for

• foreach

• foreach ($array as $value)

• foreach ($array as $key => $value)

• break

• switch

• switch (expression) { case label; statement; … [default: statement;] }

• Selects between a number of choices depending upon the value of the
expression.

• The choices are identified by case statements, each has a label.

80

User-defined Functions

Syntactic form:

function function_name(formal_parameters) {

 …

 }

General Characteristics

• A function is a block of code that can be executed

whenever we need it.

• Function overloading is not supported

• If you try to redefine a function, it is an error

• Functions can have a variable number of parameters

• Function names are NOT case sensitive

• The return function is used to return a value; If there is

no return, there is no returned value

81

PHP - Files
• Deal with any files on the server, on the Internet, using either http or ftp

• There are 3 steps to using data in a file
• Open the file. If the file doesn’t already exist create it or catch the error

gracefully.

• Write/Read data from the file.

• Close the file.

• A file has a file pointer (where to read or write)

 $fptr = fopen(filename, use_indicator)

 Use indicators:

 r read only, from the beginning

 r+ read and write, from the beginning

 w write only, from the beginning (also creates the file, if necessary)

 w+ read and write, from the beginning (also creates the file, if necessary)

 a write only, at the end, if it exists (creates the file, if necessary)

 a+ read and write, read at the beginning, write at the end

• Use file_exists(filename) to determine whether file exists

• Use fclose(file_var) to close a file
$ourFileName = "testFile.txt";

$ourFileHandle = fopen($ourFileName, 'w') or die("can't open file");

fclose($ourFileHandle);

82

Reading Files

• Read all or part of the file into a string variable
 $str = fread(file_var, #bytes)

To read the whole file, use filesize(file_name)

• Read the lines of the file into an array
$file_lines = file(file_name)

Need not open or close the file

• Read one line from the file
$line = fgets(file_var, #bytes)

Reads characters until eoln, eof, or #bytes characters have been read

• Read one character at a time
 $ch = fgetc(file_var)

• Control reading lines or characters with eof detection using feof (TRUE
for eof; FALSE otherwise)

while(!feof($file_var)) {

 $ch = fgetc($file_var);

 }

83

Writing and Closing files

• Writing to a file in PHP is easy. You can either use the

function:

• fwrite() …file write

• fputs() …file put sting (an alias to fwrite)
$fp = fopen("orders.txt", "a");

fwrite($fp, "adding something to the file");

• All that is left is to tidy everything up by closing the file

 fclose($fp);

84

Viewing Client/Server Environment

Variables
• Knowledge of a client’s execution environment is useful to

system administrators.

• Environment variables contain information about a script’s
environment, such as the client’s Web browser, the HTTP
connection.

• Global Arrays
• $_SERVER data about the currently running server

• $_ENV data about the client’s environment

• $_GET data sent to the server by the get method

• $_POST data sent to the server by the post method

• $GLOBALS array containing all global variables

• Note: by default many of the latest installs (and
associated php.ini’s) of PHP will have this option set to
‘GPCS’, which stands for Get, Post, Cookie and Built-in
variables respectively. 85

Form Handling

• Any form element in an HTML page will automatically

be available to your PHP scripts.

• It does not matter whether GET or POST method is used

to transmit the form data

• PHP builds an array of the form values
• $_GET for the GET method: an array of variable names and values sent

by the HTTP GET method.

• $_POST for the POST method: an array of variable names and values

sent by the HTTP POST method.

• Examples
• Gathering user input

• Verifying a user name and password

86

Time inside PHP

• Time() -- gives you the current UNIX timestamp

• Returns the current time measured in the number of
seconds since the Unix Epoch (January 1 1970
00:00:00 GMT).

• You find yourself using this all the time once you have a
complicated site. Common examples are:
• Keeping track of login times

• Time how long processes are taking

• Time is very useful but not very pretty – who wants to
know the number of seconds since the UNIX epoch !?

• Date() outputs the current time into whatever format
you specify:

Print date(“jS F Y”); 25th April 2008

Print date("F j, Y, g:i a"); April 25, 2008, 9:46 pm

Print date("H:i:s"); 09:46:17

Print date("D M j G:i:s T") ; Fri Apr 25 9:46:17 GMT
87

Date Format for date month year and

time
a 'am' or 'pm'

A 'AM' or 'PM'

d
day of the month, 2 digits with leading zeros; i.e. '01' to

'31'

D day of the week, textual, 3 letters; i.e. 'Fri'

F month, textual, long; i.e. 'January'

g hour, 12-hour format without leading zeros; i.e. '1' to '12'

G hour, 24-hour format without leading zeros; i.e. '0' to '23'

h hour, 12-hour format; i.e. '01' to '12'

H hour, 24-hour format; i.e. '00' to '23'

i minutes; i.e. '00' to '59'

I '1' if Daylight Savings Time, '0' otherwise.

j day of the month without leading zeros; i.e. '1' to '31'

l day of the week, textual, long; i.e. 'Friday'

L boolean for whether it is a leap year; i.e. '0' or '1'

m month; i.e. '01' to '12'

M month, textual, 3 letters; i.e. 'Jan'

n
month without leading zeros; i.e. '1'

to '12'

s seconds; i.e. '00' to '59'

S
English ordinal suffix, textual, 2

characters; i.e. 'th', 'nd'

t
number of days in the given month;

i.e. '28' to '31'

T
Timezone setting of this machine;

i.e. ‘GMT'

U seconds since the epoch

w
day of the week, numeric, i.e. '0'

(Sunday) to '6' (Saturday)

Y year, 4 digits; i.e. '1999'

y year, 2 digits; i.e. '99'

z day of the year; i.e. '0' to '365'

88

PHP documentation and libraries

• PHP is one of the most well documented languages on
the web

• Its main reference is at:
• http://www.php.net/docs.php

• Additionally, many libraries exist that can be used for a
number of frequently implemented features (e.g.
logging).

89

http://www.php.net/docs.php

