
A Unifying Theory of Dependent Types:

the Schematic Approach

Zhaohui Luo

Department of Computer Science, University of Edinburgh

JCMB, KB, Mayfield Rd., Edinburgh EH9 3JZ, U.K.

1 Introdu
tion

We present a theory of dependent types whi
h uni�es 
oherently Martin-L�of's type theory with universes

[ML75, ML84, NPS90℄ and Coquand-Huet's Cal
ulus of Constru
tions [CH88, Coq89℄. The theory 
an be

seen as an extension of the Extended Cal
ulus of Constru
tions [Luo89, Luo90a℄ by a large 
lass of indu
tive

data types. It is a further development of the idea to enhan
e in type theory a 
on
eptual distin
tion between

the notions of logi
al formula (proposition) and data type, and is another step aiming at the development of

a unifying language for modular development of programs, spe
i�
ations, and proofs (
.f., [Luo91b℄).

The presentation here is parti
ularly inspired by Martin-L�of's presentation of type theory by logi
al

framework [NPS90℄ and Coquand and Mohring's work on indu
tive types [CPM90℄. The type theory is

formulated in a logi
al framework extended by kind s
hemata. It 
onsists of an impredi
ative universe of

logi
al propositions, a 
lass of indu
tive data types 
overed by a general form of s
hemata, and predi
ative

type universes. Our presentation is di�erent from that of [CPM90℄ in the following aspe
ts. Using a logi
al

framework allows us to de�ne a purely intensional type theory with a general s
hema for indu
tive types. In

parti
ular, besides distinguishing the notions of logi
al proposition and data type, we pay spe
ial attention

to the intensionality of 
omputational equality and how to obtain a 
learly non-
ir
ular re
e
tion prin
iple

in introdu
ing predi
ative universes. Furthermore, our approa
h is more moderate in that, for example, our

s
hemata only 
over indu
tive types but not indu
tive relations. There are two reasons in favor of su
h a

moderate approa
h. First, it seems that the ne
essity to 
over general indu
tive relations by the s
hemata

is still to be justi�ed; in our setting, logi
al indu
tive relations 
an be obtained by impredi
ative de�nitions

and many indu
tive families of data types 
an be de�ned using predi
ative universes. Se
ond, by taking

su
h a moderate approa
h, we hope that the resulting type theory allows a mole
ular or 
ompositional

understanding, as we shall brie
y explain in the 
on
lusion.

Several basi
 ideas are elaborated below to explain our motivations and points of view.

1.1 Data types vs. logical propositions

The Curry-Howard 
orresponden
e between propositions and types has been the basi
 key idea in the devel-

opment of various type theories. However, although propositions 
an be viewed as types, identifying types

with propositions does not seem to be ne
essary or satisfa
tory. In other words, logi
al propositions 
an be

viewed as types of their proofs, but it is not ne
essary that every type be viewed as a logi
al proposition.

It is our view that, even in type theory, a distin
tion between the notions of logi
al formula and data type

is both 
on
eptually natural and pragmati
ally important. This idea has been re
e
ted, for example, in the

development of the Extended Cal
ulus of Constru
tions (ECC) [Luo89, Luo90a℄, where higher-order logi
al

propositions reside in the impredi
ative universe (
.f., the 
al
ulus of 
onstru
tions [CH88℄), while the data

types (or sets) reside in the predi
ative universes (see Figure 1).

Intuitively, su
h a type theory may be understood by 
onsidering its 
on
eptual universe of types, whi
h

re
e
ts the way we try to understand the real world of obje
ts of interest. To grasp this 
on
eptual universe,

we pi
k out types and type 
onstru
tors to study, examples of whi
h in
lude the type of natural numbers,

1



Logi


Types:

� � :::

T ypei Prop

✻

`open'

❄

Figure 1: The 
on
eptual universe of types in ECC.

the dependent produ
t types, the strong sum types, et
. In parti
ular, one may 
onsider a type of logi
al

propositions whi
h are themselves (names of) types of their proofs and provide the means to des
ribe the

logi
al properties of obje
ts of any type. One 
an also introdu
e (formal) type universes in a strati�ed or

predi
ative way, whi
h 
onsist of names of the types already introdu
ed into the theory. The predi
ativity

of a universe means that the existen
e of the data types that have names in it should be independent

on the existen
e of the universe itself. Sin
e we do not expe
t to exhaust the possible 
on
eptions of type

formation, the 
on
eptual universe of types is supposed to be open. However, it seems possible and reasonable

to 
onsider the (impredi
ative) world of logi
al propositions as relatively 
losed, in the sense that the ways

(e.g., in the 
ase of higher-order logi
, the universal quanti�
ation) in whi
h logi
al propositions are formed

are not supposed to be further extended. Therefore, the openness essentially 
on
erns the predi
ative part

of the theory, where the obje
ts like programs and data types reside.

The general stru
ture of the 
on
eptual universe of types as sket
hed above provides a parti
ular but


oherent view whi
h seems to be of importan
e both in pragmati
 appli
ations and theoreti
al study. For

example, sin
e the logi
al universe is relatively 
losed, there is an internal notion of predi
ate (as propositional

fun
tion) in the theory whi
h is useful in many appli
ations (e.g., in developing an approa
h to program

spe
i�
ation and development [BM91℄[Luo91b℄ and a notion of mathemati
al theory in the appli
ation of

abstra
t reasoning [Luo91a℄[Pol90℄). Another eviden
e supporting this view is that, sin
e data types (sets)

reside in predi
ative universes, the embedded logi
 (in ECC, for example) is a 
onservative extension of the

higher-order predi
ate logi
 [Luo90b℄, and we are also able to grasp and use type 
onstru
tors like the strong

sum (large �-types), whi
h is useful in abstra
t and modular development of programs and proofs. It is also

our hope that, although the logi
al universe of propositions is impredi
ative, a hierar
hi
al understanding of

the language of the type theory 
an be obtained in 
ertain reasonable sense (see se
tion 5.1).

1.2 The philosophical openness vs. pragmatic considerations

The openness of the 
on
eptual universe of types, as well-explained by Martin-L�of for his type theory, is

philosophi
ally sound and satisfa
tory. On the other hand, when studying a formal type theory, one has to

`
lose' the system at some stage of its development in order to, e.g., study its meta theory or implement it on


omputer. Su
h a 
onsideration en
ourages people to 
onsider various general formulations of 
lasses of types

in order to deal with them in a uniform way. In fa
t, su
h a generality is not a new subje
t. It is analogous

to, for example, the introdu
tion of all of the dependent produ
t types by a s
hemati
 type 
onstru
tor

(�) instead of introdu
ing them one by one. The issue of introdu
ing a large 
lass of indu
tive data types

has been 
onsidered by, for example, Ba
khouse [Ba
88℄ and Dybjer [Dyb89, Dyb91℄ for Martin-L�of's type

theory, and Coquand and Mohring [CPM90℄, Ore [Ore90℄ and Goguen and Luo [GL91℄ for impredi
ative

systems. A useful idea, whi
h goes ba
k to Gentzen and is developed by Prawitz and Martin-L�of among

others, is that the meaning of an indu
tive type may be viewed as determined by its introdu
tion rules. This



idea has in parti
ular been developed by Ba
khouse, Dybier, Coquand and Mohring in the 
ontext of type

theory to 
onsider general s
hemata for indu
tive types. The work reported here is partly along this line of

resear
h.

1.3 Intensionality vs. extensionality

From a 
omputational point of view, we think that the 
omputational equality between obje
ts of types

(say, natural numbers, fun
tions of �-types) should be intensional. By this, we mean that neither the strong

extensionality (for example, formulated by the strong equality types in [ML84℄) nor the weak extensionality

as expressed by the so-
alled �lling-up rules expressing the uniqueness of the elimination operator in a type

theory

1
should be viewed as 
omputational.

However, in most of the 
urrent formulations of indu
tive data types, 
ertain extensional equalities have

been used in order to get satisfa
tory representation of indu
tive types. For example, in [CPM90℄, �-rule for

the dependent produ
t types is in
luded in order to gain a satisfa
tory formulation of the general s
hema

for indu
tive types. In [GL91℄, various �lling-up rules are studied and shown to be suÆ
ient and ne
essary

for the well-ordering types to be used to represent various indu
tive types faithfully. It seems to be the 
ase

that 
ertain extensionality is 
alled for in order to 
over a large 
lass of indu
tive data types by a general

representation s
hema.

A solution to su
h a dilemma is to separate the type theory (obje
t language to be de�ned) from a

meta-language used to de�ne it. This latter meta-language 
an (and should) be weakly extensional. This

seems to be exa
tly Martin-L�of's idea of using a logi
al framework with �-rule to de�ne his type theory (see

[NPS90℄, also 
.f., [HHP87℄). As shown below, based on su
h an idea, we 
an 
onsider a notion of kind

s
hemata at the level of framework whi
h 
an be used to de�ne a large 
lass of indu
tive types, in
luding the

�-types, whi
h are intensional in the sense that no extensional equality rule between obje
ts of types holds

at the 
omputational level. Furthermore, the �lling-up equality rules like � do hold logi
ally in the sense

that one 
an prove the 
orresponding logi
al proposition by indu
tion.

Another advantage of using a meta-level logi
al framework is that we gain a 
lear re
e
tion prin
iple in

the sense that we do not need to use a predi
ative type universe to help the formulation of indu
tive types

residing in it, whi
h, otherwise, would give a 
avor of impredi
ativity. In our setting, indu
tive types are

introdu
ed independently and predi
ative universes are viewed as introdu
ed later by de
laring names of


ertain data types in it.

In se
tion 2, we �rst des
ribe Martin-L�of's logi
al framework LF, where as an example, we formulate the

impredi
ative universe in the type theory, and then introdu
e LFθ, a simple extension of LF by s
hemata.

The general rules for indu
tive data types are introdu
ed in se
tion 3, where we give examples and dis
uss

intensionality. Predi
ative universes and the re
e
tion of indu
tive types are introdu
ed in se
tion 4, followed

by se
tion 5 giving a summary of the type theory and dis
ussing some related topi
s.

2 Logi
al Framework with S
hemata

2.1 Martin-Löf’s logical framework

We 
onsider LF, a typed version of Martin-L�of's logi
al framework [NPS90℄. The inferen
e rules of LF are

given in Appendix A. For those who are familiar with the presentation in [NPS90℄, please noti
e the following

notational 
hanges:

1. We 
all the types in LF kinds and write `K kind' (instead of `K type').

2. The kind of all types is denoted by Type (instead of Set). We shall often omit the lifting operator El.

3. We shall write (K1)K2 for the dependent produ
t kind (x:K1)K2 in LF when x does not o

ur free in

K2. We have typed �-terms of the form [x:A℄b (instead of the untyped (x)b).

1The filling-up rules are equivalent to the η-rules such as η for functions, surjective pairing for pairs.



K is 
alled a �-kind if � ` K kind. A is 
alled a �-type if � ` A : Type. K is 
alled a small �-kind if

K � (x1:A1):::(xn:An)An+1 su
h that �; x1:A1; :::; xi−1:Ai−1 ` Ai : Type.

We take LF seriously as a meta-language to spe
ify obje
t languages, i.e., a type theory in our 
ase.

A spe
i�
ation will 
onsist of a set of de
larations of 
onstants and 
ertain 
omputation rules. In general,

introdu
ing a 
onstant k of kind K and asserting a 
omputation rule by `k = k

′
: K for ki : Ki (i = 1; :::; n)'

are to extend the LF system by the following rules, respe
tively:

� valid

� ` k : K

� ` ki : Ki (i = 1; :::; n)

� ` k = k

′
: K

The spe
i�ed type theory has �ve forms of judgements, whi
h are

� valid � ` A : Type � ` A = B : Type � ` a : El(A) � ` a = b : El(A)

where 
ontext � is of the form x1:El(A1); :::; xn:El(An). A judgement in the spe
i�ed type theory is derivable

if it is derivable in the LF extended by the 
onstants and 
omputation rules.

2.2 An impredicative universe of logical propositions

As an example of introdu
ing types in LF, we introdu
e a type (impredi
ative universe) Prop of logi
al

propositions and the proof types of propositions, whi
h, together with the �-types to be introdu
ed, give

the higher-order logi
 embedded in the type theory. They are introdu
ed by

Prop : Type

Prf : (Prop)Type

8 : (A:Type)((A)Prop)Prop

� : (A:Type)(P :(A)Prop)((x:A)Prf (P (x)))Prf(8(A;P ))

E∀ : (A:Type)(P :(A)Prop)(R:(Prf (8(A;P )))Prop)

((g:(x:A)Prf (P (x)))Prf (R(�(A;P; g)))) (z:Prf(8(A;P )))Prf (R(z))

with 
omputation rule

E∀(A;P;R; f;�(A;P; g)) = f(g) : Prf(R(�(A;P; g)))

We shall use usual notations later, e.g., writing 8x:A:P (x) for 8(A;P ). Note that the usual appli
ation

operator,

App : (A:Type)(P :(A)Prop)(Prf (8(A;P )))(a:A)Prf (P (a))


an be de�ned as

App(A;P; F; a) =df E∀(A;P; [G:Prf (8(A;P ))℄P (a); [g:(x:A)Prf (P (x))℄g(a); F )

whi
h satis�es the �-equality: App(A;P;�(A;P; g); a) = g(a) : Prf(P (a)).

2.3 Kind schemata in logical framework

In order to formulate s
hemata for indu
tive data types, we extend the logi
al framework by a notion of

kind s
hema, whi
h is very similar to Coquand and Mohring's notion of 
onstru
tor in [CPM90℄, with the

di�eren
e that we 
onsider the s
hema in the logi
al framework, while they 
onsider it based on the �-types

in the 
al
ulus of 
onstru
tions with universes.

De�nition 2.1 (kind s
hemata) Let X be a �xed spe
ial symbol (a pla
eholder) and � be a valid 
ontext.

� � is a stri
tly positive operator (in �), notation PosΓ(�), if � is of the form (x1:K1):::(xn:Kn)X,

where n � 0 and Ki is a small (�; x1:K1; :::; xi−1:Ki−1)-kind.



� � is a �-s
hema, notation S
hΓ(�), if

1. � � X, or

2. � � (x:K)�0, where K is a small �-kind and S
hΓ,x:K(�0), or

3. � � (�)�0, where PosΓ(�) and S
hΓ(�0).

Notations We shall use �; �

′
; ::: for stri
tly positive operators and �; �

′
; ::: for s
hemata. We shall also

write

�

� for a sequen
e of s
hemata �1; :::;�n.

We write �(A) and �(A) for [A=X℄� and [A=X℄�, respe
tively. For any small kind K, K(A) is just K.

Note that, for any (small) �-kind A, �(A) and �(A) are (small) �-kinds, if PosΓ(�) and S
hΓ(�).

De�nition 2.2 (LF with s
hemata) The logi
al framework with s
hemata, LFθ, is the extension of LF

by terms of the forms M[

�

�℄, �i[
�

�℄ (i = 1; :::; n), and E[

�

�℄, where

�

� � �1; :::;�n is any �nite sequen
e of

s
hemata, and the following equality rule:

S
hΓ(
�

�;

�

�

′
) �; A:Type `

�

�(A) =

�

�

′
(A) � ` �[

�

�℄ : K

� ` �[

�

�℄ = �[

�

�

′
℄ : K

(� 2 fM; �i;Eg)

where the se
ond premise stands for n premises �; A:Type ` �i(A) = �

′
i(A), (i = 1; :::; n).

3 Indu
tive Types

3.1 A schematic formulation of inductive types

The idea is that any �nite sequen
e of s
hemata spe
i�es a set of introdu
tion rules and hen
e generates

an indu
tive data type whose meaning is determined by the introdu
tion rules. First, we introdu
e several

notational de�nitions.

De�nition 3.1 Let � be a stri
tly positive operator.

� De�ne �

◦
(A;C; z), for A : Type, C : (A)Type and z : �(A), by indu
tion on the stru
ture of � as

follows:

1. If � � X, then �

◦
(A;C; z) =df C(z).

2. If � � (x:K)�0, then �

◦
(A;C; z) =df (x:K)�

◦
0(A)(C; z(x)).

� De�ne �

♮
(A) : (C:(A)Type)(f :(x:A)C(x))(z:�(A))�

◦
(A;C; z), the fun
torial extension of �(A), by

indu
tion on the stru
ture of � as follows:

1. If � � X, then �

♮
(A)(C; f) =df f .

2. If � � (x:K)�0, then �

♮
(A)(C; f; z) =df [x:K℄�

♮
0(A)(C; f; z(x)).

De�nition 3.2 Let � � (x1:M1):::(xn:Mn)X be a kind s
hema.

� The arity of �, notation Ari(�), is the subsequen
e of hM1; :::;Mni 
onsisting of the stri
tly positive

operators. (This 
an be de�ned by indu
tion on the stru
ture of �.)

� Let Ari(�) be hMi1 ; :::;Mik
i. Then, for A : Type, C:(A)Type and z : �(A),

�

◦
(A;C; z) =df (x1:M1(A)):::(xn:Mn(A))

(M

◦
i1(A;C; xi1)):::(M

◦
ik
(A;C; xik

)) C(z(x1; :::; xn))



Let

�

� � h�1; :::;�ni (n 2 !) be a sequen
e of �-s
hemata whi
h have arities Ari(�i) � h�i1 ; :::;�ik
i.

Then,

�

� generates a �-type M[

�

�℄ that is introdu
ed by (with 
ontext � omitted)

M[

�

�℄ : Type

�i[
�

�℄ : �i(M[

�

�℄) (i = 1; :::; n)

E[

�

�℄ : (C:(M[

�

�℄)Type) (f1:�
◦
1(M[

�

�℄; C; �1[
�

�℄) ::: (fn:�
◦
n(M[

�

�℄; C; �n[
�

�℄)

(z:M[

�

�℄)C(z)

with the 
omputation rules (i = 1; :::; n)

E[

�

�℄(C;

�

f; �i(�a))

= fi(�a;�
♮
i1
(M[

�

�℄)(C;E[

�

�℄(C;

�

f); ai1); :::;�
♮
ik
(M[

�

�℄)(C;E[

�

�℄(C;

�

f ); aik
))

: C(�i(�a))

where

�

f stands for f1; :::; fn and �a for a1; :::; an.

3.2 Examples

The following are some examples 
overed by the s
hema for indu
tive types.

1. Empty type: ; =df M[℄.

2. Unit type: 1 =df M[X℄.

3. Natural numbers: N =df M[X; (X)X℄.

4. Lists: List =df [A:Type℄ M[X; (A)(X)X℄.

5. Fun
tion spa
e: !=df [A:Type℄[B:Type℄ M[((A)B)X℄.

6. Dependent produ
t: � =df [A:Type℄[B:(A)Type℄ M[((x:A)B(x))X℄.

7. Produ
t: � =df [A:Type℄[B:Type℄ M[(A)(B)X℄.

8. Strong sum: � =df [A:Type℄[B:(A)Type℄ M[(x:A)(B(x))X℄.

9. Disjoint sum: + =df [A:Type℄[B:Type℄ M[(A)X; (B)X℄.

10. Well-ordering: W =df [A:Type℄[B:(A)Type℄ M[(x:A)((B(x))X)X℄.

Other examples like binary trees, ordinals, et
. 
an be similarly de�ned. Note that, these de�nitions give de-

sirable rules for the 
orresponding types. For example, one may easily 
he
k that the above type 
onstru
tors

have exa
tly the same rules as those given in [NPS90℄.

3.3 Intensionality and filling-up rules

The 
omputational equality between obje
ts of the indu
tive types introdu
ed by the s
hemata are inten-

sional, whi
h in our view, 
aptures the notion of 
omputation in a satisfa
tory way. For example, the �-rule

does not hold in general for the fun
tions of type �(A;B), although they are true for 
losed fun
tions. It

is worth remarking that, although they do not hold 
omputationally, the �lling-up equality rules are in fa
t

valid logi
ally.

Proposition 3.3 (logi
al validity of �lling-up rules) Let C : (M[

�

�℄)Type and f : (z:M[

�

�℄)C(z),

where S
h(

�

�). Then, the following proposition is provable (i.e., its proof type is inhabited):

8u:M[

�

�℄: (f(u) =C(u) E[
�

�℄(C; f Æ ��; u))



where =C(u) is the Leibniz's equality

2
over C(u), f Æ �� stands for f Æ �1; :::; f Æ �n and

(f Æ �i)(a1; :::; an; y1; :::; yk) =df f(�i(a1; :::; an)).

Sin
e the usual `�-rules' (� for �, surje
tive pairing for �, et
.) are equivalent to the �lling-up rules,

the above proposition shows that, for the indu
tive data types in general, the �-rules hold logi
ally (for the

Leibniz's equality). Note that the �-rules express that every obje
t of an indu
tive type is equal to a 
anoni
al

obje
t and the �lling-up rules express that the elimination operator 
overs all of the use of the indu
tive type.

From this point of view, the above proposition may be regarded as an internal (or logi
al) justi�
ation of the

adequa
y of the formulation of indu
tive types, in parti
ular, the intrinsi
 harmony between the introdu
tion

and elimination rules (
.f., [Dum91℄).

The above fa
t is also a bene�t of using a logi
al framework to de�ne an intensional type theory with a

general s
hema of indu
tive types. It seems impossible to prove the �-rule for the Leibniz's equality if we do

not use a meta-language to formulate �-types (in the 
ase of the dire
t formulation of ECC, for instan
e),

unless one introdu
es � as a 
omputational rule for the �-types, whi
h would destroy the intensionality of

the theory.

4 Predi
ative Universes and Re
e
tion Prin
iple

We introdu
e predi
ative universes

Typei : Type (i 2 !)

with lifting operators

Ti : (Typei)Type ti+1 : (Typei)Typei+1 t0 : (Prop)Type0

The re
e
tion rules about the predi
ative universes and the impredi
ative universe and propositions are the

following:

typei : Typei+1 prop : Type0

Ti+1(typei) = Typei : Type T0(prop) = Prop : Type

Ti+1(ti+1(a)) = Ti(a) : Type T0(t0(P )) = Prf(P ) : Type

where a : Typei and P : Prop.

Now, we 
onsider the re
e
tion of the indu
tive types introdu
ed by the s
hemata.

De�nition 4.1 Let K, � and � be a small �-kind, a stri
tly positive operator in � and a �-s
hema, respe
-

tively. The sets TypesΓ(K), TypesΓ(�) and TypesΓ(�) are de�ned as follows:

TypesΓ(K) =df

{

f(�;K)g if K is a �-type

TypesΓ(K1) [TypesΓ,x:K1
(K2) if K � (x:K1)K2

TypesΓ(�) =df

{

; if � � X

TypesΓ(K1) [TypesΓ,x:K1
(�0) if � � (x:K1)�0

TypesΓ(�) =df











; if � � X

TypesΓ(K1) [TypesΓ,x:K1
(�0) if � � (x:K1)�0

TypesΓ(�1) [TypesΓ(�0) if � � (�1)�0

For

�

� � �1; :::;�n, TypesΓ(
�

�) =df

⋃

1≤i≤n TypesΓ(�i).

2The Leibniz’s equality is defined as: for any type A and any objects a and b of type A, (a =A b) =df ∀P :A →

Prop. app(A,Prop, P, a) ⊃ app(A, Prop,P, b), where app is the application operator for the function type and ⊃ is the

logical implication operator.



Let

�

� be a �nite sequen
e of �-s
hemata. Then, if, for any (�

′
; A) 2 TypesΓ(

�

�), there exists an a su
h

that

�

′
` a : Typei and �

′
` Ti(a) = A : Type

we have the following re
e
tion rules for the indu
tive type M[

�

�℄ (we omit 
ontext �):

3

� ` �i[
�

�℄ : Typei

� ` Ti(�i[
�

�℄) =M[

�

�℄ : Type

� ` Ti+1(ti+1(�i[
�

�℄)) = Ti(�i[
�

�℄) : Type

For example, the type of natural numbers has a name in any predi
ative universe Typei. For the �-types,

�(A;B) has a name in Typei if and only if A has a name in Typei and B(x) has a name in Typei, assuming

x:A.

Remark Using a logi
al framework with s
hemata, we have introdu
ed indu
tive data types independently

with the existen
e of the predi
ative type universes. In other words, the indu
tive types exist independently

with predi
ative universes and their names are introdu
ed when universes are introdu
ed. Note that the

type universes in our theory are not indu
tively de�ned sin
e there is no elimination rules to impose in-

du
tion prin
iple over them. In fa
t, being aware of the potential in�nity of 
on
eptions in type formation,

it does not seem to be reasonable to 
onsider su
h universes as 
losed for �nitely many type 
onstru
tors.

Using predi
ative universes, one 
an de�ne families of types. For example, supposing type A has a name

in Type0, we 
an de�ne a fun
tion Listn of type N ! Type0 su
h that, for natural number n : N , Listn(n)

is the (name of the) indu
tive type of lists of obje
ts in A of length n. Listn 
an be de�ned by indu
tion

over N as Listn(0) = �0[X℄ and Listn(n + 1) = �0[(A)(T0(Listn(n)))X℄.

5 Summary and Dis
ussions

We have presented a theory of dependent types (
all it UTT ) whi
h 
onsists of the impredi
ative universe

(see se
tion 2.2), a 
lass of indu
tive types 
overed by a general form of s
hemata (see se
tion 3.1), and

predi
ative universes (see se
tion 4). It may be seen as an extension of ECC by a large 
lass of indu
tive

data types, and we 
laim that, as ECC, UTT has ni
e meta-theoreti
 properties. The realizability model in

[Luo91a℄ 
an be extended to UTT (
.f., [Ore90, CPM90℄) to show its model-theoreti
 
onsisten
y. We also


onje
ture that UTT has the Chur
h-Rosser and strong normalization properties (subje
t to the obvious

notion of redu
tion) and is de
idable. The strong normalization theorem may be proved by extending the

method of quasi-normalization used to prove strong normalization of ECC in [Luo90a℄. Also, the notion

of head-normal form as investigated in [Coq91℄ 
an be used to study the meta-theory and type-
he
king

algorithm for UTT . It is expe
ted that the intensionality of the system should make the study of its meta-

theory easier than the systems with �lling-up rules su
h as that 
onsidered in [GL91℄, and it seems that the

separation between the meta-level (logi
al framework) and the type theory is bene�
ial as well.

Now, we dis
uss several issues about the theory that we think interesting for further resear
h.

5.1 Compositional understanding

A veri�
ationisti
 meaning theory may be given for the type theory UTT , using a proof-theoreti
 justi�
ation

method based on the notion of 
omputation and a notion of 
anoni
al obje
t, in a similar way as explained by

Dummett [Dum75, Dum91℄, Prawitz [Pra74℄, and parti
ularly, Martin-L�of [ML84℄. It would be interesting to

see whether the language of the type theory allows a 
ompositional understanding in the sense of Dummett

[Dum91℄. The following notion and 
onje
ture of logi
al 
onservativity seems to be interesting to 
onsider

in this aspe
t.

3We may also include rules of name uniqueness for inductive types: Γ ⊢ ti+1(µi[Θ̄]) = µi+1[Θ̄] : Typei+1.



De�nition 5.1 (logi
al 
onservativity) Let T and T

′
be type systems spe
i�ed in LF, both of whi
h 
on-

tain the impredi
ative universe spe
i�ed in se
tion 2.2, su
h that T is a subsystem of T

′
. Then, T

′
is logi
ally


onservative over T if and only if, for any proposition P (of type Prop) in T , if P is provable in T

′
, then P

is provable in T .

Conje
ture 5.2 (logi
al 
onservativity) Let UTT0 be the type theory UTT without predi
ative universes,

UTTi+1 be the extension of UTTi by the ith predi
ative universe Typei (i 2 !), and T be any subsystem of

UTT0 
ontaining the impredi
ative universe spe
i�ed in se
tion 2.2 and a �nite set of indu
tive types spe
i�ed

by kind s
hemata. Then, we 
onje
ture that the following hold:

1. LC1: The extension of T by any indu
tive type M[

�

�℄ is logi
ally 
onservative over T .

2. LC2: UTTi+1 is logi
ally 
onservative over UTTi for i 2 !.

The above 
onje
ture, if true, allows us to understand the language of UTT in a 
ompositional or

hierar
hi
al way and will have interesting impa
t on learning and using the theory. It may be the 
ase

that the 
onje
ture is too strong and that one needs to understand some types simultaneously. Either a

proof of the 
onje
ture or a 
ounter-example against it (whi
h might then lead to a more proper way in

understanding) will enhan
e the understanding of the type theory.

5.2 Inductive relations

Note that in our formulation we have not in
luded more general s
hemata to 
over general indu
tive relations

or indu
tive families of types (
.f., [CPM90, Dyb91℄). For example, we do not seem to be able to de�ne

Martin-L�of's weak equality types Eq(A; a; b) in UTT . Although it is possible to extend the notion of kind

s
hemata to do so, there seem to be good reasons in favor of the more moderate approa
h. First, sin
e we

distinguish the notions of logi
al propositions and data types, logi
al indu
tive relations 
an be de�ned by

impredi
ative de�nitions. For instan
e, a logi
al equality should be of type A! A! Prop in our theory and


an be de�ned impredi
atively (e.g., Leibniz's equality). Se
ond, many families of types 
an be de�ned using

predi
ative universes (or parametri
 de�nitions in the framework). Listn de�ned at the end of se
tion 4 is

an example of indu
tive family of types. Having said these, it is 
eratinly interesting to investigate more

general forms of s
hemata for more sophisti
ated indu
tive types.

Another 
onsideration to ex
lude families of types like Eq(A) 
on
erns with the desire to gain a 
ompo-

sitional understanding of the language as explained above. In
luding indu
tive families of types like Eq(A)

would make a hierar
hi
al understanding of su
h a theory mu
h more diÆ
ult. This 
an be seen from Smith's

proof that adding a universe to Martin-L�of's type theory without universes (but with the equality types) is

not 
onservative [Smi88℄. If we in
luded Martin-L�of's weak equality types as indu
tive types in UTT , the


onje
ture LC2 would fail to hold.

5.3 Subtyping

An interesting appli
ation of the general notion of s
hemata is that it provides a general guideline to introdu
e

subtyping relations between indu
tive types. For example, the subtyping relation between � and �-types in

ECC, indu
ed by the (Russell-style) universe in
lusions, is a spe
ial 
ase of a general notion of subtyping

between indu
tive types. To see this, de�ne a partial order < between s
hemata and the subtyping relation

� (a partial order subje
t to the 
omputational equality) by simultaneous indu
tion as follows: � < �

′
if

and only if

1. � � �

′
� X; or

2. � � (x:K)�1 and �

′
� (x:K

′
)�

′
1 with K � (x1:A1):::(xm:Am)A and K

′
� (x1:A

′
1):::(xm:A

′
m)A

′
, and

Ai = A

′
i for i = 1; :::;m, A � A

′
and �1 < �

′
1; or

3. � � (�)�1, �
′
� (�

′
)�

′
1, and �(A) = �

′
(A) for A:Type, and �1 < �

′
1.



And, M[

�

�℄ � M[

�

�

′
℄ if and only if �i < �

′
i for i = 1; :::; n. It is easy to 
he
k that this gives the desirable

subtyping for the type 
onstru
tors su
h as �, �, + and W .

5.4 Proofs and implementation

Regarding the propositions of type Prop in UTT , we remark that there is a stronger elimination operator

for the proof types whi
h might be introdu
ed as:

E

′
∀ : (A:Type)(P :(A)Prop)(C:(Prf (8(A;P )))Type)

((g:(x:A)Prf (P (x)))C(�(A;P; g))) (z:Prf(8(A;P )))C(z)

E

′
∀ is di�erent from E∀ in that, with E

′
∀, one 
an de�ne fun
tions from a proof type to any type, instead of

just to proof types. It may be interesting to investigate this to see whether it 
an provide a stronger version

of the theory to manipulate proofs.

De�ning UTT by a logi
al framework also raises an interesting issue in implementation of proof devel-

opment systems like Lego [Pol89, LPT89℄. Although the notion of 
omputational equality (between obje
ts

of types) is intensional, it seems ni
e to have a weakly extensional meta-level de�nitional me
hanism in the

sense that �-rule holds for the meta-level fun
tional operations. Note that, although one might think that the

�-types are the internal version of the dependent produ
t kinds in the logi
al framework, there is no one-one


orresponden
e between the obje
ts of type �(A;B) and the obje
ts of kind (x:A)B(x), as the former is the

type of intensional fun
tions while the latter is the kind of extensional operations. We also remark that the

separation of meta-reasoning (in LF in our 
ase) from reasoning in the type theory is important.

A
knowledgement I would like to thank Per Martin-L�of, Thierry Coquand and Peter Dybjer for in-

teresting 
onversations on related topi
s and Healfdene Goguen for many helpful dis
ussions.

Referen
es

[Ba
88℄ R. Ba
khouse. On the meaning and 
onstru
tion of the rules in Martin-L�of's theory of types. In

A. Avron et al, editor, Workshop on General Logi
. LFCS Report Series, ECS-LFCS-88-52, Dept.

of Computer S
ien
e, University of Edinburgh, 1988.

[BM91℄ R. Burstall and J. M
Kinna. Deliverables: an approa
h to program development in the 
al
u-

lus of 
onstru
tions. LFCS report ECS-LFCS-91-133, Dept of Computer S
ien
e, University of

Edinburgh, 1991.

[CH88℄ Th. Coquand and G. Huet. The 
al
ulus of 
onstru
tions. Information and Computation, 76(2/3),

1988.

[Coq89℄ Th. Coquand. Metamathemati
al investigations of a 
al
ulus of 
onstru
tions. manus
ript, 1989.

[Coq91℄ Th. Coquand. An algorithm for testing 
onversion in Type Theory. In G. Huet and G. Plotkin,

editors, Logi
al Frameworks. Cambridge University Press, 1991.

[CPM90℄ Th. Coquand and Ch. Paulin-Mohring. Indu
tively de�ned types. Le
ture Notes in Computer

S
ien
e, 417, 1990.

[Dum75℄ M. Dummett. The philosophi
al basis of intuitionisti
 logi
. In H. Rose and J. Shepherdson,

editors, Pro
. of the Logi
 Colloquium, 1973. North Holland, 1975. Reprinted in P. Bena
erraf and

H. Putnam (eds.), Philosophy of Mathemati
s: sele
ted readings, Campbridge University Press.

[Dum91℄ M. Dummett. The Logi
al Basis of Metaphysi
s. Du
kworth, 1991.



[Dyb89℄ P. Dybjer. An inversion prin
iple for Martin-L�of's type theory. In P. Dybjer et al, editor, Workshop

on Programming Logi
. Programming Methodology Group, Report 54, 1989.

[Dyb91℄ P. Dybjer. Indu
tive sets and families in Martin-L�of's type theory and their set-theoreti
 semanti
s.

In G. Huet and G. Plotkin, editors, Logi
al Frameworks. Cambridge University Press, 1991.

[GL91℄ H. Goguen and Z. Luo. Indu
tive data types: Well-ordering types revisited. submitted manus
ript,

1991.

[HHP87℄ R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logi
s. Pro
. 2nd Ann. Symp. on

Logi
 in Computer S
ien
e, 1987.

[LPT89℄ Z. Luo, R. Polla
k, and P. Taylor. How to Use LEGO: a preliminary user's manual. LFCS Te
hni
al

Notes LFCS-TN-27, Dept. of Computer S
ien
e, Edinburgh University, 1989.

[Luo89℄ Z. Luo. ECC, an extended 
al
ulus of 
onstru
tions. In Pro
. of the Fourth Ann. Symp. on Logi


in Computer S
ien
e, Asilomar, California, U.S.A., June 1989.

[Luo90a℄ Z. Luo. An Extended Cal
ulus of Constru
tions. PhD thesis, University of Edinburgh, 1990. Also as

Report CST-65-90/ECS-LFCS-90-118, Department of Computer S
ien
e, University of Edinburgh.

[Luo90b℄ Z. Luo. A problem of adequa
y: 
onservativity of 
al
ulus of 
onstru
tions over higher-order

logi
. Te
hni
al report, LFCS report series ECS-LFCS-90-121, Department of Computer S
ien
e,

University of Edinburgh, 1990.

[Luo91a℄ Z. Luo. A higher-order 
al
ulus and theory abstra
tion. Information and Computation, 90(1):107{

137, 1991.

[Luo91b℄ Z. Luo. Program spe
i�
ation and data re�nement in type theory. Pro
. of the Fourth Inter. Joint

Conf. on the Theory and Pra
ti
e of Software Development (TAPSOFT), 1991. Also as LFCS

report ECS-LFCS-91-131, Dept. of Computer S
ien
e, Edinburgh University.

[ML75℄ P. Martin-L�of. An intuitionisti
 theory of types: predi
ative part. In H.Rose and J.C.Shepherdson,

editors, Logi
 Colloquium'73, 1975.

[ML84℄ P. Martin-L�of. Intuitionisti
 Type Theory. Bibliopolis, 1984.

[NPS90℄ B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's Type Theory: an intro-

du
tion. Oxford University Press, 1990.

[Ore90℄ C.-E. Ore. The Extended Cal
ulus of Constru
tions (ECC) with indu
tive types. To appear in

Information and Computation, 1990.

[Pol89℄ R. Polla
k. The theory of LEGO. manus
ript, 1989.

[Pol90℄ R. Polla
k. The Tarski �xpoint theorem. 
ommuni
ation on TYPES e-mail network, 1990.

[Pra74℄ D. Prawitz. On the idea of a general proof theory. Synthese, 27, 1974.

[Smi88℄ J. Smith. The independen
e of Peano's fourth axiom from Martin-L�of's type theory without

universes. Journal of Symboli
 Logi
, 53(3), 1988.



A The Inferen
e Rules of LF


ontexts and assumptions

〈〉 valid

Γ ⊢ K kind x 6∈ FV (Γ)

Γ, x:K valid

Γ, x:K, Γ′ valid

Γ, x:K, Γ′ ⊢ x : K

general equality rules

Γ valid

Γ ⊢ K = K

Γ ⊢ K = K ′

Γ ⊢ K ′ = K

Γ ⊢ K = K ′ Γ ⊢ K ′ = K ′′

Γ ⊢ K = K ′′

Γ valid

Γ ⊢ k = k : K

Γ ⊢ k = k′ : K

Γ ⊢ k′ = k : K

Γ ⊢ k = k′ : K Γ ⊢ k′ = k′′ : K

Γ ⊢ k = k′′ : K

equality typing

Γ ⊢ k : K Γ ⊢ K = K ′

Γ ⊢ k : K ′

Γ ⊢ k = k′ : K Γ ⊢ K = K ′

Γ ⊢ k = k′ : K ′

substitution rules

Γ, x:K, Γ′
valid Γ ⊢ k : K

Γ, [k/x]Γ′
valid

Γ, x:K, Γ′ ⊢ K ′ kind Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]K ′ kind

Γ, x:K, Γ′ ⊢ K ′ kind Γ ⊢ k = k′ : K

Γ, [k/x]Γ′ ⊢ [k/x]K ′ = [k′/x]K ′

Γ, x:K, Γ′ ⊢ k′ : K ′ Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]k′ : [k/x]K ′

Γ, x:K, Γ′ ⊢ k′ : K ′ Γ ⊢ k = k′ : K

Γ, [k/x]Γ′ ⊢ [k/x]k′ = [k′/x]k′ : [k/x]K ′

Γ, x:K, Γ′ ⊢ K ′ = K ′′ Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]K ′ = [k/x]K ′′

Γ, x:K, Γ′ ⊢ k′ = k′′ : K ′ Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]k′ = [k/x]k′′ : [k/x]K ′

dependent produ
t kinds

Γ ⊢ K kind Γ, x:K ⊢ K ′ kind

Γ ⊢ (x:K)K ′ kind

Γ ⊢ K1 = K2 Γ, x:K1 ⊢ K ′
1 = K ′

2

Γ ⊢ (x:K1)K ′
1 = (x:K2)K ′

2

Γ, x:K ⊢ k : K ′

Γ ⊢ [x:K]k : (x:K)K ′

Γ ⊢ K1 = K2 Γ, x:K1 ⊢ k1 = k2 : K

Γ ⊢ [x:K1]k1 = [x:K2]k2 : (x:K1)K

Γ ⊢ f : (x:K)K ′ Γ ⊢ k : K

Γ ⊢ f(k) : [k/x]K ′

Γ ⊢ f = f ′ : (x:K)K ′ Γ ⊢ k1 = k2 : K

Γ ⊢ f(k1) = f ′(k2) : [k1/x]K ′

Γ, x:K ⊢ k′ : K ′ Γ ⊢ k : K

Γ ⊢ ([x:K]k′)(k) = [k/x]k′ : [k/x]K ′

Γ ⊢ f : (x:K)K ′ x 6∈ FV (f)

Γ ⊢ [x:K]f(x) = f : (x:K)K ′

Type rules

Γ valid

Γ ⊢ Type kind

Γ ⊢ A : Type

Γ ⊢ El(A) kind


