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We present a programme of research for pluralist formalisations, that is, formalisations that

involve proving results in more than one foundation.

A foundation consists of two parts: a logical part, which provides a notion of inference, and

a non-logical part, which provides the entities to be reasoned about. An LTT is a formal

system composed of two such separate parts. We show how LTTs may be used as the basis

for a pluralist formalisation.

We show how different foundations may be formalised as LTTs, and also describe a new

method for proof reuse. If we know that a translation Φ exists between two logic-enriched

type theories (LTTs) S and T , and we have formalised a proof of a theorem α in S , we may

wish to make use of the fact that Φ(α) is a theorem of T . We show how this is sometimes

possible by writing a proof script MΦ. For any proof script Mα that proves a theorem α in S ,

if we change Mα so it first imports MΦ, the resulting proof script will still parse, and will be

a proof of Φ(α) in T .

In this paper, we focus on the logical part of an LTT-framework and show how the above

method of proof reuse is done for four cases of Φ: inclusion, the double negation

translation, the A-translation and the Russell–Prawitz modality. This work has been carried

out using the proof assistant Plastic.

1. Introduction

When formalising a piece of mathematics, we must first choose a foundation, that is, a

formal language in which the mathematical entities can be defined, and theorems and

proofs about these entities can be written. Usually, such a foundation consists of two

parts: a non-logical part for defining the mathematical entities to be reasoned about, and

a logical part that formalises the underlying logical inference (for example, a system of

logic with a set of axioms and rules of deduction that determines which proofs are valid).

Much mathematical work involves working with more than one foundation: comparing

the theorems that are provable in each, defining translations between foundations,

comparing the class of models of each foundation, and so on.

For example, work in set theory often involves comparing several different set theories

and the theorems that can be proved in each. Similar work compares the theorems

provable in different fragments of first-order arithmetic (Hájek and Pudlák 1998). The
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large research project known as Reverse Mathematics uses several systems of second-order

arithmetic (Simpson 1999), and similar work has been done in higher-order arithmetic

(Kohlenbach 2005).

In this paper, we propose a programme of research for conducting pluralist formal-

isations, that is, formalisations of pieces of mathematics that involve more than one

foundation.

The prevailing paradigm in the formalisation of mathematics so far has been to

choose one foundation, implement a proof assistant that constructs formal proofs in that

foundation, and proceed to build up a large library of formalised results in that foundation.

Some proof assistants offer the choice of a small number of different foundations: for

example, LEGO (Pollack 1994) implements four, and Coq (Coq Development Team 2004)

offers the user the choice of a predicative or impredicative type theory.

There are also proof assistants that implement logical frameworks, such as Isabelle

(Paulson 1994) and the Edinburgh LF (Harper et al. 1987; Harper et al. 1993) as

implemented in Twelf (Pfenning and Schürmann 1999). These allow more than one

foundation to be represented, and often provide support for representing and reasoning

about relations and translations between foundations.

If we wish to formalise a large piece of mathematics that involves proving results in

several different foundations, it will be essential that we can reuse proofs carried out in

one foundation within another. We shall therefore investigate the following questions:

— What must a logical framework provide in order to be suitable for a pluralist

formalisation?

— How should we represent the different foundations within this logical framework?

— How can we then reuse a proof script written in one foundation when working in

another?

Our answer to the second question is that the foundations should be represented as

logic-enriched type theories (LTTs). We shall argue that LTTs possess some advantages

over other systems of logic for the purposes of a pluralist formalisation. Our method of

proof reuse relies on the two systems in question being declared in a fairly similar way.

Thus, when choosing a family of systems with which to conduct a pluralist formalisation,

we require one that will allow for a uniform presentation and treatment of a large number

of different foundations. LTTs provide such a uniform framework.

We shall present a logical framework suitable for representing LTTs, discuss several

issues in the construction of LTTs and present a method for proof reuse between LTTs.

The method of proof reuse that we present is quite general: we shall show with several quite

varied examples how, given a translation from one foundation S to another foundation

T , we are able to take proof scripts in S and reuse them when working in T .

We work with LTTs in this paper, but our method is also usable with type theories,

systems of first-order logic, and so on. It should therefore be useful to people working in

many different areas of the formalisation of mathematics.

It is important to note that the LTT-approach to formalisation involves formalisation

of the non-logical entities as well as that of the underlying logic. Traditionally, the studies

of a logical framework, such as Edinburgh LF or the system Twelf, have mainly focused
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on the formal representations of logical systems and usually pay less attention to the

non-logical parts of a mathematical system. The LTT-approach is different: it takes the

formalisation of the non-logical entities seriously, and this is also a key part of the pluralist

approach to formalisation and proof reuse. We shall discuss this issue, although the focus

of the current paper is mainly on the logical part of the LTT-approach.

There has not been much work on pluralist formalisations in the literature, but there

has been quite a lot of research into the related problem of sharing results produced using

different proof assistants. We discuss this work in Section 6.1.

1.1. Outline

In Section 2, we shall discuss some general issues around the formalisation of mathematics

using more than one foundation. We introduce the type-theoretic framework of LTTs in

Section 3, and in Section 4 we describe our method for proof reuse in more detail. In

Section 5, we apply the method to four examples and show how they have been formalised

using the proof assistant Plastic.

2. A pluralist approach to the formalisation of mathematics

2.1. Mathematics with different foundations

When building a foundational system for mathematics, one faces various choices. For

example, two of the decisions that must be made are:

— whether the logic is classical or intuitionistic;

— whether impredicative definitions are allowed, or only predicative.

Each of the four possible combinations of these options has been advocated as a

foundation for mathematics at some point in history:

— Impredicative classical mathematics. This is arguably the way in which the vast majority

of practising mathematicians work. Zermelo-Fraenkel Set Theory (ZF) is one such

foundation. The proof checker Mizar (Muzalewski 1993) has been used to formalise

a very large body of impredicative classical mathematics. The foundation HOL, as

implemented in the proof assistants Isabelle (Nipkow et al. 2002) and HOL-Light

(Harrison 1996), is another.

— Impredicative constructive mathematics. Impredicative types theories such as ECC/UTT

(Luo 1994) and CIC (Bertot and Castéran 2004) are examples of such foundations.

These have been implemented by the proof checkers LEGO (Luo and Pollack 1992)

and Coq (Coq Development Team 2004). There are also impredicative constructive

set theories, such as Intuitionistic Zermelo-Fraenkel (IZF).

— Predicative classical mathematics. This was the approach taken by Weyl in his influ-

ential monograph Das Kontinuum (Weyl 1918). Stronger predicative classical systems

have been investigated by Feferman (Feferman 2005) and Schütte (Schütte 1965).

— Predicative constructive mathematics. Its foundations are provided, for example, by

Martin-Löf’s type theory (Nordström et al. 1990; Martin-Löf 1984), whose variants

are implemented in the proof assistants Agda (Agda 2008) and NuPRL (Constable
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et al. 1986). There are also predicative constructive set theories, such as Constructive

Zermelo-Fraenkel set theory (CZF).

One foundation may sometimes be an extension of another. For example, ZF is an

extension of IZF; that is, everything provable in IZF is provable in ZF. There can

also be translations between these systems. For example, the double negation translation

(Gödel 1933) is a translation from the classical system of Peano Arithmetic to the

intuitionistic system of Heyting Arithmetic.

The two choices listed above are by no means the only ones that must be considered

when designing a foundation. We must also consider: whether equality should be

intensional or extensional; which choice principles should be allowed; and so on. A

wide variety of mathematical foundations are in use today.

When beginning a pluralist formalisation, we must consider how the several different

formalisations involved can be captured by a family of formal systems in a manner that is

uniform enough for proof reuse to be practicable. As we have argued elsewhere (Adams

and Luo 2010), logic-enriched type theories are able to capture a remarkably wide range

of foundations very faithfully, and in a very uniform manner.

2.2. Proof reuse in logic-enriched type theories

In this paper, we shall present a method for proof reuse. Suppose we have two foundations

S and T , and a translation from S to T . When we are working in T , we want to be able

to reuse proof scripts formalising results in S .

Furthermore, we shall be greedy. We do not want to prove a lemma relating S and T ,

and then have to apply that lemma many times. We do not want to write a program that

will automatically translate an S-proof script into a T -proof script. We want to be able

to take an S-proof script and reuse it, immediately and without any modification, as a

T -proof script.

There are two particular situations that we wish to consider:

(1) We have two foundations S and T , and S is a subsystem of T . If we have shown that

S � α, then we can immediately make use of the fact that T � α. When formalising

a piece of mathematics that makes use of this sort of step, we wish to take a proof

script that formalises a proof of α in S , and use this script to provide us with a proof

of α when working in T .

(2) More generally, we have two foundations S and T , and a translation Φ:S → T ; that

is, a mapping from the language of S to the language of T such that if S � α, then

T � Φ(α). When formalising a piece of mathematics that makes use of this sort of

step, we wish to take a proof script that formalises a proof of α in S , and use this

script to provide us with a proof of Φ(α) when working in T .

Situation (1) is a special case of situation (2), where the translation Φ is the inclusion

from S to T .

We shall be working in this paper with logic-enriched type theories (LTTs). These are

systems of logic that consist of a type theory, which defines the mathematical objects we
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Fig. 1. Proof reuse between two LTTs

will be dealing with, and a separate logical component, for stating and proving propositions

about those objects.

In situation (1) above, we can sometimes arrange it so that LTTS , which represents

S , is a subsystem of the LTTT , which represents T . Suppose we have proof scripts MS

and MT that define LTTS and LTTT , respectively. If a proof script imports MS and

proves a theorem α, the proof script will still parse if we change it to import MT instead.

This idea was made use of in Adams and Luo (2010), where we proved several results

in the predicative LTTW , and were able to immediately reuse those proof scripts in an

impredicative LTT that extends LTTW .

However, such an approach is quite fragile as it depends on us using the same names

for constants in MS and MT . It is also not certain that we can always define LTTS and

LTTT in such a way that LTTS is a subsystem of LTTT . Moreover, this approach cannot

handle the more general situation (2) above.

The approach we present in this paper is as follows. Suppose we have a translation Φ

from LTTS to LTTT . Given proof scripts MS and MT that define LTTS and LTTT , we

shall construct a proof script MΦ that imports MT , and then defines every constant that

was declared in MS (see Figure 1).

A proof script Mα that imports MS will still parse if we change it to import MΦ instead.

Furthermore, we can write MΦ in such a way that if Mα provides a proof of α under MS ,

then it provides a proof of Φ(α) under MΦ.

We shall show in this paper how this can be done when LTTS is a subsystem of LTTT ,

and in three other cases: the double-negation translation from classical to intuitionistic
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logic; the A-translation from intuitionistic logic to itself; and the Russell–Prawitz modality

from first-order logic (classical or intuitionistic) to second-order logic.

3. A type-theoretic framework for pluralist formalisations

Our approach to pluralist formalisations is based on a uniform framework in which

mathematics with different foundations can be formalised, and the type-theoretic framework

of Logic-enriched Type Theories (LTTs) is particularly appropriate for this.

Logic-enriched type theories were first studied by Aczel and Gambino to investigate

type-theoretic interpretations of constructive set theory (Aczel and Gambino 2002;

Gambino and Aczel 2006). An LTT is a formal system consisting of a type-theoretic

component that provides types and terms, and a logical component that provides propos-

itions and proofs. The intention is that the types and terms describe the collection of

mathematical objects we are concerned with, and the logical component is used to reason

about those objects.

We shall present three logical frameworks in this section: LF, a Church-typed version

of Martin-Löf’s Logical Framework†; LF′, an extension of LF intended for represent-

ing an LTT; and LFLTT, an extension of LF intended for representing several LTTs

simultaneously.

The type-theoretic framework is a method of specifying LTTs within a logical framework.

The LTTs specifiable this way are capable of expressing a wide spectrum of foundations

for mathematics in a uniform way. It was first proposed in Luo (2006)‡, and in Adams

and Luo (2007; 2010) we studied one of the systems in this framework (viz. a logic-

enriched type theory LTTW that gives a modern type-theoretic version of Weyl’s system

for predicative mathematics) and used it to formalise Weyl’s predicative mathematics

(Weyl 1918) in the proof assistant Plastic.

In this section, we review the logical framework LF and its extension LF′. We will then

introduce the extension LFLTT, and describe how LFLTT may be used to specify LTTs.

We then present the type-theoretic framework, and give examples of logic-enriched type

theories that can be specified in the framework.

3.1. The logical framework LF

A logical framework, such as Martin-Löf’s logical framework (Nordström et al. 1990) and

its Church-typed version LF (Luo 1994), is a dependent type system, together with a

method for representing other formal systems within that type system.

† The framework LF should not be confused with the Edinburgh Logical Framework (Harper et al. 1987;

Harper et al. 1993), which, unfortunately, is also called LF. One of the main differences between LF and the

Edinburgh LF is that the former system is intended to be used to specify type theories, and hence allows

computation rules to be declared.
‡ LF has a variant called PAL+ (Luo 2003), where applications are fully applied or saturated. Luo (2006)

adopted the notations of PAL+, but this is not essential, and we shall use LF and the associated notations

in this paper.
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In the following, we introduce LF briefly and fix our notation – the full details of LF,

including its rules, can be found in Luo (1994, Chapter 9).

3.1.1. Basic constructions. The system LF deals with kinds and objects. The kinds are:

— Type, the kind of types.

— El(A), the kind of objects of type A.

— (x:K)K ′, the kind of dependent functional operations f, which can be applied to

any object k of kind K to form the application fk of kind [k/x]K ′.

We often omit El and write El(A) simply as A. We write K → K ′ for (x:K)K ′ when x

does not occur free in K ′.

When writing objects that are in the form of an application, we shall sometimes write

f(a1, ..., an) for fa1...an, and often use the infix form of binary operators: for instance, we

write A× B and P ∧ Q for ×(A,B) and ∧(P ,Q), respectively.

Two objects are definitionally equal in LF if they are βη-convertible.

The system LF is intended for specifying type theories that deal with types and terms.

The intention is that:

— The types are represented by the objects of kind Type.

— The terms of type A are represented by the objects of kind El(A).

— The objects of kind (x:K)K ′ represent meta-functions on the type theory’s syntax.

3.1.2. Specification of type theories. A type theory is specified in LF by declaring

constants, each with a kind, and computation rules. These declarations have the effect

of extending LF with additional rules (see Luo (1994) for the details).

Typically, a type in a type theory comes with its rules of formation, introduction,

elimination and computation. We represent this type in LF by declaring constants

corresponding to the formation, introduction and elimination rules, and declaring equality

rules corresponding to the computation rules.

For example, the type N of natural numbers can be specified as in Figure 2 where, for

instance, the introduction rule

Γ � n : N

Γ � succ(n) : N
is specified by means of the declaration of the constant succ.

In this way, LF can specify type theories that contain inductive and co-inductive types,

predicative and impredicative universes, inductive-recursive types, and other more exotic

types.

3.2. Logic-enriched type theories

The system LF is a suitable language for specifying type theories that deal with just two

kinds of entity: types and terms. There is a single kind Type of all the types in the type

theory.

If we wish to use a system to state and prove mathematical theorems, we must have some

way of introducing logical propositions. In a type theory, one may do this by identifying
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The formation rule for N

N : Type

The introduction rules for N (constructors)

0 : N

succ : (N)N

The elimination rule over types for N

ε

ε

N
T : ( C : (N)Type )

( c : C(0) ) ( f : (n:N)(x:C(n))C(succ(n)) )

( z : N ) C(z)

The computation rules for N

N
T

εN
T εN

T

(C, c, f, 0) = c : C(0)

(C, c, f, succ(n)) = f(n, (C, c, f,n)) : C(succ(n))

Fig. 2. The type of natural numbers.

propositions with types (for example, in Martin-Löf’s type theory, every proposition is a

type, and vice versa) or by taking propositions as types, but not vice versa (for example,

in ECC/UTT (Luo 1994), every proposition is a type, but not every type is a proposition).

However, if one takes the view that logical propositions and data types should be

completely separate, then one will wish to work in a different kind of system, and LF will

not be adequate for specifying this different kind of system.

Logic-enriched type theories (LTTs) (Gambino and Aczel 2006) are formal systems in

which there is a complete separation between (logical) propositions and (data) types. The

syntax of an LTT consists of four categories of expression: types, terms, propositions and

proofs (or derivations).

So an LTT falls naturally into two components, or ‘worlds’: the type-theoretic compon-

ent and the logical component. This allows a lot of flexibility in the design of an LTT, as we

can change one component without affecting the other (for example, we can add excluded

middle to the logical component without changing the type-theoretic component). This

makes LTTs suitable for capturing a wide range of different mathematical foundations.

The two components do, however, interact. The logical world may depend on the

type-theoretic world: for example, given an inductive type such as N or List(A), we may

choose to introduce a rule of deduction allowing propositions to be proved by induction

over N.

In order to specify an LTT adequately, an extension of LF is called for. This extended

logical framework is obtained by extending LF by adding a new kind Prop, which stands

for the world of logical propositions, and a new kind constructor Prf:

Γ valid

Γ � Prop kind

Γ � P : Prop

Γ � Prf(P ) kind

This extended framework was first proposed in Luo (2006) and further studied in Adams

and Luo (2010) and, in the latter paper, we called it LF ′.
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Conjunction

∧ : ( )( )

∧ : ( : )( : ) ( ( ))( ( )) ( ∧ )

∧ 1 : ( : )( : ) ( ( ∧ )) ( )

∧ 2 : ( : )( : ) ( ( ∧ )) ( )

Universal quantifier

∀ : ( : )( : ( ) )

∀ : ( : )( : ( ) ) (( : ) ( ( ))) (∀( ))

∀ : ( : )( : ( ) ) ( (∀( ))) ( : ) ( ( ))

Negation

¬ : ( )

: ( : ) ( (¬¬ )) ( )

... ... ...

Fig. 3. Logical operators and direct proofs in the classical FOL.

The intention is that:

— the types are represented by the objects of kind Type;

— the terms of type A are represented by the objects of kind El (A);

— the propositions are represented by the objects of kind Prop;

— the proofs of a proposition P are represented by the objects of kind Prf(P ).

An LTT is specified in LF ′ by declaring constants and computation rules. Each

declaration has the effect of extending LF ′ with new rules – see Adams and Luo (2010)

for the details.

3.2.1. Logics. The logic in an LTT is specified by declaring constants for the logical

operators and the associated rules.

For example, say we wish an LTT’s logical component to consist of classical first-

order logic. This can be introduced by declaring the constants that stand for the logical

operators, and constants that stand for the associated inference rules. The logical operators

∧, ∀ and ¬ and some of their associated rules of inference are specified in Figure 3. Other

logical operators can be introduced in a similar way.

3.2.2. Remarks.

(1) The quantifier ∀ declared here can only be used to quantify over a type; that is, for

a formula ∀(A, P ), or ∀x:A, P (x) in the usual notation, A must be a type.

In particular, since Prop is not a type (it is a kind), one cannot form a proposition

by quantifying over Prop. Higher-order logical quantification such as ∀X:Prop.X, as

found in impredicative type theories such as System F (Girard 1986) and the Calculus

of Constructions (Coquand and Huet 1988), is not possible with this constant.

Similarly, since propositions are not types (Prf(P ) is a kind, not a type), one cannot

quantify over the proofs of a proposition either.
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When designing an LTT, we can thus choose whether to allow first- or higher-order

quantification. This situation is in contrast with a type theory such as ECC or UTT

(Luo 1994), where it would not be possible to restrict quantification to the datatypes,

since Prop is a type and every proposition is a type.

(2) The negation operator is classical in that the classical double-negation rule holds, as

declared by the constant DN.

(3) An LTT is specified in the framework by not only specifying a collection of constants,

but also computation rules. Computation rules are needed in the type-theoretic

component for specifying inductive data types, universes, and so on. Computation

rules in the logical component are also sometimes needed – for example, they were

used in Adams and Luo (2010) in the specification of typed sets.

The ability to specify computation rules is the most important difference between the

Martin-Löf family of logical frameworks, including LF and LF ′, and the Edinburgh

LF (Harper et al. 1993).

(4) If we have introduced a universe that contains the empty type and the type of natural

numbers, we can then prove, internally in the type-theoretic framework, that Peano’s

fourth axiom for natural numbers holds (that is, the proposition ∀x:N.(s[x] �=N 0)

holds). This is similar to Martin-Löf’s type theory, where, in the absence of a type

universe, one cannot prove Peano’s fourth axiom internally (Smith 1988).

3.3. The type-theoretic framework

The type-theoretic framework is a method for specifying LTTs using a type system such

as LF′, and was introduced in Luo (2006). The LTTs specifiable in the type-theoretic

framework are all defined and specified in a uniform way, but should be capable

of expressing a wide range of different mathematical foundations. The type-theoretic

framework is thus especially suitable as the basis for a pluralist formalisation.

An LTT is specified within the type-theoretic framework by:

(1) Declaring a number of inductive types and inductive families of types.

Besides N, other examples of inductive types include lists, vectors, trees, ordinals,

dependent functions and dependent pairs. In general, inductive types can be generated

by inductive schemata as studied in, for example, Dybjer (1991), Coquard and Paulin-

Mohring (1990) and Luo (1994).

(2) Declaring a number of type universes, that is, types whose objects are (names of)

types.

For example, a universe U of ‘small types’ can be introduced as

U : Type and T : U → Type;

An inductive type may have names in U – for example, we can have nat as a name

of N in U:

nat : U and T (nat) = N : Type.

Notice that such a universe is predicative in the sense that it only contains types that

do not involve U itself. The general way of introducing predicative type universes can
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be found in Martin-Löf (1984). Impredicative universes, such as that of propositions

in UTT (Luo 1994, page 175), can also be specified in the type-theoretic framework.

(3) Declaring a number of logical connectives and their associated rules of deduction.

We may introduce some or all of the propositional connectives, first- or higher-order

quantifiers, and other logical connectives (such as equality). The rules of deduction

may be those of classical logic, constructive logic, minimal logic, and so on.

(4) Declaring one or more propositional universes (Adams and Luo 2010).

(5) Declaring the induction rules for each inductive data type.

An LTT may contain some data types, which are usually inductively defined, in

exactly the same way as inductive types are specified in LF (see Section 3.1). For each

inductive type in the LTT, there is an associated induction rule for proving properties

of the objects of that type.

For example, an LTT may contain the type N of natural numbers as specified in

Figure 2 in Section 3.1. Associated with N, there is an associated induction rule given

by the constant

EN
P : (P : (N)Prop)

(c : P (0))(f : (x:N)(P (x))P (succ(x)))

(n:N)P (n),

which expresses the following rule:

Γ � P : (N)Prop Γ � c : P (0) Γ � f : (x:N)(P (x))P (succ(x)) Γ � n : N

Γ � EN
P (P , c, f, n) : P (n)

Note that when read as a proof rule, this is just the rule of induction over natural

numbers.

Therefore, associated with each inductive type, there are two elimination operators:

ET and EP (for N, they are EN
T and EN

P ). Note that the elimination operator over

types, ET , has associated computation rules (for example, the computation rules for

EN
T in Figure 2), while the elimination operator over propositions, EP , does not†.

We may introduce rules for induction over the whole of Prop, as above, or over just

one propositional universe.

The induction rules connect the world of logical propositions (formally represented

by Prop) and that of the data types (formally represented by Type). Quantifications

over types allow one to form propositions to express logical properties of data, and

the induction rules to prove those properties.

(6) Introducing types of typed sets.

For each type A, we can introduce a type Set(A) of all sets of objects of type A.

This type’s canonical objects have the form {x:A | φ}, where φ is a proposition. This

allows us to introduce sets impredicatively (if φ can range over the whole of Prop),

† Whether the elimination operators over propositions have associated computation rules similar to those for

the elimination operators over types is optional. Including or excluding these computation rules will not

affect the type-theoretic component, since types and terms cannot depend on proofs, or which propositions

are provable.
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as in ordinary mathematics, or predicatively (if φ ranges only over a small universe

of propositions, as in predicative mathematics – see, for example, Feferman (2005)).

For further and formal details, see Luo (2006) and Adams and Luo (2010).

Such a notion of a typed set, together with the possibility of representing classical

first-order logic, allows us to formalise classical predicative mathematics in the type-

theoretic framework (Weyl 1918; Adams and Luo 2010), as well as impredicative

mathematics (cf. the discussion on mathematical pluralism in Section 2).

3.3.1. Remarks.

(1) Separation of propositions and types. The type-theoretic framework has an important

and salient feature: there is a clear separation between logical propositions and

data types. In Martin-Löf’s type theory, for example, types and propositions are

identified. The second author has argued, for instance in the development of ECC/UTT

(Luo 1994), that it is unnatural to identify logical propositions with data types, and

there should be a clear distinction between the two. This is part of the philosophy

behind the development of the type theories ECC and UTT, where data types are not

propositions, although logical propositions are types.

Logic-enriched type theories, and hence our framework as presented in this paper,

have gone one step further (in comparison with ECC/UTT), since there is a complete

separation between propositions and types. Logical propositions or their totality Prop

are not regarded as types. This has led to a more flexible treatment of logics in the

framework.

(2) Consistency and adequacy. The consistency of an LTT formulated along the lines

suggested above can be shown either by a direct proof (Goguen 1994) or by an

indirect mapping between the LTT concerned and a known consistent type system.

For example, in Luo (2006), we map an LTT called LTT1 (classical FOL plus inductive

types) to MLTTe, an extension of Martin-Löf’s type theory with excluded middle. We

show that LTT1 is consistent relative to MLTTe.

Such a relative consistency proof raises an interesting question: if Martin-Löf’s type

theory extended with excluded middle is consistent, why use an LTT at all? Why not

just use MLTTe? One reason is that the meaning theory of type theory relies on the

property of canonicity: that every object reduces to a canonical object. This allows us

to provide a meaning theory in which an inductive type is understood as consisting of

its canonical objects (for example, the type of natural numbers consists of zero and

its successors).

The LTTs in the type-theoretic framework possess the property of canonicity, thanks

to the clear distinction between logical propositions and data types. The system

MLTTe does not, since in MLTTe, every inductive type contains infinitely many non-

canonical objects. Hence the type-theoretic framework provides an adequate treatment

of classical reasoning on the one hand, and a clean meaning-theoretic understanding

of inductive types on the other.
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3.4. Working with more than one LTT

We are concerned in this paper with formalisations that involve more than one LTT. We

must therefore extend the logical framework yet again.

If we wish to declare two LTTs simultaneously, called LTT1 and LTT2, say, we need the

logical framework to possess the following kinds, in addition to the dependent product

kinds of the form (x:K)K ′:

Type1, El1 (k) , Prop1, Prf1(k)

Type2, El2 (k) , Prop2, Prf2(k)

with the following rules of deduction:

Γ valid

Γ � Type1kind

Γ � A:Type1

Γ � El1 (A) kind

Γ valid

Γ � Prop1kind

Γ � P :Prop1

Γ � Prf1(P )kind

Γ valid

Γ � Type2kind

Γ � A:Type2

Γ � El2 (A) kind

Γ valid

Γ � Prop2kind

Γ � P :Prop2

Γ � Prf2(P )kind

In the framework augmented with these kinds:

— The objects of kind Typei represent the types of LTTi.

— The objects of kind Eli (A) represent the terms of LTTi.

— The objects of kind Propi represent the propositions of LTTi.

— The objects of kind Prfi(A) represent the proofs of LTTi.

The constants and computation rules in the declaration of LTT1 will therefore involve

only the kinds Type1, El1 (A), Prop1 and Prf1(A), and the product kinds built up from

them. When we are working in LTT1, we use only these kinds. Likewise, when declaring

or working in LTT2, we use only the kinds Type2, El2 (A), Prop2, Prf2(A), and the product

kinds built from them.

3.4.1. Logical framework LFLTT. We wish to give the user the ability to declare arbitrarily

many pairs (K,C) consisting of a topkind K and a kind constructor C .

The effect of declaring the pair (K,C) is to extend the logical framework with the

following rules of deduction:

Γ valid

Γ � Kkind

Γ � k:K
Γ � C(k)kind

Γ � k = k′:K

Γ � C(k) = C(k′)

In the above example, we would declare the pairs

(Type1, El1), (Type2, El2), (Prop1, P rf1), (Prop2, P rf2).

Note that we no longer need the kinds Type, El (A), Prop and Prf(P ) as part of the

primitive syntax, so we remove them, though the user can reintroduce them if needed by

declaring the topkind pairs (Type,El) and (Prop,Prf).

We call this new framework LFLTT. In summary: LFLTT is the framework LF, with the

kinds Type and El(k) removed, and with the ability to declare pairs (K,C) added.

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 02 Jul 2011 IP address: 78.146.69.119

R. Adams and Z. Luo 926

3.5. Implementation

The proof assistant Plastic was first implement by Callaghan as an implementation of LF

(Callaghan and Luo 2001). It was extended to an implementation of LF ′, and used in

the work to formalise Weyl’s predicative mathematics using the type-theoretic framework

(Adams and Luo 2007; 2010).

Plastic allows the user:

— to declare constants with commands such as c:K by [c:K];

— to define constants with commands such as [c= · · · :K];

— to construct objects using tactics such as Intros and Refine.

The user may also declare computation rules of a certain form. Plastic automatically

generates the constants and computation rules for inductive types, but logical connectives,

induction rules, universes and computation rules in the logical component must be entered

by hand.

For the work described in this paper, the first author is extending Plastic further to

include an implementation of LFLTT. The user may now declare a top-kind and constructor

(K,C) by entering the command Topkind K C;

We shall describe the Plastic implementations of several LTTs in Section 5, and then

show how they are used in studying pluralist formalisations and proof reuse.

4. Our approach to pluralist formalisations

Our approach to pluralist formalisations is based on the concept of a translation.

Definition 4.1 (Translation). A translation Φ from an LTT S to an LTT T is a mapping

from the expressions of S to the expressions of T such that:

— If A is a type of S , then Φ(A) is a type of T .

— If M is a term of type A in S , then Φ(M) is a term of type Φ(A) in T .

— If P is a proposition of S , then Φ(P ) is a proposition of T .

— If H is a proof of P in S , then Φ(H) is a proof of Φ(P ) in T .

Suppose we have a translation Φ from S to T . If α is a theorem of S , then Φ(α) is a

theorem of T . We wish to find a way to take a formalisation of a proof of α in S , and

use that proof script, without any modification, as a proof of Φ(α) in T .

Our approach is as follows (see Figure 1). Let MS and MT be two proof scripts that

declare the constants and rules of deduction of S and T , respectively. Let Mα be a proof

script that imports MS , and proves the theorem α.

We construct a proof script Mφ that imports MT , and then defines every symbol that

was declared as a constant in MS . If MS contains a constant declaration c:K , then MT

must define c to be an object of kind K . If MS declares the computation rule M = N,

then we must ensure that M and N are convertible under the definitions in MT .

If both these conditions are met, we know that the proof script Mα will parse if we

import Mφ instead of MS . We give the name Mφ(α) to the proof script with this small

change made (see Figure 1).
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LTT1 LTT2

Topkind Prop1 Prf1 Topkind Prop2 Prf2

not : Prop1 → Prop1 neg : Prop2 → Prop2

notI : ( :Prop1)(Prf1( ) → Prf1( )) negI : ( :Prop2)(Prf2( ) → Prf2( ))

→ (Prf1( ) → Prf1(∼ )) → (Prf2( ) → Prf2(¬ ))

→ Prf1(∼ ) → Prf2(¬ )

notnotE : ( :Prop1)Prf1(∼∼ ) → Prf1( ) negnegE : ( :Prop2)Prf2(¬¬ ) → Prf2( )

imp : Prop1 → Prop1 → Prop1 or : Prop2 → Prop2 → Prop2

impI : ( :Prop1)(Prf1( ) → Prf1( )) orIl : ( :Prop2)Prf2( ) → Prf2( ∨ )

→ Prf1 ⊃ orIr : ( :Prop2)Prf2( ) → Prf2( ∨ )

impE : ( :Prop1)Prf1( ⊃ ) orE : ( :Prop2)(Prf2( ) → Prf2( ))

→ Prf1( ) → Prf1( ) → (Prf2( ) → Prf2( ))

→ Prf2( ∨ ) → Prf2( )

Fig. 4. The logical components of LTT1 and LTT2

Example 4.2. Let LTT1 be an LTT whose logical component consists of classical propos-

itional logic with negation not and implication imp. Let LTT2 be an LTT whose logical

component consists of classical propositional logic with negation neg and disjunction or

(see Figure 4). We shall write

∼ φ for not φ

φ ⊃ ψ for imp φ ψ

¬φ for neg φ

φ ∨ ψ for or φ ψ.

It is known that implication can be defined in terms of disjunction and negation in

classical logic. This fact can be used to define a translation from LTT1 to LTT2:

[[∼ φ]] ≡ ¬ [[φ]] [[φ ⊃ ψ]] ≡ ¬ [[φ]] ∨ [[ψ]] .

Let M1 and M2 be two proof scripts that consist of the constant declarations given in

Figure 4 for LTT1 and LTT2, respectively. We now wish to write a proof script MΦ that

imports M2, and then defines every constant that was declared in M1.

The proof script Mφ begins as follows:

import M2;

[Prop1 = Prop2];

[Prf1 = Prf2];

[not = neg];

[notI = negI];

[notnotE = negnegE];
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We must now define imp. The definition is guided by (1) above:

[imp = [p, q:Prop1] ∼ p ∨ q];

And we must define objects impI and impE that have kinds

impI : (p, q:Prop1)(Prf1(p) → Prf1(q)) → Prf1(p ⊃ q)

impE : (p, q:Prop1)Prf1(p ⊃ q) → Prf1(p) → Prf1(q),

that is,

impI : (p, q:Prop2)(Prf2(p) → Prf2(q)) → Prf2(∼ p ∨ q)
impE : (p, q:Prop2)Prf2(∼ p ∨ q) → Prf2(p) → Prf2(q).

It is straightforward to construct these objects using a proof assistant like Plastic.

Now, suppose we have formalised a proof of the proposition α in LTT2. That is, suppose

we have a proof script that imports M2, and then constructs an object of kind Prf2(α).

If we change the script so that it imports MΦ instead, we know that the script will still

parse, and that the script will now be a proof of [[α]] in LTT2.

For example, suppose a script imports M2, which constructs an object of kind

(p:Prop2)Prf2(p ⊃ p).

We now change the script to import MΦ instead. Under the definitions in MΦ, we have

(p:Prop2)Prf2(p ⊃ p) = (p:Prop1)Prf1(∼ p ∨ p),

so the script now constructs an object of kind (p:Prop1)Prf1(∼ p ∨ p). This is exactly as

required, since [[φ ⊃ φ]] ≡∼ [[φ]] ∨ [[φ]].

4.1. Remarks

(1) Note that the construction of the module MΦ can be seen in one sense as a

formalisation of the metatheorem that [[ ]] is sound, that is, it maps theorems to

theorems.

(2) Note that a translation between two LTTs may involve changing the logical world

(as in the examples in Sections 5.2–5.4 below), the datatype world (for example, the

inclusion from LTTW to LTTI considered in Adams and Luo (2010)), or both.

5. Case studies in formalisation

In this section we describe several case studies in the use of this method of proof reuse

that we have carried out using the proof assistant Plastic. The source code for these

examples is available at http://www.cs.rhul.ac.uk/~robin/pluralism.

5.1. Classical and intuitionistic LTTs

For these examples, we shall assume that we have two LTTs: a classical LTT, called

LTTclass, and an intuitionistic LTT, called LTTint. We assume that these two LTTs have
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the same type-theoretic component. The logical component of LTTclass is first-order

classical logic with the connectives eqC, notC, andC, orC, impC, allC and exC. The logical

component of LTTint is first-order intuitionistic logic with the connectives eqI, notI,

andI, orI, impI, allI and exI.

We write:

M =C N for eqC A M N

¬Cφ for notC φ

φ ∧C ψ for andC φ ψ

φ ∨C ψ for orC φ ψ

φ ⊃C ψ for impC φ ψ

∀Cx:A.φ for allC A [x:A]φ

∃Cx:A.φ for exC A [x:A]φ.

Similarly, we write M =I N for eqI A M N, and so on.

We have two proof scripts: MC , which declares the constants and computation rules

of LTTclass, and MI , which declares the constants and computation rules of LTTint. Some

of the declarations are given in Figure 5. Note that, apart from the different names for

the constants, the only difference between the two scripts is the inclusion of ¬C¬CE

in MC .

We shall omit the subscripts C and I when there is no risk of confusion.

5.2. Inclusion

If an LTT L1 is a subsystem of the LTT L2, we can easily reuse proof scripts from L1 as

proof scripts in L2. The mapping Φ here is the inclusion mapping.

For example, LTTint is a subsystem of LTTclass. We can easily write a module MItoC

that describes the inclusion mapping:

import MC

[TypeI = TypeC];

[ElI = ElC];

[PropI = PropC];

[PrfI = PrfC];

[notI = notC];

[notII = notCI];

[orI = orC];
...

Any code that parses under MC will also parse under MItoC .
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Topkind Type El Topkind Type El

Topkind Prop Prf Topkind Prop Prf

eqC : ( :Type ) → → Prop eqI : ( :Type ) → → Prop

eqCI : ( :Type )( : )Prf ( = ) eqII : ( :Type )( : )Prf ( = )

eqCE : ( :Type )( : → Prop ) eqIE : ( :Type )( : → Prop )

( : ) ( : )

Prf ( = ) → Prf ( ) → Prf ( = ) → Prf ( ) →
Prf ( ) Prf ( )

notC : Prop → Prop notI : Prop → Prop

notCI : ( :Prop ) notII : ( :Prop )

(Prf ( ) → Prf ( )) → (Prf ( ) → Prf ( )) →
(Prf ( ) → Prf (¬ )) → (Prf ( ) → Prf (¬ )) →
Prf (¬ ) Prf (¬ )

notnotCE : ( :Prop )Prf (¬ ¬ ) →
Prf ( )

orC : Prop → Prop → Prop orI : Prop → Prop → Prop

orCIl : ( :Prop )Prf ( ) → orIIl : ( :Prop )Prf ( ) →
Prf ( ∨ ) Prf ( ∨ )

orCIr : ( :Prop )Prf ( ) → orIIr : ( :Prop )Prf ( ) →
Prf ( ∨ ) Prf ( ∨ )

orCE : ( :Prop ) orIE : ( :Prop )

(Prf ( ) → Prf ( )) → (Prf ( ) → Prf ( )) →
(Prf ( ) → Prf ( )) → (Prf ( ) → Prf ( )) →
Prf ( ∨ ) → Prf ( ) Prf ( ∨ ) → Prf ( )

Fig. 5. The partial scripts that declare LTTclass and LTTint

This form of proof reuse was used in the formalisation of Weyl’s predicative foundation

of mathematics (Adams and Luo 2010). That formalisation involved two LTTs: the

predicative LTTW and an impredicative extension. We defined the real numbers in LTTW,

then proved in LTTW the theorem that every set of rationals bounded above has a (real)

least upper bound, and then reused that proof to prove in the impredicative LTT that

every set of reals bounded above has a least upper bound.

5.3. The double negation translation

The double negation translation, or Gödel–Gentzen negative translation (Gödel 1933), is a

mapping from classical logic to intuitionistic logic. That is, it is a mapping that transforms

a first-order formula φ into a first-order formula φ¬¬, such that if φ is a theorem of

classical logic then φ¬¬ is a theorem of intuitionistic logic.
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The mapping is defined as follows:

α¬¬ ≡ ¬¬α (α atomic)

(¬φ)¬¬ ≡ ¬φ¬¬

(φ ∧ ψ)¬¬ ≡ φ¬¬ ∧ ψ¬¬

(φ ∨ ψ)¬¬ ≡ ¬(¬φ¬¬ ∧ ¬ψ¬¬)

(φ → ψ)¬¬ ≡ φ¬¬ → ψ¬¬

(∀xφ)¬¬ ≡ ∀xφ¬¬

(∃xφ)¬¬ ≡ ¬∀x¬φ¬¬.

To prove the soundness of the double negation translation, the most important step is

the following lemma, which is proved by induction on φ.

Lemma 5.1. For any formula φ, the formula φ¬¬ is stable, that is, ¬¬φ¬¬ ⊃ φ¬¬ is

provable in intuitionistic logic.

It is then quite straightforward to prove, by induction on the derivation of φ, that if φ

is provable in classical logic, then φ¬¬ is provable in intuitionistic logic. We wish to write

a proof script MDN that imports MI and then defines every constant that was declared

in MC .

5.3.1. First attempt. For our first attempt, we simply define

[TypeC = TypeI];

[ElC = ElI];

[PropC = PropI];

[PrfC = PrfI];

and then define eqC, notC, and so on, as follows:

[eqC = [A:TypeC] [a, b:A] ¬I¬I(a =I b)];

[notC = notI];

[orC = [p, q:PropC] ¬I(¬Ip ∧I ¬Iq)];
...

This module ‘maps’ formulas of LTTclass to their double-negation translation, in the

sense that an expression that denotes an proposition φ in LTTclass will expand, under

these definitions, to an expression that denotes φ¬¬ in LTTint. For example, the expression

P ∨C ¬CP expands under the above definitions to ¬I (¬IP ∧I ¬I¬IP ).

However, this script will not work as the kind of orCE is then (omitting the PrfIs)

(P ,Q, R:PropI )(P → R) → (Q → R) → ¬(¬P ∧ ¬Q) → R,

and this kind is uninhabited in LTTint.
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This is because the corresponding deduction rule

¬(¬φ ∧ ¬ψ)

[φ]
···
χ

[ψ]
···
χ

χ

is not admissible in intuitionistic logic.

Looking at the proof of soundness, we see that we somehow need to use the fact that

φ¬¬ is always stable (Lemma 5.1). This gives us the idea for our second and successful

attempt.

5.3.2. Second attempt. We must not map PropC to the kind of all propositions, but rather

to the kind of all stable propositions. Ideally, we would like to write

PropC = Σp:PropI .PrfI (¬I¬Ip ⊃I p).

However, LFLTT does not have these Σ-kinds at present.

One option would be to extend LFLTT with Σ-kinds, or some similar feature. This is an

option that the authors intend to explore in the future.

As an alternative, we instead declare in MDN the kind PropC , the constructor PrfC , and

the following introduction, elimination and computation rules:

[PropCI:(p:PropI)PrfI(¬I¬Ip ⊃I p) → PropC];

[PI1:PropC → PropI];

[PI2:(p:PropC)PrfI(¬I¬I(PI1 p) ⊃I PI1 p)];

[PI1(PropCI p f) = p];

[PrfCI:(p:PropC)PrfI(PI1 p) → PrfC(p)];

[PrfCE:(p:PropC)PrfC(p) → PrfI(PI1 p)];

The constructor PrfC is defined as follows:

[PrfC = [p:PropC] PrfI(PI1 p)];

We can now proceed to define the constants of MC . The connective ∨C , for example,

must now be defined as a binary function on this ‘Sigma-kind’:

orC : PropC → PropC → PropC

(p, f) ∨C (q, g) ≡ (¬I (¬Ip ∧I ¬Iq), h)

where h is a proof that ¬I (¬Ip ∧I ¬Iq) is stable.

Written out in full, we have

orC = [p, q:PropC] PropCI (¬I (¬I (PI1 p) ∧I ¬I (PI1 q)) · · ·

where · · · elides a proof of

¬¬¬(¬(PI1 p) ∧ ¬(PI1 q)) ⊃ ¬(¬(PI1 p) ∧ ¬(PI1 q)).
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The kind of orCE expands under the above definitions to

(P ,Q, R:PropC)(PrfI (P1) → PrfI (R1)) → (PrfI (Q1) → PrfI (R1)) →
PrfI (¬I (¬IP1 ∧I ¬IQ1)) → PrfI (R1),

which is inhabited. The inhabitant we construct makes use of R2:PrfI (¬I¬IR1 ⊃I R1).

It is possible to define every constant in MC in this fashion, and any module that

imports MC will parse if it is changed to import MDN instead. We have:

— If an expression denotes a proposition φ under MC , then under MDN it denotes a pair

consisting of φ¬¬ and a proof that φ¬¬ is stable.

— If an expression denotes a proof P of φ under MC (that is, P :PrfC(φ)), then under

MDN it denotes a proof of φ¬¬.

5.3.3. Application. As an application of this work, we can show that if LTTint is consistent,

then LTTclass is consistent. Suppose we had a proof script that imports MC , and then

constructs an object of type PrfC (⊥C ). Then the same proof script could import MDN

instead, in which case it would construct an object of type PrfI (⊥I ).

5.4. The A-translation

The A-translation (Friedman 1978) is a mapping from intuitionistic logic to intuitionistic

logic. We fix a formula A, and then define the formula φA for every formula φ as follows:

PA ≡ P ∨ A (P atomic)

(¬φ)A ≡ φA ⊃ A

(φ ∗ ψ)A ≡ φA ∗ ψA (∗ ≡ ∧,∨,⊃)

(Qxφ)A ≡ QxφA (Q ≡ ∀, ∃)

This translation is sound: if φ is a theorem of an intuitionistic theory T , then so is

φA (Friedman 1978). The following lemma is the important lemma in the proof of this

theorem.

Lemma 5.2. For any formula φ, we have � A → φA.

We can make use of the A-translation for proof reuse as follows (we write two copies

of a script that defines LTTint, say MI and M ′
I ):

MI M ′
I

Topkind PropI PrfI Topkind Prop′
I Prf′

I

eqI : (A:TypeI )A → A → PropI eqI′ : (A:Type′
I )A → A → Prop′

I

notI : PropI → PropI notI′ : Prop′
I → Prop′

I

andI : PropI → PropI → PropI andI′ : Prop′
I → Prop′

I → Prop′
I

...
...
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We construct our module MA defining the A-translation as follows. We assume that MI

has been imported and an object A:PropI has been defined. We now define every constant

declared in M ′
I . The constant Prop′

I is defined to be the kind of all propositions φ:PropI
such that A ⊃ φ. Again, we would like to write

Prop′
I = Σp:PropI .PrfI (A ⊃I p)

Prf′
I (φ, f) = PrfI (φ)

a =′
I b = (a =I b ∨I A, · · · )

¬′
I (φ, f) = (φ ⊃I A, · · · )

(φ, f) ∨′
I (ψ, g) = (φ ∨I ψ, · · · )

...

But as LFLTT does not have Σ-kinds, we instead declare the kind Prop′
I , the constructor

Prf′
I and the following constants:

Prop′
I I : (p:PropI )PrfI (A ⊃I p) → Prop′

I

P I1 : Prop′
I I → PropI

P I2 : (p:Prop′
I )PrfI (A ⊃I P I1 p)

PrfI2Prf′
I : (p:PropI )(f:PrfI (A ⊃I p))Prf′

I (Prop′
I I p f) → PrfI (p)

Prf′
I2PrfI : (p:PropI )(f:PrfI (A ⊃I p))PrfI (p) → Prf′

I (Prop′
I I p f)

a =′
I b = Prop′

I I(a =I b ∨I A)(· · · )
¬′
Ip = Prop′

I I(PI1 p ⊃I A)(· · · )
p ∨′

I q = Prop′
I I(PI1 p ∨I P I1 q)(· · · )

together with the computation rule

PI1(Prop′
I I p f) = p:PropI .

Now any proof script beginning

import M ′
I ;

will also parse if we replace this line with

import MI ;

[A = · · · : PropI];

import MA;

As an application of the A-translation, we can show that Markov’s law is admissible

for quantifier-free formulas.

Theorem 5.3. Let T be an intuitionistic theory. If T � ¬¬∃xφ, where φ is quantifier-free

(possibly with free variables other than x), then T � ∃xφ.

Proof. Let A ≡ ∃xφ. If T � ¬¬∃xφ, then, by the soundness of the A-translation,

T � (∃xφA → A) → A.
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It is now easy to show that φA � φ∨A and φ∨A � φA for φ quantifier-free. Thus, we have

T � (∃x(φ∨A) → A) → A . But we have ∃xφ → A and ∃xA → A, so T � ∃x(φ∨A) → A,

and thus T � A, that is, T � ∃xφ.

We can make use of this result as follows: given any proof of ¬′
I¬′

I∃xφ under M ′
I , we

can obtain a proof of ∃xφ under MI .

Suppose we have a proof script Mα that imports M ′
I and proves ¬¬∃xφ:

import M ′
I

...

[P′ = · · · :Prop′
I];

Claim H:PrfI′ (¬′
I¬′

I∃′
Ix:T.P

′x);

Proof
...

Qed

Then we can produce a proof script that imports MI and proves ∃xφ:

import MI ;
...

[P = · · · :PropI];

[A = ∃Ix:T.Px];
import Mα;

Claim K:PrfI(∃Ix:T.Px);
Proof
...

Qed

In this script, the line defining P (line 3) is the result of replacing ∧I ′ with ∧I , and ∨I ′

with ∨I , and so on, in line 6.

The proof K makes use of H , which is now a proof of ((∃Ix:T .(Px ∨I A)) ⊃I A) ⊃I A.

5.4.1. Remark. It is unsatisfactory to have to work in two copies of LTTint, and to have

separate definitions of P and P ′. We would like to be able to take a script that proves

¬¬∃xPx in LTTint and produce a script that proves ∃xPx in LTTint. This requires a more

sophisticated module mechanism than the one that currently exists in Plastic.

5.5. The Russell–Prawitz modality

The following mapping from a first-order language to a second-order language was

first introduced in Russell (1903) and was named the Russell–Prawitz modality by Aczel
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(Aczel 2001):

[[P ]] ≡ P (P atomic)

[[¬φ]] ≡ ∀p. [[φ]] ⊃ p

[[φ ∧ ψ]] ≡ ∀p. [[φ]] ⊃ [[ψ]] ⊃ p

[[φ ∨ ψ]] ≡ ∀p.([[φ]] ⊃ p) ⊃ ([[ψ]] ⊃ p) ⊃ p

[[φ ⊃ ψ]] ≡ [[φ]] ⊃ [[ψ]]

[[∀xφ]] ≡ ∀x [[φ]]

[[∃xφ]] ≡ ∀p.(∀x [[φ]] ⊃ p) ⊃ p

It is easy to turn this mapping into a mapping between two LTTs, which can then be

handled by our method.

Let LTT1 be a first-order LTT with connectives not1, and1, or1, imp1, all1 and ex1.

Let LTT2 be a second-order LTT with connective imp2, a first-order quantifier

all2:(A:Type2)(A → Prop2) → Prop2

and a second-order quantifier

All2:(Prop2 → Prop2) → Prop2.

We write

φ ⊃2 ψ for imp2 φ ψ

∀2x:A.φ for all2 A [x:A]φ

∀2p:Prop2.φ for All2 [p:Prop2]φ.

Let M1 and M2 be two proof scripts that declare these two LTTs.

We can write a module MRP that imports M2, and then defines every constant declared

in M1:

Type1 = Type2

Prop1 = Prop2

Prf1 = Prf2

not1 = [p:Prop1]∀q:Prop2.p ⊃2 q

and1 = [p, q:Prop1]∀r:Prop2.p ⊃2 q ⊃2 r

or1 = [p, q:Prop1]∀r:Prop2.(p ⊃2 r) ⊃2 (q ⊃2 r) ⊃2 r

imp1 = imp2

all1 = all2

ex1 = [A:Type1][P :A → Prop1]∀2p:Prop2.(∀2x:A.Px ⊃2 p) ⊃2 p.

Thus, our method of proof reuse can be applied to the Russell–Prawitz modality.
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5.6. Other applications

The formalisation examples discussed in this paper have all concentrated on translations

that redefine the logical connectives, while leaving the world of data types unchanged.

As we mentioned above (cf. the remark at the end of Section 4), the LTT-approach to

reuse also allows the possibility of changing the world of data types in formalisations.

An example of this would be to reuse the results in the formalisation of predicative

mathematics in the formalisation of impredicative mathematics – this is studied in Adams

and Luo (2010).

There could be further applications, such as:

(1) Translations that redefine the type constructors.

For example, there is a translation from System T to System F described in Girard et

al. (1990):

[[Bool]] = ΠX.X → X → X

[[Nat]] = ΠX.X → (X → X) → X

[[A → B]] = [[A]] → [[B]]

[[A× B]] = ΠX.([[A]] → [[B]] → X) → X.

Our method of proof reuse can be applied in this case. The module declaring System

T will declare constants

Bool : Type

Nat : Type → :Type → Type → Type

× : Type → Type → Type.

The module MΦ will redefine these constants.

(2) If we have two first-order systems S and T , and every axiom of S is a theorem of T ,

then every theorem of S is a theorem of T .

Our method of proof reuse can be applied in this case. For each axiom α of S , the

module MS will contain a constant declaration cα:Prf(α). The corresponding line in

MΦ will be a proof of α in T .

However, it appears that our method cannot handle interpretations between first-order

theories. An interpretation (in the sense of Shoenfield (1967)) between S and T maps

(for example) a unary function symbol f of S to a formula φ[x, y] of T such that

T � ∀x∃!yφ[x, y].

This does not fit into the pattern of the translations above, and there is no obvious

way to adapt our method to this situation without changing the theories themselves

(for example, by adding a unique choice operator).

6. Conclusions

We have demonstrated an original method for proof reuse when conducting formalisations

that make use of more than one LTT. For some translations Φ between an LTT S and an
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LTT T it is possible to write a module MΦ such that, if a proof script imports MS and

proves α, then changing the script to import MΦ will give a proof of Φ(α) in T .

The case studies we have discussed in this paper are all about the logical components.

As we have pointed out in various places in the paper, it is possible to consider translations

that change the data type parts (for example, to change from predicative mathematics to

impredicative mathematics). We expect further development in this respect, with further

case studies investigating how such non-logical changes can be made and used in practice.

This method should be quite general, and applicable to work in type theories and other

systems of logic. However, if one wishes to formalise a large piece of mathematics that

involves proving results in several different foundations, then LTTs would seem to be

particularly suitable, as they allow for a uniform presentation and treatment of a wide

range of different foundations.

For future work, we wish to formalise one such piece of mathematics using Plastic and

this method of proof reuse.

6.1. Related work

There has been considerable work on proof reuse in recent years. For the most part,

this work has concentrated on the problem of allowing users of different proof assistants

to share one another’s work. This is a different problem to the one we consider in this

paper, which is how to formalise a piece of mathematics that involves several different

foundations. Nevertheless, the two lines of research should be able to benefit from one

another.

6.1.1. Logosphere. The large project Logosphere, which was initiated by Schürmann,

Pfenning, Kohlhase and Owre, aims to build a large library of formalised proofs that

users of many different proof assistants can all contribute to and make use of. It does

this by representing the many different systems, and the translations between them, in the

Edinburgh LF. In particular, Howe’s translation from HOL to NuPRL (Howe 1996; 1998)

has been formalised and verified to be correct using the proof assistant Twelf (Schürmann

and Stehr 2006).

The representation of HOL in ELF consists of a type tp:type to represent the types

of HOL, together with a function tm:tp → type to represent the terms of each type. The

representation of Nuprl consists of a type n − tm:type to represent the terms of Nuprl.

The translation Φ is then represented by two functions

transtp : tp → n − tm → type

transtm : tm A → n − tm → type

with transtp A B being inhabited if and only if Φ(A) = B. Twelf is able to verify that

transtp and transtm are total functions that satisfy the desired properties.

Their approach is thus intended to be used to translate between two systems imple-

mented in two different proof checkers, using a logical framework implemented in a third.

Our approach is intended to be used by someone using just one proof checker, which

implements a logical framework.
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The most important difference is that they represent the translation as a pair of objects

in the logical framework, and formally verify its correctness. We do not represent the

translation as an object. Instead, it is effected by replacing a set of declarations with a set

of definitions.

It remains to be seen how the two approaches compare in practice. However, we

anticipate that our approach should be more convenient for a pluralist formalisation, as

there is less overhead for the user. The translations are invisible to the user. Given a

translation Φ:S → T , when the user is working in T , there is no need for them to invoke

Φ in order to make use of the results proved in S . A change in the proof scripts produced

in S will produce an immediate change in the theorems that are visible to the user and

available for use in T .

6.1.2. Little theories. The proof assistant IMPS is designed to use the little theories

methodology (Farmer 2000), whereby a number of different theories and translations

between them are specified using a version of higher-order logic called LUTINS (Farmer

et al. 1990). A translation from one theory T1 to another T2 is specified by a mapping

from the constants of T1 to the expressions of T2 satisfying certain conditions, such that

the translation of every axiom of T1 is a theorem of T2.

The LTTs we have been dealing with in this paper have a richer type structure than the

theories that can be specified in LUTINS. Our LTTs include dependent types, inductive

types and computation rules. Apart from this difference, the class of translations that can

be handled by the two methods is remarkably similar.

However, IMPS required support for translations to be built into the implementation.

We have shown in this paper that, when working with a logical framework, a lightweight

mechanism for supporting these translations is automatically available for free.

The work that has been done in IMPS shows how useful it can be to work with a

variety of theories and translations in the course of a formalisation. We hope that the

programme of research proposed in this paper will prove that this is also true when we

are working in LTTs.

6.1.3. Other methods of proof reuse. The method of proof reuse between different systems

of logic presented in this paper is, to the best of the authors’ knowledge, original.

Previous work on proof reuse in dependent type theories has concentrated on proof

reuse within a single type theory in the following situations:

(1) Given an isomorphism between types A and B, to automatically generate proofs about

B from proofs about A (Beckert and Klebanov 2004).

(2) Given an inductive type A and an inductive type B formed by extending A with

new constructors, to reuse proofs about A to interactively generate proofs about B

(Boite 2004).

(3) The project LATIN (Iancu and Rabe 2011) has similar aims to Logosphere.

(4) Garillot and Gonthier’s method of mathematical components (Garillot et al. 2009) is a

disciplined way of systematically organising the development of large formalisations

involving many algebraic structures, in such a way that (for example) results about

groups can be applied to rings. This is not the same problem as the one considered
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in this paper, which involves translations between systems that involve changing both

the type structure and the logic. Nevertheless, there are superficial similarities, and it

remains to be seen if the two methods have anything to offer each other.

6.2. Future work

Plastic currently has a very primitive module mechanism, which, nevertheless, was sufficient

for the work in this paper. However, the method we have presented relies on editing proof

scripts to change the files they import, which is very inconvenient in practice.

A more sophisticated module system that allowed parameterised modules would make

this form of proof reuse much more convenient. We would like to implement such a

module mechanism in Plastic in future work.

We would also like to establish a better theoretical basis for this type of work. We would

like to establish some criteria for when a translation can be represented by a module

using our method. We would like to study the theory of modules, module interfaces and

module functors described above. The result will likely be very similar to the theory

of institutions (Goguen and Burstall 1984), since there are many superficial similarities.

However, institutions are not exactly what we need, since institutions are a model-theoretic

notion, whereas we require a syntactic notion.
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Martin-Löf, P. (1984) Intuitionistic Type Theory, Bibliopolis.

Muzalewski, M. (1993) An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels.

Nipkow, T., Paulson, L. C. and Wenzel, M. (2002) Isabelle/HOL: a proof assistant for higher-order

logic. Springer-Verlag Lecture Notes in Computer Science 2283.

Nordström, B., Petersson, K. and Smith, J. (1990) Programming in Martin-Löf’s Type Theory: An
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