
Dependent Event Types

Zhaohui Luo1(B) and Sergei Soloviev2

1 Royal Holloway, University of London, Egham, Surrey, UK
zhaohui.luo@hotmail.co.uk

2 IRIT, Toulouse, France
Sergei.Soloviev@irit.fr

Abstract. This paper studies how dependent types can be employed
for a refined treatment of event types, offering a nice improvement to
Davidson’s event semantics. We consider dependent event types indexed
by thematic roles and illustrate how, in the presence of refined event
types, subtyping plays an essential role in semantic interpretations. We
consider two extensions with dependent event types: first, the extension
of Church’s simple type theory as employed in Montague semantics that
is familiar with many linguistic semanticists and, secondly, the extension
of a modern type theory as employed in MTT-semantics. The former
uses subsumptive subtyping, while the latter uses coercive subtyping,
to capture the subtyping relationships between dependent event types.
Both of these extensions have nice meta-theoretic properties such as
normalisation and logical consistency; in particular, we shall show that
the former can be faithfully embedded into the latter and hence has
expected meta-theoretic properties. As an example of applications, it is
shown that dependent event types give a natural solution to the incom-
patibility problem (sometimes called the event quantification problem)
in combining event semantics with the traditional compositional seman-
tics, both in the Montagovian setting with the simple type theory and
in the setting of MTT-semantics.

1 Introduction

The event semantics, whose study was initiated by Davidson [6] and further
studied in its neo-Davidsonian turn (see [17] among others), has several notable
advantages including Davidson’s original motive to provide a satisfactory seman-
tics for adverbial modifications. Dependent types, as those found in Modern Type
Theories such as Martin-Löf’s type theory [15] and UTT [11], provide a useful
tool in formalising event types and a nice treatment of the event semantics.

In this paper, we shall study event types that may depend on thematic roles
such as agents and patients of the events. For example, we can consider the type

Z. Luo—Partially supported by EU COST Action CA15123 and CAS/SAFEA Inter-
national Partnership Program.
S. Soloviev—Also an associated researcher at ITMO Univ, St. Petersburg, Russia.
Partially supported by EU COST Action CA15123 and Russian Federation Grant
074-U01.

c© Springer-Verlag GmbH Germany 2017
J. Kennedy and R.J.G.B. de Queiroz (Eds.): WoLLIC 2017, LNCS 10388, pp. 216–228, 2017.
DOI: 10.1007/978-3-662-55386-2 15

zhaohui.luo@hotmail.co.uk

Dependent Event Types 217

EvtAP (a, p) of events whose agent and patient are a and p, respectively. We shall
investigate subtyping relations between event types which include dependent
types such as EvtAP (a, p) and the non-dependent type Event of all events (the
latter is found in the traditional setting). For example, it may be natural to have
EvtAP (a, p) ≤ EvtA(a), that is, the type of events with agent a and patient p

is a subtype of that with agent a. With such subtyping relations in place, the
semantics of verb phrases can now take the usual non-dependent types, as in the
traditional setting, although dependent event types are considered.

It is shown that such dependent event types give a natural solution to the
incompatibility problem in combining event semantics with the traditional Mon-
tague semantics [2,20] (sometimes called the event quantification problem [7]).
When introducing events into formal semantics, one faces a problem, which is
long-standing and has seemed intractable: it comes from the issue of scopes for
two kinds of quantifiers – the existential quantifier over an event variable and
the other quantifiers such as one that arises from a quantificational noun phrase
(see Sect. 5 for examples). It is in general expected that the correct semantics
is obtained when the event quantifier takes the lower scope, but the problem is
that, even when the event quantifier takes a wider scope, which would give an
incorrect semantics, the resulting semantic formula is still well-formed formally.
This has led to many proposals such as that considered by Champollion [2] or
the related Scope Domain Principle proposed by Landman [9], but all of them
are rather ad hoc. Dependent event types will solve this problem: they give a
solution where the correct semantics are accepted while the incorrect ones are
excluded by typing because they would be ill-typed and hence formally illegal.

Dependent event types (DETs) were first considered in an example in [1] to
study linguistic coercions in formal semantics, where types of events are indexed
by their agents: Evt(h) is the type of events conducted by h : Human. In this
paper, we shall study event types dependent on thematic roles in event semantics
both in the traditional Montague semantics [16] and in formal semantics in
modern type theories (MTT-semantics, for short) [4,13,18]. For the former, we
extend Church’s simple type theory [5], as employed in Montague semantics
that is familiar with many linguistic semanticists, by means of dependent event
types, resulting in the system Ce, where the subtyping relationships between
DETs are captured by subsumptive subtyping. For the latter, we extend an
MTT (in particular, the type theory UTT [11]) with DETs whose subtyping
relationships are reflected by coercive subtyping [12,14], resulting in the type
system UTT[E]. Both of these extensions have nice meta-theoretic properties
such as normalisation and logical consistency; in particular, we shall show that
Ce can be faithfully embedded into UTT[E] and hence has desirable properties.

The rest of the paper is organised as follows. In Sect. 2, we shall describe the
basics of DETs, introducing notations and examples. Subtyping between event
types is described in Sect. 3, where we show, for example, how VPs can take the
traditional non-dependent type, while we consider DETs. The formal systems Ce

and UTT [E] and the embedding of Ce in UTT[E] are studied in Sect. 4. Section 5
considers the solution of the event quantification problem by means of DETs:

zhaohui.luo@hotmail.co.uk

218 Z. Luo and S. Soloviev

Sect. 5.1 shows examples in the Montagovian setting and Sect. 5.2 considers it in
MTT-semantics. The concluding section briefly discusses the future work.

2 Dependent Event Types

In the Davidsonian event semantics in the traditional Montagovian setting [6,17],
there is only one type Event of all events. For example, the sentence (1) is
interpreted as (2):

(1) John kissed Mary passionately.
(2) ∃e : Event. kiss(e) & agent(e, j) & patient(e,m) & passionate(e)

where in (2), Event is the type of all events, kiss, passionate : Event → t
are predicates over events, and agent, patient : Event → e → t are relations
between events and entities.1 Please note that, in the above neo-Davidson’s
semantics (2), adverbial modifications and thematic role relations are all propo-
sitional conjuncts in parallel with the verb description, an advantageous point
as compared with an interpretation without events.

We propose to consider refined types of events. Rather than a single type
Event of events, we introduce types of events that are dependent on some para-
meters. For instance, an event type can be dependent on agents and patients.
Let Agent and Patient be the types of agents and patients, respectively. Then,
for a : Agent and p : Patient, the dependent type

EvtAP (a, p)

is the type of events whose agents are a and whose patients are p. With such
dependent event types, the above sentence (1) can now be interpreted as:2

(3) ∃e : EvtAP (j,m). kiss(e) & passionate(e)

Note that, besides other things we are going to explain below, we do not need
to consider the relations agent and patient as found in (2) because they can
now be ‘recovered’ from typing. For example, for a : Agent and p : Patient, we

1 In logical formulas or lambda-expressions, people often omit the type
labels of events and entities: for example, (2) would just be written as
∃e. kiss(e) & agent(e, j) & patient(e, m) & passionate(e), since traditionally there
are only one type of events and one type of entities; we shall put in the type labels
explicitly. Another note on notations is: e and t in boldface stand for the type of
entities and the type of truth values, respectively, as in MG, while e and t not in
boldface stand for different things (for example, e would usually be used as a variable
of an event type).

2 Please note here that, for kiss(e) and passionate(e) to be well-typed, the type of
event e must be the same as the domain of kiss and passionate – see the next section
about subtyping, which allows them to be well-typed.

zhaohui.luo@hotmail.co.uk

Dependent Event Types 219

can define functions agentAP [a, p] and patientAP [a, p] such that, for any event
e : EvtAP (a, p), agentAP [a, p](e) = a and patientAP [a, p](e) = p.3

The parameters of dependent event types are usually names of thematic roles
such as agents and patients. Formally, the dependent event types are parame-
terised by objects of types A1, . . . , An. Event types with n parameters are called
n-ary event types. In this paper, we shall only consider n-ary event types with
n = 0, 1, 2:

– When n = 0, the event type, usually written as Event, has no parameters.
Event corresponds to the type of all events in the traditional setting.

– When n = 1, we only consider EvtA(a) and EvtP (p), where a : Agent and
p : Patient; i.e., these are event types dependent on agents a and those depen-
dent on patients p. For example, if John is an agent with interpretation j,
EvtA(j) is the type of events whose agents are John.

– When n = 2, we only consider EvtAP (a, p) for a : Agent and p : Patient, i.e.,
the event type dependent on agent a and patients p. For example, if agent
John and patient Mary, EvtAP (j,m) is the type of events whose agents and
patients are John and Mary, respectively (cf., the example (3) above).

Introducing dependent event types has several advantages. In this paper, we
shall detail one of them, that is, it gives a natural solution to the event quantifi-
cation problem – see Sect. 5. Before doing that, we shall first consider in Sect. 3
the subtyping relationship between event types which, among other things, sim-
plifies the semantic interpretations of VPs in the semantics with dependent event
types, and then in Sect. 4 the formal systems that underlie the proposed semantic
treatments and their meta-theoretic properties.

3 Subtyping Between Event Types

Event types have natural subtyping relationships between them. For example, an
event whose agent is a and patient is p is an event with agent a. In other words,
for a : Agent and p : Patient, the type EvtAP (a, p) is a subtype of EvtA(a). If
we only consider the event types Event, EvtA(a), EvtP (p) and EvtAP (a, p) (cf.,
the last section), they have the following subtypnig relationships:

EvtAP (a, p) ≤ EvtA(a) ≤ Event

EvtAP (a, p) ≤ EvtP (p) ≤ Event

which can be depicted as Fig. 1.
Formally, the subtyping relationship obeys the following rule (called sub-

sumption rule):

(∗)
a : A A ≤ B

a : B

3 Formally, we have agentAP [a, p] = λe : EvtAP (a, p).a, of type EvtAP (a, p) →

Agent. Usually we simply write, for example, agentAP (e) for agentAP [a, p](e).

zhaohui.luo@hotmail.co.uk

220 Z. Luo and S. Soloviev

EvtAP (a, p)

EvtA(a)

EvtP (p)

Event

≤

≤

≤

≤

Fig. 1. Subtyping between event types with a : Agent and p : Patient.

It is also reflexive and transitive. The underlying type theory for formal seman-
tics can be extended by dependent event types together with the subtyping
relations. The underlying type theory can either be the simple type theory [5] in
the Montagovian semantics or a Modern Type Theory such as UTT [11] in MTT-
semantics as considered in, for example, [13]. If the former, extending it with
dependent event types results in the formal system Ce with subsumptive sub-
typing, and if the latter, the resulting theory is UTT[E] with coercive subtyping
whose basic coercion relationships in E characterise the subtyping relationships
between event types (see Sect. 4 for more details).4

The incorporation of subtyping between event types is not only natural but
plays an essential role in semantic interpretations. This can best be explained
by considering how verb phrases are interpreted. In the neo-Davidson’s event
semantics (with only Event as the type of events), a verb phrase is interpreted
as a predicate over events, as the following example shows.

(4) talk : Event → t.
(5) John talked loudly.
(6) ∃e : Event. talk(e) & loud(e) & agent(e, j)

With dependent event types such as EvtA(j), how can we interpret talk and
(5)? In analogy, the desired semantics of (5) would be (7), where the agent of
the event e can be obtained as agentA(e) = j:

(7) ∃e : EvtA(j). talk(e) & loud(e)

However, if talk is of type Event → t, talk(e) would be ill-typed since e is of
type EvtA(j), not of type Event. Is (7) well-typed? The answer is, if we do
not have subtyping, it is not. But, if we have subtyping as described above,
it is! To elaborate, because e : EvtA(j) ≤ Event, talk(e) is well-typed by the
subsumption rule (∗). Similarly, we have loud : Event → t and, therefore, loud(e)
is well-typed for e : EvtA(j) ≤ Event as well.

To summarise, the subtyping relations have greatly simplified the event
semantics in the presence of refined dependent event types.

4 It may be worth mentioning that, in the setting of MTT-semantics, coercive sub-
typing [12,14] is used and, for uniformity, we may adopt coercive subtyping rather
than subsumptive subtyping, although in general subsumptive subtyping is simpler.

zhaohui.luo@hotmail.co.uk

Dependent Event Types 221

Remark 1. The subtyping relations also facilitate a natural relationship between
the functions such as agentAP and agentA (see Sect. 2 and Footnote 3).
For example, because of the subtyping relations as depicted in Fig. 1, for
e : EvtAP (a, p) ≤ EvtA(a), we have, by definition: agentAP [a, p](e) =
agentA[a](e) = a.

4 The Underlying Systems Ce and UTT[E]

In this section, we describe the formal systems Ce and UTT[E]: Ce extends the
simple type theory [5] and UTT[E] extends the modern type theory UTT [11],
both with dependent event types and their subtyping relationships as informally
described in Sects. 2 and 3.5 Ce is the underlying type theory when we consider
formal semantics in the traditional Montagovian setting (as familiar by most of
the linguistic semanticists) and UTT[E] when we consider formal semantics in a
modern type theory (see, for example, [4,13]). We also outline the construction
of an embedding of Ce into UTT[E] that shows that, like UTT[E], Ce has nice
meta-theoretic properties such as normalisation and logical consistency.6

4.1 The Types System Ce

We shall first explain what a context is and what a judgement is in the system
Ce, and then describe the rules of Ce.

Contexts. A context is a sequence of entries either of the form x : A or of the
form P true. Informally, the former assumes that the variable x be of type A

and the latter that the proposition P be true. Only valid contexts are legal and
context validity is governed by the following rules:

〈〉 valid

Γ ⊢ A type x 	∈ FV (Γ)

Γ, x : A valid

Γ ⊢ P : t

Γ, P true valid

where 〈〉 is the empty sequence and FV (Γ) is the set of free variables in Γ defined
as: (1) FV (〈〉) = ∅; (2) FV (Γ, x : A) = FV (Γ) ∪ {x}; (3) FV (Γ, P true) =
FV (Γ).

Judgements. Judgements are sentences in Ce, whose correctness are governed
by the inference rules below. In Ce, there are five forms of judgements:

– Γ valid, which means that Γ is a valid context (the rules of deriving context
validity are given above).

5 A notational remark: in Ce, C stands for ‘Church’ and e for ‘event’. The notation
UTT[E] comes from the work of coercive subtyping (see, for example, [14]) where
T[C] denotes type theory T extended by coercive subtyping whose basic subtyping
are given as the set C of subtyping judgements.

6 This section is rather formal and, for a reader less interested in formal matters, its
details might be safely skipped if one wishes so.

zhaohui.luo@hotmail.co.uk

222 Z. Luo and S. Soloviev

Γ valid

Γ e type

Γ valid

Γ t type

Γ, x:A, Γ valid

Γ, x:A, Γ x : A

Γ, P true, Γ valid

Γ, P true, Γ P true

Γ A type Γ B type

Γ A → B type

Γ, x:A b : B x FV (B)

Γ λx:A.b : A → B

Γ f : A → B Γ a : A

Γ f(a) : B

Γ P : t Γ Q : t

Γ P ⊃ Q : t

Γ, P true Q true

Γ P ⊃ Q true

Γ P ⊃ Q true Γ P true

Γ Q true

Γ A type Γ, x:A P : t

Γ ∀(A, x.P) : t

Γ, x:A P true

Γ ∀(A, x.P) true

Γ (A, x.P [x]) true Γ a : A

Γ P [a] true

Fig. 2. Rules for Church’s STT.

– Γ ⊢ A type, which means that A is a type under context Γ .
– Γ ⊢ a : A, which means that a is an object of type A under context Γ .
– Γ ⊢ P true, which means that P is a true proposition under context Γ .
– Γ ⊢ A ≤ B, which means that A is a subtype of B under context Γ .

Inference Rules. The inference rules for Ce consist of:

1. Rules for context validity (the three rules above);
2. Figure 2: the rules for Church’s simple type theory including those for (1)

the basic types e and t of entities and truth values, (2) function types with
β-conversion ((λx : A.b[x])(a) ≃ b[a]), and (3) logical formulas7; and

3. Figure 3: the rules for dependent event types including those for (1) dependent
event types and (2) their subtyping relations, and (3) general subtyping rules
including subsumption.

Some explanations of the rules are in order:

– In the λ-rule in Fig. 2, we have added a side condition x 	∈ FV (B), i.e.,
x does not occur free in B. This is necessary because we have dependent
event types like EvtA(a): for example, we need to forbid to derive Γ ⊢ (λx :
Agent.λe : EvtA(x).e) : Agent → EvtA(x) → EvtA(x) from Γ, x : Agent ⊢
(λe : EvtA(x).e) : EvtA(x) → EvtA(x), where in the former judgement, x

in Agent → EvtA(x) → EvtA(x) would be a free variable that has not been
declared in Γ . Note that, in Church’s formulation [5], the side condition is not
needed because, there, there are no dependent types (and x does not occur
free in B for sure).

– In the rules in Fig. 3, since all of the judgements have the same contexts, we
have omitted the contexts. For example, the first rule in its third row should
have been, if written in full:

Γ ⊢ a : Agent Γ ⊢ p : Patient

Γ ⊢ EvtAP (a, p) ≤ EvtA(a)

7 We only consider the intuitionistic ⊃ and ∀ here, omitting other operators including,
in particular, those about, e.g. negation/classical logic in [5]. Also, we shall not
assume extensionality.

zhaohui.luo@hotmail.co.uk

Dependent Event Types 223

Agent type Patient type

Event type

a : Agent

EvtA(a) type

p : Patient

EvtP (p) type

a : Agent p : Patient

EvtAP (a, p) type

a : Agent p : Patient

EvtAP (a, p) ≤ EvtA(a)

a : Agent p : Patient

EvtAP (a, p) ≤ EvtP (p)

a : Agent

EvtA(a) ≤ Event

p : Patient

EvtP (p) ≤ Event

A type

A ≤ A

A ≤ B B ≤ C

A ≤ C

A ≤ A B ≤ B

A → B ≤ A → B

A B

A ≤ B

a : A A ≤ B

a : B

Fig. 3. Rules for dependent event types.

4.2 The Type System UTT[E]

The type theory UTT (Chap. 9 of [11]) is a dependent type theory with induc-
tive types, type universes and higher-order logic. UTT is a typical Modern Type
Theory (MTT) as employed in MTT-semantics [4,13] (actually, it is the MTT
the first author and colleagues have employed in developing MTT-semantics).
Its meta-theory was studied in the Ph.D. thesis by Goguen [8]. Coercive subtyp-
ing [12,14] has been developed by the authors and colleagues for modern type
theories such as Martin-Löf’s type theory and UTT.

Besides the type constructors in UTT as described in [11], UTT[E] has the
following constant types and constant type families for dependent event types:

– Entity : Type

– Agent, Patient : Type.
– Event : Type,

EvtA : (Agent)Type,
EvtP : (Patient)Type, and
EvtAP : (Agent)(Patient)Type.

The coercive subtyping relations in UTT[E] are given by subtyping judge-
ments in E: they specify the subtyping relationships between dependent event
types by means of the following parameterised constant coercions ci (i = 1, . . . , 4)
in E, where a : Agent and p : Patient:

EvtAP (a, p) ≤c1[a,p] EvtA(a), EvtAP (a, p) ≤c2[a,p] EvtP (p),

EvtA(a) ≤c3[a] Event, EvtP (p) ≤c4[p] Event,

The coercions also satisfy the coherence condition c3[a]◦ c1[a, p] = c4[p]◦ c2[a, p].

zhaohui.luo@hotmail.co.uk

224 Z. Luo and S. Soloviev

Based on the study in [14,21], it is straightforward to show that UTT[E] is
a well-behaved extension of UTT and hence preserves its nice meta-theoretic
properties, including Church-Rosser, subject reduction, strong normalisation,
and logical consistency.

Remark 2. As mentioned above, UTT[E] underlies the development of MTT-
semantics by the first author and colleagues [4,13]. In the recent trend of using
rich type theories in formal semantics (see, for example, some of the papers
in [3]), the development of MTT-semantics provides a full-blown alternative to
the traditional Montague semantics with many advantages and has its further
potentials to be developed in the future. It is worth remarking that UTT[E]
underlies the event semantics in dependent type theories (or MTT-semantics
with events) which contain, in particular, dependent event types.

4.3 Embedding of Ce into UTT[E]

In this subsection, we show that Ce can be faithfully embedded into UTT[E] and
hence has nice meta-theoretic properties. The embedding of Ce into UTT[E] is
defined as follows and it is faithful as the theorem below shows.

Definition 1 (embedding). The embedding [[]] from Ce to UTT[E] is induc-
tively defined as follows:8

1. Constant types and dependent event types:
– [[e]]Γ = Entity.
– [[t]]Γ = Prop.

For the other constant types and dependent event types, they are mapped to the
‘same’ types in UTT[E], since we have overloaded their names. For example,
– [[Agent]] = Agent

– [[EvtA(a)]] = EvtA([[a]])
2. Non-constant terms:

– [[x]]Γ = x

– [[A → B]]Γ = [[A]]Γ → [[B]]Γ
– [[λx : A.b]]Γ = λ([[A]]Γ , T, [x : [[A]]Γ] [[b]]Γ,x:A), if [[Γ, x : A]] ⊢ [[b]]Γ,x:A : T

– [[f(a)]]Γ = app(S, T, [[f]]Γ , [[a]]Γ), if [[Γ]] ⊢ [[f]]Γ : S → T and [[Γ]] ⊢
[[a]]Γ : S0, where [[Γ]] ⊢ S0 ≤ S

– [[P ⊃ Q]]Γ = [[P]]Γ ⊃ [[Q]]Γ
– [[∀(A, x.P)]]Γ = ∀([[A]]Γ , [x : [[A]]Γ]. [[P]]Γ,x:A)

3. Contexts:
– [[〈〉]] = 〈〉 (the empty context in UTT[E])
– [[Γ, x : A]] = [[Γ]], x : [[A]]Γ

8 Formally, this is a partial function – it is only defined when certain conditions hold.
The embedding theorem shows that the embedding is total for well-typed terms.
Also, a notional note: we shall use S and T to stand for types in UTT[E] where
function types are special cases of Π-types: for any types S and T , S → T = Π(S,

[: S]T).

zhaohui.luo@hotmail.co.uk

Dependent Event Types 225

– [[Γ, P true]] = [[Γ]], x : Prf([[P]]Γ), where x does not occur free in [[Γ]].

The following theorem shows that the embedding is well-defined and faithful
(in the sense of the theorem) and hence Ce has nice meta-theoretic properties
(the corollary). Its proof is based on the embedding of Church’s simple type
theory into the calculus of constructions [10]. We omit the discussion of technical
details, for otherwise we would have to detail the syntax and rules of UTT and
coercive subtyping [11,14], except remarking that a key reason that the proof
goes through is because the coercions to model subtyping for dependent event
types are constants and coherent (see Sect. 4.2) and hence model subsumptive
subtyping in Ce faithfully.

Theorem 2 (faithfulness). The embedding in Definition 1 is defined for every
well-typed term in Ce and, furthermore, we have:

1. If Γ valid in Ce, then [[Γ]] valid in UTT[E].
2. If Γ ⊢ A type in Ce, then [[Γ]] ⊢ [[A]] : Type in UTT[E].
3. If Γ ⊢ a : A in Ce, then in UTT[E], [[Γ]] ⊢ [[a]] : T for some T such that

[[Γ]] ⊢ T ≤d [[A]] for some d.
4. If Γ ⊢ P true in Ce, then [[Γ]] ⊢ p : Prf([[P]]) for some p in UTT[E].
5. If Γ ⊢ A ≤ B in Ce, then [[Γ]] ⊢ [[A]] ≤c [[B]] for some unique c in UTT[E].

Corollary 3. Ce inherits nice meta-theoretic properties from UTT[E], including
strong normalisation and logical consistency.

Remark 3. Instead of the embedding method we have described here, one may
consider a more direct approach to metatheory of Ce by directly showing that it
has nice properties such as Church-Rosser and strong normalisation (as suggested
by an anonymous reviewer). However, we think the above is simpler, which is
of course a subjective view, and also demonstrates a generic approach to such
meta-theoretic studies.

5 Event Quantification Problem

It is known that, when considering (neo-)Davidsonian event semantics where
existential quantifiers for event variables are introduced, there is a problem in
dealing with the scopes of the quantifiers when other quantificational phrases are
involved. It has been argued that there is some incompatibility between event
semantics and the traditional compositional semantics [2,20]. De Groote and
Winter [7] have called this as the event quantification problem (EQP for short).

Consider the following sentence (8) which, under the traditional event seman-
tics with bark : Event → t, could have two possible interpretations (9) and (10),
where (10) is incorrect.

(8) No dog barks.
(9) ¬∃x : e. dog(x) & ∃e : Event. bark(e) & agent(e, x)

(10) (#) ∃e : Event. ¬∃x : e. dog(x) & bark(e) & agent(e, x)

zhaohui.luo@hotmail.co.uk

226 Z. Luo and S. Soloviev

Formally, the incorrect interpretation is acceptable just as the correct one: (10)
is a legal formula. In order to avoid such incorrect interpretations as (10), people
have made several proposals (see, for example, [2,20]) which involve, for instance,
consideration of quantification not over events but over sets of events [2], or some
informal (and somewhat ad hoc) principles whose adherence would disallow the
incorrect interpretations (see, for example, the related Scope Domain Principle
proposed by Landman [9]).

We shall study this with dependent event types as informally studied in
Sects. 2 and 3, both in the Montagovian setting (i.e., in Ce as described in
Sect. 4.1) and in the MTT-semantics (i.e., in UTT[E] as described in Sect. 4.2).
It is shown that, with dependent event types, the incorrect semantics are blocked
as illegal since they are ill-typed.

5.1 EQP in Montague Semantics with Dependent Event Types

In the Montagovian setting with dependent event types (formally, Ce in
Sect. 4.1), this problem is solved naturally and formally – the incorrect semantic
interpretations are excluded because they are ill-typed (in the empty context,
where semantic interpretations of whole sentences like (8) are considered).

For example, (8) will be interpreted as (11), while the ‘incorrect’ interpre-
tation (12) is not available (the formula (12) is ill-typed because x in EvtA(x),
outside the scope of second/bound x (although intuitively it refers to it), is a
free variable without being declared.)

(11) ¬∃x : e. (dog(x) & ∃e : EvtA(x). bark(e))
(12) (#) ∃e : EvtA(x). ¬∃x : e. dog(x) & bark(e)

This offers a natural solution to the event quantification problem. Compared
with existing solutions with informal ad hoc principles such as those mentioned
above, our solution comes naturally as a ‘side effect’ of introducing dependent
event types: it is formally disciplined and natural.

5.2 EQP in MTT-semantics with Dependent Event Types

In this paper, we have focussed on extending the traditional Montague semantics
with dependent event types (formally, Ce), since the simple type theory is what
the most semanticists are familiar with. One can also extend the MTT-semantics
[4,13] with dependent event types (formally, UTT[E], if we use UTT for MTT-
semantics) and hence consider such refined event semantics in the setting of
MTT-semantics. Here, we give an example to show how this is done.

Still consider the sentence (8): No dog barks. In the MTT-semantics, where
CNs are interpreted as types (rather than predicates), the verb bark is given a
dependent type as its semantics:

(13) bark : Πx : Dog. EvtA(x) → Prop

It is also the case that the correct semantics (14) for (8) is legal (well-typed),
while the incorrect one (15) is not:

zhaohui.luo@hotmail.co.uk

Dependent Event Types 227

(14) ¬∃x : Dog. ∃e : EvtA(x). bark(x, e)
(15) (#) ∃e : EvtA(x). ¬∃x : Dog. bark(x, e)

Note that (15) is ill-typed for two reasons now: the first x is a variable not
assumed anywhere and the term bark(x, e) is ill-typed as well.

Employing dependent event types in the Montagovian semantics (i.e., in Ce

as described in Sect. 4.1), would still leave a small possibility of some formally
legal but incorrect semantics. For instance, one might consider the following
semantics for (8):

(16) (#) ∃e : Event. ¬∃x : e. dog(x) & bark(e)

Note that, although (16) is incorrect, it is still well-typed because e is just
an event, not an event with x as agent.9 This, however, would not happen in the
MTT-semantic setting where the type of the verb bark is the dependent type
(13) and the following semantic sentence is ill-typed:

(17) (#) ∃e : Event. ¬∃x : Dog. bark(x, e),

because bark(x, e) is not well-typed (it requires e to be of type EvtA(x), not just
of type Event).

6 Conclusion

In this paper, we have introduced dependent event types for formal semantics.
Subtyping is shown to play an essential role in this setting. We have also consid-
ered how dependent event types naturally solve the event quantification problem
in combining event semantics with the traditional compositional semantics.

The notion of event types as studied in this paper is intensional, rather than
extensional. For instance, when considering inverse verb pairs such as buy and
sell, one may think that the events in (18) and (19) are the same [19].

(18) John bought the book from Mary.
(19) Mary sold the book to John.

If one considers this from the angle of extensionality/intensionality, the buying
event and the selling event in the above situation are extensionally the same,
but intensionally different. More generally, this is related to how to understand
the sameness of events in the setting with dependent event types. Work need be
done to study event structures and relevant inference patterns.

Another interesting research topic is to study whether all thematic roles
should be considered as parameters of dependent event types. Unlike agents and
patients, some thematic roles considered in the literature may not be suitable
to play the role of indexing dependent event types. In such cases, we would still
propose that they should be formalised by means of logical predicates/relations.
In the other direction, event types may depend on other entities other than
thematic roles and further studies are called for to understand this better.
9 Of course, one can argue that this is not intended since the agent is known, but

formally, nothing prevents one from doing it.

zhaohui.luo@hotmail.co.uk

228 Z. Luo and S. Soloviev

Acknowledgement. Thanks go to Stergios Chatzikyriakidis, David Corfield, Koji
Mineshima and Christian Retoré for helpful comments on this work.

References

1. Asher, N., Luo, Z.: Formalisation of coercions in lexical semantics. In: Sinn und
Bedeutung, vol. 17, Paris (2012)

2. Champollion, L.: The interaction of compositional semantics and event semantics.
Linguist. Philos. 38, 31–66 (2015)

3. Chatzikyriakidis, S., Luo, Z. (eds.): Modern Perspectives in Type-Theoretical
Semantics. Springer, Heidelberg (2017)

4. Chatzikyriakidis, S., Luo, Z.: Formal Semantics in Modern Type Theories.
ISTE/Wiley (2018, to appear)

5. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(1), 56–68
(1940)

6. Davidson, D.: The logical form of action sentences. In: Rothstein, S. (ed.) The
Logic of Decision and Action. University of Pittsburgh Press, Pittsburgh (1967)

7. de Groote, P., Winter, Y.: A type-logical account of quantification in event seman-
tics. In: Logic and Engineering of Natural Language Semantics, vol. 11 (2014)

8. Goguen, H.: A typed operational semantics for type theory. Ph.D. thesis, University
of Edinburgh (1994)

9. Landman, F.: Plurality. In: Lappin, S. (ed.) The Handbook of Contemporary
Semantic Theory (1996)

10. Luo, Z.: A problem of adequacy: conservativity of calculus of constructions over
higher-order logic. Technical report, LFCS report series ECS-LFCS-90-121, Depart-
ment of Computer Science, University of Edinburgh (1990)

11. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, Oxford (1994)

12. Luo, Z.: Coercive subtyping in type theory. In: Dalen, D., Bezem, M. (eds.) CSL
1996. LNCS, vol. 1258, pp. 275–296. Springer, Heidelberg (1997). doi:10.1007/
3-540-63172-0 45

13. Luo, Z.: Formal semantics in modern type theories with coercive subtyping. Lin-
guist. Philos. 35(6), 491–513 (2012)

14. Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: theory and implementation. Inf.
Comput. 223, 18–42 (2012)

15. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Berkeley (1984)
16. Montague, R.: Formal Philosophy. Yale University Press, New Haven (1974). Col-

lected papers Ed. by R. Thomason
17. Parsons, T.: Events in the Semantics of English. MIT Press, Cambridge (1990)
18. Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)
19. Williams, A.: Arguments in Syntax and Semantics. Cambridge University Press,

Cambridge (2015)
20. Winter, Y., Zwarts, J.: Event semantics and abstract categorial grammar. In:

Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 2011. LNCS
(LNAI), vol. 6878, pp. 174–191. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23211-4 11

21. Xue, T.: Theory and implementation of coercive subtyping. Ph.D. thesis, Royal
Holloway, University of London (2013)

zhaohui.luo@hotmail.co.uk

