On Subtyping in Type Theories with Canonical Objects

Georgiana Elena Lungu

- 4 Department of Computer Science, Royal Holloway, University of London, U.K.
- 5 georgiana.lungu.2013@live.rhul.ac.uk

\mathbf{a} Zhaohui Luo¹

- 7 Department of Computer Science, Royal Holloway, University of London, U.K.
- 8 Zhaohui.Luo@rhul.ac.uk

9 — Abstract -

How should one introduce subtyping into type theories with canonical objects such as Martin-10 Löf's type theory? It is known that the usual subsumptive subtyping is inadequate and it is 11 understood, at least theoretically, that coercive subtyping should instead be employed. However, 12 it has not been studied what the proper coercive subtyping mechanism is and how it should 13 be used to capture intuitive notions of subtyping. In this paper, we introduce a type system 14 with signatures where coercive subtyping relations can be specified, and argue that this provides 15 a suitable subtyping mechanism for type theories with canonical objects. In particular, we 16 show that the subtyping extension is well-behaved by relating it to the previous formulation of 17 coercive subtyping. The paper then proceeds to study the connection with intuitive notions of 18 19 subtyping. It first shows how a subsumptive subtyping system can be embedded faithfully. Then, it studies how Russell-style universe inclusions can be understood as coercions in our system. And 20 finally, we study constructor subtyping as an example to illustrate that, sometimes, injectivity 21 of coercions need be assumed in order to capture properly some notions of subtyping. 22

- 23 2012 ACM Subject Classification F.3.1 Logics and Meanings of Programs
- ²⁴ Keywords and phrases subtyping, type theory, conservative extension, canonical objects

²⁵ Digital Object Identifier 10.4230/LIPIcs.TYPES.2016.13

²⁶ **1** Introduction

Type theories with canonical objects such as Martin-Löf's type theory [26] have been used as the basis for both theoretical projects such as Homotopy Type Theory [32] and practical applications in proof assistants such as Coq [10] and Agda [1]. In this paper, we investigate how to extend such type theories with subtyping relations, an issue that is important both theoretically and practically, but has not been settled.

32

35

Subsumptive Subtyping. The usual way to introduce subtyping is via the following
 subsumption rule:

$$\frac{a:A \quad A \le B}{a:B}$$

This is directly related to the notion of subset in mathematics and naturally linked to type assignment systems in programming languages like ML or Haskell. However, subsumptive subtyping is not adequate for type theories with canonical objects since it would destroy key

 $^{^1\,}$ This work is partially supported by the EU COST Action CA15123 and the CAS/SAFEA International Partnership Program.

13:2 On Subtyping in Type Theories with Canonical Objects

³⁹ properties of such type theories including canonicity (every object of an inductive type is ⁴⁰ equal to a canonical object) and subject reduction (computation preserves typing) [21, 16]. ⁴¹ For instance, the Russell-style type universes $U_i : U_{i+1}$ ($i \in \omega$) [23] constitute a special ⁴² case of subsumptive subtyping with $U_i \leq U_{i+1}$ [18]. If we adopt the standard notation of ⁴³ terms with full type information, the resulting type theory with Russell-style universes would ⁴⁴ fail to have canonicity or subject reduction.² An alternative is to use proof terms with less

⁴⁵ typing information like using (a, b) instead of pair(A, B, a, b) to represent pairs, as in HoTT ⁴⁶ (see Appendix 2 of [32]). The problem with this approach is that not only the property of ⁴⁷ type uniqueness fails, but a proof term may have incompatible types. For example, for a : A⁴⁸ and A : U, where U is a type universe, the pair (A, a) has both types $U \times A$ and $\Sigma X: U.X$, ⁴⁹ which are incompatible in the sense that none of them is a subtype of the other. This would ⁵⁰ lead to undecidability of type checking,³ which is unacceptable for type theories with logics ⁵¹ based on the propositions-as-types principle.

In §3 we will show how we can embed a subtyping system with the above subsumption rule into the coercive subtyping system we introduce in this paper.

54

Coercive Subtyping. An alternative way to introduce subtyping is coercive subtyping, 55 where a subtyping relationship between two types is modelled by means of a unique coercion 56 between them. The early developments of coercion semantics of subtyping for programming 57 languages include [25, 29, 28, 6], among others. At the theoretical level, previous work on 58 coercive subtyping for dependent type theories such as [15, 21] show that coercive subtyping 59 can be adequately employed for dependent type theories with canonical objects to preserve 60 the meta-theoretic properties such as canonicity and normalisation of the original type 61 theories. Based on this, coercive subtyping has been successfully used in various applications 62 based on the implementations of coercions in Coq and several other proof assistants [30, 3, 7]. 63 However, the theoretical research on coercive subtyping such as [21] considers a rather 64

abstract way of extension with coercive subtyping. For any type theory T, it extends it 65 with a (coherent, but possibly infinite) set C of subtyping judgements to form a new type 66 theory T[C]. Although this is well-suited in a theoretical study, it does not tell one how the 67 extension should be formulated concretely in practice. In fact, a proposal of adding coercive 68 subtyping assumptions in contexts [22] has met with potential difficulties in meta-theoretic 69 studies that cast doubts on the seemingly attractive proposal. The complication was caused 70 by the fact that coercion relations specified in a context can be moved to the right of the 71 turnstile sign \vdash to introduce terms with the so-called local coercions that are only effective in 72 a localised scope. It is still unknown whether such mechanisms can be employed successfully. 73 This has partly led to the current research that studies a more restrictive calculus that only 74 75 allows coercive subtyping relations to be specified in signatures whose entries cannot be localised in terms. 76

77

Main Contributions. In this paper, we study a type theory with signatures where coercive
 subtyping relations can be specified and argue that this provides a suitable subtyping mech anism for type theories with canonical objects.⁴ This claim is backed up by first showing

 $^{^{2}}$ See §4.1 of the current paper for an example of the former and §4.3 of [16] for an example of the latter.

³ To see the problem of type checking, it may be worth pointing out that, for a dependent type theory, type checking depends on type inference; put in another way, in a type-checking algorithm one has to infer the type of a term in many situations.

⁴ A type theory with signatures was also proposed by the second author in [19] in the context of applying type theories to natural language semantics.

that the subtyping extension is conservative over the original type theory and that all its valid derivations correspond to valid derivations in the original calculus, and then studying its connection with subsumptive subtyping and its use in modelling some of the intuitive notions of subtyping including that induced by Russell-style universes in type theory.

The notion of signature in type theory was first studied in the Edinburgh Logical 85 Framework [12] with judgements of the form $\Gamma \vdash_{\Sigma} J$, where the signatures Σ are used to 86 describe constants of a logical system, in contrast with the contexts Γ that introduce variables 87 which can be abstracted to the right of the turnstile sign by means of quantification or 88 λ -abstraction. We will introduce the notion of signature by extending (the typed version 89 of) Martin-Löf's logical framework LF (Chapter 9 of [14]) to obtain the system LF_S , which 90 can be used similarly as LF in specifying type theories such as Martin-Löf's type theory [26]. 91 Formulating the coercive subtyping relation in a type theory based on a logical framework 92 makes it possible to extend the formulation to other type constructors too. We then introduce 93 Π_S , a system with Π -types specified in LF_S , and $\Pi_{S,\leq}$ that extends Π_S to allow specification 94 in signatures of subtyping entries $A \leq_c B$ that specifies that A is a subtype of B via 95 coercion c, a function from A to B. We will justify that the coercive subtyping mechanism is 96 abbreviational by showing that $\Pi_{S,<}$ is equivalent to a similar system as previously studied 97 [21] and hence has desirable properties [31, 13, 33]. 98

Although it is incompatible with the notion of canonical objects, subsumptive subtyping 99 100 is widely used and, intuitively, it is the concept in mind in the first place when considering subtyping. It is therefore worth studying its relationship with the coercive subtyping calculus. 101 Aspinall and Compagnoni [2] approached the topic of subsumptive subtyping in dependent 102 type theory by developing a type system, with contextual subsumptive subtyping entries 103 of the form $\alpha \leq A$ to declare that the type variable α is a subtype of A, and its checking 104 algorithm in the Edinburgh Logical Framework. In this paper we shall define a subsumptive 105 subtyping system in LF_S , one similar to that in [2], and prove that it can be faithfully 106 embedded in $\Pi_{S,<}$. 107

It is worth noting that subtyping becomes particularly complicated in the case of dependent 108 types. In a type system with contextual subtyping entries such as $\alpha \leq A$ as in Aspinall and 109 Compagnoni's system, one has to decide whether to allow abstraction (for example, by λ or 110 Π) over the subtyping entries. If one did, it would lead to types with bounded quantification 111 of the form $\Pi \alpha \leq A.B$, which would result in complications and, most likely, undecidability 112 of type checking (cf., Pierce's work that shows undecidability of type checking in $F_{<,}$ and 113 extension of the second-order λ -calculus with subtyping and bounded quantification [27]). In 114 order to avoid bounded quantification, Aspinall and Compagnoni [2] present the subtyping 115 entries in contexts, but do not enable their moving to the right of \vdash . In consequence, 116 abstraction by λ or Π of those entries that occur to the left of a subtyping entry is obstructed. 117 We chose to represent subtyping entries in the signatures in order to allow abstraction to 118 happen freely for contextual entries. 119

We shall then consider two case studies, showing how coercive subtyping may be used 120 to capture an intuitive notion of subtyping. Type universes [23] are our first example here. 121 The Russell-style universes constitute a typical example of subsumptive subtyping. The 122 second author [18] observed that, although subsumptive subtyping causes problems with 123 the notion of canonicity, one can obtain the essence of Russell-style universes by means of 124 Tarski-style universes together with coercive subtyping by taking the explicit lifting operators 125 between Tarski-style universes as coercions. Our embedding theorem (Theorem 34) that 126 relates subsumptive and coercive subtyping can be extended for type systems with universes, 127 therefore justifying this claim. 128

13:4 On Subtyping in Type Theories with Canonical Objects

Subsumptive subtyping, esp. in its extreme forms, intuitively embodies a notion of injectivity that is in general not the case for coercive subtyping. One of such extreme forms of subtyping is constructor subtyping [4]. As the second case study, we shall relate it to our coercive subtyping system and show that, once equipped with injectivity of coercions, coercive subtyping can faithfully model the notion of injectivity intuitively assumed in subsumptive subtyping.

135

Related Work. Subtyping has been studied extensively both for type systems of programming languages and type theories implemented in proof assistants. Early studies of subtyping for programming languages have considered both subsumptive and coercive subtyping, mainly for simpler and non-dependent type systems (see, for example, [25, 29, 28, 6]). For example, Reynolds [28] considered extrinsic and intrinsic models of coercions and their applications to programming.

Subtyping in dependent type theories has been studied by Aspinall and Compagnoni [2] 142 for Edinburgh LF, Betarte and Tasistro [5] about subkinding between kinds (called types) for 143 Martin-Löf's logical framework, and Barthe and Frade [4] on constructor subtyping, among 144 others. A theoretical framework of coercive subtyping for type theories with canonical objects 145 has been developed and studied by the second author and colleagues in a series of papers 146 and PhD theses [15, 21, 31, 13, 33]. In this setting, any dependent type theory T can be 147 extended with coercive subtyping by giving a (possibly infinite) set C of basic subtyping 148 judgements, resulting in the extended calculus T[C]. The meta-theory of such a calculus 149 T[C] was first studied in [31] where, among other things, the basic approach to proving that 150 coercive subtyping is an abbreviational extension was developed, which was further studied 151 and improved in, for example, [13, 33]. Coercions have been implemented in several proof 152 assistants such as Coq [10, 30], Lego [20, 3], Matita [24] and Plastic [7] and used effectively 153 for large proof development and, more recently, in formal development of natural language 154 semantics based on type theory [17, 8, 9]. 155

The above framework of coercive subtyping [21] has served as a theoretical tool to show in principle that coercive subtyping is adequate for type theories with canonical objects. However, as pointed out above, such a theoretical framework does not serve as a concrete system in practice. In this paper, we shall use subtyping entries in signatures to specify basic subtyping relations and study the resulting calculus, both in meta-theory and in practical modelling.

In §2, we present $\Pi_{S,\leq}$ and study its meta-theoretic properties. §3 presents a subsumptive subtyping system based on [2] and shows that it can be embedded faithfully in $\Pi_{S,\leq}$. The two case studies on type universes and injectivity are studied in §4, with the relationship between Russell-style and Tarski-style universes studied in §4.1 and constructor subtyping and injectivity in §4.2. The Conclusion discusses possible further research directions.

¹⁶⁷ **2** Coercive Subtyping in Signatures

We aim to introduce a calculus that can model intuitive notions of subtyping such as subsumption and, at the same time, preserves the desirable properties of the original type theory. In this section, we present $\Pi_{S,\leq}$, a type system with signatures where we can specify coercive subtyping relations, and then study its properties by relating it to the earlier formulation of coercive subtyping.

In what follows we use \equiv for syntactic identity and assume that the signatures are coherent.

175 2.1 $\Pi_{S,<}$, a Type Theory with Subtyping in Signatures

¹⁷⁶ 2.1.1 Logical Framework with Signatures

Type theories can be specified in a logical framework such as Martin-Löf's logical framework [26] or its typed version LF [14]. We shall extend LF with signatures to obtain LF_S .

Informally, a signature is a sequence of entries of several forms, one of which is the form of membership entries c: K, which is the traditional form of entries as occurred in contexts (we shall add another form of entries in the next section). If a signature has only membership entries, it is of the form $c_1: K_1, ..., c_n: K_n$.

183▶ Remark (Constants and Variables). Intuitively, we shall call c declared in a signature entry184c: K as a constant, while x in a contextual entry x: K as a variable. The formal difference185is that, as declared in a signature entry, c cannot be substituted or abstracted (to the right186of ⊢), while x declared in a contextual entry can either be substituted or abstracted by λ or187II (see later for the formal details.)

¹⁸⁸ LF_S is a dependent type theory whose types are called *kinds* to distinguish them from ¹⁸⁹ types in the object type theory. It has the kind Type of all types of the object type theory ¹⁹⁰ and dependent Π -kinds of the form (x:K)K', which can be written as (K)K' if $x \notin FV(K')$, ¹⁹¹ whose objects are λ -abstractions of the form [x:K]b. For each type A: Type, we have a ¹⁹² kind El(A) which is often written just as A. In LF_S , there are six forms of judgements:

¹⁹³ Σ valid, asserting that Σ is a valid signature.

¹⁹⁴ $\models \sum \Gamma$, asserting that Γ is a valid context under Σ .

¹⁹⁵ $\Box \ \Gamma \vdash_{\Sigma} K kind$, asserting that K is a kind in Γ under Σ .

¹⁹⁶ \square $\Gamma \vdash_{\Sigma} k : K$, asserting that k is an object of kind K in Γ under Σ .

¹⁹⁷ \square $\Gamma \vdash_{\Sigma} K_1 = K_2$, asserting that K_1 and K_2 are equal kinds in Γ under Σ .

198 $\Gamma \vdash_{\Sigma} k_1 = k_2 : K$, asserting that k_1 and k_2 are equal objects of kind K in Γ under Σ .

¹⁹⁹ The inference rules of the logical framework LF_S are given in Figure 1; they are the same as

 $_{\rm 200}$ $\,$ those of LF [14], except that we have judgements for signature validity, all other forms of

²⁰¹ judgements are adjusted accordingly with signatures attached, and we include some structural

rules such as those for weakening and signature and context replacement (or signature and

 $_{203}$ contextual equality), as done in the previous formulations in, for example, [21, 31, 33].

204 2.1.2 Type Theory with Π -types

Let Π_S be the type system with Π -types specified in LF_S . These Π -types are specified in the logical framework by introducing the constants, together with the definition rule, in Figure 2. Note that, with the constants in Figure 2, the rules in Figure 3 become derivable.

208 2.1.3 Subtyping Entries in Signatures

We present the whole system $\Pi_{S,\leq}$. First, subtyping is represented by means of two forms of judgements:

²¹¹ subtyping judgements $\Gamma \vdash_{\Sigma} A \leq_{c} B : Type$, and

²¹² subkinding judgements $\Gamma \vdash_{\Sigma} K \leq_c K'$.

Subtyping relations between types (not kinds) can be specified in a signature by means of entries $A \leq_c B$: Type (or simply written as $A \leq_c B$), where A and B are types and

13:6 On Subtyping in Type Theories with Canonical Objects

Figure 1 Inference Rules for LF_S

G.E. Lungu and Z. Luo

Constant declarations:

 $\begin{aligned} \Pi &: (A:Type)(B:(A)Type)Type \\ \lambda &: (A:Type)(B:(A)Type)((x:A)B(x))\Pi(A,B) \\ app &: (A:Type)(B:(A)Type)(\Pi(A,B))(x:A)B(x) \end{aligned}$ Definitional equality rule $app(A,B,\lambda(A,B,f),a) = f(a):B(a). \end{aligned}$

Figure 2 Constants for II-types in logical framework

$\frac{\Gamma \vdash_{\Sigma} A: Type \Gamma, x: A \vdash_{\Sigma} B(x): Type}{\Gamma \vdash_{\Sigma} \Pi(A, B): Type}$	
$\frac{\Gamma \vdash_{\Sigma} A: Type \Gamma \vdash_{\Sigma} B: (A)Type \Gamma \vdash_{\Sigma} f: (x:A)B(x)}{\Gamma \vdash_{\Sigma} \lambda(A, B, f): \Pi(A, B)}$	
$\frac{\Gamma \vdash_{\Sigma} g: \Pi(A,B) \Gamma \vdash_{\Sigma} a:A}{\Gamma \vdash_{\Sigma} app(A,B,g,a):B(a)}$	
$\Gamma \vdash_{\Sigma} A : Type \Gamma \vdash_{\Sigma} B : (A)Type$	
$\frac{\Gamma \vdash_{\Sigma} f : (x:A)B(x) \Gamma \vdash_{\Sigma} a : A}{\Gamma \vdash_{\Sigma} app(A, B, \lambda(A, B, f), a) = f(a) : B(a)}$	

Figure 3 Inference Rules for Π_S

215 $c: (A)B.^5$

The specifications of subtyping relations are also required to be *coherent*. Coherence is crucial as it ensures a coercive application abbreviates a unique functional application. To define this notion of coherence, we need to introduce a subsystem of $\Pi_{S,\leq}$, called $\Pi_{S,\leq}^{0K}$, defined by the rules of Π_S together with those in Figures 4 and 5, where in the rule for dependent products in Figures 4, the notation $c_2[x]$ was explained in, for example, [16]: it means that x may occur free in c_2 , although only inessentially⁶. The composition of functions is defined as follows: For f:(K1)K2 and $g:(K2)K3, g \circ f = [x:K1]g(f(x)):(K1)K3$.

Here is the definition of coherence of a signature, which intuitively says that, under a coherent signature, there cannot be two different coercions between the same types.

▶ **Definition 1.** A signature Σ is coherent if, in $\Pi_{S,\leq}^{0K}$, $\Gamma \vdash_{\Sigma} A \leq_{c} B$ and $\Gamma \vdash_{\Sigma} A \leq_{c'} B$ imply $\Gamma \vdash_{\Sigma} c = c' : (A)B$.

Note that, in comparison with earlier formulations such as [21], we have switched from strict subtyping relation < to \leq and the coherence condition is changed accordingly as well; in particular, under a coherent signature, any coercion from a type to itself must be equal to the identity function. (This is a special case of the above condition when $B \equiv A$: because we

⁵ Using some types not contained in $\Pi_{S,\leq}$, more interesting subtyping relations can be specified. For example, for $A \leq_c B$, we could have $A \equiv Vect(N,n)$, $B \equiv List(N)$ and c maps vector $\langle m_1, ..., m_n \rangle$ to list $[m_1, ..., m_n]$. We shall not formally deal with such extended type systems in the current paper, but the ideas and results are expected to extend to the type systems with such data types (eg, all those in Martin-Löf's type theory).

⁶ For instance, one might have (by using the congruence rule) $x:A \vdash_{\Sigma} B \leq_{([y:A]e)(x)} B'$, where $B \leq_{e} B'$ and $x \notin FV(e)$.

13:8 On Subtyping in Type Theories with Canonical Objects

Signature Rules for Subtyping $\frac{\vdash_{\Sigma} A: Type \quad \vdash_{\Sigma} B: Type \quad \vdash_{\Sigma} c: (A)B}{\Sigma, A \leq_{c} B \quad valid} \qquad \frac{\vdash_{\Sigma_{0}, A \leq_{c} B: Type, \Sigma_{1}} \Gamma}{\Gamma \vdash_{\Sigma_{0}, A \leq_{c} B: Type, \Sigma_{1}} A \leq_{c} B: Type}$ Congruence $\Gamma \vdash_{\Sigma} A \leq_{c} B : Type \quad \Gamma \vdash_{\Sigma} A = A' : Type \quad \Gamma \vdash_{\Sigma} B = B' : Type \quad \Gamma \vdash_{\Sigma} c = c' : (A)B$ $\Gamma \vdash_{\Sigma} A' <_{c'} B' : Type$ Transitivity $\frac{\Gamma \vdash_{\Sigma} A \leq_{c} A': Type \quad \Gamma \vdash_{\Sigma} A' \leq_{c'} A'': Type}{\Gamma \vdash_{\Sigma} A \leq_{c'oc} A'': Type}$ Weakening $\frac{\Gamma \vdash_{\Sigma, \ \Sigma'} A \leq_d B: Type \quad \vdash_{\Sigma} K \ kind}{\Gamma \vdash_{\Sigma, \ c:K, \ \Sigma'} A \leq_d B: Type} \quad (c \not\in dom(\Sigma, \Sigma'))$ $\frac{\Gamma, \Gamma' \vdash_{\Sigma} A \leq_d B: Type \quad \Gamma \vdash_{\Sigma} K \ kind}{\Gamma, x: K, \Gamma' \vdash_{\Sigma} A \leq_d B: Type} \quad (x \not\in dom(\Gamma, \Gamma'))$ Signature Replacement $\frac{\Gamma \vdash_{\Sigma_0,c:L,\Sigma_1} A \leq_d B: Type \quad \vdash_{\Sigma_0} L = L'}{\Gamma \vdash_{\Sigma_0,c:L',\Sigma_1} A \leq_d B: Type}$ Context Replacement $\frac{\Gamma_0, x: K, \Gamma_1 \vdash_{\Sigma} A \leq_d B: Type \quad \Gamma_0 \vdash_{\Sigma} K = K'}{\Gamma_0, x: K', \Gamma_1 \vdash_{\Sigma} A \leq_d B: Type}$ Substitution $\Gamma_0, x:K, \Gamma_1 \vdash_{\Sigma} A \leq_c B:Type \quad \Gamma_0 \vdash_{\Sigma} k:K$ $\Gamma_0, [k/x]\Gamma_1 \vdash_{\Sigma} [k/x]A \leq_{[k/x]c} [k/x]B$ **Identity** Coercion $\frac{\Gamma \vdash_{\Sigma} A: Type}{\Gamma \vdash_{\Sigma} A \leq_{[x:A]x} A: Type}$ Dependent Product $\frac{\Gamma \vdash_{\Sigma} A' \leq_{c_1} A: Type \quad \Gamma \vdash_{\Sigma} B, B': (A)Type \quad \Gamma, x: A \vdash_{\Sigma} B(x) \leq_{c_2[x]} B'(x): Type}{\Gamma \vdash_{\Sigma} \Pi(A, B) \leq_d \Pi(A', B' \circ c_1): Type}$ where $d \equiv [F : \Pi(A, B)]\lambda(A', B' \circ c_1, [x:A']c_2[x](app(A, B, F, c_1(x)))).$

Figure 4 Inference Rules for $\Pi_{S,<}^{0K}(1)$

always have $A \leq_{[x:A]x} A$, if $A \leq_c A$, then c = [x:A]x : (A)A.) Note also that, it is easy to prove by induction that, if $\Gamma \vdash_{\Sigma} A \leq_c B : Type$, then $\Gamma \vdash_{\Sigma} A, B : Type$ and $\Gamma \vdash_{\Sigma} c : (A)B$. It is also important to note the difference between a judgement with signature in the current calculus and that in the calculus employed in [21] where there are no signatures. For example, the signatures Σ_1 that contains $A \leq_c B$ and Σ_2 that contains $A \leq_d B$ can both be coherent signatures even when $c \neq d$, while such a situation can only be considered in the earlier setting by having two different type systems $T[C_1]$ and $T[C_2]$, which is rather Basic Subkinding Rule and Identity Coercion $\frac{\Gamma \vdash_{\Sigma} A \leq_{c} B:Type}{\Gamma \vdash_{\Sigma} El(A) \leq_{c} El(B)} \qquad \frac{\Gamma \vdash_{\Sigma} K kind}{\Gamma \vdash_{\Sigma} K \leq_{[x:K]x} K}$ Structural Subkinding Rules $\frac{\Gamma \vdash_{\Sigma} K_{1} \leq_{c} K_{2} \quad \Gamma \vdash_{\Sigma} K_{1} = K'_{1} \quad \Gamma \vdash_{\Sigma} K_{2} = K'_{2} \quad \Gamma \vdash_{\Sigma} c = c':(K_{1})K_{2}}{\Gamma \vdash_{\Sigma} K'_{1} \leq_{c'} K'_{2}}$ $\frac{\Gamma \vdash_{\Sigma} K \leq_{c} K' \quad \Gamma \vdash_{\Sigma} K'_{2} \leq_{c'} K''}{\Gamma \vdash_{\Sigma} K \leq_{c'} c K''}$ $\frac{\Gamma \vdash_{\Sigma, \Sigma'} K \leq_{d} K' \quad \Gamma \vdash_{\Sigma} K_{0} kind}{\Gamma \vdash_{\Sigma, c:K_{0}, \Sigma'} K \leq_{d} K'} \quad (c \notin dom(\Sigma, \Sigma'))$ $\frac{\Gamma, \Gamma' \vdash_{\Sigma} K \leq_{d} K' \quad \Gamma \vdash_{\Sigma} K_{0} kind}{\Gamma, x:K_{0}, \Gamma' \vdash_{\Sigma} K \leq_{d} K'} \quad (x \notin dom(\Gamma, \Gamma'))$ $\frac{\Gamma \vdash_{\Sigma_{0}, c:L, \Sigma_{1}} K \leq_{d} K' \quad \vdash_{\Sigma_{0}} L = L'}{\Gamma \vdash_{\Sigma_{0}, c:L', \Sigma_{1}} K \leq_{d} K'} \quad C_{0}, x:K, \Gamma_{1} \vdash_{\Sigma} L \leq_{d} L' \quad \Gamma_{0} \vdash_{\Sigma} K = K' \\\Gamma_{0}, [k/x]\Gamma_{1} \vdash_{\Sigma} [k/x]K_{1} \leq_{[k/x]c} [k/x]K_{2}}$ Subkinding for Dependent Product Kind $\frac{\Gamma \vdash_{\Sigma} K'_{1} \leq_{c_{1}} K_{1} \quad \Gamma, x:K_{1} \vdash_{\Sigma} K_{2} kind \quad \Gamma, x':K'_{1} \vdash_{\Sigma} K'_{2} kind \quad \Gamma, x:K_{1} \vdash_{\Sigma} [c_{1}(x')/x]K_{2} \leq_{c_{2}} K'_{2}}{\Gamma \vdash_{\Sigma} (x:K_{1})K_{2} \leq_{[f:(x:K_{1})K_{2}][x':K'_{1}]c_{2}(f(c_{1}(x')))} (x:K_{1})K'_{2}}$

Figure 5 Inference Rules for $\Pi_{S,<}^{0K}(2)$

13:10 On Subtyping in Type Theories with Canonical Objects

Coercive Applica	ation
(CA_1)	$\frac{\Gamma \vdash_{\Sigma} f:(x:K)K' \Gamma \vdash_{\Sigma} k_0:K_0 \Gamma \vdash_{\Sigma} K_0 \leq_c K}{\Gamma \vdash_{\Sigma} f(k_0):[c(k_0)/x]K'}$
(CA_2)	$\frac{\Gamma \vdash_{\Sigma} f = f':(x:K)K' \Gamma \vdash_{\Sigma} k_0 = k'_0:K_0 \Gamma \vdash_{\Sigma} K_0 \leq_c K}{\Gamma \vdash_{\Sigma} f(k_0) = f'(k'_0):[c(k_0)/x]K'}$
Coercive Definition	on
(CD)	$\frac{\Gamma \vdash_{\Sigma} f:(x:K)K' \Gamma \vdash_{\Sigma} k_0:K_0 \Gamma \vdash_{\Sigma} K_0 \leq_c K}{\Gamma \vdash_{\Sigma} f(k_0) = f(c(k_0)):[c(k_0)/x]K'}$

Figure 6 The coercive application and definition rules in $\Pi_{S,\leq}$

 $_{238}$ cumbersome to say the least.⁷

We can, at this point, complete the specification of the system $\Pi_{S,\leq}$ as the extension of $\Pi_{S,\leq}^{0K}$ by adding the rules in Figure 6.

Preserved Remark. We can now explain why we have to present the system $\Pi_{S,\leq}^{0K}$ first. The reason is that the coercive definition rule (CD) will force any two coercions to be equal. Therefore, we cannot define the notion of coherence for the system including the (CD) rule as, if we did so, every signature would be coherent by definition.

245 2.2 Coherence for Kinds and Conservativity

In this subsection, we prove two basic properties of $\Pi_{S,\leq}$: (1) coherence, as defined for types, extends to kinds; (2) it is a conservative extension of the system Π_S .

248 2.2.1 Coherence for Kinds

Note that the coherence definition refers to types. In what follows we prove that coherence for types implies coherence for kinds. We categorise kinds and show that they can be related via definitional equality or subtyping only if they are of the same category. For this we also define the degree of a kind which intuitively denotes how many dependent product occurrences are in a kind.

Lemma 2. If $\Gamma \vdash_{\Sigma} A \leq_{c} B$ is derivable in $\Pi_{S,\leq}^{0K}$ then $\Gamma \vdash_{\Sigma} c:(A)B$ is derivable in $\Pi_{S,\leq}^{0K}$.

²⁵⁵ **Proof.** By induction on the structure of derivations

Lemma 3. If $\Gamma \vdash K \leq_c L$ is derivable in $\Pi_{S,\leq}^{0K}$ then $\Gamma \vdash c:(K)L$ is derivable in $\Pi_{S,\leq}^{0K}$.

Proof. By induction on the structure of derivations. We consider $K \equiv (x:K_1)K_2$ and $L \equiv (x:L_1)L_2$. If a derivation tree for $\Gamma \vdash K \leq_c L$ ends with the rule for dependent product kind with premises $\Gamma \vdash_{\Sigma} L_1 \leq_{c_1} K_1$, $\Gamma, x:K_1 \vdash_{\Sigma} K_2$ kind, $\Gamma, y:L_1 \vdash_{\Sigma} L_2$ kind and $\Gamma, y:L_1 \vdash_{\Sigma} [c_1(y)/x]K_2 \leq_{c_2} L_2$. By IH we have $\Gamma \vdash_{\Sigma} c_1:(L_1)K_1$ and $\Gamma, y:L_1 \vdash_{\Sigma} c_2:([c_1(y)/x]K_2)L_2$. By weakening $\Gamma, f:(x:K_1)K_2, y:L_1 \vdash_{\Sigma} c_2:([c_1(y)/x]K_2)L_2$ and $\Gamma, f:(x:K_1)K_2, y:L_1 \vdash_{\Sigma} c_1:(L_1)K_1$. We have $\Gamma, f:(x:K_1)K_2, y:L_1 \vdash_{\Sigma} y:L_1$ so by application $\Gamma, f:(x:K_1)K_2, y:L_1 \vdash_{\Sigma} c_1(y):K_1$. We have $\Gamma, f:(x:K_1)K_2, y:L_1 \vdash_{\Sigma} f:(x:K_1)K_2$ so by application we have $\Gamma, f:(x:K_1)K_2, y:L_1 \vdash_{\Sigma} f:(x:K_1)K_2$.

⁷ This has some unexpected consequences concerning parameterised coercions as well. But it is a topic beyond the current paper and will be discussed somewhere else.

 $f(c_1(y)):[c_1(y)/x]K_2$. By application again we have $\Gamma, f:(x:K_1)K_2, y:L_1 \vdash_{\Sigma} c_2(f(c_1(y))):L_2$ 264 and by abstraction $\Gamma \vdash_{\Sigma} [f:(x:K_1)K_2][y:L_1]c_2(f(c_1(y))):((x:K_1)K_2)(y:L_1)L_2$ 265

▶ Lemma 4. Let $\Gamma \vdash_{\Sigma} K \leq_{c} L$ be derivable in $\Pi_{S,\leq}^{0K}$. Then K and L are of the same form, 266 i.e., both are El-terms or both are dependent product kinds. Furthermore, 267

• if $K \equiv El(A)$ and $L \equiv El(B)$, then $\Gamma \vdash_{\Sigma} A \leq_{c} B$: Type is derivable in $\Pi_{S,<}^{0K}$ and 268

• if $K \equiv (x:K_1)K_2$ and $L \equiv (x:L_1)L_2$, then $\Gamma \vdash_{\Sigma} K_1$ kind, $\Gamma, x:K_1 \vdash_{\Sigma} K_2$ kind, $\Gamma \vdash_{\Sigma}$ 269

 L_1 kind, and $\Gamma, x: L_1 \vdash_{\Sigma} L_2$ kind are derivable in $\Pi_{S\leq}^{0K}$. 270

The following lemma states that, if there is a subtyping relation between two dependent 271 kinds, then the coercion can be obtained by the subtyping for dependent product kind rule 272 from Figure 5. Note that for this to hold it is essential that we only have subtyping entries 273 in signatures and not subkinding. 274

▶ Lemma 5. If $\Gamma \vdash_{\Sigma} (x:K_1)K_2 \leq_d (y:L_1)L_2$ is derivable in $\prod_{S,\leq}^{0K}$ then there exist derivable 275 judgements in $\Pi^{0K}_{S,\leq}$, $\Gamma \vdash_{\Sigma} c_1:(L_1)K_1$ and $\Gamma, y:L_1 \vdash_{\Sigma} c_2:([c_1(y)]/x]K_2)L_2$ s.t. 276

 $\qquad \Gamma \vdash_{\Sigma} L_1 \leq_{c_1} K_1$ 277

 $\Gamma, y: K'_1 \vdash_{\Sigma} [c_1(y)/x] K_2 \leq_{c_2} L_2 \ and$ 278

 $\Gamma \vdash_{\Sigma} d = [f:(x:K_1)K_2][y:L_1]c_2(f(c_1(y))):((x:K_1)K_2)(y:L_1)L_2$ 279

are derivable in $\Pi^{0K}_{S,<}$. 280

> **Proof.** By induction on the structure of derivation of $\Gamma \vdash_{\Sigma} (x:K_1)K_2 \leq_d (y:L_1)L_2$. The only non trivial case is when it comes from transitivity.

$$\frac{\Gamma \vdash_{\Sigma} (x:K_1)K_2 \leq_{d_1} C \quad \Gamma \vdash_{\Sigma} C \leq_{d_2} (y:L_1)L_2}{\Gamma \vdash_{\Sigma} (x:K_1)K_2 \leq_{d_2 \circ d_1} (y:L_1)L_2}$$

By the previous lemma $\Gamma \vdash_{\Sigma} C \equiv (z:M_1)M_2$. By IH we have that 281

 $\Gamma \vdash_{\Sigma} M_1 \leq_{c_1'} K_1$ 282

283

 $\Gamma \vdash_{\Sigma} d_1 = [f:(x:K_1)K_2][z:M_1]c'_2(f(c'_1(z))):((x:K_1)K_2)(z:M_1)M_2$ 284

and 285

$$_{286} \quad \blacksquare \quad \Gamma \vdash_{\Sigma} L_1 \leq_{c_1''} M_2$$

 $\Gamma, y: L_1 \vdash_{\Sigma} [c_1''(y)/z] M_2 \leq_{c_2''} L_2$ 287

• $\Gamma \vdash_{\Sigma} d_2 = [f:(z:M_1)M_2][y:L_1]c_2''(f(c_1''(y))):((z:M_1)M_2)(y:L_1)L_2$ 288

are derivable. We apply transitivity to obtain $\Gamma \vdash_{\Sigma} L_1 \leq_{c'_1 \circ c''_1} K_1$ and by weakening and sub-289

stitution in addition, $\Gamma, y: L_1 \vdash_{\Sigma} [c'_1(c''_1(y))/x]K_2 \leq c''_2 \circ [c''_1(y)/z]c'_2 L_2$ and what is left to prove is that $\Gamma \vdash_{\Sigma} d_2 \circ d_1 = [f:(x:K_1)K_2][y:L_1](c''_2 \circ [c''_1(y)/z]c'_2)(f((c'_1 \circ c''_1)(y))):((x:K_1)K_2)(y:L_1)L_2.$ 290

291

²⁹² Let
$$\Gamma \vdash_{\Sigma} F:(x:K_1)K_2$$

293	$d_2 \circ d_1(F) = d_2(d_1(F))$
294	$= d_2([f:(x:K_1)K_2][z:M_1]c'_2(f(c'_1(z)))(F)))$
295	$= d_2([F/f][z:M_1]c'_2(f(c'_1(z))))$
296	$= d_2([z:M_1]c'_2(F(c'_1(z))))$
297	$= ([f:(z:M_1)M_2][y:L_1]c_2''(f(c_1''(y))))([z:M_1]c_2'(F(c_1'(z))))$
298	$= [z:M_1]c'_2(F(c'_1(z)))/f]([y:L_1]c''_2(f(c''_1(y))))$
299	$= [y:L_1]c_2''([z:M_1]c_2'(F(c_1'(z)))(c_1''(y)))$
300	$= [y:L_1]c_2''([c_1''(y)/z]c_2'(F(c_1'(c_1''(y)))))$
301	$= [y:L_1]c_2''([c_1''(y)/z]c_2'(F(c_1'(c_1''(y)))))$
302	$= [y:L_1](c_2'' \circ [c_1''(y)/z]c_2')(F((c_1' \circ c_1'')(y)))$
303 304	$= ([f:(x:K_1)K_2][y:L_1](c_2'' \circ [c_1''(y)/z]c_2')(f((c_1' \circ c_1'')(y))))(F)$

305

306 The following de

nition gives us a measure for the structure of kinds. We will use this measure when
 proving coherence for kinds. It is particularly important and we will use the fact that this
 measure is not increased by substitution.

Definition 6. For $\Gamma \vdash_{\Sigma} K$ we define the **degree of** K where $\Gamma \vdash_{\Sigma} K$ kind as $deg(K) \in \mathbb{N}$ as follows:

- 312 **1.** deg(Type) = 1
- 313 **2.** deg(El(A)) = 1
- 314 **3.** deg((x:K)L) = deg(K) + deg(L)
- ³¹⁵ ► Lemma 7. *The following hold:*

316 if $\Gamma \vdash_{\Sigma} K = L$ is derivable in $\Pi^{0K}_{S,<}$ then deg(K) = deg(L)

 $\text{if } \Gamma \vdash_{\Sigma} K \leq_{c} L \text{ is derivable in } \Pi^{0,\overline{K}}_{S,\leq} \text{ then } \deg(K) = \deg(L)$

Proof. We do induction on the structure of derivations of $\Gamma \vdash_{\Sigma} K = L$ respectively $\Gamma \vdash_{\Sigma} K \leq L$. For example if it comes from the rule

$$\frac{\Gamma \vdash_{\Sigma} K_1 = K_2 \quad \Gamma, x: K_1 \vdash_{\Sigma} K'_1 = K'_2}{\Gamma \vdash_{\Sigma} (x:K_1)K'_1 = (x:K_2)K'_2}$$

³¹⁸ by IH, $deg(K_1) = deg(K_2)$ and $deg(K'_1) = deg(K'_2)$, hence $deg((x:K_1)K'_1) = deg((x:K_2)K'_2)$ ³¹⁹

▶ Lemma 8 (Coherence for Kinds). If $\Gamma \vdash_{\Sigma} K \leq_c L$ and $\Gamma \vdash_{\Sigma} K \leq_{c'} L$ are derivable in $\Pi_{S,\leq}^{0K}$, then $\Gamma \vdash_{\Sigma} c = c' : (K)L$ is derivable in $\Pi_{S,\leq}^{0K}$.

³²² **Proof.** By induction on n = deg(K).

323 **1.** For n = 1:

- ³²⁴ If $\Gamma \vdash_{\Sigma} K = El(A)$ and $\Gamma \vdash_{\Sigma} L = El(B)$ then by Lemma 4 we have $\Gamma \vdash_{\Sigma} A \leq_{c} B$ and ³²⁵ $\Gamma \vdash_{\Sigma} A \leq_{c'} B$ and from coherence for types $\Gamma \vdash_{\Sigma} c = c':(A)B$, hence $\Gamma \vdash_{\Sigma} c = c':(K)L$
- If $\Gamma \vdash_{\Sigma} K = Type$ and $\Gamma \vdash_{\Sigma} L = Type$ then we can only have $\Gamma \vdash_{\Sigma} c = Id:(K)L$.
- 327 2. For n > 1, $\Gamma \vdash_{\Sigma} K \equiv (x:K_1)K_2$ and $\Gamma \vdash_{\Sigma} L \equiv (x:L_1)L_2$, by Lemma 5
- $I_{328} \qquad = \quad \Gamma \vdash_{\Sigma} L_1 \leq_{c_1} K_1,$

G.E. Lungu and Z. Luo

329	$ \Gamma, x: K_1 \vdash_{\Sigma} [c_1(y)/x] K_2 \leq_{c_2} L_2 \text{ and} $
330	$ \Gamma \vdash_{\Sigma} c = [f:(x:K_1)K_2][y:L_1]c_2(f(c_1(y))):((x:K_1)K_2)(y:L_1)L_2 $
331	are derivable for some $\Gamma \vdash_{\Sigma} c_1:(L_1)K_1$ and $\Gamma, x:K_1 \vdash_{\Sigma} c_2:([c_1(x)/x]K_2)L_2$ and $deg(L_1)$,
332	$deg(K_1), deg([c_1(y)/x]K_2), deg(L_2)$ are all smaller than n. If
333	$= \Gamma \vdash_{\Sigma} L_1 \leq_{c_1'} K_1,$
334	= $\Gamma, x: K_1 \vdash_{\Sigma} [c'_1(y)/x] K_2 \leq_{c'_2} L_2$ and
335	$ \Gamma \vdash_{\Sigma} c' = [f:(x:K_1)K_2][y:L_1]c'_2(f(c'_1(y))):((x:K_1)K_2)(y:L_1)L_2 $
336	are derivable for some other coercions $\Gamma \vdash_{\Sigma} c'_1:(L_1)K_1$ and $\Gamma, x:K_1 \vdash_{\Sigma} c'_2:([c'_1(y)/x]K_2)L_2$
337	then by IH we have $\Gamma \vdash_{\Sigma} c_1 = c'_1:(L_1)K_1$ and $\Gamma, x:K_1 \vdash_{\Sigma} c_2 = c'_2:([c'_1(y)/x]K_2)L_2$ and
338	we are done.

339

340 2.2.2 Conservativity

Here we prove that, if the signatures are coherent, our calculus $\Pi_{S,\leq}$ is conservative over Π_S in the traditional sense. It follows directly from the fact that $\Pi_{S,\leq}$ keeps track of subtyping entries in the signatures and it carries them along in derivations. More precisely we prove that if a judgement is derivable in $\Pi_{S,\leq}$ and not in Π_S then it cannot be written in Π_S .

The following two lemmas state that any subtyping or subkinding judgement can only be derived with a signature containing subtyping entries, and hence the signature cannot be written in Π_S .

³⁴⁸ ► Lemma 9. If $\Gamma \vdash_{\Sigma} A \leq_{c} B$:Type is derivable in $\Pi_{S,\leq}$, then Σ contains at least a subtyping ³⁴⁹ entry or $\Gamma \vdash_{\Sigma} A = B$:Type and $\Gamma \vdash_{\Sigma} c = Id$:(A)A are derivable in $\Pi_{S,\leq}$.

Proof. By induction on the structure of derivation. For example if it comes from transitivity from premises $\Gamma \vdash_{\Sigma} A \leq_{c} A' : Type$ and $\Gamma \vdash_{\Sigma} A' \leq_{c'} B : Type$ then the statement simply is true by IH.

Lemma 10. If Γ ⊢_Σ $K \leq_c L$ is derivable in $\Pi_{S,\leq}$, then Σ contains at least a subtyping entry or Γ ⊢_Σ K = L and Γ ⊢_Σ c = Id:(K)L are derivable in $\Pi_{S,\leq}$.

Proof. By induction on the structure of derivation. For example if it comes from transitivity from premises $\Gamma \vdash_{\Sigma} K \leq_c M$ and $\Gamma \vdash_{\Sigma} M \leq_{c'} L$ then the statement simply is true by IH.

If it comes from the rule

$$\frac{\Gamma \vdash_{\Sigma} A \leq_{c} B:Type}{\Gamma \vdash_{\Sigma} El(A) \leq_{c} El(B)}$$

³⁵⁷ then it follows from $\Gamma \vdash_{\Sigma} A \leq_{c} B:Type$ by the previous lemma

The following lemma extends the statement to express the fact that it is enough for a judgement to contain a non trivial subtyping or subkinding entry (not the identity coercion) in its derivation tree to have a signature that cannot be written in Π_S .

Lemma 11. If D is a valid derivation tree for $\Gamma \vdash_{\Sigma} J$ in $\prod_{S,\leq}$ and $\Gamma_1 \vdash_{\Sigma_1} K_1 \leq_{c_0} K_2$ is present in D then, either Σ contains at least a subtyping entry or $\Gamma_1 \vdash_{\Sigma_1} K_1 = K_2$ and $\Gamma_1 \vdash_{\Sigma_1} c_0 = Id_{K_1}:(K_1)K_1$ are derivable in $\prod_{S,\leq}$.

Proof. If $\Gamma \vdash_{\Sigma} J$ is a subtyping or subkinding judgement it follows directly from the previous lemmas 9, 5. Likewise, if the judgement comes from a coercive application or coercive definition rule with one of the premises $\Gamma \vdash_{\Sigma} K \leq L$, then, by the previous lemma the

statement holds. Otherwise we do induction on the structure of derivations of $\Gamma \vdash_{\Sigma} J$. For example if the derivation tree containing the subkinding judgement ends with the rule

$$\frac{\Gamma \vdash_{\Sigma} K kind \quad \Gamma, x: K \vdash_{\Sigma} K' kind}{\Gamma \vdash_{\Sigma} (x: K) K' kind}$$

then the subkinding judgements must be in at least one of the subderivations concluding $\Gamma \vdash_{\Sigma}$ K kind and $\Gamma, x: K \vdash_{\Sigma} K'$ kind. The statement then holds by induction hypothesis. 4

The following lemma states that, if a judgements is derived in $\Pi_{S,\leq}$ using only trivial 366

coercions, then it can be derived in Π_S . 367

▶ Lemma 12. If in a derivation tree of a judgement derivable in $\Pi_{S,<}$ which is not subtyping 368 or subkinding judgement all of the subtyping and subkinding judgements are of the form 369 $\Gamma_1 \vdash_{\Sigma_1} A \leq_{Id_A} A: Type \text{ respectively } \Gamma_1 \vdash_{\Sigma_1} K \leq_{[x:K]x} K \text{ then the judgement is derivable in}$ 370 371 Π_{S} .

Proof. By induction on the structure of derivations. If the derivation tree D that only contains trivial coercions ends with one of the rules of Π_S ,

$$\frac{\frac{D_1}{J_1}\dots\frac{D_n}{J_n}}{J}(R)$$

then $J_1,...,J_n$ also have derivation trees $D_1,...,D_n$ which only contain at most trivial coercions, 372

hence, by IH, they are derivable in Π_s . We can apply to them, with $D_1,...,D_n$ replaced by 373 their derivation in Π_S the same rule R to obtain the judgement J and the derivation is in 374

375 Π_S .

365

Otherwise, if for example the derivation containing only trivial coercions ends with coercive application

$$\frac{\Gamma \vdash_{\Sigma} f:(x:K)K' \quad \Gamma \vdash_{\Sigma} k_0:K \quad \Gamma \vdash_{\Sigma} K \leq_{[x:K]x} K}{\Gamma \vdash_{\Sigma} f(k_0):[[x:K]x(k_0)/x]K'}$$

 $\Gamma \vdash_{\Sigma} [[x:K]x(k_0)/x]K' = [k_0/x]K'$ and $\Gamma \vdash_{\Sigma} f:(x:K)K'$ and $\Gamma \vdash_{\Sigma} k_0:K$ are derivable 376 in Π_S by IH, and from them it follows directly by functional application, in Π_S , $\Gamma \vdash_{\Sigma}$ 377 $f(k_0):[k_0/x]K'$ 378

▶ Theorem 13 (Conservativity). If a judgement is derivable in $\Pi_{S,<}$ but not in Π_S , its 379 signature will contain subtyping entries, and hence it cannot be written in Π_S . 380

Proof. From the previous lemma, a judgement can only be derivable in $\Pi_{S,\leq}$ but not in Π_S 381 when it contains in all of its derivation trees non trivial subtyping or subkinding judgements. 382 If the judgements is itself a subtyping or subkinding judgement then it vacuously cannot 383 be written in Π_S . Otherwise, by lemma 11 it follows that either all of the subtyping and 384 subkinding judgements are of the form $\Gamma_1 \vdash_{\Sigma_1} A \leq_{Id_A} A:Type$ respectively $\Gamma_1 \vdash_{\Sigma_1} K \leq_{[x:K]x}$ 385 K in which case the judgement is derivable in Π_S or its signature contains subtyping entries, 386 in which case it cannot be written in Π_S . 4 387

Justification of $\Pi_{S,<}$ as a Well Behaved Extension 2.3 388

We shall show in this subsection that extending the type theory Π_S by coercive subtyping in 389 signatures results in a well-behaved system. In order to do so, we relate the extension with 390 the previous formulation: more precisely, for every signature Σ , we consider a corresponding 391

system $\Pi[C_{\Sigma}]^{i}$, which is similar to the system $T[C_{\Sigma}]$ in [21, 33], and we prove the equivalence 392 between judgements in $\Pi_{S,<}$ and judgements in such corresponding systems from the point 393 of view of derivability. (see Theorems 22 and 29 below for a more precise description). 394

This way we argue that there exists a stronger relation between the extension with 395 coercive subtyping entries and the base system based on the fact that was shown in [21, 33]396 that every derivation tree in $T[\mathcal{C}]$ the extension can be translated to a derivation tree in T 397 such that their conclusion are equal. 398

The relation between $\Pi^{0K}_{S,\leq}$ and Π_S 2.3.1 399

Here we show that, if a judgement J is derivable in $\Pi_{S,\leq}^{0K}$, we obtain a set of judgements, one 400 of which is of same as J up to erasing the subtyping entries from a signature. The idea here 401 is that, for any the valid signature in $\Pi_{S,<}^{0K}$ and all the judgements using it, we can remove 402 the subtyping entries from it to obtain a valid signature in Π_S and corresponding judgements 403 using this signature. 404

Definition 14. We define $erase(\cdot)$, a map which simply removes subtyping entries from 405 signature as follows: 406

erase(<>) = <>407

 $erase(\Sigma, c:K) = erase(\Sigma), c:K$ _ 408

 $erase(\Sigma, A \leq_c B) = erase(\Sigma)$ 409

The following lemma is a completion of weakening and signature replacement for the 410 cases when a signature is weakened with subtyping entries or a subtyping entry is replaced 411 in the signature. 412

► Lemma 15. If $\Gamma \vdash_{\Sigma,\Sigma'} J$ and $\vdash_{\Sigma,A \leq_c B:Type,\Sigma'} \Gamma$ are derivable in $\Pi^{0K}_{S,\leq}$ then $\Gamma \vdash_{\Sigma,A \leq_c B:Type,\Sigma'} \Gamma$ 413 J is derivable in $\Pi_{S,<}^{0K}$. 414

 $= If \Gamma \vdash_{\Sigma,A \leq_c B\Sigma'} J, \vdash_{\Sigma} A = A':Type, \vdash_{\Sigma} B = B':Type, \vdash_{\Sigma} c = c':(A)B \vdash_{\Sigma,A' \leq_{c'} B':Type,\Sigma'} \Gamma \text{ are derivable in } \Pi^{0K}_{S,\leq} \text{ then } \Gamma \vdash_{\Sigma,A' \leq_{c'} B':Type,\Sigma'} J \text{ is derivable in } \Pi^{0K}_{S,\leq}.$ 415 416

Proof. By induction on the structure of derivation. 417

▶ Lemma 16. For $\Sigma \equiv \Sigma_0, A_0 \leq_{c_0} B_0, \Sigma_1, ..., A_{n-1} \leq_{c_{n-1}} B_{n-1}, \Sigma_n$ a valid signature as 418 above we will consider the following judgements judgements $(\star) \vdash_{erase(\Sigma_0,...,\Sigma_i)} c_i:(A_i)B_i$ 419 where $i \in 0, ..., n$. Then the following statements hold: 420

421

 ⊢_Σ Γ is derivable in Π^{0K}_{S,≤} if and only if ⊢_{erase(Σ)} Γ and (*) are derivable in Π_S.
 Γ ⊢_Σ J is not a subtyping judgement and is derivable in Π^{0K}_{S,≤} if and only if Γ ⊢_{erase(Σ)} J 422 and (\star) are derivable in Π_S . 423

 If Γ ⊢_Σ A ≤_c B is derivable in Π^{0K}_{S,≤} then Γ ⊢_{erase(Σ)} c:(A)B and (*) are derivable in Π_S.
 If Γ ⊢_Σ K ≤_c L is derivable in Π^{0K}_{S,≤} then Γ ⊢_{erase(Σ)} c:(K)L and (*) are derivable in Π_S. 424 425

Proof. The only if implication for the first three cases is straightforward by induction on 426 the structure of derivations as subtyping judgements do not contribute to deriving any other 427 type of judgement in $\Pi_{S\leq}^{0K}$. For the if implication, Lemma 15 is used. The last two points 428 also follow by induction. 429

2.3.2 $\Pi[\mathcal{C}]^{;}$ 430

Here we consider a system $\Pi[\mathcal{C}]$; similar to the system $T[\mathcal{C}]$ as presented in [21, 33] with T 431 being the type theory with Π -types. 432

13:16 On Subtyping in Type Theories with Canonical Objects

Here we consider a system similar to the system $T[\mathcal{C}]$ from [21, 33] with dependent product. The difference is that here we fix some prefixes of the context, not allowing substitution and abstraction for these prefixes. In more details, the judgements of $T[\mathcal{C}]^{\dagger}$ will be of the form $\Sigma; \Gamma \vdash J$ instead of $\Gamma \vdash J$, where Σ and Γ are just contexts and substitution and abstraction can be applied to entries in Γ but not Σ . We call this system $\Pi[\mathcal{C}]^{\dagger}$. To delimitate these prefixes we use the symbol ";" and the judgements forms will be as follows:

- $_{439} = \vdash \Sigma; \Gamma \text{ signifies a judgement of valid context}$
- 440 $\Sigma; \Gamma \vdash K \ kind$

441
$$\Sigma; \Gamma \vdash k:K$$

- 442 $\Sigma; \Gamma \vdash K = K'$
- 443 $\Sigma; \Gamma \vdash k = k':K$

The rules of the system $\Pi[\mathcal{C}]^{i}$ are the ones in Figures 8,9,10, 11 and 12 in the appendix. The 444 difference between these rules and those described in [21, 33] is that, in addition to regular 445 contexts, they also refer to the prefixes apart from substitution and abstraction which is only 446 available for regular contexts. More detailed, we duplicate contexts, assumptions, weakening, 447 context replacement. For all other rules we adjust them to the new forms of judgements 448 by replacing $\Gamma \vdash J$ with $\Sigma; \Gamma \vdash J$. Notice that we do not duplicate substitution as only the 449 context at the righthand side of the ; supports substitution. We will consider the system 450 $\Pi[\mathcal{C}]_{iK}^{\circ}$ to be the one without coercive application and definition rules, namely the ones in 451 figures 8,9,10 and 11. C is formed of subtyping judgements and we have the following rule in 452 $\Pi[\mathcal{C}]_{0K}^{;}$ 453

454

$$\frac{\Gamma \vdash A \leq_c B \in \mathcal{C}}{\Gamma \vdash A \leq_c B}$$

For the system $T[\mathcal{C}]$ coercive application is added as an abbreviation to ordinary functional application and this is ensured by coercive definition together *coherence* of \mathcal{C} . Indeed, it was proved in [21, 33] that, when \mathcal{C} is coherent, $\Pi[\mathcal{C}]$ is a well behaved extension of $\Pi[\mathcal{C}]_{0K}$ in that every valid derivation tree D in $\Pi[\mathcal{C}]$ can be translated into a valid derivation tree D' in $\Pi[\mathcal{C}]_{0K}$ and the conclusion of D is definitionally equal to the conclusion of D' in $\Pi[\mathcal{C}]$. We want to avoid doing the complex proof in [21, 33] again and assume that the properties of $\Pi[\mathcal{C}]$ carry over to $\Pi[\mathcal{C}]^{\ddagger}$. So next we give the definition of coherence for the set \mathcal{C} .

▶ **Definition 17.** The set C of subtyping judgements is coherent if the following two conditions hold in $\Pi[C]_{0K}^{;}$:

464 If $\Sigma; \Gamma \vdash A \leq_c B$ is derivable, then $\Sigma; \Gamma \vdash c:(A)B$ is derivable.

If $\Sigma; \Gamma \vdash A \leq_c B$ and $\Sigma; \Gamma \vdash A \leq_{c'} B$ are derivable, then $\Sigma; \Gamma \vdash c = c':(A)B$ is derivable.

Notice that in the original formulation $\Sigma; \Gamma \vdash A \leq_{[x:A]x} A$ was not allowed. However the condition that $\Sigma; \Gamma \nvDash A \leq_c A$ was used to prove that a judgement cannot come from both coercive application and functional application. However with the current condition one can prove that, if this is the case, the coercion has to be equal to the identity.

470 2.3.3 The relation between $\Pi[\mathcal{C}]^{;}$ and $\Pi_{S,\leq}$

Although there is a difference between the new $\Pi_{S,\leq}$ and $\Pi[\mathcal{C}]^{\dagger}$ which lies mainly in the fact that, by introducing coercive subtyping via signature, we introduce them locally to the specific signature, this allowing us to have more coercions between two types under the same kinding assumptions (of the form c:K, x:K) and still have coherence satisfied, whereas by enriching a system with a set of coercive subtyping, our coercions are introduced globally and only one coercion(up to definitional equality) can exist between two types under the same kinding assumptions. However, because signatures are technically just prefix of contexts for which abstraction and substitution are not available [12], we naturally expect that there is a relation between $\Pi_{S,\leq}$ and $\Pi[\mathcal{C}]^{;}$. And indeed here we shall show that for any valid signature Σ in $\Pi_{S,\leq}$, we can represent a class of judgements of $\Pi_{S,\leq}$ depending on Σ as judgements in a $\Pi[\mathcal{C}_{\Sigma}]^{;}$.

First we consider just $\Pi_{S,\leq}^{0K}$ and $\Pi[\mathcal{C}]_{0K}^{;}$ which are the systems without coercive application and coercive definition and we define a way to transfer coercive subtyping entries of a signature Σ in $\Pi_{S,\leq}^{0K}$ to a set of coercive subtyping judgements of $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{;}$.

▶ **Definition 18.** Let Σ be a signature (not necessarily valid) in $\Pi_{S,\leq}^{0K}$ we define Γ_{Σ} as follows: $\Gamma_{<>} = <>$

487 $\Gamma_{\Sigma_{0},k:K} = \Gamma_{\Sigma_{0}}, k:K$ 488 $\Gamma_{\Sigma_{0},A \leq_{c} B:Type} = \Gamma_{\Sigma_{0}}$ 489 If Σ is valid in $\Pi_{S,\leq}^{0K}$ we define \mathcal{C}_{Σ} as follows:

490 $\mathcal{C}_{<>} = \emptyset$

491 $\mathcal{C}_{\Sigma_0,k:K} = \mathcal{C}_{\Sigma_0}$

492 $\mathcal{C}_{\Sigma_0,A \leq_c B:Type} = \mathcal{C}_{\Sigma_0} \cup \{\Gamma_{\Sigma_0}; <> \vdash A \leq_c B:Type\}$

⁴⁹³ ► Lemma 19. If $\Sigma \equiv \Sigma_0, A \leq_c B:Type, \Sigma_1$ valid is derivable in $\Pi_{S,\leq}^{0K}$, then $\Gamma_{\Sigma} \equiv \Gamma_{\Sigma_0,\Sigma_1}$ ⁴⁹⁴ and $C_{\Sigma} = C_{\Sigma_0,\Sigma_1} \cup \{\Gamma_{\Sigma_0}; <>\vdash A \leq_c B:Type\}$

⁴⁹⁵ **Proof.** By induction on the length of Σ .

⁴⁹⁶ ► Lemma 20. Let Σ₁, Σ₃ and Σ₁, Σ₂, Σ₃ be valid signatures in Π^{0K}_{S,≤}. If J is derivable in ⁴⁹⁷ Π[C_{Σ1},Σ₃]ⁱ_{0K} then J is derivable in Π[C_{Σ1},Σ₂,Σ₃]ⁱ_{0K}

⁴⁹⁸ **Proof.** By induction on the structure of derivation of J.

First we mention the following notation which we will use throughout the section and which is really just a generalization of definitional equality:

501 \Longrightarrow <>=<>, Σ , $c:K = \Sigma'$, c:K' iff $\Sigma = \Sigma'$ and $\vdash_{\Sigma} K = K'$

 ${}^{_{502}} \quad = \quad \vdash_{\Sigma} \Gamma, x {:} K = \vdash_{\Sigma'} \Gamma, x {:} K' \text{ iff } \vdash_{\Sigma} \Gamma = \vdash_{\Sigma'} \Gamma \text{ and } \Gamma \vdash_{\Sigma} K = K'$

 ${}^{_{503}} \quad \blacksquare \quad \Gamma \vdash_{\Sigma} K = \Gamma' \vdash_{\Sigma'} K' \text{ iff } \vdash_{\Sigma} \Gamma = \vdash_{\Sigma'} \Gamma' \text{ and } \Gamma \vdash_{\Sigma} K = K'$

 ${}_{^{504}} \quad \blacksquare \quad \Gamma \vdash_{\Sigma} k: K = \Gamma' \vdash_{\Sigma'} k': K' \text{ iff } \Gamma \vdash_{\Sigma} K \text{ } kind = \Gamma' \vdash_{\Sigma'} K' \text{ } kind \text{ and } \Gamma \vdash_{\Sigma} k = k': K$

 $\Gamma \vdash_{\Sigma} A \leq_{c} B = \Gamma' \vdash_{\Sigma'} A' \leq_{c'} B' \text{ iff } \Gamma \vdash_{\Sigma} A:Type = \Gamma' \vdash_{\Sigma'} A':Type \text{ and } \Gamma \vdash_{\Sigma} B:Type = \Gamma' \vdash_{\Sigma'} B':Type \text{ and } \Gamma \vdash_{\Sigma} c:(A)B = \Gamma' \vdash_{\Sigma'} c':(A')B'$

We consider the analogous notation for judgements of the form $\vdash \Gamma_0; <>, \vdash \Gamma_0; \Gamma$ and $\Gamma_0; \Gamma \vdash J$. We will say that the judgements are definitionally equal in a certain system if all the corresponding definitional equality judgements are derivable in that system.

According to [21, 33], if we add coercive subtyping and coercive definition rules from 512 Figure 12 in the appendix to a system enriched with a coherent set of subtyping judgements 513 \mathcal{C}_{Σ} , any derivation tree in $\Pi[\mathcal{C}_{\Sigma}]^{;}$ can be translated to a derivation tree in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{;}$ (that is a 514 derivation tree that does not use coercive application and definition rules - CA_1 , CA_2 and 515 CD) and their conclusions are definitionally equal. We aim to use that result to prove that 516 for any judgement using a coherent signature in $\Pi_{S,<}$, there exists a judgement definitionally 517 equal to it in $\Pi_{S\leq}^{0K}$. For this we shall first prove that \mathcal{C}_{Σ} is coherent in the sense of the 518 definition 17 if Σ is coherent in the sense of the definition 1. To prove this we need to describe 519

13:18 On Subtyping in Type Theories with Canonical Objects

the possible contexts at the lefthand side of ; in $\Pi[\mathcal{C}_{\Sigma}]_{iK}^{\circ}$ used to infer coercive subtyping 520 judgements. 521

We first prove a theorem used throughout the section which allows us to argue about 522 judgements in $\Pi_{S,\leq}^{0K}$ and judgements in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{;}$ interchangeably. We start by presenting 523 a lemma representing the base case and then the theorem appears as an extension easily 524 proven by induction. The lemma is not required to prove the theorem but it gives a better 525 intuition. The theorem essentially states that for contexts at the lefthand side of ; obtained 526 by interleaving membership entries in a the image through Γ of a valid signature Σ or its 527 prefixes give judgements in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{i}$ corresponding to judgements in $\Pi_{S,<}^{0K}$. We will see later 528 that all the contexts at the lefthand side of ; in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{;}$ are in fact obtained by interleaving 529 membership entries in prefixes of Σ . 530

▶ Lemma 21. Let $\Sigma \equiv \Sigma_1, \Sigma_2, \Sigma_3$ be a valid signature in $\Pi_{S,<}^{0K}$ then, for any c, K and Σ'_1, Σ'_2 531 s.t. $\Sigma_1 = \Sigma'_1$ and $\Sigma_1, \Sigma_2 = \Sigma'_1, \Sigma'_2$ the following hold: 532

 $= \vdash \Gamma_{\Sigma'_1}, c:K, \Gamma_{\Sigma'_2}; \langle \rangle$ is derivable in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{;}$ iff $\Sigma'_1, c:K, \Sigma'_2$ valid is derivable in $\Pi_{S,\leq}^{0K}$ 533

534

 $= \vdash \Gamma_{\Sigma'_1}, c:K, \Gamma_{\Sigma'_2}; \Gamma \text{ is derivable in } \Pi[\mathcal{C}_{\Sigma}]_{0K}^{;} \text{ iff } \vdash_{\Sigma'_1, c:K, \Sigma'_2} \Gamma \text{ is derivable in } \Pi_{S, \leq}^{0K}$ = $\Gamma_{\Sigma'_1}, c:K, \Gamma_{\Sigma'_2}; \Gamma \vdash J \text{ is derivable in } \Pi[\mathcal{C}_{\Sigma}]_{0K}^{;} \text{ iff } \Gamma \vdash_{\Sigma'_1, c:K, \Sigma'_2} J \text{ is derivable in } \Pi_{S, \leq}^{0K}.$ 535

Proof. By induction on the structure of derivation. 536

Mainly by repeatedly applying the previous lemma (except for the case when we weaken 537 with the empty sequence, which is straight forward by induction on the structure of derivations) 538 we can prove: 539

▶ Theorem 22 (Equivalence for $\Pi_{S,<}^{0K}$). Let $\Sigma \equiv \Sigma_1, ..., \Sigma_n$ be valid signature in $\Pi_{S,<}^{0K}$ then, 540 for any $1 \le k \le n$, for any $\{\Gamma_i\}_{i \in \{0..k\}}$ sequences free of subtyping entries and and $\Sigma'_1, ..., \Sigma'_k$ 541 s.t. $\Sigma_1, ..., \Sigma_k = \Sigma'_1, ..., \Sigma'_k$ for any $i \in \{1..k\}$ the following hold: 542

 $\models \Gamma_0, \Gamma_{\Sigma'_1}, \Gamma_1, \Gamma_{\Sigma'_2}, \Gamma_2, ..., \Gamma_{k-1}\Gamma_{\Sigma'_k}, \Gamma_k; <> is derivable in \prod [\mathcal{C}_{\Sigma}]_{0K}^{;}$ if and only if 543

 $\Gamma_0, \Sigma'_1, \Gamma_1, \Sigma'_2, \Gamma_2, ..., \Gamma_{k-1}, \Sigma'_k, \Gamma_k$ valid is derivable in $\Pi^{0K}_{S,<}$ 544

 $= \vdash \Gamma_0, \Gamma_{\Sigma'_1}, \Gamma_1, \Gamma_{\Sigma'_2}, \Gamma_2, ..., \Gamma_{k-1}\Gamma_{\Sigma'_k}, \Gamma_k; \Gamma \text{ is derivable in } \Pi[\mathcal{C}_{\Sigma}]_{0K}^{\ddagger} \text{ if and only if }$ 545 546

 $= \Gamma_{0,\Sigma'_{1},\Gamma_{1},\Sigma'_{2},\Gamma_{2},\dots,\Gamma_{k-1}\Sigma'_{k},\Gamma_{k}} \Gamma \text{ is derivable in } \Pi_{S,\leq}^{0K}$ $= \Gamma_{0,\Gamma_{\Sigma'_{1}},\Gamma_{1},\Gamma_{\Sigma'_{2}},\Gamma_{2},\dots,\Gamma_{k-1}\Gamma_{\Sigma'_{k}},\Gamma_{k};\Gamma\vdash J \text{ is derivable in } \Pi[\mathcal{C}_{\Sigma}]_{0K}^{\dagger} \text{ if and only if }$ $= \Gamma_{0,\Sigma'_{1},\Gamma_{1},\Sigma'_{2},\Gamma_{2},\dots,\Gamma_{k-1}\Sigma'_{k},\Gamma_{k}} J \text{ is derivable in } \Pi_{S,\leq}^{0K}$ 547 548

Now we aim to prove that we do not introduce any new subtyping entries in Π_{S}^{0K} by 549 weakening (up to definitional equality). Note that, for this, it is essential that the weakening 550 rules do not add subtyping entries. More precisely, in the following Lemma we prove a form 551 of strengthening, which roughly says that by strengthening the assumptions of a subtyping 552 judgement, we can still derive it(up to definitional equality). 553

▶ Lemma 23. Let $\Sigma \equiv \Sigma_1, \Sigma_2$ a valid signature in $\Pi_{S,\leq}^{0K}$, for any c, K, $\Sigma'_1 = \Sigma_1$ and $\Sigma'_1, \Sigma'_2 = \Sigma_1, \Sigma_2$, if $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} A \leq_c B$ is derivable in $\Pi_{S,\leq}^{0K}$ then there exists A', c', B' such 554 555 that $\vdash_{\Sigma} A' \leq_{c'} B'$, $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} A = A':Type$, $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} B = B':Type$ and $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} c = c':(A)B$ derivable in $\Pi^{0K}_{S,\leq}$. 556 557

Proof. By induction on the structure of derivation of $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} A \leq_c B$. If it comes 558 from transitivity with the premises $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} A \leq_{c_1} C$ and $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} C \leq_{c_2} B$ then by IH, there exist $A', C', c'_1, C'', B', c'_2$ s.t. $\vdash_{\Sigma} A' \leq_{c'_1} C'$ and $\vdash_{\Sigma} C'' \leq_{c'_2} B'$ and 559 560 $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} A = A':Type, \ \Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} B = B':Type, \ \Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} C = C':Type, \ \Gamma \vdash_{\Sigma'_1,K:K,$ 561 $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} C = C'':Type, \ \Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} c_1 = c'_1:(A)C \text{ and } \Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} c_2 = c'_2:(C)B.$ By transitivity of equality we have $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} C' = C'':Type.$ By lemma 16 we have that 562 563

G.E. Lungu and Z. Luo

13:19

 $\Gamma \vdash_{erase(\Sigma'_1,k:K,\Sigma'_2)} C' = C'':Type$ is derivable in Π_S . Similarly, because $\vdash_{\Sigma} C':Type$ and 564 $\vdash_{\Sigma} C'':Type$ we have that $\vdash_{erase(\Sigma'_1,k:K,\Sigma'_2)} C':Type$ and $\vdash_{erase(\Sigma'_1,k:K,\Sigma'_2)} C'':Type$ are 565 derivable in Π_S . From Strengthening Lemma([11]) which holds for Π_S we have that 566 $\vdash_{erase(\Sigma)} C' = C'':Type$. Again, by 16 we obtain $\vdash_{\Sigma} C' = C'':Type$. At last, we can 567 apply congruence and transitivity $\vdash_{\Sigma} A' \leq_{c'_2 \circ c'_1} B'$. 568 56

$$\frac{\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} A'' \leq_{c_1} A' \quad \Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} B', B'': (A')Type \quad \Gamma, x:A' \vdash_{\Sigma'_1,k:K,\Sigma'_2} B'(x) \leq_{c_2[x]} B''(x)}{\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} \Pi(A',B') \leq_c \Pi(A'',B'' \circ c_1)}$$

with $A \equiv \Pi(A', B'), B \equiv \Pi(A'', B'' \circ c_1)$ and 571

 $c \equiv [F : \Pi(A', B')]\lambda(A'', B'' \circ c_1, [x:A'']c_2[x](app(A', B', F, c_1(x)))).$ 572

By IH, there exist $A_0'', A_0', c_1', B_0', B_0'', c_2'$ s.t. $\vdash_{\Sigma} A_0'' \leq_{c_1'} A_0', \vdash_{\Sigma} B' \leq_{c_2'} B''$ and 573 $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} A'' = A''_0:Type, \ \Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} A' = A'_0:Type,$ 574

 $\Gamma, x: A' \vdash_{\Sigma'_1, k: K, \Sigma'_2} B''(x) = B''_0: Type, \ \Gamma, x: A' \vdash_{\Sigma'_1, k: K, \Sigma'_2} B'(x) = B'_0: Type,$ 575

 $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} c_1 = c'_1:(A'')A' \text{ and } \Gamma, x:A' \vdash_{\Sigma'_1,k:K,\Sigma'_2} c_2(x) = c'_2:(B'(x))B''(x):Type.$ 576

We apply dependent product rule for the case when types are constants and obtain 577 $\vdash A'_0 \longrightarrow B'_0 \leq'_c A''_0 \longrightarrow B''_0 \text{ with } c' \equiv [F:A'_0 \longrightarrow B'_0][x:A''_0](c''_2(F(c'_1(x)))).$ 578

By normal equality rules for dependent product and its terms we have that 579

 $\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} A'_0 \longrightarrow B'_0 = \Pi(A',B'), \ \Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} A''_0 \longrightarrow B''_0 = \Pi(A'',B'') \text{ and }$ 580

⁵⁸¹
$$\Gamma \vdash_{\Sigma'_1,k:K,\Sigma'_2} c = c':(\Pi(A',B'))\Pi(A'',B'')$$

By repeatedly applying the previous lemma we obtain 582

▶ Corollary 24. For Σ valid derivable in $\Pi_{S,<}^{0K}$, $\Sigma \equiv \Sigma_1, ..., \Sigma_n$, for any $\{\Gamma_i\}_{i \in \{0...n\}}$ sequences 583 free of subtyping entries and $\{\Sigma'_i\}_{i \in \{1..n\}}$ s.t. $\Sigma_1, ..., \Sigma_i = \Sigma'_1, ..., \Sigma'_i$ for any $i \in \{1..n\}$, if 584 $\Gamma \vdash_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1}\Sigma_n, \Gamma_n} A \leq_c B \text{ is derivable in } \Pi^{0K}_{S,\leq} \text{ then there exists } A', c', B' \text{ s.t.}$ 585 $\vdash_{\Sigma} A' \leq_{c'} B', \ \Gamma \vdash_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} A = A' : Type, \ \overline{\Gamma} \vdash_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_{n-1} \Sigma_n, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Gamma_1, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Gamma_1, \Gamma_1, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Gamma_1, \Gamma_1, \Gamma_2, \Gamma_2, \dots, \Gamma_n} B = C_{\Gamma_0, \Gamma_1, \Gamma_1, \dots, \Gamma_n} B = C_{\Gamma_0, \Gamma_1, \Gamma_1, \Gamma_1, \dots$ 586 $B':Type and \Gamma \vdash_{\Gamma_0,\Sigma_1,\Gamma_1,\Sigma_2,\Gamma_2,...,\Gamma_{n-1}\Sigma_n,\Gamma_n} c = c':(A)B derivable in \Pi_{S,\leq}^{0K}$. 587

Next we prove that weakening does not break coherence: 588

▶ Lemma 25. For Σ valid in $\Pi_{S,<}^{0K}$, if $\Sigma \equiv \Sigma_1, \Sigma_2, \Sigma_3$ is coherent, for any Σ'_1, Σ'_2 s.t. 589 $\Sigma_1 = \Sigma'_1 \text{ and } \Sigma_1, \Sigma_2 = \Sigma'_1, \Sigma'_2, \text{ for any } c, K \text{ s.t. } \Sigma'_1, c:K, \Sigma'_2 \text{ is valid, } \Sigma'_1, c:K, \Sigma'_2 \text{ coherent.}$ 590

Proof. Let us consider the derivable judgements $\Gamma \vdash_{\Sigma'_1,c:K,\Sigma'_2} A \leq_c B$ and $\Gamma \vdash_{\Sigma'_1,c:K,\Sigma'_2} A \leq_c B$ 591 $A \leq_d B$. Then we know from Lemma 24 that there exist A', B', A'', B'', c', d' s.t. $\vdash_{\Sigma_1, \Sigma_2}$ 592 $A' \leq_{c'} B', \vdash_{\Sigma_1, \Sigma_2} A'' \leq_{d'} B'', \ \Gamma \vdash_{\Sigma'_1, c:K,, \Sigma'_2} A' = A:Type, \ \Gamma \vdash_{\Sigma'_1, c:K,, \Sigma'_2} B'' = B:Type,$ 593 $\Gamma \vdash_{\Sigma'_1,c:K,,\Sigma'_2s} B'' = B:Type \ \Gamma \vdash_{\Sigma'_1,c:K,,\Sigma'_2} c = c':(A)B \text{ and } \Gamma \vdash_{\Sigma'_1,c:K,,\Sigma'_2} d = d':(A)B.$ As 594 in the proof of the previous lemma, using Lemma 16 and Strengthening Lemma from [11] 595 we have that $\vdash_{\Sigma_1,\Sigma_2} A' = A'':Type, \vdash_{\Sigma_1,\Sigma_2} B' = B'':Type$. By congruence we have that 596 $\vdash_{\Sigma_1,\Sigma_2} A' \leq_{d'} B'$ is derivable in $\Pi_{S,\leq}^{0K}$. If Σ is coherent then any prefix of it $\Sigma_1, ..., \Sigma_k$ is 597 coherent so $\vdash_{\Sigma_1,\Sigma_2} c' = d': (A')B'$. Further, by weakening and Lemma 15, we have the desired 598 result. 599

By repeatedly applying the previous lemma we obtain: 600

▶ Lemma 26. For Σ valid in $\Pi_{S,\leq}^{0K}$, if $\Sigma \equiv \Sigma_1, ..., \Sigma_n$ is coherent, for any $1 \leq k \leq n$, for any 601 $\{\Gamma_i\}_{i \in \{0,..k\}}$ sequences free of subtyping entries, for any $\{\Sigma'_i\}_{i \in \{0,..k\}}$ s.t. $\Sigma_1, ..., \Sigma_i = \Sigma'_1, ..., \Sigma'_i$ 602 for any $i \in \{1..k\}$ s.t. $\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, ..., \Gamma_{k-1}, \Sigma_k, \Gamma_k$ is valid, 603

 $\Gamma_0, \Sigma_1, \Gamma_1, \Sigma_2, \Gamma_2, ..., \Gamma_{k-1}, \Sigma_k, \Gamma_k$ is coherent. 604

13:20 On Subtyping in Type Theories with Canonical Objects

Finally, the following lemma describes the relation between parts of the context at the lefthand side of the ; of judgements in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{i}$ and Σ . This is a very important result for proving the coherence of \mathcal{C}_{Σ} based on the coherence of Σ . It states that any such context is in fact obtained from weakening of a prefix of Σ . In addition from this Lemma, because all the derivable judgements in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{i}$ that are not in Π^{i} are subtyping judgements, we have as a consequence that all the judgements of $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{i}$ are equivalent to judgements in $\Pi_{S,\leq}^{0K}$.

Lemma 27. For Σ a valid signature in $\Pi_{S,\leq}^{0K}$, for any derivable judgement $\Gamma'; \Gamma \vdash J$ in

⁵¹² $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{;}$ there exists a partition of $\Sigma \equiv \Sigma_1, ..., \Sigma_n, 1 \leq k \leq n, \Gamma_0, ..., \Gamma_k$ free of subtyping

entries and $\Sigma'_1, ..., \Sigma'_k$ with $\Sigma'_1, ..., \Sigma'_i = \Sigma'_1, ..., \Sigma'_i$ for any $1 \le i \le k$ s.t. $\Gamma' \equiv \Gamma_{\Gamma_0, \Sigma_1, \Gamma_1, ..., \Sigma_k, \Gamma_k}$

Proof. By induction on the structure of derivation of the judgement in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{\dagger}$. We only prove a case for third point when the judgement is $\Gamma'; \Gamma \vdash A \leq_{c} B$. The only nontrivial case is when the judgements follows from weakening. Let us assume it comes from a derivation tree ending with

$$\frac{\Gamma'_1, \Gamma'_2; \Gamma \vdash A \leq_c B \quad \Gamma'_1; <> \vdash K \ kind}{\Gamma'_1, c: K, \Gamma'_2; \Gamma \vdash A \leq_c B}$$

with $\Gamma' \equiv \Gamma_1, c:K, \Gamma_2$. By IH we know that there exists a partition of $\Sigma \equiv \Sigma_1, ..., \Sigma_n$ and $1 \leq k \leq n$ and $\Gamma_0, ..., \Gamma_k$ and $\Sigma'_1, ..., \Sigma'_k$ with $\Sigma'_1, ..., \Sigma'_i = \Sigma'_1, ..., \Sigma'_i$ for any $1 \leq i \leq k$ s.t. $\Gamma'_1, \Gamma'_2 \equiv \Gamma_{\Gamma_0, \Sigma'_1, \Gamma_1, ..., \Sigma'_k, \Gamma_k}$ with $\Gamma \vdash_{\Gamma_0, \Sigma'_1, \Gamma_1, ..., \Sigma'_k, \Gamma_k}$. A $\leq_c B$. Let us consider the case when $\Gamma'_1 \equiv \Gamma_{\Gamma_0, \Sigma'_1, \Gamma_1, ..., \Gamma_{i-1}, \Sigma_i^{1'}}$ and $\Gamma'_2 \equiv \Gamma_{\Sigma_i^{2'}, \Gamma_i, ..., \Sigma'_k, \Gamma_k}$. With $\Sigma'_i \equiv \Sigma_i^{1'}, \Sigma_i^{2'}$ for some $1 \leq i \leq k$. We consider the partition of $\Sigma \equiv \Sigma_1, ..., \Sigma_i^1, \Sigma_i^2, ..., \Sigma_n$ s.t. $\Sigma'_1, ..., \Sigma_i^1, \Sigma_i^{2'}, ..., \Sigma'_n, \Sigma_1, ..., \Sigma_l$ $\Sigma'_1, ..., \Sigma'_l$ for any $l \in 1..i - 1$, $\Sigma_1, ..., \Sigma_i^1 = \Sigma'_1, ..., \Sigma_i^{1'}, \Sigma_1, ..., \Sigma_i^1, \Sigma_i^2 = \Sigma'_1, ..., \Sigma_i^{1'}, \Sigma_i^{2'}$ and $\Sigma_1, ..., \Sigma_l = \Sigma'_1, ..., \Sigma'_l$ for any $l \in i + 1..n$ and $\Gamma_0, ..., \Gamma_{i-1}, c:K, \Gamma_i, ..., \Gamma_k$ s.t. $\Gamma' =$ $\Gamma_{\Gamma_0, \Sigma_1, ..., \Gamma_{i-1}, \Sigma_i^1, c:K, \Sigma_i^2, \Gamma_i, ..., \Sigma_k, \Gamma_k$.

The next lemma refers to the ability to argue about coherence of a set of coercive subtyping judgements corresponding to a signature.

Theorem 28 (Equivalence of Coherence). Let Σ be a valid signature in $\Pi_{S,\leq}^{0K}$. Then Σ is coherent in the sense of the Definition 1 iff C_{Σ} is coherent for $\Pi[C_{\Sigma}]_{0K}^{i}$ in the sense of the Definition 17.

Proof. Only if: Let $\Gamma'; \Gamma \vdash A \leq_c B$ and $\Gamma'; \Gamma \vdash A \leq_d B$ be derivable in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{i}$. From Lemma 27, it follows that there exists a partition of $\Sigma \equiv \Sigma_1, ..., \Sigma_n$ and $1 \leq k \leq n$ and $\Gamma_0, ..., \Gamma_k$ s.t. $\Gamma' = \Gamma_{\Gamma_0, \Sigma_1, ..., \Sigma_k, \Gamma_k}$. If Σ is coherent, then $\Gamma_0, \Sigma_1, ..., \Sigma_k, \Gamma_k$ is coherent (from Lemma 26). From Theorem 22, $\Gamma'; \Gamma \vdash A \leq_c B$ and $\Gamma'; \Gamma \vdash A \leq_d B$ are derivable in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{i}$ iff $\Gamma \vdash_{\Gamma_0, \Sigma_1, ..., \Sigma_k, \Gamma_k} A \leq_c B$ and $\Gamma \vdash \Gamma_0, \Sigma_1, ..., \Sigma_k, \Gamma_k A \leq_d B$ are derivable in $\Pi_{S, \leq}^{0K}$ From coherence here we have $\Gamma \vdash_{\Gamma_0, \Sigma_1, ..., \Sigma_k, \Gamma_k} c = d:(A)B$ which is derivable in $\Pi_{S, \leq}^{0K}$ iff $\Gamma'; \Gamma \vdash c = d:(A)B$ is derivable in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{i}$ (again by Theorem Theorem 22).

⁶³⁴ If: By Theorem 22, $\Gamma \vdash_{\Sigma} A \leq_{c} B:Type$ and $\Gamma \vdash_{\Sigma} A \leq_{d} B:Type$ are derivable in $\Pi_{S,\leq}^{0K}$ ⁶³⁵ iff $\Gamma_{\Sigma}; \Gamma \vdash A \leq_{c} B$ and $\Gamma_{\Sigma}; \Gamma \vdash A \leq_{d} B$ are derivable in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{:}$. Because \mathcal{C}_{Σ} is coherent, ⁶³⁶ $\Gamma_{\Sigma}; \Gamma \vdash c = d:(A)B$ is derivable in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{:}$ which happens iff $\Gamma \vdash_{\Sigma} c = d:(A)B$ is derivable ⁶³⁷ in $\Pi_{S,\leq}^{0K}$

To prove that the system $\Pi_{S,\leq}$ is well behaved we first prove that it is well behaved when all the signatures considered are valid in the restricted system $\Pi_{S,\leq}^{0K}$. First we prove another equivalence lemma for this situation.

⁶⁴¹ ► **Theorem 29** (Equivalence for $\Pi_{S,\leq}$). For Σ valid in $\Pi_{S,\leq}^{0K}$, the following hold: ⁶⁴² ■ $\vdash \Gamma_{\Sigma}; \Gamma$ is derivable in $\Pi[\mathcal{C}_{\Sigma}];$ iff $\vdash_{\Sigma} \Gamma$ is derivable in $\Pi_{S,<}$

G.E. Lungu and Z. Luo

- ${}_{643} = \Gamma_{\Sigma}; \Gamma \vdash J \text{ is derivable in } \Pi[\mathcal{C}_{\Sigma}]; \text{ iff } \Gamma \vdash_{\Sigma} J \text{ is derivable in } \Pi_{S,<}.$
- ⁶⁴⁴ **Proof.** By induction on the structure of derivation.

The following theorem shows that the system we defined here is well behaved and that every coercive subtyping application is really just an abbreviation.

Lemma 30. If a valid signature Σ in $\Pi_{S,\leq}^{0K}$ is coherent the following hold:

⁶⁴⁸ 1. If $\vdash_{\Sigma} \Gamma$ is derivable in $\Pi_{S,\leq}$ then there exists Γ' s.t. $\vdash_{\Sigma} \Gamma'$ is derivable in $\Pi_{S,\leq}^{0K}$ and ⁶⁴⁹ $\vdash_{\Sigma} \Gamma = \Gamma'$ is derivable in $\Pi_{S,<}$.

⁶⁵⁰ 2. If $\Gamma \vdash_{\Sigma} J$ is derivable in $\Pi_{S,\leq}$ then there exists Γ', J' s.t. $\Gamma' \vdash_{\Sigma} J'$ is derivable in $\Pi_{S,\leq}^{0K}$ ⁶⁵¹ and $\vdash_{\Sigma} \Gamma = \Gamma'$ and $\Gamma \vdash_{\Sigma} J = J'$ are derivable in $\Pi_{S,\leq}$.

Proof. By Theorem 28, since Σ is coherent in, \mathcal{C}_{Σ} is coherent. If we look at the last case, by 652 Theorem 29, $\Gamma \vdash_{\Sigma} J$ is derivable in $\Pi_{S,\leq}$ iff $\Gamma_{\Sigma}; \Gamma \vdash J$ is derivable in $\Pi[\mathcal{C}_{\Sigma}]^{;}$. From [21, 33] 653 we know that, when \mathcal{C}_{Σ} is coherent, any derivation tree of $\Gamma_{\Sigma}; \Gamma \vdash J$ can be translated into 654 a derivation tree in $\Pi[\mathcal{C}_{\Sigma}]_{0K}^{;}$ which concludes with the judgement definitionally equal to 655 $\Gamma_{\Sigma}; \Gamma \vdash J$. So let us consider one such derivation tree, its translation and the definitionally 656 equal conclusion $\Gamma_{\Sigma}; \Delta \vdash J' \ (\vdash \Gamma_{\Sigma}; <> \text{ is already derivable in } \Pi[\mathcal{C}_{\Sigma}]_{0K};$ so by inspecting 657 the definition of the translation in [21, 33] we observe that Γ_{Σ} will not be changed by the 658 translation). We have $\vdash \Gamma_{\Sigma}; \Gamma = \Gamma_{\Sigma}; \Delta$ and $\Gamma_{\Sigma}; \Gamma \vdash J = J'$ are derivable in $\Pi[\mathcal{C}_{\Sigma}]^{\dagger}$. From 659 Lemma 29 we know that in this case $\vdash_{\Sigma} \Gamma = \Delta$ and $\Gamma \vdash_{\Sigma} J = J'$ are derivable in $\Pi_{S,<}$ so 660 the desired derivable judgement is simply $\Delta \vdash_{\Sigma} J'$. 661

Note that the previous theorem covers the well-behavedness of judgements derived under a signature that is valid in $\Pi_{S,\leq}^{0K}$. We now prove further that any signature valid in $\Pi_{S,\leq}$ is definitionally equal to a signature valid in $\Pi_{S,\leq}^{0K}$, then because of signature replacement we have that any judgement derivable in in $\Pi_{S,\leq}$ is definitionally equal to a judgement derivable in $\Pi_{S,\leq}^{0K}$.

Lemma 31. For any signature Σ valid in $\Pi_{S,\leq}$ there exists Σ' valid in $\Pi_{S,\leq}^{0K}$ s.t. $\Sigma = \Sigma'$ in $\Pi_{S,\leq}$

Proof. By induction on the length of Σ . We assume $\Sigma = \Sigma_0, c:K$. By IH we have that there exists Σ'_0 valid in $\Pi^{0K}_{S,\leq}$ s.t. $\Sigma_0 = \Sigma'_0$. By repeatedly applying signature replacement to $\vdash_{\Sigma_0} K$ kind we have $\vdash_{\Sigma'_0} K$ kind is derivable in $\Pi_{S,\leq}$. By Theorem 30, we have that there exists K' s.t. $\vdash_{\Sigma'_0} K'$ kind is derivable in $\Pi^{0K}_{S,\leq}$ with $\vdash_{\Sigma'_0} K = K'$. That means we can derive, in $\Pi^{0K}_{S,\leq}, \Sigma'_0, c:K'$ valid. Going back with context replacement we also have $\vdash_{\Sigma_0} K = K'$ derivable, so $\Sigma'_0, c:K'$ is the signature we are looking for.

- ⁶⁷⁵ We finish this section with the following theorem:
- **Theorem 32.** If a valid signature Σ in $\Pi_{S,\leq}$ is coherent the following hold:
- 1. If $\vdash_{\Sigma} \Gamma$ is derivable in $\Pi_{S,\leq}$ then there exists Σ', Γ' s.t. $\vdash_{\Sigma'} \Gamma'$ is derivable in $\Pi_{S,\leq}^{0K}$ and $\Sigma = \Sigma'$ and $\vdash_{\Sigma} \Gamma = \Gamma'$ are derivable in $\Pi_{S,\leq}$.

⁶⁷⁹ 2. If $\Gamma \vdash_{\Sigma} J$ is derivable in $\Pi_{S,\leq}$ then there exists Σ', Γ', J' s.t. $\Gamma' \vdash_{\Sigma'} J'$ is derivable in $\Pi_{S,\leq}^{0K}$ and $\Sigma = \Sigma', \vdash_{\Sigma} \Gamma = \Gamma'$ and $\Gamma \vdash_{\Sigma} J = J'$ are derivable in $\Pi_{S,\leq}$.

Proof. According to the Lemma 31 there exist Σ' valid in $\Pi_{S,\leq}^{0K}$ s.t. $\Sigma = \Sigma'$. If we consider the last point, by signature replacement $\Gamma \vdash_{\Sigma'} J$ is derivable $\Pi_{S,\leq}$. Because Σ' valid in $\Pi_{S,\leq}^{0K}$, we can apply the Lemma 30 to obtain $\Gamma' \vdash_{\Sigma'} J'$ s.t. $\vdash_{\Sigma'} \Gamma = \Gamma'$ and $\Gamma \vdash_{\Sigma'} J = J'$ are derivable in $\Pi_{S,\leq}$. Again by signature replacement $\vdash_{\Sigma} \Gamma = \Gamma'$ and $\Gamma \vdash_{\Sigma} J = J'$.

◀

13:22 On Subtyping in Type Theories with Canonical Objects

General Subtyping Rules	
$\frac{\Gamma \Vdash K = K'}{\Gamma \Vdash K \le K'} \frac{\Gamma \Vdash K \le K' \Gamma \Vdash K' \le K''}{\Gamma \Vdash K \le K''} \frac{\Gamma \Vdash A = B:Type}{\Gamma \Vdash A \le B:Type}$	
$\frac{\Gamma \Vdash A \leq B{:}Type \Gamma \Vdash B \leq C{:}Type}{\Gamma \Vdash A \leq C{:}Type}$	
Subtyping in Contexts	
$\frac{\Gamma \Vdash A:Type \alpha \not\in FV(\Gamma)}{\Gamma, \alpha \leq A \ valid} \frac{\Gamma, \alpha \leq A, \Gamma' \ valid}{\Gamma, \alpha \leq A, \Gamma' \Vdash \alpha:Type} \frac{\Gamma, \alpha \leq A, \Gamma' \ valid}{\Gamma, \alpha \leq A, \Gamma' \Vdash \alpha \leq A:Type}$	
Type Lifting and Subtyping	
$\frac{\Gamma \Vdash A \leq B: Type}{\Gamma \Vdash El(A) \leq El(B)} \frac{\Gamma \Vdash k: K \Gamma \Vdash K \leq K'}{\Gamma \Vdash k: K'} \frac{\Gamma \Vdash k = k': K \Gamma \Vdash K \leq K'}{\Gamma \Vdash k = k': K'}$	
Dependent Product	
$\frac{\Gamma \Vdash \Pi(A, B): Type \Gamma \Vdash \Pi(A', B'): Type}{\frac{\Gamma \Vdash A' \leq A: Type \Gamma, x:A' \Vdash B \leq B': Type}{\Gamma \Vdash \Pi(A, B) \leq \Pi(A', B'): Type}}$	

Figure 7 Inference Rules for $\Pi_{<}$

⁶⁶⁵ Further, according to the lemma 16, the derivability of any nonsubtyping judgement in ⁶⁸⁶ $\Pi_{S,\leq}^{0K}$ is equivalent to the derivability of a judgement in Π_S and any subtyping judgement in ⁶⁸⁷ $\Pi_{S,<}^{0K}$ implies a judgement in Π_S .

Bernsending Subsumptive Subtyping

In this section, we consider how to embed subsumptive subtyping into coercive subtyping.
To this end, we consider a subtyping system which is a reformulation of the one studied by
[2] and show how it can be faithfully embedded into our system of coercive subtyping.

We consider a system analogous to Π_S with the difference that we leave out the signatures. 692 The types of judgements in this system are Γ valid, $\Gamma \Vdash K$ kind, $\Gamma \Vdash k:K$, $\Gamma \Vdash K = K'$ and 693 $\Gamma \Vdash k = k': K$ syntactically analogous to $\vdash_{<>} \Gamma$, $\Gamma \vdash_{<>} K$ kind, $\Gamma \vdash_{<>} k: K$, $\Gamma \vdash_{<>} K = K'$ 694 respectively $\Gamma \vdash_{<>} k = k': K$, baring rules analogous to the ones in the appendix and Figure 2. 695 Note that there will be no Signature Validity and Assumption rules as there are no signatures. 696 On top of these judgements we add $\Gamma \Vdash A \leq B$ type and $\Gamma \Vdash K \leq K'$ obtained with the rules 697 from Figure 7. Besides the ordinary variables in Π , we allow Γ to have subtyping variables 698 like $\alpha \leq A$. We name this extension Π_{\leq} . 699

⁷⁰⁰ Π_{\leq} is the subsumptive subtyping system specified in LF that corresponds to the system ⁷⁰¹ λP_{\leq} in [2]. There are some subtle differences between Edinburgh LF (λP) [12] and the ⁷⁰² logical framework LF we use (eg, the η -rule holds for the latter but not the former), but they ⁷⁰³ are irrelevant to the point we are trying to show: the subsumptive subtyping system can be ⁷⁰⁴ faithfully embedded in the coercive subtyping system.

Once we introduced this system we will proceed by giving an interpretation of it in the coercive subtyping system that we introduced in section 2, namely we will show that this calculus can be faithfully embedded in the coercive subtyping one.

We mentioned that, in this system, an important thing to note is how placing subtyping

entries in contexts interferes with abstraction and hence dependent types, specifically, the 709 abstraction is not allowed at the lefthand side of subtyping entries. We will give a mapping 710 that sends the contexts with subtyping entries in the subsumptive system to signatures in 711 the coercive system, prove that these signatures are coherent, and, finally, that we can embed 712 the subsumptive subtyping system into the coercive subtyping system via this mapping. 713 We are motivated, on the one hand by giving a coercive subtyping system in which we 714 can represent this subsumptive system and at the same time allowing abstraction happen 715 freely and on the other hand by the fact that we could not employ coercive subtyping in 716 context as we could make coherent contexts incoherent with substitution. For example 717 if $\alpha_1 \leq_{c_1} A, \alpha_2 \leq_{c_2} A, \Gamma$ is a coherent context (i.e. under this context any two coercions 718 between the same types are equal), by substitution we can obtain the incoherent context 719 $\alpha \leq_{c_1} A, \alpha \leq_{c_2} A, [\alpha_1/\alpha][\alpha_2/\alpha]\Gamma.$ 720

We will assume that Δ is an arbitrary context in $\Pi_{<}$. We can also assume without loss of 721 generality that $\Delta \equiv \Delta_1, \alpha_1 \leq A_1, ..., \Delta_n, \alpha_n \leq A_n, \Delta_{n+1}$, where $\{\alpha_i \leq A_i\}_{i=\overline{1,n}}$ are all of the 722 subtyping entries of Δ . If Δ_{n+1} is free of subtyping entries we can abstract over its entries 723 freely but the abstraction is obstructed by $\alpha_n \leq A_n$ for the entire prefix. We move this 724 prefix, together with the obstructing entry to the signature using constant coercions $\Sigma_{\Delta} =$ 725 $\Delta_1, \alpha_1: Type, c_1:(\alpha_1)A_1, \alpha_1 \leq_{c_1} A_1: Type, \dots, \Delta_n, \alpha_n: Type, c_n:(\alpha_n)A_n, \alpha_n \leq_{c_n} A_n: Type. We$ 726 map the left Δ_{n+1} to a context. This way we translate $\Delta \equiv \Delta_1, \alpha_1 \leq A_1, ..., \Delta_n, \alpha_n \leq A_1, ..., \Delta_n, \alpha_n \leq A_1, \ldots, A_n, \alpha_n < A_1, \ldots, A_n$ 727 $A_n, \Delta_{n+1} \vdash J$ in Π_{\leq} to $\Delta_{n+1} \vdash_{\Sigma_{\Delta}} J$ in $\Pi_{S,\leq}$, with Σ_{Δ} as above. In the rest of the section 728 we shall prove that mapping subsumptive subtyping entries in context to constant coercions 729 in signature is indeed adequate. For this, we first prove that such a signature is coherent. 730

⁷³¹ ► Lemma 33. For any valid context Δ in Π_{\leq} , Σ_Δ is coherent w.r.t. $\Pi_{S,\leq}$.

⁷³² **Proof.** We need to show that, in $\Pi_{S,\leq}$, if we have $\Gamma \vdash_{\Sigma_{\Delta}} T_1 \leq_c T_2$ and $\Gamma \vdash_{\Sigma_{\Delta}} T_1 \leq_{c'} T_2$, ⁷³³ then $c = c': (T_1)T_2$. There are two cases:

1. $T_1 \equiv \alpha$ is a constant. By the validity of Δ , we have that, if $\alpha_i \leq A_i$ and $\alpha_j \leq A_i$ are two different subtyping entries in Δ , then $\alpha_i \neq \alpha_j$, therefore, if $\alpha_i \leq_{c_i} A_i$ and $\alpha_j \leq_{c_j} A_i$ are two different coercions in Σ_{Δ} , then necessarily, $\alpha_i \neq \alpha_j$.

2. $T_1 \equiv \Pi(A, B)$ and $T_2 \equiv \Pi(A'', B'')$. In this case the non trivial situation is:

$$\frac{\Gamma \vdash_{\Sigma} \Pi(A,B) \leq_{c_1} C \quad \Gamma \vdash_{\Sigma} C \leq_{c_2} \Pi(A'',B'')}{\Gamma \vdash_{\Sigma} \Pi(A,B) \leq_{c_2 \circ c_1} \Pi(A'',B'')}$$

and C is equal to dependent product too. What we need to show is that applying dependent product rule followed by transitivity leads to the same coercion as applying transitivity first and then the dependent product rule. Namely that, for some A', B' s.t.

$$\frac{\Gamma \vdash_{\Sigma_{\Delta}} A'' \leq_{c_{2}} A' \leq_{c_{1}} A \quad \Gamma \vdash_{\Sigma_{\Delta}} B \leq_{d_{1}} B' \leq_{d_{2}} B''}{\Gamma \vdash_{\Sigma_{\Delta}} \Pi(A, B) \leq_{e_{1}} \Pi(A', B') \leq_{e_{2}} \Pi(A'', B'')}$$

where, for $F:A \longrightarrow B$ and $G:\Pi(A', B')$, $e_1(F) = \lambda[x':A']d_1(app(F, c_1(x')))$ and $e_2(G) = \lambda[x'':A'']d_2(app(G, c_2(x'')))$ applying transitivity rule, first to A, A', A'' and to B, B', B'' and then to $\Pi(A, B), \Pi(A', B'), \Pi(A'', B'')$ results in the same coercion, that is:

740 $e_2 \circ e_1 = e_2(e_1(F))$

⁷⁴¹ =
$$\lambda[x'':A'']d_2(app(e_1(F), c_2(x'')))$$

$$=_{\beta} \lambda[x'':A'']d_2(d_1(app(F, c_1(c_2(x''))))))$$

 $= d_2 \circ d_1(app(F, c_1(c_2(x'')))))$

745 746

Notation If $\Gamma \vdash_{\Sigma} k: K$ and $\Gamma \vdash_{\Sigma} K \leq_{c} K'$ are derivable in $\Pi_{S,<}$, we write $\Gamma \vdash_{\Sigma} k:: K'$.

In what follows we essentially prove that we can represent the previously introduced
 subsumptive subtyping system in our system with coercive subtyping in signatures, meaning
 that we can argue about the former system with the sematic richness of the latter.

- **Theorem 34** (Embedding Subsumptive Subtyping). Let Δ and Γ be valid contexts in Π_{\leq} , such that Γ does not contain any subtyping entries. Then we have:
- ⁷⁵³ 1. If Δ, Γ is valid in Π_{\leq} then $\vdash_{\Sigma_{\Delta}} \Gamma$ valid in $\Pi_{S,\leq}$.
- ⁷⁵⁴ 2. If $\Delta, \Gamma \Vdash K$ kind, then $\Gamma \vdash_{\Sigma_{\Delta}} K$ kind in $\Pi_{S,\leq}$.
- 755 **3.** If $\Delta, \Gamma \Vdash K = K'$, then $\Gamma \vdash_{\Sigma_{\Delta}} K = K'$ in $\Pi_{S,\leq}$.
- 756 **4.** If $\Delta, \Gamma \Vdash k:K$, then $\Gamma \vdash_{\Sigma_{\Delta}} k::K$ in $\Pi_{S,\leq}$.
- ⁷⁵⁷ **5.** If $\Delta, \Gamma \Vdash k = k':K$, then $\Gamma \vdash_{\Sigma_{\Delta}} k = k'::K$ in $\Pi_{S,\leq}$.
- **6.** If $\Delta, \Gamma \Vdash A \leq B$: Type then $\Gamma \vdash_{\Sigma_{\Delta}} A \leq_{c} B$: Type for some coercion c: (A)B in $\Pi_{S,\leq}$.
- 759 7. If $\Delta, \Gamma \Vdash K \leq K'$, then $\Gamma \vdash_{\Sigma_{\Delta}} K \leq_c K'$ for some c:(K)K' in $\Pi_{S,\leq}$.

Proof. The proof proceeds by induction on derivations for all the points of the theorem and 760 we only exhibit it for the sixth point here and in particular when the last rule in the derivation 761 tree is the one for the dependent product. We have by IH that, for $\Gamma \vdash_{\Sigma_{\Lambda}} \Pi(A, B)::Type$ 762 and $\Gamma \vdash_{\Sigma_{\Delta}} \Pi(A', B') :: Type$ we have $\Gamma \vdash_{\Sigma_{\Delta}} A' \leq_c A : Type$ and $\Gamma, x : A' \vdash_{\Sigma_{\Delta}} B \leq_{c'} B' : Type$. 763 Note that, if $K \leq_c Type$, then $K \equiv Type$, so $\Gamma \vdash_{\Sigma_{\Delta}} \Pi(A, B) :: Type$ is equivalent to $\Gamma \vdash_{\Sigma_{\Delta}}$ 764 $\Pi(A, B)$:Type, and $\Gamma \vdash_{\Sigma_{\Delta}} \Pi(A', B')$::Type with $\Gamma \vdash_{\Sigma_{\Delta}} \Pi(A', B')$:Type, hence we can directly 765 apply the rule for dependent product in $\Pi_{S,\leq}$ to obtain $\Gamma \vdash_{\Sigma_{\Delta}} \Pi(A,B) \leq_d \Pi(A',B'):Type$ 766 where, for $F:\Pi(A, B)$, $d(F) = \lambda[x:A']c'(app(F, c(x)))$. 767

4 Intuitive Notions of Subtyping as Coercion

⁷⁶⁹ In this section, we consider two case studies of how intuitive notions of subtyping may be ⁷⁷⁰ considered in the framework of coercive subtyping. The first is about type universes in ⁷⁷¹ type theory and the second is about how injectivity of coercions may play a crucial role in ⁷⁷² modelling intuitive notions of subtyping.

773 4.1 Subtyping between Type Universes

A universe is a type of types. One may consider a sequence of universes indexed by natural numbers $U_0: U_1: U_2: ...$ and $U_0 \leq U_1 \leq U_2 \leq ...$

Martin Löf [23] introduced two styles of universes in type theory: the Tarski-style and 776 the Russell-style. The Tarski-style universes are semantically more fundamental but the 777 Russell-style universes are easier to use in practice. In fact, the Russell-style universes are 778 a special case of subsumptive subtyping, which is incompatible with the idea of canonical 779 objects. As observed by the second author in [18], the two styles of universes are not 780 equivalent and the Russell-style universes can be emulated by Tarski-style universes with 781 coercive subtyping and this allows one to reason about Russell universes with the semantic 782 richness of Tarski universes, but without the overhead of their syntax. 783

784

Problem with Russell-style Universes. We extend the subsumptive subtyping system Π_{\leq} with Russell-style universes by adding the following rules $(i \in \omega)$:

$$\label{eq:rescaled_$$

G.E. Lungu and Z. Luo

and the rules for the Π -types: 788

789

 $\frac{\Gamma \Vdash A: U_i \quad \Gamma \Vdash B: (A)U_i}{\Gamma \Vdash \Pi(A,B): U_i}$ Unfortunately, as mentioned in the introduction, this straightforward formulation of universes 790

does not satisfy the properties of canonicity or subject reduction if one adopts the standard 791 notation of terms with full type information. For instance, the term $\lambda X: U_1.Nat$, where 792 Nat: U_0 , would be represented as $\lambda(U_1, [_:U_1]U_0, [_:U_1]Nat)$, but this term, which is of 793 type $U_0 \to U_0$ (by subsumption, since $U_1 \to U_0 \leq U_0 \to U_0$ by contravariance), is not 794 definitionally equal to any canonical term which is of the form $\lambda(U_0,...)$. As explained in the 795 introduction, if one used terms with less type information (eg, pairs (a, b), as in HoTT [32], 796 rather than pair(A, B, a, b), there would be incompatible types of the same term and that 797 would cause problems in type-checking. 798

799

80

806

Tarski-style Universes with Coercive Subtyping. The Tarski-style universes are intro-800 duced into $\Pi_{S,<}$ by adding the following rules $(i \in \omega)$: 801

$${}^{\scriptscriptstyle 802} \qquad \frac{\vdash_{\Sigma} \Gamma}{\Gamma \vdash_{\Sigma} U_i : Type} \qquad \frac{\Gamma \vdash_{\Sigma} a : U_i}{\Gamma \vdash_{\Sigma} T_i(a) : Type} \qquad \frac{\vdash_{\Sigma} \Gamma}{\Gamma \vdash_{\Sigma} t_{i+1} : (U_i)U_{i+1}}$$

where t_{i+1} are the lifting operators, 803

$$\overset{}{\xrightarrow{}} \qquad \frac{\vdash_{\Sigma} \Gamma}{\Gamma \vdash_{\Sigma} u_i : U_{i+1}} \qquad \qquad \overset{}{\xrightarrow{}} \overset{}}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}}{\xrightarrow{} \overset{}}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}{\xrightarrow{}} \overset{}}{\xrightarrow{}} \overset{}{\xrightarrow$$

where u_i is the name of U_i in U_{i+1} , together with the following rule for the names of Π -types: 805

$$\frac{\Gamma \vdash_{\Sigma} a : U_i \quad \Gamma, \ x : T_i(a) \vdash_{\Sigma} b(x) : U_i}{\Gamma \vdash_{\Sigma} \pi_i(a, b) : U_i}$$

The following equations also need to be satisfied: 807

808
$$T_{i+1}(t_{i+1}(a)) = T_i(a):Type$$

 $\Gamma \vdash_{\Sigma} T_i(\pi_i(a, b)) = \Pi(T_i(a), [x:T_i(a)]T_i(b(x))) : Type$ 809

 $\Gamma \vdash_{\Sigma} t_{i+1}(\pi_i(a,b)) = \pi_{i+1}(t_{i+1}(a), [x:T_i(a)]t_{i+1}(b(x))) : U_{i+1}$ 810

Furthermore, crucially, the lifting operators t_{i+1} are now declared as coercions by asking that 811 all the signatures start with the prefix $\Sigma_i \equiv U_0 \leq_{t_0} U_1, \dots, U_{i-1} \leq_{t_i} U_i$ where i is bigger 812 813 than the largest universe index that is used in an application.

814

Use of Coercion-based Tarski-style Universes. If universes are specified in the Tarski-815 style as above with the lifting operators declared as coercions, together with several notational 816 conventions (eg, T_i is omitted, u_i is identified with U_i , etc.), they can now be used easily 817 in Russell-style. The lifting operators are not seen (implicit) by the users. In particular, 818 in this setting, all the Russell-style universe rules become derivable. Theorem 34 can now 819 be extended in such a way that the Russell-style universes are faithfully emulated by the 820 Tarski-style universes with coercive subtyping. 821

Injectivity and Constructor Subtyping 4.2 822

In subsumptive subtyping, $A \leq B$ means that A is directly embedded in B. Intuitively, this 823 may imply that, for a and a' in A, if the images of them are not equal in B, then they are 824

13:26 On Subtyping in Type Theories with Canonical Objects

⁸²⁵ not equal in A, either. If we consider coercive subtyping $A \leq_c B$, this would imply that c is ⁸²⁶ injective in the sense that c(a) = c(a') implies that a = a'. In this section, we shall formally ⁸²⁷ discuss this issue in the context of representing intuitive subtyping notions by means of ⁸²⁸ coercions.

We shall consider constructor subtyping, studied by [4], in which an (inductive) type is considered to be a subtype of another if the latter has more constructors than the former. More precisely we shall discuss the example they start from, namely Even Numbers(*Even*) being a subtype of Natural Numbers (*Nat*) with the argument that the constructors of *Even* are 0 and successor of *Odd*, where *Odd* is given by the constructor successor of *Even*. Then, in *Nat* the successor constructor is overloaded to a lifting of these constructors as well. Formally they write:

```
836
837 datatype Odd = S of Even and Even = 0
838 |S of Odd
839 datatype Nat = 0
840 |S of Nat
841 |S of Odd
843 |S of Even
```

The phenomenon we want to discuss here is injectivity, in particular the one related 844 to Leibnitz equality. Leibnitz equality is defined as follows: x = y if for any predicate P, 845 $P(x) \iff P(y)$. We denote by x = A y for some type A the Leibnitz equality between x and 846 y related to a certain domain. Then, we have injectivity of subtyping if, given $x =_{Nat} y$, with 847 x, y:Even it is the case that $x =_{Even} y$. Namely, whether for any predicate $Q:Even \longrightarrow Prop$, 848 it is the case that $Q(x) \iff Q(y)$. For this it is enough to show that any predicate 849 $Q:Even \longrightarrow Prop$ admits a lifting $Q':Nat \longrightarrow Prop$ s.t. for any $x:Even, Q'(x) \Longrightarrow Q(x)$. 850 We can easily define such a Q' as follows: 851 852

```
\begin{array}{rcl} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

Injectivity of the embedding holds here but it is not granted in coercive subtyping. For functions f:(x:A)B we denote $injective(f) = \forall x, y:A.f(x) =_B f(y) \longrightarrow x =_A y$. A function *f* is then injective if $\exists p:injective(f)$.

▶ Definition 35. We say a coercion $\vdash_{\Sigma_0, A \leq c B, \Sigma_1} A \leq c B$ is injective with respect to $=_B$ if there exist p s.t. $\vdash_{\Sigma} p$:injective(c) is derivable.

For a constant coercions (namely of the form $\vdash_{\Sigma_0,c:(A)B,\Sigma_1,A\leq_c B,\Sigma_2,\Sigma_3} A\leq_c B$) we can add the assumption that they are injective $\vdash_{\Sigma_0,c:(A)B,\Sigma_1,A\leq_c B,\Sigma_2,p:injective(c),\Sigma_3} A\leq_c B$. If we embed a subsumptive subtyping that propagates an equality from a type throughout its subtypes, we represent it as a constant coercion, thus, all we need to do is add the assumption that a coercion is injective. It is obvious that the transitivity and congruence preserve the injectivity property.

An example of noninjective coercions is if we think of *Nat* and *Even* as follows

```
870
871 Inductive Nat : Type :=
872 | 0 : Nat
873 | S : Nat -> Nat.
874 Inductive even : Nat -> Prop :=
875 | 01 : even 0
```

869

```
876 | 02 : even 0
877 | S1 : forall n1, even n1 -> even (S (S n1)).
878 Inductive Even := pair{n:Nat; e:even n}. Definition proj1(ev:Even) :=
879 match
880 ev with pair n e => n
881 end.
883 Coercion proj1 : Even >-> Nat.
```

Note that the definition of *Even* changed and we refer to it as a feature of the natural numbers rather than as a subset. In order for a natural number to be even we require a proof of that.

The reason this coercion is not injective is that we can have two different proofs that 4 is even $p_1, p_2:even4$, and hence, two different pairs $(4, p_1), (4, p_2):Even$, both of them being mapped to the same 4:Nat. Enforcing injectivity here is similar to enforcing proof irrelevance.

5 Conclusion and Future Work

References

909

In this paper, we have developed a new calculus of coercive subtyping and shown that subsumptive subtyping can be faithfully embedded or represented in the calculus. The idea of representing coercive subtyping relations in signatures has achieved a balance between obtaining a powerful (and practical) calculus to capture intuitive notions of subtyping and keeping the resulting calculus simple enough for meta-theoretic studies.

We intend to extend the calculus to a richer type theory like Martin-Löf's type theory or UTT where you have rich inductive types. We do not see any difficulty in doing so, but of course, studies are needed to confirm this.

Specifying subtyping relations in signatures has changed the nature of 'basic subtyping relations' as studied in the earlier setting of coercive subtyping. The earlier setting allows parameterised coercions such as $n:Nat \vdash Vect(Nat, n) \leq_{c(n)} List(Nat)$, which instantiates, in particular, to $\vdash Vect(Nat, 3) \leq_{c(3)} List(Nat)$. Note that here we don't use *parameterised* in the sense of Coq Proof Assistant. This new system does not cover this kind of coercions at this point. It would be interesting to study a new mechanism to introduce parameterised coercions by means of entries in signatures.

Acknowledgements. Thanks go to Sergei Soloviev for extremely helpful remarks on
 this work during his visit to Royal Holloway and the anonymous referees for their helpful
 comments.

910	1	The Agda proof assistant (version 2). http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php,
911		2008.
912	2	D. Aspinall and A. Compagnoni. Subtyping dependent types. Theoretical Computer Sci-
913		ence, 266:273–309, 2001.
914	3	A. Bailey. The Machine-checked Literate Formalisation of Algebra in Type Theory. PhD
915		thesis, University of Manchester, 1999.
916	4	G. Barthe and M. J. Frade. Constructor subtyping. Lecture Notes in Computer Science,
917		1576:109-127, 1999.
918	5	Gustavo Betarte and Alvaro Tasistro. Extension of Martin-Löf's type theory with record
919		types and subtyping. Twenty-five Years of Constructive Type Theory, 1998.
920	6	V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance and explicit
921		coercion. Information and Computation, 93, 1991.

13:28 On Subtyping in Type Theories with Canonical Objects

- P. Callaghan and Z. Luo. An implementation of LF with coercive subtyping and universes.
 Journal of Automated Reasoning, 27(1):3–27, 2001.
- 8 S. Chatzikyriakidis and Z. Luo. Natural language inference in Coq. J. of Logic, Language and Information., 23(4):441–480, 2014.
- 926
 9 S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. ISTE/Wiley,
 927 2018. (to appear).
- 10 The Coq Development Team. The Coq Proof Assistant Reference Manual (Version 8.3),
 INRIA, 2010.
- Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University
 of Edinburgh, 1994.
- R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the Association for Computing Machinery, 40:143–184, 1993.
- Y. Luo. Coherence and Transitivity in Coercive Subtyping. PhD thesis, University of Durham, 2005.
- ⁹³⁶ 14 Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
 ⁹³⁷ University Press, 1994.
- II Z. Luo. Coercive subtyping in type theory. In Proc. of CSL'96, the 1996 Annual Conference of the European Association for Computer Science Logic, Utrecht. LNCS 1258, page draft., 1996.
- ⁹⁴¹ 16 Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9, 1999.
- I7 Z. Luo. Formal semantics in modern type theories with coercive subtyping. *Linguistics* and *Philosophy*, 35(6):491-513, 2012.
- I8 Z. Luo. Notes on Universes in Type Theory (for a talk given at Institute of Advanced Studies), 2012. URL: https://uf-ias-2012.wikispaces.com/file/view/LuoUniverse.
 pdf.
- ⁹⁴⁷ 19 Z. Luo. Formal semantics in modern type theories: Is it model-theoretic, proof-theoretic, or both? (invited talk). In Nicholas Asher and Sergei Soloviev, editors, *Logical Aspects* ⁹⁴⁸ of Computational Linguistics, volume 8535 of Lecture Notes in Computer Science, pages
 ⁹⁵⁰ 177–188. Springer Berlin Heidelberg, November 2014.
- 20 Z. Luo and R. Pollack. LEGO Proof Development System: User's Manual. LFCS Report
 ⁹⁵² ECS-LFCS-92-211, Dept of Computer Science, Univ of Edinburgh, 1992.
- ⁹⁵³ **21** Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: theory and implementation. inform-⁹⁵⁴ ation and computation. *Information and Computation*, 223:18–42, 2013.
- ⁹⁵⁵ 22 Zhaohui Luo and Fjodor Part. Subtyping in type theory: Coercion contexts and local
 ⁹⁵⁶ coercions, TYPES 2013, Toulouse. 2013.
- 957 23 P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
- 958 24 The Matita proof assistant. Available from: http://matita.cs.unibo.it/, 2008.
- ⁹⁵⁹ 25 J. C. Mitchell. Coercion and type inference. In *POPL'83*, 1983.
- Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf's Type
 Theory: An Introduction. Clarendon Press, New York, NY, USA, 1990.
- Benjamin C. Pierce. Bounded quantification is undecidable. In Information and Computation, pages 305-315, 1993.
- J. Reynolds. The meaning of types: From intrinsic to extrinsic semantics. BRICS Report Series RS-00-32, 2000.
- John C. Reynolds. Using category theory to design implicit conversions and generic oper ators. Semantics-Directed Compiler Generation 1980, Lecture Notes in Computer Science
 94, 1980.
- ⁹⁶⁹ **30** A. Saïbi. Typing algorithm in type theory with inheritance. *POPL*'97, 1997.
- S. Soloviev and Z. Luo. Coercion completion and conservativity in coercive subtyping.
 Annals of Pure and Applied Logic, 113(1-3):297–322, 2002.

G.E. Lungu and Z. Luo

- ⁹⁷² 32 Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013.
 ⁹⁷³ The Provide the Advanced Study, 2013.
- ⁹⁷⁴ 33 Tao Xue. Theory and Implementation of Coercive Subtyping. PhD thesis, Royal Holloway
 ⁹⁷⁵ University of London, 2013.

976 **A** Rules of $\Pi[C]$;

⁹⁷⁷ The rules of $\Pi[C]$; consists of those in Figures 8, Figure 9, Figure 10, Figure 11 and Figure 12.

13:30 On Subtyping in Type Theories with Canonical Objects

Figure 8 Inference Rules for LF;

$\frac{\Sigma; \Gamma \vdash A: Type \Sigma; \Gamma, x: A \vdash B(x): Type}{\Sigma; \Gamma \vdash \Pi(A, B): Type}$	
$\frac{\Sigma; \Gamma \vdash A: Type \Sigma; \Gamma \vdash B: (A)Type \Sigma; \Gamma \vdash f: (x:A)B(x)}{\Sigma; \Gamma \vdash \lambda(A, B, f): \Pi(A, B)}$	
$\frac{\Sigma;\Gamma\vdash g:\Pi(A,B)\Sigma;\Gamma\vdash a:A}{\Sigma;\Gamma\vdash app(A,B,g,a):B(a)}$	
$\begin{split} \Sigma; \Gamma \vdash A : Type \Sigma; \Gamma \vdash B : (A)Type \\ \underline{\Sigma; \Gamma \vdash f : (x:A)B(x) \Sigma; \Gamma \vdash a : A} \\ \overline{\Sigma; \Gamma \vdash app(A, B, \lambda(A, B, f), a) = f(a) : B(a)} \end{split}$	

Figure 9 Inference Rules for Π[;]

Figure 10 Inference Rules for $\Pi[\mathcal{C}]_{0K}^{;}(1)$

TYPES 2016

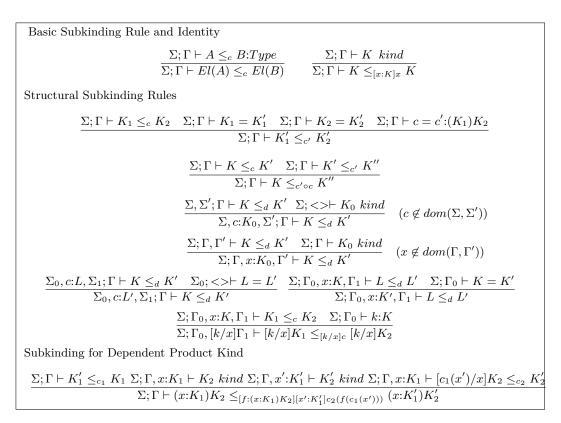


Figure 11 Inference Rules for $\Pi[\mathcal{C}]_{0K}^{;}(2)$

Coercive App	lication
(CA_1)	$\frac{\Sigma; \Gamma \vdash f:(x:K)K' \Sigma; \Gamma \vdash k_0:K_0 \Sigma; \Gamma \vdash K_0 \leq_c K}{\Sigma; \Gamma \vdash f(k_0):[c(k_0)/x]K'}$
(CA_2)	$\frac{\Sigma; \Gamma \vdash f = f': (x:K)K' \Sigma; \Gamma \vdash k_0 = k'_0: K_0 \Sigma; \Gamma \vdash K_0 \leq_c K}{\Sigma; \Gamma \vdash f(k_0) = f'(k'_0): [c(k_0)/x]K'}$
Coercive Defin	nition
(CD)	$\frac{\Sigma; \Gamma \vdash f:(x:K)K' \Sigma; \Gamma \vdash k_0:K_0 \Sigma; \Gamma \vdash K_0 \leq_c K}{\Sigma; \Gamma \vdash f(k_0) = f(c(k_0)):[c(k_0)/x]K'}$

Figure 12 The coercive application and definition rules in $\Pi[\mathcal{C}]^{\dagger}$