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Abstract9

How should one introduce subtyping into type theories with canonical objects such as Martin-10

Löf’s type theory? It is known that the usual subsumptive subtyping is inadequate and it is11

understood, at least theoretically, that coercive subtyping should instead be employed. However,12

it has not been studied what the proper coercive subtyping mechanism is and how it should13

be used to capture intuitive notions of subtyping. In this paper, we introduce a type system14

with signatures where coercive subtyping relations can be specified, and argue that this provides15

a suitable subtyping mechanism for type theories with canonical objects. In particular, we16

show that the subtyping extension is well-behaved by relating it to the previous formulation of17

coercive subtyping. The paper then proceeds to study the connection with intuitive notions of18

subtyping. It first shows how a subsumptive subtyping system can be embedded faithfully. Then,19

it studies how Russell-style universe inclusions can be understood as coercions in our system. And20

finally, we study constructor subtyping as an example to illustrate that, sometimes, injectivity21

of coercions need be assumed in order to capture properly some notions of subtyping.22
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1 Introduction26

Type theories with canonical objects such as Martin-Löf’s type theory [26] have been used as27

the basis for both theoretical projects such as Homotopy Type Theory [32] and practical28

applications in proof assistants such as Coq [10] and Agda [1]. In this paper, we investigate29

how to extend such type theories with subtyping relations, an issue that is important both30

theoretically and practically, but has not been settled.31

32

Subsumptive Subtyping. The usual way to introduce subtyping is via the following33

subsumption rule:34

a : A A ≤ B
a : B

35

This is directly related to the notion of subset in mathematics and naturally linked to type36

assignment systems in programming languages like ML or Haskell. However, subsumptive37

subtyping is not adequate for type theories with canonical objects since it would destroy key38

1 This work is partially supported by the EU COST Action CA15123 and the CAS/SAFEA International
Partnership Program.
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13:2 On Subtyping in Type Theories with Canonical Objects

properties of such type theories including canonicity (every object of an inductive type is39

equal to a canonical object) and subject reduction (computation preserves typing) [21, 16].40

For instance, the Russell-style type universes Ui : Ui+1 (i ∈ ω) [23] constitute a special41

case of subsumptive subtyping with Ui ≤ Ui+1 [18]. If we adopt the standard notation of42

terms with full type information, the resulting type theory with Russell-style universes would43

fail to have canonicity or subject reduction.2 An alternative is to use proof terms with less44

typing information like using (a, b) instead of pair(A,B, a, b) to represent pairs, as in HoTT45

(see Appendix 2 of [32]). The problem with this approach is that not only the property of46

type uniqueness fails, but a proof term may have incompatible types. For example, for a : A47

and A : U , where U is a type universe, the pair (A, a) has both types U ×A and ΣX:U.X,48

which are incompatible in the sense that none of them is a subtype of the other. This would49

lead to undecidability of type checking,3 which is unacceptable for type theories with logics50

based on the propositions-as-types principle.51

In §3 we will show how we can embed a subtyping system with the above subsumption52

rule into the coercive subtyping system we introduce in this paper.53

54

Coercive Subtyping. An alternative way to introduce subtyping is coercive subtyping,55

where a subtyping relationship between two types is modelled by means of a unique coercion56

between them. The early developments of coercion semantics of subtyping for programming57

languages include [25, 29, 28, 6], among others. At the theoretical level, previous work on58

coercive subtyping for dependent type theories such as [15, 21] show that coercive subtyping59

can be adequately employed for dependent type theories with canonical objects to preserve60

the meta-theoretic properties such as canonicity and normalisation of the original type61

theories. Based on this, coercive subtyping has been successfully used in various applications62

based on the implementations of coercions in Coq and several other proof assistants [30, 3, 7].63

However, the theoretical research on coercive subtyping such as [21] considers a rather64

abstract way of extension with coercive subtyping. For any type theory T , it extends it65

with a (coherent, but possibly infinite) set C of subtyping judgements to form a new type66

theory T [C]. Although this is well-suited in a theoretical study, it does not tell one how the67

extension should be formulated concretely in practice. In fact, a proposal of adding coercive68

subtyping assumptions in contexts [22] has met with potential difficulties in meta-theoretic69

studies that cast doubts on the seemingly attractive proposal. The complication was caused70

by the fact that coercion relations specified in a context can be moved to the right of the71

turnstile sign ` to introduce terms with the so-called local coercions that are only effective in72

a localised scope. It is still unknown whether such mechanisms can be employed successfully.73

This has partly led to the current research that studies a more restrictive calculus that only74

allows coercive subtyping relations to be specified in signatures whose entries cannot be75

localised in terms.76

77

Main Contributions. In this paper, we study a type theory with signatures where coercive78

subtyping relations can be specified and argue that this provides a suitable subtyping mech-79

anism for type theories with canonical objects.4 This claim is backed up by first showing80

2 See §4.1 of the current paper for an example of the former and §4.3 of [16] for an example of the latter.
3 To see the problem of type checking, it may be worth pointing out that, for a dependent type theory,

type checking depends on type inference; put in another way, in a type-checking algorithm one has to
infer the type of a term in many situations.

4 A type theory with signatures was also proposed by the second author in [19] in the context of applying
type theories to natural language semantics.
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that the subtyping extension is conservative over the original type theory and that all its81

valid derivations correspond to valid derivations in the original calculus, and then studying82

its connection with subsumptive subtyping and its use in modelling some of the intuitive83

notions of subtyping including that induced by Russell-style universes in type theory.84

The notion of signature in type theory was first studied in the Edinburgh Logical85

Framework [12] with judgements of the form Γ `Σ J , where the signatures Σ are used to86

describe constants of a logical system, in contrast with the contexts Γ that introduce variables87

which can be abstracted to the right of the turnstile sign by means of quantification or88

λ-abstraction. We will introduce the notion of signature by extending (the typed version89

of) Martin-Löf’s logical framework LF (Chapter 9 of [14]) to obtain the system LFS , which90

can be used similarly as LF in specifying type theories such as Martin-Löf’s type theory [26].91

Formulating the coercive subtyping relation in a type theory based on a logical framework92

makes it possible to extend the formulation to other type constructors too. We then introduce93

ΠS , a system with Π-types specified in LFS , and ΠS,≤ that extends ΠS to allow specification94

in signatures of subtyping entries A ≤c B that specifies that A is a subtype of B via95

coercion c, a function from A to B. We will justify that the coercive subtyping mechanism is96

abbreviational by showing that ΠS,≤ is equivalent to a similar system as previously studied97

[21] and hence has desirable properties [31, 13, 33].98

Although it is incompatible with the notion of canonical objects, subsumptive subtyping99

is widely used and, intuitively, it is the concept in mind in the first place when considering100

subtyping. It is therefore worth studying its relationship with the coercive subtyping calculus.101

Aspinall and Compagnoni [2] approached the topic of subsumptive subtyping in dependent102

type theory by developing a type system, with contextual subsumptive subtyping entries103

of the form α ≤ A to declare that the type variable α is a subtype of A, and its checking104

algorithm in the Edinburgh Logical Framework. In this paper we shall define a subsumptive105

subtyping system in LFS , one similar to that in [2], and prove that it can be faithfully106

embedded in ΠS,≤.107

It is worth noting that subtyping becomes particularly complicated in the case of dependent108

types. In a type system with contextual subtyping entries such as α ≤ A as in Aspinall and109

Compagnoni’s system, one has to decide whether to allow abstraction (for example, by λ or110

Π) over the subtyping entries. If one did, it would lead to types with bounded quantification111

of the form Πα ≤ A.B, which would result in complications and, most likely, undecidability112

of type checking (cf., Pierce’s work that shows undecidability of type checking in F≤, an113

extension of the second-order λ-calculus with subtyping and bounded quantification [27]). In114

order to avoid bounded quantification, Aspinall and Compagnoni [2] present the subtyping115

entries in contexts, but do not enable their moving to the right of `. In consequence,116

abstraction by λ or Π of those entries that occur to the left of a subtyping entry is obstructed.117

We chose to represent subtyping entries in the signatures in order to allow abstraction to118

happen freely for contextual entries.119

We shall then consider two case studies, showing how coercive subtyping may be used120

to capture an intuitive notion of subtyping. Type universes [23] are our first example here.121

The Russell-style universes constitute a typical example of subsumptive subtyping. The122

second author [18] observed that, although subsumptive subtyping causes problems with123

the notion of canonicity, one can obtain the essence of Russell-style universes by means of124

Tarski-style universes together with coercive subtyping by taking the explicit lifting operators125

between Tarski-style universes as coercions. Our embedding theorem (Theorem 34) that126

relates subsumptive and coercive subtyping can be extended for type systems with universes,127

therefore justifying this claim.128

TYPES 2016
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Subsumptive subtyping, esp. in its extreme forms, intuitively embodies a notion of129

injectivity that is in general not the case for coercive subtyping. One of such extreme forms130

of subtyping is constructor subtyping [4]. As the second case study, we shall relate it to our131

coercive subtyping system and show that, once equipped with injectivity of coercions, coercive132

subtyping can faithfully model the notion of injectivity intuitively assumed in subsumptive133

subtyping.134

135

Related Work. Subtyping has been studied extensively both for type systems of pro-136

gramming languages and type theories implemented in proof assistants. Early studies of137

subtyping for programming languages have considered both subsumptive and coercive sub-138

typing, mainly for simpler and non-dependent type systems (see, for example, [25, 29, 28, 6]).139

For example, Reynolds [28] considered extrinsic and intrinsic models of coercions and their140

applications to programming.141

Subtyping in dependent type theories has been studied by Aspinall and Compagnoni [2]142

for Edinburgh LF, Betarte and Tasistro [5] about subkinding between kinds (called types) for143

Martin-Löf’s logical framework, and Barthe and Frade [4] on constructor subtyping, among144

others. A theoretical framework of coercive subtyping for type theories with canonical objects145

has been developed and studied by the second author and colleagues in a series of papers146

and PhD theses [15, 21, 31, 13, 33]. In this setting, any dependent type theory T can be147

extended with coercive subtyping by giving a (possibly infinite) set C of basic subtyping148

judgements, resulting in the extended calculus T [C]. The meta-theory of such a calculus149

T [C] was first studied in [31] where, among other things, the basic approach to proving that150

coercive subtyping is an abbreviational extension was developed, which was further studied151

and improved in, for example, [13, 33]. Coercions have been implemented in several proof152

assistants such as Coq [10, 30], Lego [20, 3], Matita [24] and Plastic [7] and used effectively153

for large proof development and, more recently, in formal development of natural language154

semantics based on type theory [17, 8, 9].155

The above framework of coercive subtyping [21] has served as a theoretical tool to show in156

principle that coercive subtyping is adequate for type theories with canonical objects. How-157

ever, as pointed out above, such a theoretical framework does not serve as a concrete system158

in practice. In this paper, we shall use subtyping entries in signatures to specify basic subtyp-159

ing relations and study the resulting calculus, both in meta-theory and in practical modelling.160

161

In §2, we present ΠS,≤ and study its meta-theoretic properties. §3 presents a subsumptive162

subtyping system based on [2] and shows that it can be embedded faithfully in ΠS,≤. The163

two case studies on type universes and injectivity are studied in §4, with the relationship164

between Russell-style and Tarski-style universes studied in §4.1 and constructor subtyping165

and injectivity in §4.2. The Conclusion discusses possible further research directions.166

2 Coercive Subtyping in Signatures167

We aim to introduce a calculus that can model intuitive notions of subtyping such as168

subsumption and, at the same time, preserves the desirable properties of the original type169

theory. In this section, we present ΠS,≤, a type system with signatures where we can170

specify coercive subtyping relations, and then study its properties by relating it to the earlier171

formulation of coercive subtyping.172

In what follows we use ≡ for syntactic identity and assume that the signatures are173

coherent.174
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2.1 ΠS,≤, a Type Theory with Subtyping in Signatures175

2.1.1 Logical Framework with Signatures176

Type theories can be specified in a logical framework such as Martin-Löf’s logical framework177

[26] or its typed version LF [14]. We shall extend LF with signatures to obtain LFS .178

Informally, a signature is a sequence of entries of several forms, one of which is the form179

of membership entries c : K, which is the traditional form of entries as occurred in contexts180

(we shall add another form of entries in the next section). If a signature has only membership181

entries, it is of the form c1 : K1, ..., cn : Kn.182

I Remark (Constants and Variables). Intuitively, we shall call c declared in a signature entry183

c : K as a constant, while x in a contextual entry x : K as a variable. The formal difference184

is that, as declared in a signature entry, c cannot be substituted or abstracted (to the right185

of `), while x declared in a contextual entry can either be substituted or abstracted by λ or186

Π (see later for the formal details.)187

LFS is a dependent type theory whose types are called kinds to distinguish them from188

types in the object type theory. It has the kind Type of all types of the object type theory189

and dependent Π-kinds of the form (x:K)K ′, which can be written as (K)K ′ if x 6∈ FV (K ′),190

whose objects are λ−abstractions of the form [x:K]b. For each type A : Type, we have a191

kind El(A) which is often written just as A. In LFS , there are six forms of judgements:192

Σ valid, asserting that Σ is a valid signature.193

`Σ Γ, asserting that Γ is a valid context under Σ.194

Γ `Σ K kind, asserting that K is a kind in Γ under Σ.195

Γ `Σ k : K, asserting that k is an object of kind K in Γ under Σ.196

Γ `Σ K1 = K2, asserting that K1 and K2 are equal kinds in Γ under Σ.197

Γ `Σ k1 = k2 : K, asserting that k1 and k2 are equal objects of kind K in Γ under Σ.198

The inference rules of the logical framework LFS are given in Figure 1; they are the same as199

those of LF [14], except that we have judgements for signature validity, all other forms of200

judgements are adjusted accordingly with signatures attached, and we include some structural201

rules such as those for weakening and signature and context replacement (or signature and202

contextual equality), as done in the previous formulations in, for example, [21, 31, 33].203

2.1.2 Type Theory with Π-types204

Let ΠS be the type system with Π-types specified in LFS . These Π-types are specified in the205

logical framework by introducing the constants, together with the definition rule, in Figure 2.206

Note that, with the constants in Figure 2, the rules in Figure 3 become derivable.207

2.1.3 Subtyping Entries in Signatures208

We present the whole system ΠS,≤. First, subtyping is represented by means of two forms of209

judgements:210

subtyping judgements Γ `Σ A ≤c B : Type, and211

subkinding judgements Γ `Σ K ≤c K ′.212

Subtyping relations between types (not kinds) can be specified in a signature by means213

of entries A ≤c B : Type (or simply written as A ≤c B), where A and B are types and214

TYPES 2016
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Validity of Signature/Contexts, Assumptions

〈〉 valid
`Σ K kind c 6∈ dom(Σ)

Σ, c:K valid

`Σ,c:K,Σ′ Γ
Γ `Σ,c:K,Σ′ c:K

Σ valid

`Σ 〈〉
Γ `Σ K kind x 6∈ dom(Σ) ∪ dom(Γ)

`Σ Γ, x:K
`Σ Γ, x:K,Γ′

Γ, x:K,Γ′ `Σ x:K
Weakening

Γ `Σ, Σ′ J `Σ K kind c 6∈ dom(Σ,Σ′)
Γ `Σ, c:K, Σ′ J

Γ,Γ′ `Σ J Γ `Σ K kind x 6∈ dom(Γ,Γ′)
Γ, x:K,Γ′ `Σ J

Equality Rules

Γ `Σ K kind

Γ `Σ K = K

Γ `Σ K = K′

Γ `Σ K′ = K

Γ `Σ K = K′ Γ `Σ K′ = K′′

Γ `Σ K = K′′

Γ `Σ k:K
Γ `Σ k = k:K

Γ `Σ k = k′:K
Γ `Σ k′ = k:K

Γ `Σ k = k′:K Γ `Σ k′ = k′′:K
Γ `Σ k = k′′:K

Γ `Σ k:K Γ `Σ K = K′

Γ `Σ k:K′
Γ `Σ k = k′:K Γ `Σ K = K′

Γ `Σ k = k′:K′
Signature Replacement

Γ `Σ0,c:L,Σ1 J `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 J

Context Replacement

Γ0, x:K,Γ1 `Σ J Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ J

Substitution Rules

`Σ Γ0, x:K,Γ1 Γ0 `Σ k:K
`Σ Γ0, [k/x]Γ1

Γ0, x:K,Γ1 `Σ K′ kind Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]K′ kind

Γ0, x:K,Γ1 `Σ L = L′ Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]L = [k/x]L′

Γ0, x:K,Γ1 `Σ k′:K′ Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]k′:[k/x]K′

Γ0, x:K,Γ1 `Σ l = l′:K′ Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]l = [k/x]l′:[k/x]K′

Γ0, x:K,Γ1 `Σ K′ kind Γ0 `Σ k = k′:K
Γ0, [k/x]Γ1 `Σ [k/x]K′ = [k′/x]K′

Γ0, x:K,Γ1 `Σ l:K′ Γ0 `Σ k = k′:K
Γ0, [k/x]Γ1 `Σ [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Γ `Σ K kind Γ, x:K `Σ K′ kind

Γ `Σ (x:K)K′ kind
Γ `Σ K1 = K2 Γ, x:K1 `Σ K′1 = K′2

Γ `Σ (x:K1)K′1 = (x:K2)K′2

Γ, x:K `Σ y:K′

Γ `Σ [x:K]y:(x:K)K′
Γ `Σ K1 = K2 Γ, x:K1 `Σ k1 = k2:K

Γ `Σ [x:K1]k1 = [x:K2]k2:(x:K1)K
Γ `Σ f :(x:K)K′ Γ `Σ k:K

Γ `Σ f(k):[k/x]K′
Γ `Σ f = f ′:(x:K)K′ Γ `Σ k1 = k2:K

Γ `Σ f(k1) = f ′(k2):[k1/x]K′

Γ, x:K `Σ k′:K′ Γ `Σ k:K
Γ `Σ ([x:K]k′)(k) = [k/x]k′:[k/x]K′

Γ `Σ f :(x:K)K′ x 6∈ FV (f)
Γ `Σ [x:K]f(x) = f :(x:K)K′ The kind Type

`Σ Γ
Γ `Σ Type kind

Γ `Σ A:Type
Γ `Σ El(A) kind

Γ `Σ A = B:Type
Γ `Σ El(A) = El(B)

Figure 1 Inference Rules for LFS
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Constant declarations:

Π : (A:Type)(B:(A)Type)Type
λ : (A:Type)(B:(A)Type)((x:A)B(x))Π(A,B)

app : (A:Type)(B:(A)Type)(Π(A,B))(x:A)B(x)

Definitional equality rule

app(A,B, λ(A,B, f), a) = f(a) : B(a).

Figure 2 Constants for Π-types in logical framework

Γ `Σ A : Type Γ, x:A `Σ B(x) : Type
Γ `Σ Π(A,B) : Type

Γ `Σ A : Type Γ `Σ B : (A)Type Γ `Σ f : (x:A)B(x)
Γ `Σ λ(A,B, f) : Π(A,B)

Γ `Σ g : Π(A,B) Γ `Σ a : A
Γ `Σ app(A,B, g, a) : B(a)

Γ `Σ A : Type Γ `Σ B : (A)Type
Γ `Σ f : (x:A)B(x) Γ `Σ a : A

Γ `Σ app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure 3 Inference Rules for ΠS

c : (A)B.5215

The specifications of subtyping relations are also required to be coherent. Coherence216

is crucial as it ensures a coercive application abbreviates a unique functional application.217

To define this notion of coherence, we need to introduce a subsystem of ΠS,≤, called Π0K
S,≤,218

defined by the rules of ΠS together with those in Figures 4 and 5, where in the rule for219

dependent products in Figures 4, the notation c2[x] was explained in, for example, [16]: it220

means that x may occur free in c2, although only inessentially6. The composition of functions221

is defined as follows: For f :(K1)K2 and g:(K2)K3, g ◦ f = [x:K1]g(f(x)):(K1)K3.222

Here is the definition of coherence of a signature, which intuitively says that, under a223

coherent signature, there cannot be two different coercions between the same types.224

I Definition 1. A signature Σ is coherent if, in Π0K
S,≤, Γ `Σ A ≤c B and Γ `Σ A ≤c′ B225

imply Γ `Σ c = c′ : (A)B.226

Note that, in comparison with earlier formulations such as [21], we have switched from227

strict subtyping relation < to ≤ and the coherence condition is changed accordingly as well;228

in particular, under a coherent signature, any coercion from a type to itself must be equal to229

the identity function. (This is a special case of the above condition when B ≡ A: because we230

5 Using some types not contained in ΠS,≤, more interesting subtyping relations can be specified. For
example, for A ≤c B, we could have A ≡ V ect(N,n), B ≡ List(N) and c maps vector < m1, ...,mn >
to list [m1, ...,mn]. We shall not formally deal with such extended type systems in the current paper,
but the ideas and results are expected to extend to the type systems with such data types (eg, all those
in Martin-Löf’s type theory).

6 For instance, one might have (by using the congruence rule) x:A `Σ B ≤([y:A]e)(x) B
′, where B ≤e B′

and x 6∈ FV (e).

TYPES 2016
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Signature Rules for Subtyping

`Σ A : Type `Σ B : Type `Σ c : (A)B
Σ, A ≤c B valid

`Σ0,A≤cB:Type,Σ1 Γ
Γ `Σ0,A≤cB:Type,Σ1 A ≤c B : Type

Congruence

Γ `Σ A ≤c B : Type Γ `Σ A = A′ : Type Γ `Σ B = B′ : Type Γ `Σ c = c′ : (A)B
Γ `Σ A′ ≤c′ B′ : Type

Transitivity

Γ `Σ A ≤c A′ : Type Γ `Σ A′ ≤c′ A′′ : Type
Γ `Σ A ≤c′◦c A′′ : Type

Weakening

Γ `Σ, Σ′ A ≤d B : Type `Σ K kind

Γ `Σ, c:K, Σ′ A ≤d B : Type
(c 6∈ dom(Σ,Σ′))

Γ,Γ′ `Σ A ≤d B : Type Γ `Σ K kind

Γ, x:K,Γ′ `Σ A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Signature Replacement

Γ `Σ0,c:L,Σ1 A ≤d B : Type `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 A ≤d B : Type

Context Replacement

Γ0, x:K,Γ1 `Σ A ≤d B : Type Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ A ≤d B : Type

Substitution

Γ0, x:K,Γ1 `Σ A ≤c B:Type Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]A ≤[k/x]c [k/x]B

Identity Coercion

Γ `Σ A : Type
Γ `Σ A ≤[x:A]x A : Type

Dependent Product

Γ `Σ A′ ≤c1 A : Type Γ `Σ B,B′ : (A)Type Γ, x:A `Σ B(x) ≤c2[x] B
′(x) : Type

Γ `Σ Π(A,B) ≤d Π(A′, B′ ◦ c1) : Type

where d ≡ [F : Π(A,B)]λ(A′, B′ ◦ c1, [x:A′]c2[x](app(A,B, F, c1(x)))).

Figure 4 Inference Rules for Π0K
S,≤ (1)

always have A ≤[x:A]x A, if A ≤c A, then c = [x:A]x : (A)A.) Note also that, it is easy to231

prove by induction that, if Γ `Σ A ≤c B : Type, then Γ `Σ A,B : Type and Γ `Σ c : (A)B.232

It is also important to note the difference between a judgement with signature in the233

current calculus and that in the calculus employed in [21] where there are no signatures. For234

example, the signatures Σ1 that contains A ≤c B and Σ2 that contains A ≤d B can both235

be coherent signatures even when c 6= d, while such a situation can only be considered in236

the earlier setting by having two different type systems T [C1] and T [C2], which is rather237
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Basic Subkinding Rule and Identity Coercion

Γ `Σ A ≤c B:Type
Γ `Σ El(A) ≤c El(B)

Γ `Σ K kind

Γ `Σ K ≤[x:K]x K

Structural Subkinding Rules

Γ `Σ K1 ≤c K2 Γ `Σ K1 = K′1 Γ `Σ K2 = K′2 Γ `Σ c = c′:(K1)K2

Γ `Σ K′1 ≤c′ K′2

Γ `Σ K ≤c K′ Γ `Σ K′ ≤c′ K′′

Γ `Σ K ≤c′◦c K′′

Γ `Σ, Σ′ K ≤d K′ `Σ K0 kind

Γ `Σ, c:K0, Σ′ K ≤d K′
(c 6∈ dom(Σ,Σ′))

Γ,Γ′ `Σ K ≤d K′ Γ `Σ K0 kind

Γ, x:K0,Γ′ `Σ K ≤d K′
(x 6∈ dom(Γ,Γ′))

Γ `Σ0,c:L,Σ1 K ≤d K′ `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 K ≤d K′
Γ0, x:K,Γ1 `Σ L ≤d L′ Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ L ≤d L′

Γ0, x:K,Γ1 `Σ K1 ≤c K2 Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]K1 ≤[k/x]c [k/x]K2

Subkinding for Dependent Product Kind

Γ `Σ K′1 ≤c1 K1 Γ, x:K1 `Σ K2 kind Γ, x′:K′1 `Σ K′2 kind Γ, x:K1 `Σ [c1(x′)/x]K2 ≤c2 K
′
2

Γ `Σ (x:K1)K2 ≤[f :(x:K1)K2][x′:K′1]c2(f(c1(x′))) (x:K′1)K′2

Figure 5 Inference Rules for Π0K
S,≤ (2)
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Coercive Application

(CA1)
Γ `Σ f :(x:K)K′ Γ `Σ k0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0):[c(k0)/x]K′

(CA2)
Γ `Σ f = f ′:(x:K)K′ Γ `Σ k0 = k′0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Γ `Σ f :(x:K)K′ Γ `Σ k0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0) = f(c(k0)):[c(k0)/x]K′

Figure 6 The coercive application and definition rules in ΠS,≤

cumbersome to say the least.7238

We can, at this point, complete the specification of the system ΠS,≤ as the extension of239

Π0K
S,≤ by adding the rules in Figure 6.240

I Remark. We can now explain why we have to present the system Π0K
S,≤ first. The reason is241

that the coercive definition rule (CD) will force any two coercions to be equal. Therefore,242

we cannot define the notion of coherence for the system including the (CD) rule as, if we did243

so, every signature would be coherent by definition.244

2.2 Coherence for Kinds and Conservativity245

In this subsection, we prove two basic properties of ΠS,≤: (1) coherence, as defined for types,246

extends to kinds; (2) it is a conservative extension of the system ΠS .247

2.2.1 Coherence for Kinds248

Note that the coherence definition refers to types. In what follows we prove that coherence249

for types implies coherence for kinds. We categorise kinds and show that they can be related250

via definitional equality or subtyping only if they are of the same category. For this we251

also define the degree of a kind which intuitively denotes how many dependent product252

occurrences are in a kind.253

I Lemma 2. If Γ `Σ A ≤c B is derivable in Π0K
S,≤ then Γ `Σ c:(A)B is derivable in Π0K

S,≤.254

Proof. By induction on the structure of derivations J255

I Lemma 3. If Γ ` K ≤c L is derivable in Π0K
S,≤ then Γ ` c:(K)L is derivable in Π0K

S,≤.256

Proof. By induction on the structure of derivations. We consider K ≡ (x:K1)K2 and257

L ≡ (x:L1)L2. If a derivation tree for Γ ` K ≤c L ends with the rule for dependent product258

kind with premises Γ `Σ L1 ≤c1 K1, Γ, x:K1 `Σ K2 kind, Γ, y:L1 `Σ L2 kind and Γ, y:L1 `Σ259

[c1(y)/x]K2 ≤c2 L2. By IH we have Γ `Σ c1:(L1)K1 and Γ, y:L1 `Σ c2:([c1(y)/x]K2)L2. By260

weakening Γ, f :(x:K1)K2, y:L1 `Σ c2:([c1(y)/x]K2)L2 and Γ, f :(x:K1)K2, y:L1 `Σ c1:(L1)K1.261

We have Γ, f :(x:K1)K2, y:L1 `Σ y:L1 so by application Γ, f :(x:K1)K2, y:L1 `Σ c1(y):K1. We262

have Γ, f :(x:K1)K2, y:L1 `Σ f :(x:K1)K2 so by application we have Γ, f :(x:K1)K2, y:L1 `Σ263

7 This has some unexpected consequences concerning parameterised coercions as well. But it is a topic
beyond the current paper and will be discussed somewhere else.
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f(c1(y)):[c1(y)/x]K2. By application again we have Γ, f :(x:K1)K2, y:L1 `Σ c2(f(c1(y))):L2264

and by abstraction Γ `Σ [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2 J265

I Lemma 4. Let Γ `Σ K ≤c L be derivable in Π0K
S,≤. Then K and L are of the same form,266

i.e., both are El-terms or both are dependent product kinds. Furthermore,267

if K ≡ El(A) and L ≡ El(B), then Γ `Σ A ≤c B : Type is derivable in Π0K
S,≤ and268

if K ≡ (x:K1)K2 and L ≡ (x:L1)L2, then Γ `Σ K1 kind, Γ, x:K1 `Σ K2 kind, Γ `Σ269

L1 kind, and Γ, x:L1 `Σ L2 kind are derivable in Π0K
S,≤.270

The following lemma states that, if there is a subtyping relation between two dependent271

kinds, then the coercion can be obtained by the subtyping for dependent product kind rule272

from Figure 5. Note that for this to hold it is essential that we only have subtyping entries273

in signatures and not subkinding.274

I Lemma 5. If Γ `Σ (x:K1)K2 ≤d (y:L1)L2 is derivable in Π0K
S,≤ then there exist derivable275

judgements in Π0K
S,≤, Γ `Σ c1:(L1)K1 and Γ, y:L1 `Σ c2:([c1(y)/x]K2)L2 s.t.276

Γ `Σ L1 ≤c1 K1277

Γ, y:K ′1 `Σ [c1(y)/x]K2 ≤c2 L2 and278

Γ `Σ d = [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2279

are derivable in Π0K
S,≤.280

Proof. By induction on the structure of derivation of Γ `Σ (x:K1)K2 ≤d (y:L1)L2. The only
non trivial case is when it comes from transitivity.

Γ `Σ (x:K1)K2 ≤d1 C Γ `Σ C ≤d2 (y:L1)L2

Γ `Σ (x:K1)K2 ≤d2◦d1 (y:L1)L2

By the previous lemma Γ `Σ C ≡ (z:M1)M2. By IH we have that281

Γ `Σ M1 ≤c′1 K1282

Γ, z:M1 `Σ [c′1(z)/x]K2 ≤c′2 M2283

Γ `Σ d1 = [f :(x:K1)K2][z:M1]c′2(f(c′1(z))):((x:K1)K2)(z:M1)M2284

and285

Γ `Σ L1 ≤c′′1 M1286

Γ, y:L1 `Σ [c′′1(y)/z]M2 ≤c′′2 L2287

Γ `Σ d2 = [f :(z:M1)M2][y:L1]c′′2(f(c′′1(y))):((z:M1)M2)(y:L1)L2288

are derivable. We apply transitivity to obtain Γ `Σ L1 ≤c′1◦c′′1 K1 and by weakening and sub-289

stitution in addition, Γ, y:L1 `Σ [c′1(c′′1(y))/x]K2 ≤c′′2 ◦[c′′1 (y)/z]c′2 L2 and what is left to prove is290

that Γ `Σ d2 ◦ d1 = [f :(x:K1)K2][y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(f((c′1 ◦ c′′1)(y))):((x:K1)K2)(y:L1)L2.291
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Let Γ `Σ F :(x:K1)K2292

d2 ◦ d1(F ) = d2(d1(F ))293

= d2([f :(x:K1)K2][z:M1]c′2(f(c′1(z)))(F ))294

= d2([F/f ][z:M1]c′2(f(c′1(z))))295

= d2([z:M1]c′2(F (c′1(z))))296

= ([f :(z:M1)M2][y:L1]c′′2(f(c′′1(y))))([z:M1]c′2(F (c′1(z))))297

= [z:M1]c′2(F (c′1(z)))/f ]([y:L1]c′′2(f(c′′1(y))))298

= [y:L1]c′′2([z:M1]c′2(F (c′1(z)))(c′′1(y)))299

= [y:L1]c′′2([c′′1(y)/z]c′2(F (c′1(c′′1(y)))))300

= [y:L1]c′′2([c′′1(y)/z]c′2(F (c′1(c′′1(y)))))301

= [y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(F ((c′1 ◦ c′′1)(y)))302

= ([f :(x:K1)K2][y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(f((c′1 ◦ c′′1)(y))))(F )303
304

J305

The following de306

nition gives us a measure for the structure of kinds. We will use this measure when307

proving coherence for kinds. It is particularly important and we will use the fact that this308

measure is not increased by substitution.309

I Definition 6. For Γ `Σ K we define the degree of K where Γ `Σ K kind as deg(K) ∈ N310

as follows:311

1. deg(Type) = 1312

2. deg(El(A)) = 1313

3. deg((x:K)L) = deg(K) + deg(L)314

I Lemma 7. The following hold:315

if Γ `Σ K = L is derivable in Π0K
S,≤ then deg(K) = deg(L)316

if Γ `Σ K ≤c L is derivable in Π0K
S,≤ then deg(K) = deg(L)317

Proof. We do induction on the structure of derivations of Γ `Σ K = L respectively Γ `Σ
K ≤ L. For example if it comes from the rule

Γ `Σ K1 = K2 Γ, x:K1 `Σ K ′1 = K ′2
Γ `Σ (x:K1)K ′1 = (x:K2)K ′2

by IH, deg(K1) = deg(K2) and deg(K ′1) = deg(K ′2), hence deg((x:K1)K ′1) = deg((x:K2)K ′2)318

J319

I Lemma 8 (Coherence for Kinds). If Γ `Σ K ≤c L and Γ `Σ K ≤c′ L are derivable in Π0K
S,≤,320

then Γ `Σ c = c′ : (K)L is derivable in Π0K
S,≤.321

Proof. By induction on n = deg(K).322

1. For n = 1:323

If Γ `Σ K = El(A) and Γ `Σ L = El(B) then by Lemma 4 we have Γ `Σ A ≤c B and324

Γ `Σ A ≤c′ B and from coherence for types Γ `Σ c = c′:(A)B, hence Γ `Σ c = c′:(K)L325

If Γ `Σ K = Type and Γ `Σ L = Type then we can only have Γ `Σ c = Id:(K)L.326

2. For n > 1, Γ `Σ K ≡ (x:K1)K2 and Γ `Σ L ≡ (x:L1)L2, by Lemma 5327

Γ `Σ L1 ≤c1 K1,328
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Γ, x:K1 `Σ [c1(y)/x]K2 ≤c2 L2 and329

Γ `Σ c = [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2330

are derivable for some Γ `Σ c1:(L1)K1 and Γ, x:K1 `Σ c2:([c1(x)/x]K2)L2 and deg(L1),331

deg(K1), deg([c1(y)/x]K2), deg(L2) are all smaller than n. If332

Γ `Σ L1 ≤c′1 K1,333

Γ, x:K1 `Σ [c′1(y)/x]K2 ≤c′2 L2 and334

Γ `Σ c′ = [f :(x:K1)K2][y:L1]c′2(f(c′1(y))):((x:K1)K2)(y:L1)L2335

are derivable for some other coercions Γ `Σ c′1:(L1)K1 and Γ, x:K1 `Σ c′2:([c′1(y)/x]K2)L2336

then by IH we have Γ `Σ c1 = c′1:(L1)K1 and Γ, x:K1 `Σ c2 = c′2:([c′1(y)/x]K2)L2 and337

we are done.338

J339

2.2.2 Conservativity340

Here we prove that, if the signatures are coherent, our calculus ΠS,≤ is conservative over ΠS341

in the traditional sense. It follows directly from the fact that ΠS,≤ keeps track of subtyping342

entries in the signatures and it carries them along in derivations. More precisely we prove343

that if a judgement is derivable in ΠS,≤ and not in ΠS then it cannot be written in ΠS .344

The following two lemmas state that any subtyping or subkinding judgement can only be345

derived with a signature containing subtyping entries, and hence the signature cannot be346

written in ΠS .347

I Lemma 9. If Γ `Σ A ≤c B:Type is derivable in ΠS,≤, then Σ contains at least a subtyping348

entry or Γ `Σ A = B:Type and Γ `Σ c = Id:(A)A are derivable in ΠS,≤.349

Proof. By induction on the structure of derivation. For example if it comes from transitivity350

from premises Γ `Σ A ≤c A′ : Type and Γ `Σ A′ ≤c′ B : Type then the statement simply is351

true by IH. J352

I Lemma 10. If Γ `Σ K ≤c L is derivable in ΠS,≤, then Σ contains at least a subtyping353

entry or Γ `Σ K = L and Γ `Σ c = Id:(K)L are derivable in ΠS,≤.354

Proof. By induction on the structure of derivation. For example if it comes from transitivity355

from premises Γ `Σ K ≤c M and Γ `Σ M ≤c′ L then the statement simply is true by IH.356

If it comes from the rule
Γ `Σ A ≤c B:Type

Γ `Σ El(A) ≤c El(B)
then it follows from Γ `Σ A ≤c B:Type by the previous lemma J357

The following lemma extends the statement to express the fact that it is enough for a358

judgement to contain a non trivial subtyping or subkinding entry (not the identity coercion)359

in its derivation tree to have a signature that cannot be written in ΠS .360

I Lemma 11. If D is a valid derivation tree for Γ `Σ J in ΠS,≤ and Γ1 `Σ1 K1 ≤c0 K2361

is present in D then, either Σ contains at least a subtyping entry or Γ1 `Σ1 K1 = K2 and362

Γ1 `Σ1 c0 = IdK1 :(K1)K1 are derivable in ΠS,≤.363

Proof. If Γ `Σ J is a subtyping or subkinding judgement it follows directly from the previous
lemmas 9, 5. Likewise, if the judgement comes from a coercive application or coercive
definition rule with one of the premises Γ `Σ K ≤ L, then, by the previous lemma the
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statement holds. Otherwise we do induction on the structure of derivations of Γ `Σ J . For
example if the derivation tree containing the subkinding judgement ends with the rule

Γ `Σ K kind Γ, x:K `Σ K ′ kind

Γ `Σ (x:K)K ′ kind

then the subkinding judgements must be in at least one of the subderivations concluding Γ `Σ364

K kind and Γ, x:K `Σ K ′ kind. The statement then holds by induction hypothesis. J365

The following lemma states that, if a judgements is derived in ΠS,≤ using only trivial366

coercions, then it can be derived in ΠS .367

I Lemma 12. If in a derivation tree of a judgement derivable in ΠS,≤ which is not subtyping368

or subkinding judgement all of the subtyping and subkinding judgements are of the form369

Γ1 `Σ1 A ≤IdA
A:Type respectively Γ1 `Σ1 K ≤[x:K]x K then the judgement is derivable in370

ΠS.371

Proof. By induction on the structure of derivations. If the derivation tree D that only
contains trivial coercions ends with one of the rules of ΠS ,

D1
J1
...Dn

Jn

J
(R)

then J1,..., Jn also have derivation trees D1,...,Dn which only contain at most trivial coercions,372

hence, by IH, they are derivable in ΠS . We can apply to them, with D1,...,Dn replaced by373

their derivation in ΠS the same rule R to obtain the judgement J and the derivation is in374

ΠS .375

Otherwise, if for example the derivation containing only trivial coercions ends with
coercive application

Γ `Σ f :(x:K)K ′ Γ `Σ k0:K Γ `Σ K ≤[x:K]x K

Γ `Σ f(k0):[[x:K]x(k0)/x]K ′

Γ `Σ [[x:K]x(k0)/x]K ′ = [k0/x]K ′ and Γ `Σ f :(x:K)K ′ and Γ `Σ k0:K are derivable376

in ΠS by IH, and from them it follows directly by functional application, in ΠS , Γ `Σ377

f(k0):[k0/x]K ′ J378

I Theorem 13 (Conservativity). If a judgement is derivable in ΠS,≤ but not in ΠS, its379

signature will contain subtyping entries, and hence it cannot be written in ΠS.380

Proof. From the previous lemma, a judgement can only be derivable in ΠS,≤ but not in ΠS381

when it contains in all of its derivation trees non trivial subtyping or subkinding judgements.382

If the judgements is itself a subtyping or subkinding judgement then it vacuously cannot383

be written in ΠS . Otherwise, by lemma 11 it follows that either all of the subtyping and384

subkinding judgements are of the form Γ1 `Σ1 A ≤IdA
A:Type respectively Γ1 `Σ1 K ≤[x:K]x385

K in which case the judgement is derivable in ΠS or its signature contains subtyping entries,386

in which case it cannot be written in ΠS . J387

2.3 Justification of ΠS,≤ as a Well Behaved Extension388

We shall show in this subsection that extending the type theory ΠS by coercive subtyping in389

signatures results in a well-behaved system. In order to do so, we relate the extension with390

the previous formulation: more precisely, for every signature Σ, we consider a corresponding391
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system Π[CΣ];, which is similar to the system T [CΣ] in [21, 33], and we prove the equivalence392

between judgements in ΠS,≤ and judgements in such corresponding systems from the point393

of view of derivability. (see Theorems 22 and 29 below for a more precise description).394

This way we argue that there exists a stronger relation between the extension with395

coercive subtyping entries and the base system based on the fact that was shown in [21, 33]396

that every derivation tree in T [C] the extension can be translated to a derivation tree in T397

such that their conclusion are equal.398

2.3.1 The relation between Π0K
S,≤ and ΠS399

Here we show that, if a judgement J is derivable in Π0K
S,≤, we obtain a set of judgements, one400

of which is of same as J up to erasing the subtyping entries from a signature. The idea here401

is that, for any the valid signature in Π0K
S,≤ and all the judgements using it, we can remove402

the subtyping entries from it to obtain a valid signature in ΠS and corresponding judgements403

using this signature.404

I Definition 14. We define erase(·), a map which simply removes subtyping entries from405

signature as follows:406

erase(<>) =<>407

erase(Σ, c:K) = erase(Σ), c:K408

erase(Σ, A ≤c B) = erase(Σ)409

The following lemma is a completion of weakening and signature replacement for the410

cases when a signature is weakened with subtyping entries or a subtyping entry is replaced411

in the signature.412

I Lemma 15. If Γ `Σ,Σ′ J and `Σ,A≤cB:Type,Σ′ Γ are derivable in Π0K
S,≤ then Γ `Σ,A≤cB:Type,Σ′413

J is derivable in Π0K
S,≤.414

If Γ `Σ,A≤cBΣ′ J , `Σ A = A′:Type, `Σ B = B′:Type, `Σ c = c′:(A)B `Σ,A′≤c′B
′:Type,Σ′415

Γ are derivable in Π0K
S,≤ then Γ `Σ,A′≤c′B

′:Type,Σ′ J is derivable inΠ0K
S,≤.416

Proof. By induction on the structure of derivation. J417

I Lemma 16. For Σ ≡ Σ0, A0 ≤c0 B0,Σ1, ..., An−1 ≤cn−1 Bn−1,Σn a valid signature as418

above we will consider the following judgements judgements (?) `erase(Σ0,...,Σi) ci:(Ai)Bi,419

where i ∈ 0, ..., n. Then the following statements hold:420

1. `Σ Γ is derivable in Π0K
S,≤ if and only if `erase(Σ) Γ and (?) are derivable in ΠS.421

2. Γ `Σ J is not a subtyping judgement and is derivable in Π0K
S,≤ if and only if Γ `erase(Σ) J422

and (?) are derivable in ΠS.423

3. If Γ `Σ A ≤c B is derivable in Π0K
S,≤ then Γ `erase(Σ) c:(A)B and (?) are derivable in ΠS.424

4. If Γ `Σ K ≤c L is derivable in Π0K
S,≤ then Γ `erase(Σ) c:(K)L and (?) are derivable in ΠS.425

Proof. The only if implication for the first three cases is straightforward by induction on426

the structure of derivations as subtyping judgements do not contribute to deriving any other427

type of judgement in Π0K
S,≤. For the if implication, Lemma 15 is used. The last two points428

also follow by induction. J429

2.3.2 Π[C];430

Here we consider a system Π[C]; similar to the system T [C] as presented in [21, 33] with T431

being the type theory with Π-types.432
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Here we consider a system similar to the system T [C] from [21, 33] with dependent product.433

The difference is that here we fix some prefixes of the context, not allowing substitution and434

abstraction for these prefixes. In more details, the judgements of T [C]; will be of the form435

Σ; Γ ` J instead of Γ ` J , where Σ and Γ are just contexts and substitution and abstraction436

can be applied to entries in Γ but not Σ. We call this system Π[C];. To delimitate these437

prefixes we use the symbol ";" and the judgements forms will be as follows:438

` Σ; Γ signifies a judgement of valid context439

Σ; Γ ` K kind440

Σ; Γ ` k:K441

Σ; Γ ` K = K ′442

Σ; Γ ` k = k′:K443

The rules of the system Π[C]; are the ones in Figures 8,9,10, 11 and 12 in the appendix. The444

difference between these rules and those described in [21, 33] is that, in addition to regular445

contexts, they also refer to the prefixes apart from substitution and abstraction which is only446

available for regular contexts. More detailed, we duplicate contexts, assumptions, weakening,447

context replacement. For all other rules we adjust them to the new forms of judgements448

by replacing Γ ` J with Σ; Γ ` J . Notice that we do not duplicate substitution as only the449

context at the righthand side of the ; supports substitution. We will consider the system450

Π[C];0K to be the one without coercive application and definition rules, namely the ones in451

figures 8,9,10 and 11. C is formed of subtyping judgements and we have the following rule in452

Π[C];0K453

Γ ` A ≤c B ∈ C
Γ ` A ≤c B

454

For the system T [C] coercive application is added as an abbreviation to ordinary functional455

application and this is ensured by coercive definition together coherence of C. Indeed, it was456

proved in [21, 33] that, when C is coherent, Π[C] is a well behaved extension of Π[C]0K in457

that every valid derivation tree D in Π[C] can be translated into a valid derivation tree D′ in458

Π[C]0K and the conclusion of D is definitionally equal to the conclusion of D′ in Π[C]. We459

want to avoid doing the complex proof in [21, 33] again and assume that the properties of460

Π[C] carry over to Π[C];. So next we give the definition of coherence for the set C.461

I Definition 17. The set C of subtyping judgements is coherent if the following two conditions462

hold in Π[C];0K :463

If Σ; Γ ` A ≤c B is derivable, then Σ; Γ ` c:(A)B is derivable.464

If Σ; Γ ` A ≤c B and Σ; Γ ` A ≤c′ B are derivable, then Σ; Γ ` c = c′:(A)B is derivable.465

Notice that in the original formulation Σ; Γ ` A ≤[x:A]x A was not allowed. However the466

condition that Σ; Γ 0 A ≤c A was used to prove that a judgement cannot come from both467

coercive application and functional application. However with the current condition one can468

prove that, if this is the case, the coercion has to be equal to the identity.469

2.3.3 The relation between Π[C]; and ΠS,≤470

Although there is a difference between the new ΠS,≤ and Π[C]; which lies mainly in the471

fact that, by introducing coercive subtyping via signature, we introduce them locally to the472

specific signature, this allowing us to have more coercions between two types under the same473

kinding assumptions(of the form c:K, x:K) and still have coherence satisfied, whereas by474

enriching a system with a set of coercive subtyping, our coercions are introduced globally and475
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only one coercion(up to definitional equality) can exist between two types under the same476

kinding assumptions. However, because signatures are technically just prefix of contexts for477

which abstraction and substitution are not available [12], we naturally expect that there is a478

relation between ΠS,≤ and Π[C];. And indeed here we shall show that for any valid signature479

Σ in ΠS,≤, we can represent a class of judgements of ΠS,≤ depending on Σ as judgements in480

a Π[CΣ];.481

First we consider just Π0K
S,≤ and Π[C];0K which are the systems without coercive application482

and coercive definition and we define a way to transfer coercive subtyping entries of a signature483

Σ in Π0K
S,≤ to a set of coercive subtyping judgements of Π[CΣ];0K .484

I Definition 18. Let Σ be a signature (not necessarily valid) in Π0K
S,≤ we define ΓΣ as follows:485

Γ<> =<>486

ΓΣ0,k:K = ΓΣ0 , k:K487

ΓΣ0,A≤cB:Type = ΓΣ0488

If Σ is valid in Π0K
S,≤ we define CΣ as follows:489

C<> = ∅490

CΣ0,k:K = CΣ0491

CΣ0,A≤cB:Type = CΣ0 ∪ {ΓΣ0 ;<>` A ≤c B:Type}492

I Lemma 19. If Σ ≡ Σ0, A ≤c B:Type,Σ1 valid is derivable in Π0K
S,≤, then ΓΣ ≡ ΓΣ0,Σ1493

and CΣ = CΣ0,Σ1 ∪ {ΓΣ0 ;<>` A ≤c B:Type}494

Proof. By induction on the length of Σ. J495

I Lemma 20. Let Σ1,Σ3 and Σ1,Σ2,Σ3 be valid signatures in Π0K
S,≤. If J is derivable in496

Π[CΣ1,Σ3 ];0K then J is derivable in Π[CΣ1,Σ2,Σ3 ];0K497

Proof. By induction on the structure of derivation of J . J498

First we mention the following notation which we will use throughout the section and499

which is really just a generalization of definitional equality:500

<>=<>, Σ, c:K = Σ′, c:K ′ iff Σ = Σ′ and `Σ K = K ′501

`Σ Γ, x:K =`Σ′ Γ, x:K ′ iff `Σ Γ =`Σ′ Γ and Γ `Σ K = K ′502

Γ `Σ K = Γ′ `Σ′ K
′ iff `Σ Γ =`Σ′ Γ′ and Γ `Σ K = K ′503

Γ `Σ k:K = Γ′ `Σ′ k
′:K ′ iff Γ `Σ K kind = Γ′ `Σ′ K

′ kind and Γ `Σ k = k′:K504

Γ `Σ k = l:K = Γ′ `Σ′ k
′ = l′:K ′ iff Γ `Σ K kind = Γ′ `Σ′ K

′ kind and Γ `Σ k = k′:K505

and Γ `Σ l = l′:K506

Γ `Σ A ≤c B = Γ′ `Σ′ A
′ ≤c′ B′ iff Γ `Σ A:Type = Γ′ `Σ′ A

′:Type and Γ `Σ B:Type =507

Γ′ `Σ′ B
′:Type and Γ `Σ c:(A)B = Γ′ `Σ′ c

′:(A′)B′508

We consider the analogous notation for judgements of the form ` Γ0;<>, ` Γ0; Γ and509

Γ0; Γ ` J . We will say that the judgements are definitionally equal in a certain system if all510

the corresponding definitional equality judgements are derivable in that system.511

According to [21, 33], if we add coercive subtyping and coercive definition rules from512

Figure 12 in the appendix to a system enriched with a coherent set of subtyping judgements513

CΣ, any derivation tree in Π[CΣ]; can be translated to a derivation tree in Π[CΣ];0K (that is a514

derivation tree that does not use coercive application and definition rules - CA1, CA2 and515

CD) and their conclusions are definitionally equal. We aim to use that result to prove that516

for any judgement using a coherent signature in ΠS,≤, there exists a judgement definitionally517

equal to it in Π0K
S,≤. For this we shall first prove that CΣ is coherent in the sense of the518

definition 17 if Σ is coherent in the sense of the definition 1. To prove this we need to describe519
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the possible contexts at the lefthand side of ; in Π[CΣ];0K used to infer coercive subtyping520

judgements.521

We first prove a theorem used throughout the section which allows us to argue about522

judgements in Π0K
S,≤ and judgements in Π[CΣ];0K interchangeably. We start by presenting523

a lemma representing the base case and then the theorem appears as an extension easily524

proven by induction. The lemma is not required to prove the theorem but it gives a better525

intuition. The theorem essentially states that for contexts at the lefthand side of ; obtained526

by interleaving membership entries in a the image through Γ· of a valid signature Σ or its527

prefixes give judgements in Π[CΣ];0K corresponding to judgements in Π0K
S,≤. We will see later528

that all the contexts at the lefthand side of ; in Π[CΣ];0K are in fact obtained by interleaving529

membership entries in prefixes of Σ.530

I Lemma 21. Let Σ ≡ Σ1,Σ2,Σ3 be a valid signature in Π0K
S,≤ then, for any c,K and Σ′1,Σ′2531

s.t. Σ1 = Σ′1 and Σ1,Σ2 = Σ′1,Σ′2 the following hold:532

` ΓΣ′1 , c:K,ΓΣ′2 ;<> is derivable in Π[CΣ];0K iff Σ′1, c:K,Σ′2 valid is derivable in Π0K
S,≤533

` ΓΣ′1 , c:K,ΓΣ′2 ; Γ is derivable in Π[CΣ];0K iff `Σ′1,c:K,Σ′2 Γ is derivable in Π0K
S,≤534

ΓΣ′1 , c:K,ΓΣ′2 ; Γ ` J is derivable in Π[CΣ];0K iff Γ `Σ′1,c:K,Σ′2 J is derivable in Π0K
S,≤.535

Proof. By induction on the structure of derivation. J536

Mainly by repeatedly applying the previous lemma (except for the case when we weaken537

with the empty sequence, which is straight forward by induction on the structure of derivations)538

we can prove:539

I Theorem 22 (Equivalence for Π0K
S,≤). Let Σ ≡ Σ1, ...,Σn bea valid signature in Π0K

S,≤ then,540

for any 1 ≤ k ≤ n, for any {Γi}i∈{0..k} sequences free of subtyping entries and and Σ′1, ...,Σ′k541

s.t. Σ1, ...,Σk = Σ′1, ...,Σ′k for any i ∈ {1..k} the following hold:542

` Γ0,ΓΣ′1 ,Γ1,ΓΣ′2 ,Γ2, ...,Γk−1ΓΣ′
k
,Γk;<> is derivable in Π[CΣ];0K if and only if543

Γ0,Σ′1,Γ1,Σ′2,Γ2, ...,Γk−1,Σ′k,Γk valid is derivable in Π0K
S,≤544

` Γ0,ΓΣ′1 ,Γ1,ΓΣ′2 ,Γ2, ...,Γk−1ΓΣ′
k
,Γk; Γ is derivable in Π[CΣ];0K if and only if545

`Γ0,Σ′1,Γ1,Σ′2,Γ2,...,Γk−1Σ′
k
,Γk

Γ is derivable in Π0K
S,≤546

Γ0,ΓΣ′1 ,Γ1,ΓΣ′2 ,Γ2, ...,Γk−1ΓΣ′
k
,Γk; Γ ` J is derivable in Π[CΣ];0K if and only if547

Γ `Γ0,Σ′1,Γ1,Σ′2,Γ2,...,Γk−1Σ′
k
,Γk

J is derivable in Π0K
S,≤.548

Now we aim to prove that we do not introduce any new subtyping entries in Π0K
S,≤ by549

weakening (up to definitional equality). Note that, for this, it is essential that the weakening550

rules do not add subtyping entries. More precisely, in the following Lemma we prove a form551

of strengthening, which roughly says that by strengthening the assumptions of a subtyping552

judgement, we can still derive it(up to definitional equality).553

I Lemma 23. Let Σ ≡ Σ1,Σ2 a valid signature in Π0K
S,≤, for any c,K, Σ′1 = Σ1 and554

Σ′1,Σ′2 = Σ1,Σ2, if Γ `Σ′1,k:K,Σ′2 A ≤c B is derivable in Π0K
S,≤ then there exists A′, c′, B′ such555

that `Σ A′ ≤c′ B′, Γ `Σ′1,k:K,Σ′2 A = A′:Type, Γ `Σ′1,k:K,Σ′2 B = B′:Type and556

Γ `Σ′1,k:K,Σ′2 c = c′:(A)B derivable in Π0K
S,≤.557

Proof. By induction on the structure of derivation of Γ `Σ′1,k:K,Σ′2 A ≤c B. If it comes558

from transitivity with the premises Γ `Σ′1,k:K,Σ′2 A ≤c1 C and Γ `Σ′1,k:K,Σ′2 C ≤c2 B559

then by IH, there exist A′, C ′, c′1, C ′′, B′, c′2 s.t. `Σ A′ ≤c′1 C ′ and `Σ C ′′ ≤c′2 B′ and560

Γ `Σ′1,k:K,Σ′2 A = A′:Type, Γ `Σ′1,k:K,Σ′2 B = B′:Type, Γ `Σ′1,k:K,Σ′2 C = C ′:Type,561

Γ `Σ′1,k:K,Σ′2 C = C ′′:Type, Γ `Σ′1,k:K,Σ′2 c1 = c′1:(A)C and Γ `Σ′1,k:K,Σ′2 c2 = c′2:(C)B.562

By transitivity of equality we have Γ `Σ′1,k:K,Σ′2 C
′ = C ′′:Type. By lemma 16 we have that563
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Γ `erase(Σ′1,k:K,Σ′2) C
′ = C ′′:Type is derivable in ΠS . Similarly, because `Σ C ′:Type and564

`Σ C ′′:Type we have that `erase(Σ′1,k:K,Σ′2) C ′:Type and `erase(Σ′1,k:K,Σ′2) C ′′:Type are565

derivable in ΠS . From Strengthening Lemma([11]) which holds for ΠS we have that566

`erase(Σ) C
′ = C ′′:Type. Again, by 16 we obtain `Σ C ′ = C ′′:Type. At last, we can567

apply congruence and transitivity `Σ A′ ≤c′2◦c′1 B
′.568

Let us now consider the dependent product rule569

Γ `Σ′1,k:K,Σ′2 A
′′ ≤c1 A′ Γ `Σ′1,k:K,Σ′2 B

′, B′′ : (A′)Type Γ, x:A′ `Σ′1,k:K,Σ′2 B
′(x) ≤c2[x] B

′′(x)
Γ `Σ′1,k:K,Σ′2 Π(A′, B′) ≤c Π(A′′, B′′ ◦ c1)

570

with A ≡ Π(A′, B′), B ≡ Π(A′′, B′′ ◦ c1) and571

c ≡ [F : Π(A′, B′)]λ(A′′, B′′ ◦ c1, [x:A′′]c2[x](app(A′, B′, F, c1(x)))).572

By IH, there exist A′′0 , A′0, c′1, B′0, B′′0 , c′2 s.t. `Σ A′′0 ≤c′1 A′0, `Σ B′ ≤c′2 B′′ and573

Γ `Σ′1,k:K,Σ′2 A
′′ = A′′0 :Type, Γ `Σ′1,k:K,Σ′2 A

′ = A′0:Type,574

Γ, x:A′ `Σ′1,k:K,Σ′2 B
′′(x) = B′′0 :Type, Γ, x:A′ `Σ′1,k:K,Σ′2 B

′(x) = B′0:Type,575

Γ `Σ′1,k:K,Σ′2 c1 = c′1:(A′′)A′ and Γ, x:A′ `Σ′1,k:K,Σ′2 c2(x) = c′2:(B′(x))B′′(x):Type.576

We apply dependent product rule for the case when types are constants and obtain577

` A′0 −→ B′0 ≤′c A′′0 −→ B′′0 with c′ ≡ [F : A′0 −→ B′0][x:A′′0 ](c′′2(F (c′1(x)))).578

By normal equality rules for dependent product and its terms we have that579

Γ `Σ′1,k:K,Σ′2 A
′
0 −→ B′0 = Π(A′, B′), Γ `Σ′1,k:K,Σ′2 A

′′
0 −→ B′′0 = Π(A′′, B′′) and580

Γ `Σ′1,k:K,Σ′2 c = c′:(Π(A′, B′))Π(A′′, B′′) J581

By repeatedly applying the previous lemma we obtain582

I Corollary 24. For Σ valid derivable in Π0K
S,≤, Σ ≡ Σ1, ...,Σn, for any {Γi}i∈{0..n} sequences583

free of subtyping entries and {Σ′i}i∈{1..n} s.t. Σ1, ...,Σi = Σ′1, ....,Σ′i for any i ∈ {1..n}, if584

Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn
A ≤c B is derivable in Π0K

S,≤ then there exists A′, c′, B′ s.t.585

`Σ A′ ≤c′ B′, Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn A = A′:Type, Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn B =586

B′:Type and Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn
c = c′:(A)B derivable in Π0K

S,≤.587

Next we prove that weakening does not break coherence:588

I Lemma 25. For Σ valid in Π0K
S,≤, if Σ ≡ Σ1,Σ2,Σ3 is coherent, for any Σ′1,Σ′2 s.t.589

Σ1 = Σ′1 and Σ1,Σ2 = Σ′1,Σ′2, for any c,K s.t. Σ′1, c:K, ,Σ′2 is valid, Σ′1, c:K, ,Σ′2 coherent.590

Proof. Let us consider the derivable judgements Γ `Σ′1,c:K,,Σ′2 A ≤c B and Γ `Σ′1,c:K,,Σ′2591

A ≤d B. Then we know from Lemma 24 that there exist A′, B′, A′′, B′′, c′, d′ s.t. `Σ1,Σ2592

A′ ≤c′ B′, `Σ1,Σ2 A′′ ≤d′ B′′, Γ `Σ′1,c:K,,Σ′2 A′ = A:Type, Γ `Σ′1,c:K,,Σ′2 B′′ = B:Type,593

Γ `Σ′1,c:K,,Σ′2s B
′′ = B:Type Γ `Σ′1,c:K,,Σ′2 c = c′:(A)B and Γ `Σ′1,c:K,,Σ′2 d = d′:(A)B. As594

in the proof of the previous lemma, using Lemma 16 and Strengthening Lemma from [11]595

we have that `Σ1,Σ2 A
′ = A′′:Type, `Σ1,Σ2 B

′ = B′′:Type. By congruence we have that596

`Σ1,Σ2 A
′ ≤d′ B′ is derivable in Π0K

S,≤. If Σ is coherent then any prefix of it Σ1, ...,Σk is597

coherent so `Σ1,Σ2 c
′ = d′:(A′)B′. Further, by weakening and Lemma 15, we have the desired598

result. J599

By repeatedly applying the previous lemma we obtain:600

I Lemma 26. For Σ valid in Π0K
S,≤, if Σ ≡ Σ1, ...,Σn is coherent, for any 1 ≤ k ≤ n, for any601

{Γi}i∈{0..k} sequences free of subtyping entries, for any {Σ′i}i∈{0..k} s.t. Σ1, ...,Σi = Σ′1, ...,Σ′i602

for any i ∈ {1..k} s.t. Γ0,Σ1,Γ1,Σ2,Γ2, ...,Γk−1,Σk,Γk is valid,603

Γ0,Σ1,Γ1,Σ2,Γ2, ...,Γk−1,Σk,Γk is coherent.604

TYPES 2016



13:20 On Subtyping in Type Theories with Canonical Objects

Finally, the following lemma describes the relation between parts of the context at the605

lefthand side of the ; of judgements in Π[CΣ];0K and Σ. This is a very important result for606

proving the coherence of CΣ based on the coherence of Σ. It states that any such context is607

in fact obtained from weakening of a prefix of Σ. In addition from this Lemma, because all608

the derivable judgements in Π[CΣ];0K that are not in Π; are subtyping judgements, we have609

as a consequence that all the judgements of Π[CΣ];0K are equivalent to judgements in Π0K
S,≤.610

I Lemma 27. For Σ a valid signature in Π0K
S,≤, for any derivable judgement Γ′; Γ ` J in611

Π[CΣ];0K there exists a partition of Σ ≡ Σ1, ...,Σn, 1 ≤ k ≤ n, Γ0, ...,Γk free of subtyping612

entries and Σ′1, ...,Σ′k with Σ′1, ...,Σ′i = Σ′1, ...,Σ′i for any 1 ≤ i ≤ k s.t. Γ′ ≡ ΓΓ0,Σ1,Γ1,...,Σk,Γk
613

Proof. By induction on the structure of derivation of the judgement in Π[CΣ];0K . We only
prove a case for third point when the judgement is Γ′; Γ ` A ≤c B. The only nontrivial case
is when the judgements follows from weakening. Let us assume it comes from a derivation
tree ending with

Γ′1,Γ′2; Γ ` A ≤c B Γ′1;<>` K kind

Γ′1, c:K,Γ′2; Γ ` A ≤c B
with Γ′ ≡ Γ1, c:K,Γ2. By IH we know that there exists a partition of Σ ≡ Σ1, ...,Σn and614

1 ≤ k ≤ n and Γ0, ...,Γk and Σ′1, ...,Σ′k with Σ′1, ...,Σ′i = Σ′1, ...,Σ′i for any 1 ≤ i ≤ k s.t.615

Γ′1,Γ′2 ≡ ΓΓ0,Σ′1,Γ1,...,Σ′k,Γk
with Γ `Γ0,Σ′1,Γ1...,Σ′k,Γk

A ≤c B. Let us consider the case when616

Γ′1 ≡ ΓΓ0,Σ′1,Γ1,...,Γi−1,Σ1′
i
and Γ′2 ≡ ΓΣ2′

i
,Γi,...,Σ′k,Γk

. With Σ′i ≡ Σ1′
i ,Σ2′

i for some 1 ≤ i ≤ k.617

We consider the partition of Σ ≡ Σ1, ...,Σ1
i ,Σ2

i , ...,Σn s.t. Σ′1, ...,Σ1′
i ,Σ2′

i , ...,Σ′n Σ1, ...,Σl =618

Σ′1, ...,Σ′l for any l ∈ 1..i− 1, Σ1, ...,Σ1
i = Σ′1, ...,Σ1′

i , Σ1, ...,Σ1
i ,Σ2

i = Σ′1, ...,Σ1′
i ,Σ2′

i619

and Σ1, ...,Σl = Σ′1, ...,Σ′l for any l ∈ i+ 1..n and Γ0, ...,Γi−1, c:K,Γi, ...,Γk s.t. Γ′ =620

ΓΓ0,Σ1,...,Γi−1,Σ1
i
,c:K,Σ2

i
,Γi,...,Σk,Γk

. J621

The next lemma refers to the ability to argue about coherence of a set of coercive622

subtyping judgements corresponding to a signature.623

I Theorem 28 (Equivalence of Coherence). Let Σ be a valid signature in Π0K
S,≤. Then Σ is624

coherent in the sense of the Definition 1 iff CΣ is coherent for Π[CΣ];0K in the sense of the625

Definition 17.626

Proof. Only if: Let Γ′; Γ ` A ≤c B and Γ′; Γ ` A ≤d B be derivable in Π[CΣ];0K . From627

Lemma 27, it follows that there exists a partition of Σ ≡ Σ1, ...,Σn and 1 ≤ k ≤ n and628

Γ0, ...,Γk s.t. Γ′ = ΓΓ0,Σ1,...,Σk,Γk
. If Σ is coherent, then Γ0,Σ1, ...,Σk,Γk is coherent (from629

Lemma 26). From Theorem 22, Γ′; Γ ` A ≤c B and Γ′; Γ ` A ≤d B are derivable in630

Π[CΣ];0K iff Γ `Γ0,Σ1,...,Σk,Γk
A ≤c B and Γ ` Γ0,Σ1, ...,Σk,ΓkA ≤d B are derivable in Π0K

S,≤.631

From coherence here we have Γ `Γ0,Σ1,...,Σk,Γk
c = d:(A)B which is derivable in Π0K

S,≤ iff632

Γ′; Γ ` c = d:(A)B is derivable in Π[CΣ];0K (again by Theorem Theorem 22).633

If: By Theorem 22, Γ `Σ A ≤c B:Type and Γ `Σ A ≤d B:Type are derivable in Π0K
S,≤634

iff ΓΣ; Γ ` A ≤c B and ΓΣ; Γ ` A ≤d B are derivable in Π[CΣ];0K . Because CΣ is coherent,635

ΓΣ; Γ ` c = d:(A)B is derivable in Π[CΣ];0K which happens iff Γ `Σ c = d:(A)B is derivable636

in Π0K
S,≤ J637

To prove that the system ΠS,≤ is well behaved we first prove that it is well behaved when638

all the signatures considered are valid in the restricted system Π0K
S,≤. First we prove another639

equivalence lemma for this situation.640

I Theorem 29 (Equivalence for ΠS,≤). For Σ valid in Π0K
S,≤, the following hold:641

` ΓΣ; Γ is derivable in Π[CΣ]; iff `Σ Γ is derivable in ΠS,≤642



G. E. Lungu and Z. Luo 13:21

ΓΣ; Γ ` J is derivable in Π[CΣ]; iff Γ `Σ J is derivable in ΠS,≤.643

Proof. By induction on the structure of derivation. J644

The following theorem shows that the system we defined here is well behaved and that645

every coercive subtyping application is really just an abbreviation.646

I Lemma 30. If a valid signature Σ in Π0K
S,≤ is coherent the following hold:647

1. If `Σ Γ is derivable in ΠS,≤ then there exists Γ′ s.t. `Σ Γ′ is derivable in Π0K
S,≤ and648

`Σ Γ = Γ′ is derivable in ΠS,≤.649

2. If Γ `Σ J is derivable in ΠS,≤ then there exists Γ′, J ′ s.t. Γ′ `Σ J ′ is derivable in Π0K
S,≤650

and `Σ Γ = Γ′ and Γ `Σ J = J ′ are derivable in ΠS,≤.651

Proof. By Theorem 28, since Σ is coherent in, CΣ is coherent. If we look at the last case, by652

Theorem 29, Γ `Σ J is derivable in ΠS,≤ iff ΓΣ; Γ ` J is derivable in Π[CΣ];. From [21, 33]653

we know that, when CΣ is coherent, any derivation tree of ΓΣ; Γ ` J can be translated into654

a derivation tree in Π[CΣ];0K which concludes with the judgement definitionally equal to655

ΓΣ; Γ ` J . So let us consider one such derivation tree, its translation and the definitionally656

equal conclusion ΓΣ; ∆ ` J ′ (` ΓΣ;<> is already derivable in Π[CΣ];0K so by inspecting657

the definition of the translation in [21, 33] we observe that ΓΣ will not be changed by the658

translation). We have ` ΓΣ; Γ = ΓΣ; ∆ and ΓΣ; Γ ` J = J ′ are derivable in Π[CΣ];. From659

Lemma 29 we know that in this case `Σ Γ = ∆ and Γ `Σ J = J ′ are derivable in ΠS,≤ so660

the desired derivable judgement is simply ∆ `Σ J ′. J661

Note that the previous theorem covers the well-behavedness of judgements derived under662

a signature that is valid in Π0K
S,≤. We now prove further that any signature valid in ΠS,≤ is663

definitionally equal to a signature valid in Π0K
S,≤, then because of signature replacement we664

have that any judgement derivable in in ΠS,≤ is definitionally equal to a judgement derivable665

in Π0K
S,≤.666

I Lemma 31. For any signature Σ valid in ΠS,≤ there exists Σ′ valid in Π0K
S,≤ s.t. Σ = Σ′667

in ΠS,≤668

Proof. By induction on the length of Σ. We assume Σ = Σ0, c:K. By IH we have that669

there exists Σ′0 valid in Π0K
S,≤ s.t. Σ0 = Σ′0. By repeatedly applying signature replacement to670

`Σ0 K kind we have `Σ′0 K kind is derivable in ΠS,≤. By Theorem 30, we have that there671

exists K ′ s.t. `Σ′0 K
′ kind is derivable in Π0K

S,≤ with `Σ′0 K = K ′. That means we can derive,672

in Π0K
S,≤, Σ′0, c:K ′ valid. Going back with context replacement we also have `Σ0 K = K ′673

derivable, so Σ′0, c:K ′ is the signature we are looking for. J674

We finish this section with the following theorem:675

I Theorem 32. If a valid signature Σ in ΠS,≤ is coherent the following hold:676

1. If `Σ Γ is derivable in ΠS,≤ then there exists Σ′,Γ′ s.t. `Σ′ Γ′ is derivable in Π0K
S,≤ and677

Σ = Σ′ and `Σ Γ = Γ′ are derivable in ΠS,≤.678

2. If Γ `Σ J is derivable in ΠS,≤ then there exists Σ′,Γ′, J ′ s.t. Γ′ `Σ′ J
′ is derivable in679

Π0K
S,≤ and Σ = Σ′, `Σ Γ = Γ′ and Γ `Σ J = J ′ are derivable in ΠS,≤.680

Proof. According to the Lemma 31 there exist Σ′ valid in Π0K
S,≤ s.t. Σ = Σ′. If we consider681

the last point, by signature replacement Γ `Σ′ J is derivable ΠS,≤. Because Σ′ valid in682

Π0K
S,≤, we can apply the Lemma 30 to obtain Γ′ `Σ′ J

′ s.t. `Σ′ Γ = Γ′ and Γ `Σ′ J = J ′ are683

derivable in ΠS,≤. Again by signature replacement `Σ Γ = Γ′ and Γ `Σ J = J ′. J684
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General Subtyping Rules

Γ  K = K′

Γ  K ≤ K′
Γ  K ≤ K′ Γ  K′ ≤ K′′

Γ  K ≤ K′′
Γ  A = B:Type
Γ  A ≤ B:Type

Γ  A ≤ B:Type Γ  B ≤ C:Type
Γ  A ≤ C:Type

Subtyping in Contexts

Γ  A:Type α 6∈ FV (Γ)
Γ, α ≤ A valid

Γ, α ≤ A,Γ′ valid
Γ, α ≤ A,Γ′  α:Type

Γ, α ≤ A,Γ′ valid
Γ, α ≤ A,Γ′  α ≤ A:Type

Type Lifting and Subtyping

Γ  A ≤ B:Type
Γ  El(A) ≤ El(B)

Γ  k:K Γ  K ≤ K′

Γ  k:K′
Γ  k = k′:K Γ  K ≤ K′

Γ  k = k′:K′

Dependent Product

Γ  Π(A,B):Type Γ  Π(A′, B′):Type
Γ  A′ ≤ A:Type Γ, x:A′  B ≤ B′:Type

Γ  Π(A,B) ≤ Π(A′, B′):Type

Figure 7 Inference Rules for Π≤

Further, according to the lemma 16, the derivability of any nonsubtyping judgement in685

Π0K
S,≤ is equivalent to the derivability of a judgement in ΠS and any subtyping judgement in686

Π0K
S,≤ implies a judgement in ΠS .687

3 Embedding Subsumptive Subtyping688

In this section, we consider how to embed subsumptive subtyping into coercive subtyping.689

To this end, we consider a subtyping system which is a reformulation of the one studied by690

[2] and show how it can be faithfully embedded into our system of coercive subtyping.691

We consider a system analogous to ΠS with the difference that we leave out the signatures.692

The types of judgements in this system are Γ valid, Γ  K kind, Γ  k:K, Γ  K = K ′ and693

Γ  k = k′:K syntactically analogous to `<> Γ, Γ `<> K kind, Γ `<> k:K, Γ `<> K = K ′694

respectively Γ `<> k = k′:K, baring rules analogous to the ones in the appendix and Figure 2.695

Note that there will be no Signature Validity and Assumption rules as there are no signatures.696

On top of these judgements we add Γ  A ≤ B type and Γ  K ≤ K ′ obtained with the rules697

from Figure 7. Besides the ordinary variables in Π, we allow Γ to have subtyping variables698

like α ≤ A. We name this extension Π≤.699

Π≤ is the subsumptive subtyping system specified in LF that corresponds to the system700

λP≤ in [2]. There are some subtle differences between Edinburgh LF (λP ) [12] and the701

logical framework LF we use (eg, the η-rule holds for the latter but not the former), but they702

are irrelevant to the point we are trying to show: the subsumptive subtyping system can be703

faithfully embedded in the coercive subtyping system.704

Once we introduced this system we will proceed by giving an interpretation of it in the705

coercive subtyping system that we introduced in section 2, namely we will show that this706

calculus can be faithfully embedded in the coercive subtyping one.707

We mentioned that, in this system, an important thing to note is how placing subtyping708
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entries in contexts interferes with abstraction and hence dependent types, specifically, the709

abstraction is not allowed at the lefthand side of subtyping entries. We will give a mapping710

that sends the contexts with subtyping entries in the subsumptive system to signatures in711

the coercive system, prove that these signatures are coherent, and, finally, that we can embed712

the subsumptive subtyping system into the coercive subtyping system via this mapping.713

We are motivated, on the one hand by giving a coercive subtyping system in which we714

can represent this subsumptive system and at the same time allowing abstraction happen715

freely and on the other hand by the fact that we could not employ coercive subtyping in716

context as we could make coherent contexts incoherent with substitution. For example717

if α1 ≤c1 A,α2 ≤c2 A,Γ is a coherent context (i.e. under this context any two coercions718

between the same types are equal), by substitution we can obtain the incoherent context719

α ≤c1 A,α ≤c2 A, [α1/α][α2/α]Γ.720

We will assume that ∆ is an arbitrary context in Π≤. We can also assume without loss of721

generality that ∆ ≡ ∆1, α1 ≤ A1, ...,∆n, αn ≤ An,∆n+1, where {αi ≤ Ai}i=1,n are all of the722

subtyping entries of ∆. If ∆n+1 is free of subtyping entries we can abstract over its entries723

freely but the abstraction is obstructed by αn ≤ An for the entire prefix. We move this724

prefix, together with the obstructing entry to the signature using constant coercions Σ∆ =725

∆1, α1:Type, c1:(α1)A1, α1 ≤c1 A1:Type, ...,∆n, αn:Type, cn:(αn)An, αn ≤cn
An:Type. We726

map the left ∆n+1 to a context. This way we translate ∆ ≡ ∆1, α1 ≤ A1, ...,∆n, αn ≤727

An,∆n+1 ` J in Π≤ to ∆n+1 `Σ∆ J in ΠS,≤, with Σ∆ as above. In the rest of the section728

we shall prove that mapping subsumptive subtyping entries in context to constant coercions729

in signature is indeed adequate. For this, we first prove that such a signature is coherent.730

I Lemma 33. For any valid context ∆ in Π≤, Σ∆ is coherent w.r.t. ΠS,≤.731

Proof. We need to show that, in ΠS,≤, if we have Γ `Σ∆ T1 ≤c T2 and Γ `Σ∆ T1 ≤c′ T2,732

then c = c′:(T1)T2. There are two cases:733

1. T1 ≡ α is a constant. By the validity of ∆, we have that, if αi ≤ Ai and αj ≤ Ai are two734

different subtyping entries in ∆, then αi 6= αj , therefore, if αi ≤ci
Ai and αj ≤cj

Ai are735

two different coercions in Σ∆, then necessarily, αi 6= αj .736

2. T1 ≡ Π(A,B) and T2 ≡ Π(A′′, B′′). In this case the non trivial situation is:

Γ `Σ Π(A,B) ≤c1 C Γ `Σ C ≤c2 Π(A′′, B′′)
Γ `Σ Π(A,B) ≤c2◦c1 Π(A′′, B′′)

and C is equal to dependent product too. What we need to show is that applying
dependent product rule followed by transitivity leads to the same coercion as applying
transitivity first and then the dependent product rule. Namely that, for some A′, B′ s.t.

Γ `Σ∆ A′′ ≤c2 A′ ≤c1 A Γ `Σ∆ B ≤d1 B
′ ≤d2 B

′′

Γ `Σ∆ Π(A,B) ≤e1 Π(A′, B′) ≤e2 Π(A′′, B′′)

where, for F :A −→ B and G:Π(A′, B′), e1(F ) = λ[x′:A′]d1(app(F, c1(x′))) and e2(G) =737

λ[x′′:A′′]d2(app(G, c2(x′′))) applying transitivity rule, first to A, A′, A′′ and to B, B′,738

B′′ and then to Π(A,B), Π(A′, B′), Π(A′′, B′′) results in the same coercion, that is:739

e2 ◦ e1 = e2(e1(F ))740

= λ[x′′:A′′]d2(app(e1(F ), c2(x′′)))741

=β λ[x′′:A′′]d2(d1(app(F, c1(c2(x′′)))))742

= d2 ◦ d1(app(F, c1(c2(x′′))))743
744
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J745

746

Notation If Γ `Σ k:K and Γ `Σ K ≤c K ′ are derivable in ΠS,≤, we write Γ `Σ k :: K ′.747

In what follows we essentially prove that we can represent the previously introduced748

subsumptive subtyping system in our system with coercive subtyping in signatures, meaning749

that we can argue about the former system with the sematic richness of the latter.750

I Theorem 34 (Embedding Subsumptive Subtyping). Let ∆ and Γ be valid contexts in Π≤,751

such that Γ does not contain any subtyping entries. Then we have:752

1. If ∆,Γ is valid in Π≤ then `Σ∆ Γ valid in ΠS,≤.753

2. If ∆,Γ  K kind, then Γ `Σ∆ K kind in ΠS,≤.754

3. If ∆,Γ  K = K ′, then Γ `Σ∆ K = K ′ in ΠS,≤.755

4. If ∆,Γ  k:K, then Γ `Σ∆ k::K in ΠS,≤.756

5. If ∆,Γ  k = k′:K, then Γ `Σ∆ k = k′::K in ΠS,≤.757

6. If ∆,Γ  A ≤ B:Type then Γ `Σ∆ A ≤c B:Type for some coercion c:(A)B in ΠS,≤.758

7. If ∆,Γ  K ≤ K ′, then Γ `Σ∆ K ≤c K ′ for some c:(K)K ′ in ΠS,≤.759

Proof. The proof proceeds by induction on derivations for all the points of the theorem and760

we only exhibit it for the sixth point here and in particular when the last rule in the derivation761

tree is the one for the dependent product. We have by IH that, for Γ `Σ∆ Π(A,B)::Type762

and Γ `Σ∆ Π(A′, B′)::Type we have Γ `Σ∆ A′ ≤c A:Type and Γ, x:A′ `Σ∆ B ≤c′ B′:Type.763

Note that, if K ≤c Type, then K ≡ Type, so Γ `Σ∆ Π(A,B)::Type is equivalent to Γ `Σ∆764

Π(A,B):Type, and Γ `Σ∆ Π(A′, B′)::Type with Γ `Σ∆ Π(A′, B′):Type, hence we can directly765

apply the rule for dependent product in ΠS,≤ to obtain Γ `Σ∆ Π(A,B) ≤d Π(A′, B′):Type766

where, for F :Π(A,B), d(F ) = λ[x:A′]c′(app(F, c(x))). J767

4 Intuitive Notions of Subtyping as Coercion768

In this section, we consider two case studies of how intuitive notions of subtyping may be769

considered in the framework of coercive subtyping. The first is about type universes in770

type theory and the second is about how injectivity of coercions may play a crucial role in771

modelling intuitive notions of subtyping.772

4.1 Subtyping between Type Universes773

A universe is a type of types. One may consider a sequence of universes indexed by natural774

numbers U0 : U1 : U2 : ... and U0 ≤ U1 ≤ U2 ≤ ...775

Martin Löf [23] introduced two styles of universes in type theory: the Tarski-style and776

the Russell-style. The Tarski-style universes are semantically more fundamental but the777

Russell-style universes are easier to use in practice. In fact, the Russell-style universes are778

a special case of subsumptive subtyping, which is incompatible with the idea of canonical779

objects. As observed by the second author in [18], the two styles of universes are not780

equivalent and the Russell-style universes can be emulated by Tarski-style universes with781

coercive subtyping and this allows one to reason about Russell universes with the semantic782

richness of Tarski universes, but without the overhead of their syntax.783

784

Problem with Russell-style Universes. We extend the subsumptive subtyping sys-785

tem Π≤ with Russell-style universes by adding the following rules (i ∈ ω):786

Γ valid

Γ  Ui : Type
Γ  A : Ui

Γ  A : Type
Γ valid

Γ  Ui : Ui+1

Γ valid

Γ  Ui ≤ Ui+1
787
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and the rules for the Π-types:788

Γ  A : Ui Γ  B : (A)Ui
Γ  Π(A,B) : Ui

789

Unfortunately, as mentioned in the introduction, this straightforward formulation of universes790

does not satisfy the properties of canonicity or subject reduction if one adopts the standard791

notation of terms with full type information. For instance, the term λX:U1.Nat, where792

Nat : U0, would be represented as λ(U1, [_:U1]U0, [_:U1]Nat), but this term, which is of793

type U0 → U0 (by subsumption, since U1 → U0 ≤ U0 → U0 by contravariance), is not794

definitionally equal to any canonical term which is of the form λ(U0, ...). As explained in the795

introduction, if one used terms with less type information (eg, pairs (a, b), as in HoTT [32],796

rather than pair(A,B, a, b), there would be incompatible types of the same term and that797

would cause problems in type-checking.798

799

Tarski-style Universes with Coercive Subtyping. The Tarski-style universes are intro-800

duced into ΠS,≤ by adding the following rules (i ∈ ω):801

`Σ Γ
Γ `Σ Ui : Type

Γ `Σ a : Ui
Γ `Σ Ti(a) : Type

`Σ Γ
Γ `Σ ti+1 : (Ui)Ui+1

802

where ti+1 are the lifting operators,803

`Σ Γ
Γ `Σ ui : Ui+1

`Σ Γ
Γ `Σ Ti+1(ui) = Ui : Type804

where ui is the name of Ui in Ui+1, together with the following rule for the names of Π-types:805

Γ `Σ a : Ui Γ, x : Ti(a) `Σ b(x) : Ui
Γ `Σ πi(a, b) : Ui

806

The following equations also need to be satisfied:807

Ti+1(ti+1(a)) = Ti(a):Type808

Γ `Σ Ti(πi(a, b)) = Π(Ti(a), [x:Ti(a)]Ti(b(x))) : Type809

Γ `Σ ti+1(πi(a, b)) = πi+1(ti+1(a), [x:Ti(a)]ti+1(b(x))) : Ui+1810

Furthermore, crucially, the lifting operators ti+1 are now declared as coercions by asking that811

all the signatures start with the prefix Σi ≡ U0 ≤t0 U1, ..., Ui−1 ≤ti Ui where i is bigger812

than the largest universe index that is used in an application.813

814

Use of Coercion-based Tarski-style Universes. If universes are specified in the Tarski-815

style as above with the lifting operators declared as coercions, together with several notational816

conventions (eg, Ti is omitted, ui is identified with Ui, etc.), they can now be used easily817

in Russell-style. The lifting operators are not seen (implicit) by the users. In particular,818

in this setting, all the Russell-style universe rules become derivable. Theorem 34 can now819

be extended in such a way that the Russell-style universes are faithfully emulated by the820

Tarski-style universes with coercive subtyping.821

4.2 Injectivity and Constructor Subtyping822

In subsumptive subtyping, A ≤ B means that A is directly embedded in B. Intuitively, this823

may imply that, for a and a′ in A, if the images of them are not equal in B, then they are824
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not equal in A, either. If we consider coercive subtyping A ≤c B, this would imply that c is825

injective in the sense that c(a) = c(a′) implies that a = a′. In this section, we shall formally826

discuss this issue in the context of representing intuitive subtyping notions by means of827

coercions.828

We shall consider constructor subtyping, studied by [4], in which an (inductive) type is829

considered to be a subtype of another if the latter has more constructors than the former.830

More precisely we shall discuss the example they start from, namely Even Numbers(Even)831

being a subtype of Natural Numbers (Nat) with the argument that the constructors of832

Even are 0 and successor of Odd, where Odd is given by the constructor successor of Even.833

Then, in Nat the successor constructor is overloaded to a lifting of these constructors as well.834

Formally they write:835

836
datatype Odd = S of Even and Even = 0837

|S of Odd838

datatype Nat = 0839

|S of Nat840

|S of Odd841

|S of Even842843

The phenomenon we want to discuss here is injectivity, in particular the one related844

to Leibnitz equality. Leibnitz equality is defined as follows: x = y if for any predicate P ,845

P (x)⇐⇒ P (y). We denote by x =A y for some type A the Leibnitz equality between x and846

y related to a certain domain. Then, we have injectivity of subtyping if, given x =Nat y, with847

x, y:Even it is the case that x =Even y. Namely, whether for any predicate Q:Even −→ Prop,848

it is the case that Q(x) ⇐⇒ Q(y). For this it is enough to show that any predicate849

Q:Even −→ Prop admits a lifting Q′:Nat −→ Prop s.t. for any x:Even,Q′(x) =⇒ Q(x).850

We can easily define such a Q′ as follows:851

852
Q’(x) = Q(0) if x = 0853

Q(S(n)) if x = S of n:Odd854

true if x = S of n:Even855

true if x = S of n:Nat856857

Injectivity of the embedding holds here but it is not granted in coercive subtyping. For858

functions f :(x:A)B we denote injective(f) = ∀x, y:A.f(x) =B f(y) −→ x =A y. A function859

f is then injective if ∃p:injective(f).860

I Definition 35. We say a coercion `Σ0,A≤cB,Σ1 A ≤c B is injective with respect to =B861

if there exist p s.t. `Σ p:injective(c) is derivable.862

For a constant coercions (namely of the form `Σ0,c:(A)B,Σ1,A≤cB,Σ2,Σ3 A ≤c B) we can add863

the assumption that they are injective `Σ0,c:(A)B,Σ1,A≤cB,Σ2,p:injective(c),Σ3 A ≤c B. If we864

embed a subsumptive subtyping that propagates an equality from a type throughout its865

subtypes, we represent it as a constant coercion, thus, all we need to do is add the assumption866

that a coercion is injective. It is obvious that the transitivity and congruence preserve the867

injectivity property.868

An example of noninjective coercions is if we think of Nat and Even as follows869

870
Inductive Nat : Type :=871

| O : Nat872

| S : Nat -> Nat.873

Inductive even : Nat -> Prop :=874

| O1 : even O875
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| O2 : even O876

| S1 : forall n1 , even n1 -> even (S (S n1 )).877

Inductive Even := pair{n:Nat; e:even n}. Definition proj1(ev:Even) :=878

match879

ev with pair n e => n880

end.881

Coercion proj1 : Even >-> Nat.882883

Note that the definition of Even changed and we refer to it as a feature of the natural884

numbers rather than as a subset. In order for a natural number to be even we require a885

proof of that.886

The reason this coercion is not injective is that we can have two different proofs that 4887

is even p1, p2:even4, and hence, two different pairs (4, p1), (4, p2):Even, both of them being888

mapped to the same 4:Nat. Enforcing injectivity here is similar to enforcing proof irrelevance.889

5 Conclusion and Future Work890

In this paper, we have developed a new calculus of coercive subtyping and shown that891

subsumptive subtyping can be faithfully embedded or represented in the calculus. The idea892

of representing coercive subtyping relations in signatures has achieved a balance between893

obtaining a powerful (and practical) calculus to capture intuitive notions of subtyping and894

keeping the resulting calculus simple enough for meta-theoretic studies.895

We intend to extend the calculus to a richer type theory like Martin-Löf’s type theory or896

UTT where you have rich inductive types. We do not see any difficulty in doing so, but of897

course, studies are needed to confirm this.898

Specifying subtyping relations in signatures has changed the nature of ’basic subtyping899

relations’ as studied in the earlier setting of coercive subtyping. The earlier setting allows900

parameterised coercions such as n:Nat ` V ect(Nat, n) ≤c(n) List(Nat), which instantiates,901

in particular, to ` V ect(Nat, 3) ≤c(3) List(Nat). Note that here we don’t use parameterised902

in the sense of Coq Proof Assistant. This new system does not cover this kind of coercions903

at this point. It would be interesting to study a new mechanism to introduce parameterised904

coercions by means of entries in signatures.905

Acknowledgements. Thanks go to Sergei Soloviev for extremely helpful remarks on906

this work during his visit to Royal Holloway and the anonymous referees for their helpful907

comments.908
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Validity of Signature/Contexts, Assumptions

` 〈〉
Σ;<>` K kind c 6∈ dom(Σ)

` Σ, c:K
` Σ, c:K,Σ′; Γ

Σ, c:K,Σ′; Γ ` c:K

` Σ
` Σ; 〈〉

Σ; Γ ` K kind x 6∈ dom(Σ) ∪ dom(Γ)
` Σ; Γ, x:K

` Σ; Γ, x:K,Γ′

Σ; Γ, x:K,Γ′ ` x:K
Weakening

Σ,Σ′; Γ ` J Σ;<>` K kind c 6∈ dom(Σ,Σ′)
Σ, c:K, Σ′; Γ ` J

Σ; Γ,Γ′ ` J Σ; Γ ` K kind x 6∈ dom(Γ,Γ′)
Σ; Γ, x:K,Γ′ ` J

Equality Rules

Σ; Γ ` K kind

Σ; Γ ` K = K

Σ; Γ ` K = K′

Σ; Γ ` K′ = K

Σ; Γ ` K = K′ Σ; Γ ` K′ = K′′

Σ; Γ ` K = K′′

Σ; Γ ` k:K
Σ; Γ ` k = k:K

Σ; Γ ` k = k′:K
Σ; Γ ` k′ = k:K

Σ; Γ ` k = k′:K Σ; Γ ` k′ = k′′:K
Σ; Γ ` k = k′′:K

Σ; Γ ` k:K Σ; Γ ` K = K′

Σ; Γ ` k:K′
Σ; Γ ` k = k′:K Σ; Γ ` K = K′

Σ; Γ ` k = k′:K′

Context Replacement

Σ0, c:L,Σ1; Γ ` J Σ0 ` L = L′

Σ0, c:L′,Σ1; Γ ` J
Σ; Γ0, x:K,Γ1 ` J Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` J

Substitution Rules

` Σ; Γ0, x:K,Γ1 Σ; Γ0 ` k:K
` Σ; Γ0, [k/x]Γ1

Σ; Γ0, x:K,Γ1 ` K′ kind Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]K′ kind

Σ; Γ0, x:K,Γ1 ` L = L′ Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]L = [k/x]L′

Σ; Γ0, x:K,Γ1 ` k′:K′ Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]k′:[k/x]K′

Σ; Γ0, x:K,Γ1 ` l = l′:K′ Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]l = [k/x]l′:[k/x]K′

Σ; Γ0, x:K,Γ1 ` K′ kind Σ; Γ0 ` k = k′:K
Σ; Γ0, [k/x]Γ1 ` [k/x]K′ = [k′/x]K′

Σ; Γ0, x:K,Γ1 ` l:K′ Σ; Γ0 ` k = k′:K
Σ; Γ0, [k/x]Γ1 ` [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Σ; Γ ` K kind Σ; Γ, x:K ` K′ kind
Σ; Γ ` (x:K)K′ kind

Σ; Γ ` K1 = K2 Σ; Γ, x:K1 ` K′1 = K′2
Σ; Γ ` (x:K1)K′1 = (x:K2)K′2

Σ; Γ, x:K ` y:K′

Σ; Γ ` [x:K]y:(x:K)K′
Σ; Γ ` K1 = K2 Σ; Γ, x:K1 ` k1 = k2:K

Σ; Γ ` [x:K1]k1 = [x:K2]k2:(x:K1)K
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k:K

Σ; Γ ` f(k):[k/x]K′
Σ; Γ ` f = f ′:(x:K)K′ Σ; Γ ` k1 = k2:K

Σ; Γ ` f(k1) = f ′(k2):[k1/x]K′

Σ; Γ, x:K ` k′:K′ Σ; Γ ` k:K
Σ; Γ ` ([x:K]k′)(k) = [k/x]k′:[k/x]K′

Σ; Γ ` f :(x:K)K′ x 6∈ FV (f)
Σ; Γ ` [x:K]f(x) = f :(x:K)K′

The kind Type

` Σ; Γ
Σ; Γ ` Type kind

Σ; Γ ` A:Type
Σ; Γ ` El(A) kind

Σ; Γ ` A = B:Type
Σ; Γ ` El(A) = El(B)

Figure 8 Inference Rules for LF ;
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Σ; Γ ` A : Type Σ; Γ, x:A ` B(x) : Type
Σ; Γ ` Π(A,B) : Type

Σ; Γ ` A : Type Σ; Γ ` B : (A)Type Σ; Γ ` f : (x:A)B(x)
Σ; Γ ` λ(A,B, f) : Π(A,B)

Σ; Γ ` g : Π(A,B) Σ; Γ ` a : A
Σ; Γ ` app(A,B, g, a) : B(a)

Σ; Γ ` A : Type Σ; Γ ` B : (A)Type
Σ; Γ ` f : (x:A)B(x) Σ; Γ ` a : A

Σ; Γ ` app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure 9 Inference Rules for Π;

Subtyping Rules

Σ; Γ ` A ≤c B ∈ C
Σ; Γ ` A ≤c B

Congruence

Σ; Γ ` A ≤c B : Type Σ; Γ ` A = A′ : Type Σ; Γ ` B = B′ : Type Σ; Γ ` c = c′ : (A)B
Σ; Γ ` A′ ≤c′ B′ : Type

Transitivity

Σ; Γ ` A ≤c A′ : Type Σ; Γ ` A′ ≤c′ A′′ : Type
Σ; Γ ` A ≤c′◦c A′′ : Type

Weakening

Σ,Σ′; Γ ` A ≤d B : Type Σ ` K kind

Σ, c:K, Σ′; Γ ` A ≤d B : Type
(c 6∈ dom(Σ,Σ′))

Σ; Γ,Γ′ ` A ≤d B : Type Σ; Γ ` K kind

Σ; Γ, x:K,Γ′ ` A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Context Replacement

Σ0, c:L,Σ1; Γ ` A ≤c B Σ0 ` L = L′

Σ0, c:L′,Σ1; Γ ` A ≤c B
Σ; Γ0, x:K,Γ1 ` A ≤c B Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` A ≤c B

Substitution

Σ; Γ0, x:K,Γ1 ` A ≤c B Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]A ≤[k/x]c [k/x]B

Identity Coercion

Σ; Γ ` A:Type
Σ; Γ ` A ≤[x:A]x A:Type

Dependent Product

Σ; Γ ` A′ ≤c1 A : Type Σ; Γ ` B,B′ : (A)Type Σ; Γ, x:A ` B(x) ≤c2[x] B
′(x) : Type

Σ; Γ ` Π(A,B) ≤[F :Π(A,B)]λ(A′,B′◦c1,[x:A′]c2[x](app(A,B,F,c1(x)))) Π(A′, B′ ◦ c1) : Type

Figure 10 Inference Rules for Π[C];0K (1)
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Basic Subkinding Rule and Identity

Σ; Γ ` A ≤c B:Type
Σ; Γ ` El(A) ≤c El(B)

Σ; Γ ` K kind

Σ; Γ ` K ≤[x:K]x K

Structural Subkinding Rules

Σ; Γ ` K1 ≤c K2 Σ; Γ ` K1 = K′1 Σ; Γ ` K2 = K′2 Σ; Γ ` c = c′:(K1)K2

Σ; Γ ` K′1 ≤c′ K′2

Σ; Γ ` K ≤c K′ Σ; Γ ` K′ ≤c′ K′′

Σ; Γ ` K ≤c′◦c K′′

Σ,Σ′; Γ ` K ≤d K′ Σ;<>` K0 kind

Σ, c:K0,Σ′; Γ ` K ≤d K′
(c 6∈ dom(Σ,Σ′))

Σ; Γ,Γ′ ` K ≤d K′ Σ; Γ ` K0 kind

Σ; Γ, x:K0,Γ′ ` K ≤d K′
(x 6∈ dom(Γ,Γ′))

Σ0, c:L,Σ1; Γ ` K ≤d K′ Σ0;<>` L = L′

Σ0, c:L′,Σ1; Γ ` K ≤d K′
Σ; Γ0, x:K,Γ1 ` L ≤d L′ Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` L ≤d L′

Σ; Γ0, x:K,Γ1 ` K1 ≤c K2 Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]K1 ≤[k/x]c [k/x]K2

Subkinding for Dependent Product Kind

Σ; Γ ` K′1 ≤c1 K1 Σ; Γ, x:K1 ` K2 kind Σ; Γ, x′:K′1 ` K′2 kind Σ; Γ, x:K1 ` [c1(x′)/x]K2 ≤c2 K
′
2

Σ; Γ ` (x:K1)K2 ≤[f :(x:K1)K2][x′:K′1]c2(f(c1(x′))) (x:K′1)K′2

Figure 11 Inference Rules for Π[C];0K (2)

Coercive Application

(CA1)
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0):[c(k0)/x]K′

(CA2)
Σ; Γ ` f = f ′:(x:K)K′ Σ; Γ ` k0 = k′0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0) = f(c(k0)):[c(k0)/x]K′

Figure 12 The coercive application and definition rules in Π[C];
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