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Abstract

The idea of coercive subtyping, a theory of abbreviation for dependent type theories, is

incorporated into the polymorphic type system in functional programming languages.

The traditional type system with let-polymorphism is extended with argument coercions

and function coercions, and a corresponding type inference algorithm is presented and

proved to be sound and complete.

1. Introduction

The Hindley-Milner let-polymorphic type system (the HM system for short) (Damas
and Milner 1982; Damas 1985; Milner 1978) is the standard core of the modern typed
functional programming languages such as ML (Milner, Tofts and Harper 1990), Haskell
(Peyton-Jones 2003), OCaml (Leroy 2000) and Clean (Brus et al. 1987). Ever since the
notion of principal type was studied ((Hindley 1969) for the simply-typed λ-calculus
and (Milner 1978) for the HM system), it has gained tremendous popularity. Various
extensions to the HM system have also been proposed in order to enrich a programming
language with new and more powerful features. These include, for example, Haskell’s class
mechanism (Peyton-Jones, Jones and Meijer 1997), which provides convenient overload-
ing facilities among other things.

Coercive subtyping (Luo 1997; Luo 1999) is a theory of abbreviation developed in
the setting of dependent type theories with inductive types such as Martin-Löf’s type
theory (Nordström, Petersson and Smith 1990; Martin-Löf 1984) and UTT (Luo 1994),
where coercions are regarded as an abbreviation mechanism which has shown great ex-
pressiveness in various applications of formalisation and proof development. Coercion
mechanisms have been implemented and effectively used in several type theory based
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proof assistants such as Coq (Säıbi 1997), Lego (Bailey 1999) and Plastic (Callaghan
and Luo 2001).

In this paper, we incorporate the idea of coercive subtyping into the Hindley-Milner
type system. There are several motivations in studying the possible combination of coer-
cive subtyping and polymorphic typing systems. First, it leads to a novel and disciplined
approach that increases the power of the HM system with new abbreviation mechanisms,
which we believe would be useful in gaining a better understanding of the introduction
and use of abbreviation mechanisms in typed programming. Secondly, coercive subtyping
provides a clean and simple theory for abbreviation in dependent type theories. Incorpo-
rating its ideas into traditional polymorphic type systems may lead to simple theoretical
development of the more powerful facilities (e.g., overloading) found useful in program-
ming. Thirdly, not the least important, studying coercions in polymorphic type systems
meets with new challenges, partly because that type uniqueness simply does not hold
in a polymorphic system, while it was one of the key features of the type systems for
which coercive subtyping has been considered so far. Such a study may be viewed as a
precursor to that of the more general combination of dependent types and polymorphic
types.

We present an extension of the HM typing system with coercions. In particular, we con-
sider two kinds of coercions – argument coercions and function coercions. The argument
coercions are inserted to make the arguments of a function have the types needed for
correct typing, while the function coercions make terms in function positions into those
with correct types. Both of them are abbreviation mechanisms that enable omissions of
parts of a term to improve readability etc.

The HM typing system is extended with such coercions, resulting in the system HMc

which allow the abbreviated terms to be typable. A corresponding type inference algo-
rithm Wc is developed by extending the algorithm W of the HM system (Damas and
Milner 1982) and proved to be sound and complete with respect to the typing system
HMc.

Since the HM system is polymorphic, where a term may have more than one type,
the introduction of coercions has to be very careful; a naive way to introduce coercions
causes problems. For example, one of the decisions we have made is that if a term is
already typable in the original HM system, then no coercions will be inserted. This also
conforms with the intuition and, in practice, an implementation of the extended system
will not alter the meanings of the existing programs such as those in libraries.

An earlier attempt on introducing coercions into the HM system was made by Robert
Kießling and the present author in (Kießling and Luo 2004). It is worth noting that the
typing system HMc and the algorithmWc as presented in the current paper (in particular,
their rules) are very much different from those in (Kießling and Luo 2004), which have
been improved and simplified. One of the simplifications involves the removal of “coercion
declarations” and “local coercions” and hence keeps the distinction between types and
terms, which has played an important part in the simplification of the meta-theoretic
proofs.

The remainder of this section consists of two subsections, one to describe some of the
notational conventions used in this paper, particularly about the let-polymorphic typing,
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and the other to summarise the existing work on coercive subtyping and related work.
In Section 2, we give a brief introduction to our approach by considering several simple
examples. HMc, the typing system extended with coercions, is presented and explained
in Section 3. In Section 4, the type inference algorithm Wc is presented and proved
to be sound and complete. Section 5 considers a further extension of the system, with
simultaneous insertions of argument and function coercions, and discusses the issue of
ambiguity after coercions are introduced. The conclusion section mentions several issues
of possible future work.

1.1. Notational conventions for let-polymorphic typing

We regard the Hindley-Milner let-polymorphic type system and its associated type in-
ference algorithm (Damas and Milner 1982) as well-known and refer it to (Leroy 1992)
for a very clear introduction and other books on typed functional programming.

In this paper, we shall mostly adopt the standard notations of terms, types, type
schemes and contexts (or typing environments) as used in (Damas and Milner 1982).
Specifically, we shall use the following syntactic conventions.

— Type variables are denoted by α, β and γ and ordinary variables by x, y and z.
— Types are denoted by σ, τ and ρ and are of the form α (type variables) or σ → τ

(arrow types).
— Type schemes are denoted by µ and of the form ∀α1...αn.σ. We identify α-convertible

type schemes.
— Contexts are sets of pairs, each consisting of a variable and a type scheme. A context

is either ∅ (the empty context) or Γ, x : µ (the union of context Γ with {x:µ}), where
x does not occur free in Γ.

— Terms are the usual (untyped) λ-terms (variables x, terms of the form λx.e and
applications fa) together with those of the let-form:

— Type substitutions (or substitutions for short) are finite mappings from type variables
to types. The substitution of type σ for α is written as [σ/α]. Substitutions are denoted
by S, T and U . We usually write dom(S) for the domain of substitution S, ST for the
composition S ◦ T , and Sσ for the application S(σ). The application of substitutions
is extended to contexts as well.

— Substitutions are extended to type schemes. First, let’s define that a type variable α

is out of reach for a substitution S if α 6∈ dom(S) and α 6∈ FTV (σ) for any type σ in
the range of S. Then, substitutions are extended to type schemes as follows:

S(∀ᾱ.σ) = ∀ᾱ.S(σ),

assuming, after renaming the variables in ᾱ if necessary, that the variables in ᾱ are
out of reach of S.

Furthermore, we shall adopt the following notational conventions:

— We do not distinguish between the type σ and the trivial type scheme ∀∅.σ (with
zero quantified type variables) and write σ for both. With this convention, types are
special cases of type schemes.
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— As usual, we write FTV (µ) for the set of the type variables occurring free in type
scheme µ (or just type τ if µ = ∀∅.τ). It extends to contexts in the natural way.

— If x : µ ∈ Γ, then Γ(x) denotes µ.
— We sometimes use k̄ to stand for a set of k’s, say {k1, ..., kn}. For instance, ᾱ would

stand for a set of type variables.

The following notions of instance and closure (or generalisation) are defined as usual.

Definition 1.1 (instance).

— Let σ be a type and µ = ∀α1...αn.τ a type scheme. Then, σ is an instance of
µ, notation σ ¹ µ, if there exists a substitution S, whose domain is a subset of
{α1, ..., αn}, such that σ = Sτ .

— Let u and u′ be type schemes. Then u′ is more general than u, notation u′ ≥ u, if
all instances of u are instances of u′. 2

Definition 1.2 (closure). Let Γ be a context and σ a type. Then, the closure of σ with
respect to Γ is the type scheme defined as follows:

CΓ(σ) = ∀α1...αn.σ,

where {α1, ..., αn} = FTV (σ) \ FTV (Γ). 2

1.2. Coercive subtyping

Coercive subtyping, as introduced in (Luo 1997; Luo 1999), is a framework of abbreviation
for dependent type theories, where coercions play the role of abbreviation. The basic idea
is: if there is a coercion c from A to B, then an object of type A may be regarded as an
object of type B via c in appropriate contexts. More precisely, a function f with domain
B can be applied to any object a of A and the application fa stands for f(ca). Intuitively,
we can view f as a context which requires an object of B; then the argument a in the
context f stands for its image of the coercion, ca. Therefore, the term fa, originally not
well-typed, becomes well-typed and “abbreviates” f(ca).

The above simple idea, which was studied in the literature for simple type systems (see
for example, (Mitchell 1991; Mitchell 1983)), has been studied for dependent type theories
with inductive types, resulting in a very powerful theory of abbreviation and inheritance,
including coercions between parameterised inductive types (Luo, Luo and Soloviev 2002;
Luo and Luo 2005; Luo 2005) and dependent coercions (Luo and Soloviev 1999). In
coercive subtyping, the coercion mechanism is directly characterised in the type theory
proof-theoretically. Some important meta-theoretic aspects of coercive subtyping such as
the results on conservativity, coherence, and transitivity elimination have been studied
(see, for example, (Soloviev and Luo 2002)). They not only justify the adequacy of the
theory from the proof-theoretic consideration, but provide the basis for implementations
of coercive subtyping. See (Bailey 1999; Luo and Callaghan 1998; Luo and Luo 2005; Luo
1999) for details of some of these development and applications of coercive subtyping.

Coercion mechanisms have been implemented for dependent type theories in the proof
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assistants Lego (Luo and Pollack 1992), Coq (Coq 04) and Plastic (Callaghan and Luo
2001) by Bailey (Bailey 1999), Säıbi (Säıbi 1997) and Callaghan (Callaghan and Luo
2001), respectively.

Remark Incorporating the idea of coercive subtyping into a polymorphic calculus is not
straightforward. Coercive subtyping has been developed in dependent type theories with
inductive data types, which are rather sophisticated systems. However, most of them (or
at least the standard ones) have the property of type uniqueness; that is, every well-typed
object has a unique type up to computational equality. Compared with the polymorphic
calculi such as the HM system, where an object may have more than one type, one may
say that dependent type theories are “simpler”. It is important to bear this in mind when
we consider combining coercive subtyping with a polymorphic calculus. 2

Concerning related work of coercive subtyping, we would like to point out that some
notions of coercion have been studied in the literature, although they are not quite the
same or general as studied in coercive subtyping. Particularly, coercions are considered
in modelling simple subtyping, where the subsumption rule is modelled by means of
coercions. In (Breazu-Tannen et al. 1991), this idea was used to give a coercion-based
semantic interpretation of Cardelli and Wegner’s system Fun (Cardelli and Wegner 1985);
the idea of coercive subtyping was influenced by this work. In (Longo, Milsted and
Soloviev 1999; Chen 1998), the term coercion is used to denote a special restricted form
of mapping in modelling and explaining subtyping.

2. Some simple examples of coercion

We shall consider the Hindley-Milner type system extended with coercions. Coercions
are regarded as abbreviations; more precisely, if a term is not well-typed in the original
HM type system, and after inserting coercions it becomes well-typed, then we regard the
term to be well-typed and “abbreviate” the completed term with appropriate coercions
inserted.

We extend the HM type system with two forms of coercions: argument coercions and
function coercions, which have been studied for dependent type theories in, for example,
(Bailey 1999; Luo 1999). By argument coercions, we mean that the argument of a function
may be coerced due to the typing requirement; more precisely, the term fa abbreviates
f(ca) if f : σ → τ , a : σ0, and there is a coercion c from σ0 to σ. By function coercion,
we mean that a term in a function position may be coerced into an appropriate function
accordingly; more precisely, ka abbreviates (ck)a if k : ρ and a : σ and the coercion c is
from ρ to a function type with domain σ.

In the following, we give some simple examples to explain the above basic idea. The
first two examples explain argument coercions, while the last example about overloading
explains how function coercions work. We assume that the types include those of integers
(Int), floating numbers (Float), booleans (Bool), monads (Tσ, where σ is any type), and
a unit type (called Plus).
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An example of basic coercions

The simplest example of coercions, as often used in programming languages, is to convert
integers to floating point numbers. For example, we can declare

i2f : Int→ Float

as a coercion, notation

Int
i2f−→ Float.

Then, assuming 2 : Int and plusone : Float → Float, the term plusone 2, not
well-typed in the original system, becomes typable and abbreviates its “completion”
plusone (i2f 2), where the coercion i2f is inserted. Note that the completion is typable
in the original HM system. The coercion function i2f is represented here as a constant
in the typing system. It could be defined externally (e.g., using a system call at runtime).

A coercion such as the above one is usually handled automatically by programming
systems, without a formal explanation. We provide a principled explanation of this in
a setting where we can, for example, formally answer coherence questions. Note that
we can handle the converse coercion, from floating point numbers to integers using e.g.
floor, in the same way.

Using coercions in monads

Monads are a commonly used vehicle in functional programming to deal with “imper-
ative” features like states, random numbers, partial functions, error handling or in-
put/output. Every monad consists at least of a unary type constructor (called T here),
an injection function (called “return” here) and a lifting function. We refer the reader
for example to (Wadler 1995) for a full introduction.

Coercions can ease the use of monads, by allowing omission of the injection of a value
into its “monadified” type (function return). T in the types for the examples below can
be seen as the error monad. There are two ways to create values of this monadic type:
one is for regular and good values (return : ∀α.α → Tα) and the other is to signal an
error or exception (err : ∀α.Tα). We can then define a reciprocal function, from Float

to T Float, which captures the division-by-zero error:

λx. if (iszero x) err (return (sysdiv 1.0 x)),

where

if : ∀α.Bool→ α → α → α

iszero : Float→ Bool

sysdiv : Float→ Float→ Float

Using the coercion abbreviation mechanism, however, we can leave the return implicit
by declaring it as a coercion, where γ is a type variable:

γ
return−→ Tγ;
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i.e., return is a coercion from σ to Tσ, for any type σ. In other words, with the above
coercion, we only need to write

λx. if (iszero x) err (sysdiv 1.0 x),

with return omitted. Similar situations occur frequently when a monadic programming
style is used, making this a fairly useful abbreviation, both for code clarity and brevity.

Note that, as shown by this example, coercions are not necessarily representing simple
inclusion between types (as considered in the setting of subtyping (Mitchell 1983)). They
are arbitrary functional maps which one wishes to omit, in preference to the abbreviated
form. In particular, the intuition that the existence of a coercion means a set-theoretic
inclusion between the types does not apply in general.

Using coercions for overloading

Coercions can be used to represent ad hoc polymorphism or overloading (Strachey 2000).†

For example, assume that we have two functions for addition, one for the integers and
the other for the floating point numbers:

plusi : Int→ Int→ Int

plusf : Float→ Float→ Float

and we wish to use a single notation plus in both cases. This can be done by means of
coercions. What we need to do is to consider a (unit) type Plus which has the (only)
object plus : Plus and to declare the following two functions as coercions:

λx.plusi : Plus→ (Int→ Int→ Int)

λx.plusf : Plus→ (Float→ Float→ Float)

one coercion from Plus to Int → Int → Int and the other from Plus to Float →
Float→ Float. Then, we can use

plus 1 2 or plus 1.0 2.5

as intended, as these two terms abbreviate plusi 1 2 and plusf 1.0 2.5, respectively.

Remark As in this example, the coercions are defined λ-terms rather than just constants.
In general, a coercion can be any well-typed term in the language. 2

3. Hindley-Milner typing with coercions

The Hindley-Milner type system extended with coercions, HMc, is presented in this
section, after the introduction of the formal form of coercions in the following subsection.

Our starting point in this development is an existing programming language, namely

† The idea of using coercions and unit types to express overloading was studied in (Luo 1999). See (Bailey
1999) for applications of this idea to proof development.
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a minimal polymorphic programming language with the Hindley-Milner type system
(Damas and Milner 1982; Damas 1985; Milner 1978), which we call the base language.
The base language we shall consider is a simple one, consisting of only λ-terms and let-
expressions. This gives us enough to deal with typing. The additional elements necessary
to make it into a programming language, such as declaration of new types and recursion,
can be added, but they generally do not cause problems in typing.

The typing judgment in the base language is denoted by

Γ `HM e : τ,

which can be read as “term e has type τ in context Γ (in the HM system)”. We say that
a term e is well-typed under Γ in the HM system if Γ `HM e : σ for some σ.

The base language can be extended with further constructs without affecting the basic
results presented in this paper, although we have kept it simple for the sake of simplicity
of proofs. For example, one may extend it with pairs, as considered in (Leroy 1992), with
the following rule:

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` (e1, e2) : σ1 × σ2

We shall use the product types in our examples below.

3.1. Coercions

We shall extend the polymorphic HM type system with argument coercions and function
coercions. In general, the form of coercions is unlimited and can be any expression in
the base language, like a constant function between base types or a functional term
computing the result in a complex way.

Coercion judgements are of the form

σ
c−→ τ,

where σ and τ are types. The above judgement has the preassumption that c : σ → τ

is derivable in the Hindley-Milner system (Damas and Milner 1982). In other words, a
coercion judgement is meaningful only if c is of type σ → τ in the HM system.

Coercions are closed under type substitutions, as expressed by the following rule:

(∗) σ
c−→ τ

Sσ
c−→ Sτ

where S is any type substitution. This implies that a coercion σ
c−→ τ has in fact the

implicit universal quantification of the type variables occurring in σ and τ . For instance,
if α

c−→ Tα, then τ
c−→ Tτ for any type τ . Note that the above rule (∗) preserves

the preassumption of coercion judgements since substitution preserves typing in the HM
system: c : Sσ → Sτ if c : σ → τ .

In the following, coercion judgements are either declared (as axioms) or derived from
the above rule (∗). The following assumptions are made:



Coercions in a polymorphic type system 9

— Only finitely many coercion judgements are declared (as axioms). These axiomatic
coercion judgements are called initial coercions and form a (finite) set C.‡

— In any initial coercion σ1
c−→ σ2 ∈ C, the free type variables in σi (i = 1, 2) never

occur free in a context of any judgement. In other words, FTV (σi) ∩ FTV (Γ) = ∅
for any judgement with context Γ.

Note that, the second convention of the above only applies to the initial coercions. By
the above rule (∗), free type variables occurring in a coercion judgement can be changed.

Remark Here, coercions are introduced independently with the typing derivations as
considered in the next subsection. This is different from (Kießling and Luo 2004), where
coercion declarations in contexts and local coercions are considered. Not considering local
coercions simplifies the system. In particular, we keep the distinction between types and
terms; this has simplified the meta-theoretic proofs considerably. 2

3.2. The typing system

Our typing system extends the HM system with coercions. The judgement form of our
system is:

Γ ` e : σ ⇒ e′.

It should be read as “term e has type σ and completion e′ in context Γ”. The typing
judgement Γ ` e : σ is extended with the “completion” e′, which is a completed form of e

after appropriate coercions are inserted. Note that, according to the above convention at
the end of the last subsection, for any judgement we consider, FTV (Γ)∩FTV (σ1, σ2) = ∅,
where σ1

c−→ σ2 ∈ C is an initial coercion.
The rules of HMc, the typing system extended with coercions, are given in Figure 1,

where the instantiation relation in (var) and the closure operator in (let) are defined in
Definitions 1.1 and 1.2, respectively, and the side condition Γ 6`HM e′1e

′
2 :? in (appac) and

(appfc) expresses that e′1e
′
2 is not well-typed under Γ in the HM system.

3.3. Informal explanations and properties

We give some informal explanations of the typing rules of HMc (Figure 1) and prove
some of its basic properties.

Relationship with the HM system. The above system is an extension of the HM system
`HM in the sense that, if we remove the rules (appac) and (appfc), and the notation
of completion, the resulting system is equivalent to Hindley-Milner typing. Actually, we
have the following lemma.

Lemma 3.1. If Γ ` e : σ ⇒ e′ and e is well-typed under Γ in the HM system, then
Γ `HM e : σ.

‡ In practice, for example, the initial coercions can be declared by the user.
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Assumption, abstraction and let

(var)
τ ¹ Γ(x)

Γ ` x : τ ⇒ x

(λ)
Γ, x : σ ` e : τ ⇒ e′

Γ ` λx.e : σ → τ ⇒ λx.e′

(let)
Γ ` e1 : σ ⇒ e′1 Γ, x : CΓ(σ) ` e2 : τ ⇒ e′2
Γ ` let x = e1 in e2 : τ ⇒ let x = e′1 in e′2

Applications

(app)
Γ ` e1 : σ → τ ⇒ e′1 Γ ` e2 : σ ⇒ e′2

Γ ` e1e2 : τ ⇒ e′1e
′
2

(appac)
Γ ` e1 : σ → τ ⇒ e′1 Γ ` e2 : σ0 ⇒ e′2 σ0

c−→ σ

Γ ` e1e2 : τ ⇒ e′1(ce
′
2)

(Γ 6`HM e′1e
′
2 :?)

(appfc)
Γ ` e1 : ρ ⇒ e′1 Γ ` e2 : σ ⇒ e′2 ρ

c−→ (σ → τ)

Γ ` e1e2 : τ ⇒ (ce′1)e
′
2

(Γ 6`HM e′1e
′
2 :?)

Fig. 1. Typing rules of HMc

Proof. It suffices to notice that the lemma is true because of the side condition of the
rules (appac) and (appfc). 2

Completions. The addition to the judgement form of the language is completion. Infor-
mally, we insert all the needed coercion functions in a term e to form its completion
e′, such that the completed term is typable in the system without the coercion rules
(appac) and (appfc), i.e. in the base language. In other words, a completion of a term
is an expansion of the term in question; and this completion type checks in the base
language. Furthermore, every well-typed term in the HM system has the same type and
its completion is itself. This is formally captured by the lemma below, which uses the
notion of expansion, defined as follows.

Definition 3.2 (expansion). The notion that a term e2 expands a term e1, in symbols
e1 v e2, is inductively defined by the rules in Figure 2. 2

Lemma 3.3 (completion).

1 If Γ ` e : σ ⇒ e′, then Γ `HM e′ : σ and e v e′.
2 If Γ `HM e : σ, then Γ ` e : σ ⇒ e.

Proof. Both are by induction on derivations. We only consider the first for the case
that the last rule is (appac). By induction hypothesis,

Γ `HM e′1 : σ → τ

Γ `HM e′2 : σ0
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x v x

e1 v e2

λx.e1 v λx.e2

e1 v e3 e2 v e4

let x = e1 in e2 v let x = e3 in e4

e1e2 v e1(ee2) e1e2 v (ee1)e2

e1 v e3 e2 v e4

e1e2 v e3e4

e1 v e2 e2 v e3

e1 v e3

Fig. 2. Rules for term expansion

Since σ0
c−→ σ, we have that c is of type σ0 → σ (its preassumption). Therefore, Γ `HM

ce′2 : σ and hence Γ `HM e′1(ce
′
2) : τ . Also, we have e1e2 v e1(ce2), and with transitivity,

e1e2 v e′1(ce
′
2). 2

Rules for argument and function coercions. Let us have a closer look at the special rules
(appac) and (appfc) for argument and function coercions, in particular on their side
condition.

By the side condition Γ 6`HM e′1e
′
2 :?, we mean that e′1e

′
2 is not typable in Γ in the base

language, i.e., there is no type τ such that Γ `HM e′1e
′
2 : τ . This means that the original

HM typing has a priority over its extensions with coercions in the sense that, if a term
is typable in the HM system, then no coercion should be inserted into the term, for such
insertions of coercions may change the meaning of the term. Such ambiguities of meaning
are explained in the following example, where we use the construct of pairs, whose rule
in the base language is given on page 8 and whose rule in our extended language would
be:

Γ ` e1 : σ1 ⇒ e′1 Γ ` e2 : σ2 ⇒ e′2
Γ ` (e1, e2) : σ1 × σ2 ⇒ (e′1, e

′
2)

Example 3.4. We assume that A and B are base types inhabited by the constants a : A

and b1, b2 : B, that fst and swap are defined as

fst = λ(x, y).x and swap = λ(x, y).(y, x),

and that the following term

c = λ(x, y).(b1, b2) : A×A → B ×B

is declared as a coercion from A×A to B ×B. We can then derive

fst : B ×B → B ⇒ fst

swap : A×A → A×A ⇒ swap

swap : B ×B → B ×B ⇒ swap

Thus, using (appac) without the side condition, we would derive the following judgements:

fst(swap(a, a)) : B ⇒ fst(swap(c(a, a)))
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fst(swap(a, a)) : B ⇒ fst(c(swap(a, a)))

However, fst(swap(c(a, a))) computes to b2 while fst(c(swap(a, a))) to b1; in other
words, fst(swap(a, a)), typable already in HM (and computes to a), now can evaluate
to different values! 2

The side condition prevents the above unpleasant ambiguity for terms already typable
in HM, by forbidding the use of (appac) and (appfc) when (app) can be used. In other
words, it gives preference to derivations which does not involve coercions, and a coercion
may only be applied if needed since otherwise typing would fail. The side condition is
decidable, for example by the traditional algorithm W. This side condition does not
prevent all forms of ambiguities, however. See Section 5.2 for more discussions.

The above example shows an essential difference between our current setting of poly-
morphic typing and that of coercive subtyping in dependent type theories with its unique
and explicit typing (in particular, the type of swap would fully determine the type of the
coercion function to apply and whether a coercion is needed at all).

The side conditions on rules (appac) and (appfc) have another effect too. In coercive
subtyping for dependent type theories, the question arises whether identity coercions
(i.e., the identity functions declared as coercions) are allowed. We do not forbid them,
but these side conditions ensure that they will never be used, since an application with
an identity coercion can always be typed without it.

Generalisation and substitution lemmas. First, in the typing system, derivability is mono-
tone w.r.t. the generalisation relation, as the following lemma shows.

Lemma 3.5 (generalisation lemma). Let Γ and Γ′ be contexts such that dom(Γ) =
dom(Γ′) and Γ′(x) ≥ Γ(x) for all x ∈ dom(Γ). Then, Γ ` e : σ ⇒ e′ implies that
Γ′ ` e : σ ⇒ e′. 2

The derivable judgements are stable with respect to substitutions, as the following
lemma shows.

Lemma 3.6 (substitution lemma). If Γ ` e : τ ⇒ e′, then SΓ ` e : Sτ ⇒ e′, where
S is a type substitution.

Proof. By induction on derivations. For the rule (var), use the fact that the relation
¹ respects substitutions. In the following, we give the proof for the case of (let), i.e.,
e ≡ let x = e1 in e2 and the last rule is (let) in Figure 1:

(let)
Γ ` e1 : σ ⇒ e′1 Γ, x : CΓ(σ) ` e2 : τ ⇒ e′2
Γ ` let x = e1 in e2 : τ ⇒ let x = e′1 in e′2

By definition, CΓ(σ) = ∀ᾱ.σ, where ᾱ = {α1, ..., αn} = FTV (σ) \FTV (Γ). Let β1, ..., βn

be type variables out of reach for S and not free in Γ and let

T = S ◦ [β1/α1, ..., βn/αn].
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Applying the induction hypothesis to the premises of the (let)-rule, with T to the left
premise and S to the right premise, we get

TΓ ` e1 : Tσ ⇒ e′1 (1)

SΓ, x : SCΓ(σ) ` e2 : Sτ ⇒ e′2 (2)

Since TΓ ≡ SΓ, because αi is not free in Γ, we have

SΓ ` e1 : Tσ ⇒ e′1 (3)

Now, we show that

FTV (Tσ) \ FTV (TΓ) = β̄ (4)

where β̄ = {β1, ..., βn}.
— (⊆) Let γ ∈ FTV (Tσ) \ β̄ and α ∈ FTV (σ) such that γ ∈ FTV (Tα). Then,

α 6∈ ᾱ = FTV (σ) \ FTV (Γ), for otherwise γ would be in β̄. Therefore, α ∈ FTV (Γ)
and γ ∈ ⋃

α∈FTV (Γ) FTV (Tα) = FTV (TΓ).
— (⊇) By the definition of T , for any αi ∈ ᾱ, Tαi ≡ Sβi ≡ βi. Furthermore, for

any α 6∈ ᾱ, Tα ≡ Sα does not contain any variable in β̄. Since the variables in ᾱ

are free in σ but not in Γ, we have βi ∈
⋃

α∈FTV (σ) FTV (Tα) = FTV (Tσ) and
βi 6∈

⋃
α∈FTV (Γ) FTV (Tα) = FTV (TΓ).

From the above, we have

CSΓ(Tσ) = SCΓ(σ) (5)

because

CSΓ(Tσ)

= CTΓ(Tσ) (because TΓ ≡ SΓ)

= ∀β̄.Tσ (by (4) and definition of closure)

= S(∀ᾱ.σ) (by definition of T and that βi is out of reach for S)

= SCΓ(σ) (definition of closure)

Now, from (2) and (5), we have

SΓ, x : CSΓ(Tσ) ` e2 : Sτ ⇒ e′2 (6)

and, from (3), (6) and rule (let), we have the required result:

SΓ ` let x = e1 in e2 : Sτ ⇒ let x = e′1 in e′2.

2

4. Type inference: a sound and complete algorithm

The previous section describes our type system which adds coercions to the HM system.
The rules of HMc describe well-typing, but they do not provide a decision procedure to
verify well-typedness. This is mainly due to the application rules; for example, in (app),
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Assumption, abstraction and let

(V ar)
Γ(x) = ∀ᾱ.τ

Γ ` x ; 〈∅, [β̄/ᾱ]τ, x〉 (β̄ fresh)

(Λ)
Γ, x : α ` e ; 〈S, τ, e′〉

Γ ` λx.e ; 〈S, Sα → τ, λx.e′〉 (α fresh)

(Let)
Γ ` e1 ; 〈S1, τ1, e

′
1〉 S1Γ, x : CS1Γ(τ1) ` e2 ; 〈S2, τ2, e

′
2〉

Γ ` let x = e1 in e2 ; 〈S2S1, τ2, let x = e′1 in e′2〉
Applications

(App)
Γ ` e1 ; 〈S1, τ1, e

′
1〉 S1Γ ` e2 ; 〈S2, τ2, e

′
2〉 T = U(S2τ1, τ2 → α)

Γ ` e1e2 ; 〈TS2S1, Tα, e′1e
′
2〉

(α fresh)

(Appac)

Γ ` e1 ; 〈S1, τ1, e
′
1〉 S1Γ ` e2 ; 〈S2, τ2, e

′
2〉 U(S2τ1, τ2 → β) ↑

σ1
c−→ σ2 ∈ C T = U(τ2 → S2τ1, σ1 → σ2 → α)

Γ ` e1e2 ; 〈TS2S1, Tα, e′1(ce
′
2)〉

(α, β fresh)

(Appfc)

Γ ` e1 ; 〈S1, τ1, e
′
1〉 S1Γ ` e2 ; 〈S2, τ2, e

′
2〉 U(S2τ1, τ2 → β) ↑

σ1
c−→ σ2 ∈ C T = U(S2τ1 → τ2 → α, σ1 → σ2)

Γ ` e1e2 ; 〈TS2S1, Tα, (ce′1)e
′
2〉

(α, β fresh)

Fig. 3. Algorithm Wc

the argument type σ cannot be inferred from the typing judgment whose validity is to
be verified, and thus there are infinitely many derivation trees to check.

We shall present a type inference algorithm and prove that it is sound and complete
with respect to the typing system HMc.

4.1. The type inference algorithm

The rules of the type inference algorithm, Wc, are given in Figure 3, where C is the
finite set of initial coercions under consideration, U(σ, τ) stands for the result (the most
general unifier of σ and τ) of the standard unification algorithm § and U(σ, τ) ↑ for “the
unification algorithm fails (and hence the most general unifier is undefined)”.

The rules in Figure 3 can be read as an algorithm, giving non-deterministic answers
to the question:

Given context Γ and term e, what are the type and completion of e?

The judgement

Γ ` e ; 〈S, τ, e′〉
can be read as “in context Γ, term e type checks with substitution S, type τ and comple-

§ The existence of a unification algorithm was first shown to be the case in (Robinson 1965).
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tion e′”. The algorithm Wc extends the algorithm W (Damas and Milner 1982). It takes
as inputs a context Γ (“initial context”) and a term e and returns as the outputs a (most
general) type τ , a completion e′ of e, and a substitution S (representing the necessary
instantiations for the typing to succeed).

Here are some informal explanations.

Some simple properties It is easy to see that the algorithm Wc has the following prop-
erties:

— Recovery of the algorithm W. The traditional algorithm W can be recovered from the
rules in Figure 3 by removing (Appac) and (Appfc).

— Non-determinism and decidability. Wc is non-deterministic because multiple coer-
cions can be found for a given pair of types. However, note that only finitely many
initial coercions are declared and, therefore, the problem of finding initial coercions
is decidable.

Explanations of the rules (Appac) and (Appfc). These two rules play the role of deciding
whether and how to insert coercions. First of all, if the application of the completions
of e1 and e2 (i.e., e′1e

′
2) is already typable in the original HM system, no coercion will

be inserted. This is made sure by the premise U(S2τ1, τ2 → β) ↑ (the unification result
is undefined), where β is a fresh type variable, and corresponds to the side-condition of
the rules (appac) and (appfc) in HMc. Note that the side condition of those rules in HMc

refers to the separate system of HM typing, while the implementation Wc uses a simple
unification test and does not need to refer to a separate type checking algorithm.

When the unification of S2τ1 and τ2 → β fails, which means that the application is
not typable without inserting coercions, the rules (Appac) and (Appfc) can be used to
decide whether coercions exist for insertion to make the application e1e2 typable. In other
words, they are used to find out whether there exists any argument coercion c or function
coercion c′ such that e′1(ce

′
2) or (c′e′1)e

′
2 becomes typable, where e′i is the completion of

ei (i = 1, 2).
The existence of the coercions that can be inserted is tested by unification. For example,

in (Appac), to see whether there exist argument coercions to be inserted, the initial
coercions σ1

c−→ σ2 ∈ C are considered in turn to see whether σ1 → σ2 → α can be
unified with τ2 → S2τ1, where α is a fresh type variable. This has two effects. One
is to test whether τ2, the inferred type of e2, is unifiable with σ1, the domain of the
coercion. The other is to test whether S2τ1, the type of e1, is unifiable with any arrow
type with domain σ2. If the unification succeeds, the coercion is insertable. Take the
Monad example on page 6 in Section 2, where the following coercion is declared:

γ
return−→ Tγ.

To type the application fa, where

f = if (iszero x) err

a = sysdiv 1.0 x,
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the unification between Float→ Tα′ → Tα′ and γ → Tγ → α would produce the unifier

[T Float/α, Float/α′, Float/γ].

Therefore, the term fa is well-typed with type Float according to (Appac).
This is similar for function coercions. In (Appfc), unification tests are performed be-

tween S2τ1 → τ2 → α, for fresh α, and each of the arrow types σ1 → σ2, for the initial
coercions σ1

c−→ σ2, to decide whether coercions may be inserted as function coercions.
This unification test has two effects as well: one is to see whether S2τ1, the type of e2, is
unifiable with σ1, the domain of the coercion, and the other whether the range σ2 of the
coercion is unifiable with an arrow type with domain being the inferred type of e2 (i.e.,
τ2). If both are the case, the coercion can be inserted as a function coercion.

When a unification succeeds with the most general unifier T , then T is incorporated
into the resulting substitution and an inferred type of the application term e1e2 is Tα.
Of course, if the unification tests all fail, there is no coercion that is insertable.

4.2. Soundness and completeness

The type inference algorithm Wc is a sound and complete implementation of HMc. The
following soundness theorem shows that Wc is correct.

Theorem 4.1 (Soundness). The algorithm Wc is sound w.r.t. HMc, i.e., if Γ ` e ;

〈S, τ, e′〉, then SΓ ` e : τ ⇒ e′.

Proof. By induction on derivations in Wc. We consider the cases where the last rule is
(V ar), (Let) or (Appac), and the others are similar.

— (V ar). As [β̄/ᾱ]τ ¹ ∀ᾱ.τ , we have Γ ` x : [β̄/ᾱ]τ ⇒ x, by rule (var) in HMc.
— (Let). By induction hypothesis, S1Γ ` e1 : τ1 ⇒ e′1 and S2S1Γ, S2CS1Γ(τ1) ` e2 :

τ2 ⇒ e′2. Note that S2CS1Γ(τ1) = CS2S1Γ(S2τ1).¶ Therefore, S2S1Γ ` let x = e1 in e2 :
τ2 ⇒ let x = e′1 in e′2, by rule (let) in HMc.

— (Appac). By induction hypothesis,

S1Γ ` e1 : τ1 ⇒ e′1 (7)

S2S1Γ ` e2 : τ2 ⇒ e′2 (8)

By Lemma 3.6,

TS2S1Γ ` e1 : TS2τ1 ⇒ e′1 (9)

TS2S1Γ ` e2 : Tτ2 ⇒ e′2 (10)

where T = U(τ2 → S2τ1, σ1 → σ2 → α), with α fresh. So, TS2τ1 = Tσ2 → Tα and
Tτ2 = Tσ1; therefore, from (9) and (10),

TS2S1Γ ` e1 : Tσ2 → Tα ⇒ e′1 (11)

¶ This is the case because, if required, we rename the generalised variables in the derivation of S1Γ `
e1 : τ1 ⇒ e′1 so that they are out of reach for S2. After such renaming if necessary, the equation can
be proved as in the proof of the let-case for Lemma 3.6.
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TS2S1Γ ` e2 : Tσ1 ⇒ e′2 (12)

Since σ1
c−→ σ2, we have by rule (∗) of coercions on page 8,

Tσ1
c−→ Tσ2 (13)

Therefore, from (11,12,13) and by rule (appac) in HMc, whose side condition is satis-
fied as U(S2τ2, τ2 → β) fails, we have

TS2S1Γ ` e1e2 : Tα ⇒ e′1(ce
′
2),

as required. 2

The completeness theorem below shows that the algorithmWc is complete with respect
to HMc. It uses the following definition of equalities between substitutions when applied
to the variables outside a set of type variables V , from which the fresh variables are
taken.

Definition 4.2. Let V be an infinite set of type variables and S and T substitutions.
Then, S is equal to T outside V , notation S =V̄ T , if S(α) = T (α) for all α 6∈ V . 2

Theorem 4.3 (Completeness). For any context Γ and any infinite set of type variables
V such that FTV (Γ) ∩ V = ∅, if SΓ ` e : τ ⇒ e′, then there exist substitution S′ and
type τ ′ such that Γ ` e ; 〈S′, τ ′, e′〉, and furthermore, there exists a substitution U such
that τ = Uτ ′ and S =V̄ US′.

Proof. By structural induction on e, considering the derivations of SΓ ` e : τ ⇒ e′.
We only consider three cases here.

— e ≡ x and the last rule is (var): SΓ ` x : τ ⇒ x, where τ ¹ SΓ(x). Since x occurs in
SΓ, so does it in Γ. Let Γ(x) = ∀ᾱ.σ, where the variables in ᾱ are chosen from V and
out of reach for S. By (V ar) in Wc, Γ ` x ; 〈∅, [β̄/ᾱ]σ, x〉, where the fresh variables
in β̄ are chosen from V \ ᾱ. Take

U = TS[ᾱ/β̄],

where T is a substitution over ᾱ such that τ = TSσ (T exists because τ ¹ SΓ(x) =
∀ᾱ.Sσ). Then τ = TSσ = U [β̄/ᾱ]σ and, for γ 6∈ V , S(γ) = TS[ᾱ/β̄](γ) = U(γ) =
U∅(γ) (because γ 6∈ ᾱ ∪ β̄ and T is over variables out of reach of S).

— e ≡ let x = e1 in e2 and the last rule is:

(let)
SΓ ` e1 : σ ⇒ e′1 SΓ, x : CSΓ(σ) ` e2 : τ ⇒ e′2
SΓ ` let x = e1 in e2 : τ ⇒ let x = e′1 in e′2

By induction hypothesis, applying induction to e1 (and Γ, σ and S), we get, for some
S1, τ1 and U1,

Γ ` e1 ; 〈S1, τ1, e
′
1〉 (14)

U1(τ1) = σ and S =V̄ U1S1 (15)

where the fresh variables in deriving (14) are taken from V , resulting in V1 ⊆ V . In
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particular, SΓ = U1S1Γ. It is easy to check that U1(CS1Γ(τ1)) ≥ CU1S1Γ(U1(τ1)) =
CSΓ(σ). From Lemma 3.5 and the second premise, we can derive

SΓ, x : U1(CS1Γ(τ1)) ` e2 : τ ⇒ e′2,

which is

U1(S1Γ, x : CS1Γ(τ1)) ` e2 : τ ⇒ e′2.

By induction hypothesis, applying the induction to e2 (and S1Γ, x : CS1Γ(τ1), τ , U1

and V1), we obtain, for some S2, τ2 and U2,

S1Γ, x : CS1Γ(τ1) ` e2 ; 〈S2, τ2, e
′
2〉 (16)

U2(τ2) = τ and U1 =V̄1
U2S2 (17)

where the fresh variables in deriving (16) are taken from V1. Therefore, by (14,16)
and rule (Let),

Γ ` let x = e1 in e2 ; 〈S2S1, τ2, let x = e′1 in e′2〉.
Now, let U = U2 and we then have Uτ2 = U2τ2 = τ and, for γ 6∈ V , S(γ) = U1S1(γ) =
U2S2S1(γ), where the last equality is true because S1(γ) 6∈ V1 (note that γ is out of
reach for S1). This concludes the proof of the case.

— e ≡ e1e2 and the last rule is:

(appac)
SΓ ` e1 : σ → τ ⇒ e′1 SΓ ` e2 : σ0 ⇒ e′2 σ0

c−→ σ

SΓ ` e1e2 : τ ⇒ e′1(ce
′
2)

(SΓ 6`HM e′1e
′
2 :?)

By induction hypothesis, applying the induction to e1 (and Γ, σ → τ , S and V ), we
have, for some S1, τ1 and U1,

Γ ` e1 ; 〈S1, τ1, e
′
1〉 (18)

U1(τ1) = σ → τ and S =V̄ U1S1 (19)

where the fresh variables in deriving (18) are taken from V , resulting in V1 ⊆ V . Also
by induction hypothesis, applying the induction to e2 (and S1Γ, σ0, U1 and V1),‖ we
have, for some S2, τ2 and U2,

S1Γ ` e2 ; 〈S2, τ2, e
′
2〉 (20)

U2(τ2) = σ0 and U1 =V̄1
U2S2 (21)

where the fresh variables in deriving (20) are taken from V1.

We also know that U(S2τ1, τ2 → β) fails, where β is a fresh type variable, for otherwise
e′1e

′
2 would be typable in SΓ = U2S2S1Γ in the HM system, contradicting the side-

condition of rule (appac). Furthermore, for any fresh type variable α, U ′
2 = U2[τ/α]

unifies τ2 → S2τ1 and σ0 → σ → α and, therefore, there is a most general unifier T :

T = U(τ2 → S2τ1, σ0 → σ → α). (22)

‖ Note that, because SΓ = U1S1Γ by (19) as FTV (Γ)∩V = ∅, the second premise of (appac) is actually
U1S1Γ ` e2 : σ0 ⇒ e′2. Therefore, the induction step goes through.
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Because σ0
c−→ σ, we have, from (18,20,22) and by rule (Appac) in Wc,

Γ ` e1e2 ; 〈TS2S1, Tα, e′1(ce
′
2)〉.

We now only have to show that there exists a substitution U such that

τ = UTα

S =V̄ UTS2S1

Let U be a substitution such that U ′
2 = UT (U exists because T is more general than

U ′
2). Then, τ = U ′

2α = UTα and, for any γ 6∈ V , S(γ) = U ′
2S2S1(γ) = UTS2S1(γ).

This concludes the proof of the case. 2

5. Discussions: further extensions and ambiguity

The system considered here can be extended further to become more powerful. Such an
extension is considered below. We shall also discuss the issue of ambiguity when coercions
are introduced.

5.1. Simultaneous insertions of argument and function coercions

Argument coercions and function coercions may be inserted simultaneously to make some
term typable. For instance, assume that n be a natural number (of type Nat) and that
we have the following coercions:

Nat
n2i−→ Int

Plus
λx.plusi−→ Int→ Int→ Int,

where, as in Section 2, Plus is the unit type with the only object plus and plusi is the
plus function of integers. Now, consider the following term

plus n.

Of course, this term is not well-typed in the HM system. It is not well-typed in the above
extension HMc, either! The reason is that the rules in HMc do not allow simultaneous
insertions of argument and function coercions to make untyped terms typable. Otherwise,
we would be able to insert n2i and λx.plusi simultaneously to complete the term as

((λx.plusi) plus) (n2i n),

and plus n would become well-typed.
It is possible to extend the system described above by allowing simultaneous insertions

of an argument coercion and a function coercion. The system HMc can be extended by
the following rule:

Γ ` e1 : σ → τ ⇒ e′1 Γ ` e2 : σ0 ⇒ e′2 σ0
c−→ σ ρ

c′−→ σ → τ

Γ ` e1e2 : τ ⇒ (c′e′1)(ce
′
2)

(Γ 6`HM e′1e
′
2 :?)

With this rule, simultaneous insertions of argument and function coercions are possible
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and, for instance in the example above, the term plus n is of type Int → Int with
((λx.plusi) plus) (n2i n) as its completion.

Correspondingly, the type inference algorithm Wc can be extended by the following
rule:

Γ ` e1 ; 〈S1, τ1, e
′
1〉 S1Γ ` e2 ; 〈S2, τ2, e

′
2〉 U(S2τ1, τ2 → β) ↑

σ1
c−→ σ2 ∈ C σ′1

c′−→ σ′2 ∈ C T = U(τ2 → S2τ1 → σ′2, σ1 → σ′1 → σ2 → α)
Γ ` e1e2 ; 〈TS2S1, Tα, (c′e′1)(ce

′
2)〉

(α, β fresh)

where the unification between τ2 → S2τ1 → σ′2 and σ1 → σ′1 → σ2 → α plays the
following roles:
1 to test whether the inferred type of e2 (i.e., τ2) can be unified with the domain of the

coercion c (i.e., σ1);
2 to test whether the inferred type of e1 (i.e., S2τ1) can be unified with the domain of

the coercion c′ (i.e., σ′1);
3 to test whether the range of the coercion c′ (i.e., σ′2) is an arrow type with domain

being the range of the coercion c (i.e., σ2).
If all of the above are the case with a most general unifier T , then the inferred type of
e1e2 is Tα with completion (c′e′1)(ce

′
2), where both coercions c and c′ have been inserted.

With the above extensions, the type inference algorithm is still sound and complete
with respect to the extended type system; in other words, Theorems 4.1 and 4.3 still hold
with the above extensions.

5.2. Ambiguity

With extensions of coercions, the typing system is not deterministic anymore. The rules
for HMc and the corresponding algorithm Wc allow certain ambiguities. The side con-
dition of the HMc rules (appac) and (appfc) removes the ambiguity of the terms that
are already typable in the original HM system. However, ambiguities may exist for those
terms only typable after insertion of some coercions, when there is more than one match-
ing coercion that may be inserted to complete a term. The following are two examples
of such an ambiguity.

Example 5.1 (ambiguity). Here are two examples of derivational ambiguity.
1 This example shows that there may be more than one argument coercion that can

be inserted in the same position of a term. Assume, for instance, that A and B are
base types, a : A and f : α× α → α and that

A
c1−→ A×A and A

c2−→ B ×B.

Then, we have, ambiguously,

fa : A ⇒ f(c1a)

fa : B ⇒ f(c2a)

or equivalently,

fa ; 〈∅, A, f(c1a)〉
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fa ; 〈∅, B, f(c2a)〉
2 This example shows that there can be an argument coercion and a function coercion,

both possible to be inserted to a term, causing ambiguities. Assume, for instance, that
e1 : σ → τ and e2 : σ0 and that

σ0
c−→ σ and (σ → τ) c′−→ (σ0 → τ ′).

Now, we have in HMc, ambiguously,

e1e2 : τ ⇒ e1(ce2)

e1e2 : τ ′ ⇒ (c′e1)e2

or equivalently, in Wc,

e1e2 ; 〈∅, τ, e1(ce2)〉
e1e2 ; 〈∅, τ ′, (c′e1)e2〉

Of course, here we have assumed that σ0 6= σ, for otherwise e′1e
′
2 would have been

typable in HM and the coercions ci could not be inserted. 2

The derivational ambiguities as exemplified above are due to the fact that, in a single
derivation of Γ ` e : σ ⇒ e′, there could be some subterm s of e such that s is assigned
different completions. One may study those terms whose derivations do not contain
more than one completion of a subterm, as considered in (Kießling and Luo 2004). More
precisely, we call a term e derivationally coherent in context Γ if, for any derivation
∆ of Γ ` e : σ ⇒ e′, if Γ1 ` s : τ1 ⇒ s′1 and Γ2 ` s : τ2 ⇒ s′2 both occur in ∆,
then the two completions s′1 and s′2 are the same. With such a notion of derivational
coherence, it may be possible to consider a sound and complete type inference algorithm
for derivational coherent terms. Such an algorithm will not type those terms that admit
ambiguous derivations. In particular, the unification algorithm has to be modified so that
it only succeeds in one of the many cases, if at all. It is unclear to the author whether such
a notion of derivational coherence would resolve the problem of ambiguity satisfactorily
and further investigation is called for in this respect.

6. Conclusion

We have considered an extension of the Hindley-Milner type system with coercions to
incorporate ideas of coercive subtyping into a polymorphic type system.

It is possible, as considered in (Kießling and Luo 2004), to incorporate coercion decla-
rations and local coercions. For example, we may consider the following local coercion

cdec c : ∀ᾱ.σ → τ in e

as a term. Such a mechanism may bring some flexibility in practice, but it causes compli-
cations in meta-theoretical studies, as mentioned earlier. For instance, the incorporation
of local coercions of the above form introduces types into term expressions and compli-
cates the meta-theoretic proofs considerably. In this paper, we have treated coercions
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more or less independently of the typing derivations and this has simplified the system,
and in particular, the meta-theoretic proofs.

The coercions considered in this paper are well-typed terms in the HM system. In
other words, coercions are terms without “gaps” and coercions cannot be inserted in
to coercion terms. We point out that, on the one hand, it may be possible to lift this
restriction to allow coercions to be terms only typable when some other coercion terms
are inserted but, on the other hand, the requirement that coercions be terms without
gaps can be considered reasonable since coercions are supposed to be hidden and not
seen by the user.

There have been studies on how the HM-style typing may be linked to the constraint-
based approach (Odersky, Sulzmann, and Wehr 1999; Pot05). It might be interesting to
pursue this line to describe an extension with coercions by means of a constraint-based
specification.

Coercive subtyping was developed as a framework of abbreviation for dependent type
theories, where it is typical to have the property of unique typing, which is just the
opposite of polymorphic typing. It is interesting to see to what extent and how type
dependency and polymorphism can be combined to provide satisfactory language features
for programming and proof development. The work presented here may be regarded as a
step in this direction. It is clear from this paper that, to incorporate polymorphism, the
lack of uniqueness of types may cause considerable difficulties. Further investigations are
needed to have a better understanding in this respect.

Acknowledgement Thanks go to the referees for their comments that have helped
to improve the paper.
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