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1 Introduction

We present a theory of dependent types which unifies coherently Martin-Lof’s type theory with universes
[ML75, ML84, NPS90] and Coquand-Huet’s Calculus of Constructions [CH88, Coq89]. The theory can be
seen as an extension of the Extended Calculus of Constructions [Luo89, Luo90a] by a large class of inductive
data types. It is a further development of the idea to enhance in type theory a conceptual distinction between
the notions of logical formula (proposition) and data type, and is another step aiming at the development of
a unifying language for modular development of programs, specifications, and proofs (c.f., [Luo91b]).

The presentation here is particularly inspired by Martin-Lof’s presentation of type theory by logical
framework [NPS90] and Coquand and Mohring’s work on inductive types [CPM90]. The type theory is
formulated in a logical framework extended by kind schemata. It consists of an impredicative universe of
logical propositions, a class of inductive data types covered by a general form of schemata, and predicative
type universes. Our presentation is different from that of [CPM90] in the following aspects. Using a logical
framework allows us to define a purely intensional type theory with a general schema for inductive types. In
particular, besides distinguishing the notions of logical proposition and data type, we pay special attention
to the intensionality of computational equality and how to obtain a clearly non-circular reflection principle
in introducing predicative universes. Furthermore, our approach is more moderate in that, for example, our
schemata only cover inductive types but not inductive relations. There are two reasons in favor of such a
moderate approach. First, it seems that the necessity to cover general inductive relations by the schemata
is still to be justified; in our setting, logical inductive relations can be obtained by impredicative definitions
and many inductive families of data types can be defined using predicative universes. Second, by taking
such a moderate approach, we hope that the resulting type theory allows a molecular or compositional
understanding, as we shall briefly explain in the conclusion.

Several basic ideas are elaborated below to explain our motivations and points of view.

1.1 Data types vs. logical propositions

The Curry-Howard correspondence between propositions and types has been the basic key idea in the devel-
opment of various type theories. However, although propositions can be viewed as types, identifying types
with propositions does not seem to be necessary or satisfactory. In other words, logical propositions can be
viewed as types of their proofs, but it is not necessary that every type be viewed as a logical proposition.
It is our view that, even in type theory, a distinction between the notions of logical formula and data type
is both conceptually natural and pragmatically important. This idea has been reflected, for example, in the
development of the Extended Calculus of Constructions (ECC) [Luo89, Luo90a], where higher-order logical
propositions reside in the impredicative universe (c.f., the calculus of constructions [CH88]), while the data
types (or sets) reside in the predicative universes (see Figure 1).

Intuitively, such a type theory may be understood by considering its conceptual universe of types, which
reflects the way we try to understand the real world of objects of interest. To grasp this conceptual universe,
we pick out types and type constructors to study, examples of which include the type of natural numbers,
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Figure 1: The conceptual universe of types in ECC.

the dependent product types, the strong sum types, etc. In particular, one may consider a type of logical
propositions which are themselves (names of) types of their proofs and provide the means to describe the
logical properties of objects of any type. One can also introduce (formal) type universes in a stratified or
predicative way, which consist of names of the types already introduced into the theory. The predicativity
of a universe means that the existence of the data types that have names in it should be independent
on the existence of the universe itself. Since we do not expect to exhaust the possible conceptions of type
formation, the conceptual universe of types is supposed to be open. However, it seems possible and reasonable
to consider the (impredicative) world of logical propositions as relatively closed, in the sense that the ways
(e.g., in the case of higher-order logic, the universal quantification) in which logical propositions are formed
are not supposed to be further extended. Therefore, the openness essentially concerns the predicative part
of the theory, where the objects like programs and data types reside.

The general structure of the conceptual universe of types as sketched above provides a particular but
coherent view which seems to be of importance both in pragmatic applications and theoretical study. For
example, since the logical universe is relatively closed, there is an internal notion of predicate (as propositional
function) in the theory which is useful in many applications (e.g., in developing an approach to program
specification and development [BM91][Luo91b] and a notion of mathematical theory in the application of
abstract reasoning [Luo91a][Pol90]). Another evidence supporting this view is that, since data types (sets)
reside in predicative universes, the embedded logic (in ECC, for example) is a conservative extension of the
higher-order predicate logic [Luo90b], and we are also able to grasp and use type constructors like the strong
sum (large X-types), which is useful in abstract and modular development of programs and proofs. It is also
our hope that, although the logical universe of propositions is impredicative, a hierarchical understanding of
the language of the type theory can be obtained in certain reasonable sense (see section 5.1).

1.2 The philosophical openness vs. pragmatic considerations

The openness of the conceptual universe of types, as well-explained by Martin-Lof for his type theory, is
philosophically sound and satisfactory. On the other hand, when studying a formal type theory, one has to
‘close’ the system at some stage of its development in order to, e.g., study its meta theory or implement it on
computer. Such a consideration encourages people to consider various general formulations of classes of types
in order to deal with them in a uniform way. In fact, such a generality is not a new subject. It is analogous
to, for example, the introduction of all of the dependent product types by a schematic type constructor
(IT) instead of introducing them one by one. The issue of introducing a large class of inductive data types
has been considered by, for example, Backhouse [Bac88] and Dybjer [Dyb89, Dyb91] for Martin-Lof’s type
theory, and Coquand and Mohring [CPM90], Ore [Ore90] and Goguen and Luo [GL91] for impredicative
systems. A useful idea, which goes back to Gentzen and is developed by Prawitz and Martin-Lof among
others, is that the meaning of an inductive type may be viewed as determined by its introduction rules. This



idea has in particular been developed by Backhouse, Dybier, Coquand and Mohring in the context of type
theory to consider general schemata for inductive types. The work reported here is partly along this line of
research.

1.3 Intensionality vs. extensionality

From a computational point of view, we think that the computational equality between objects of types
(say, natural numbers, functions of II-types) should be intensional. By this, we mean that neither the strong
extensionality (for example, formulated by the strong equality types in [ML84]) nor the weak extensionality
as expressed by the so-called filling-up rules expressing the uniqueness of the elimination operator in a type
theory! should be viewed as computational.

However, in most of the current formulations of inductive data types, certain extensional equalities have
been used in order to get satisfactory representation of inductive types. For example, in [CPM90], n-rule for
the dependent product types is included in order to gain a satisfactory formulation of the general schema
for inductive types. In [GL91], various filling-up rules are studied and shown to be sufficient and necessary
for the well-ordering types to be used to represent various inductive types faithfully. It seems to be the case
that certain extensionality is called for in order to cover a large class of inductive data types by a general
representation schema.

A solution to such a dilemma is to separate the type theory (object language to be defined) from a
meta-language used to define it. This latter meta-language can (and should) be weakly extensional. This
seems to be exactly Martin-Lo6f’s idea of using a logical framework with 7)-rule to define his type theory (see
[NPS90], also c.f., [HHP87]). As shown below, based on such an idea, we can consider a notion of kind
schemata at the level of framework which can be used to define a large class of inductive types, including the
[I-types, which are intensional in the sense that no extensional equality rule between objects of types holds
at the computational level. Furthermore, the filling-up equality rules like i do hold logically in the sense
that one can prove the corresponding logical proposition by induction.

Another advantage of using a meta-level logical framework is that we gain a clear reflection principle in
the sense that we do not need to use a predicative type universe to help the formulation of inductive types
residing in it, which, otherwise, would give a flavor of impredicativity. In our setting, inductive types are
introduced independently and predicative universes are viewed as introduced later by declaring names of
certain data types in it.

In section 2, we first describe Martin-Lof’s logical framework LF, where as an example, we formulate the
impredicative universe in the type theory, and then introduce LFy, a simple extension of LF by schemata.
The general rules for inductive data types are introduced in section 3, where we give examples and discuss
intensionality. Predicative universes and the reflection of inductive types are introduced in section 4, followed
by section 5 giving a summary of the type theory and discussing some related topics.

2 Logical Framework with Schemata

2.1 Martin-Lof’s logical framework

We consider LF, a typed version of Martin-Lof’s logical framework [NPS90]. The inference rules of LF are
given in Appendix A. For those who are familiar with the presentation in [NPS90], please notice the following
notational changes:

1. We call the types in LF kinds and write ‘K kind’ (instead of ‘K type’).
2. The kind of all types is denoted by Type (instead of Set). We shall often omit the lifting operator El.

3. We shall write (K;)K, for the dependent product kind (z:K,)K, in LF when z does not occur free in
K,. We have typed A-terms of the form [z:A]b (instead of the untyped (x)b).

!The filling-up rules are equivalent to the n-rules such as 7 for functions, surjective pairing for pairs.



K is called a I'-kind if I' F K kind. A is called a I'-type if ' F A : Type. K is called a small I'-kind if
K = (z:A))..(x,:A,)A, 1 such that Iz Ay, ...,z 1:A,_, F A, : Type.

We take LF seriously as a meta-language to specify object languages, i.e., a type theory in our case.
A specification will consist of a set of declarations of constants and certain computation rules. In general,
introducing a constant k of kind K and asserting a computation rule by ‘k = k' : K for k; : K; (i =1,...,n)’
are to extend the LF system by the following rules, respectively:

I valid Trki:K (i=1,..,n)
THk:K Trk=Fk: K

The specified type theory has five forms of judgements, which are
Ilvalid 'THFA:Type I'FA=B:Type I'ka:El(A) I'Fa=0b:EIl(A)

where context I is of the form z:El(A,), ..., z,,:El(A,). A judgement in the specified type theory is derivable
if it is derivable in the LF extended by the constants and computation rules.

2.2 An impredicative universe of logical propositions

As an example of introducing types in LF, we introduce a type (impredicative universe) Prop of logical
propositions and the proof types of propositions, which, together with the Il-types to be introduced, give
the higher-order logic embedded in the type theory. They are introduced by

Prop : Type

Prf (Prop)Type

\ (A:Type)((A)Prop)Prop
A . (A:Type)(P:(A)Prop)((z:A)Prf(P(z)))Prf(V(A, P))
E,; : (A:Type)(P:(A)Prop)(R:(Prf(V(A, P)))Prop)
((g:(z:A)Prf(P(2)))Pri(R(A(A, P, g)))) (2:Prf(V(A, P)))Prf(R(z))
with computation rule
Ev(A, PR, f,A(A, P,g)) = f(g) : Prf(R(A(4, P, g)))

We shall use usual notations later, e.g., writing Va:A.P(x) for V(A, P). Note that the usual application
operator,

App : (A:Type)(P:(A)Prop)(Prf(V(A,P)))(a:A)Prf(P(a))
can be defined as
App(A, P, F,a) =4 Ev(A, P, [G:Prf(V(A, P))|P(a),|g:(x:A)Prf (P(x))]g(a), F)

which satisfies the S-equality: App(A, P,A(A, P, g),a) = g(a) : Prf(P(a)).

2.3 Kind schemata in logical framework

In order to formulate schemata for inductive data types, we extend the logical framework by a notion of
kind schema, which is very similar to Coquand and Mohring’s notion of constructor in [CPM90], with the
difference that we consider the schema in the logical framework, while they consider it based on the II-types

in the calculus of constructions with universes.

Definition 2.1 (kind schemata) Let X be a fized special symbol (a placeholder) and I' be a valid context.

e & is a strictly positive operator (in I'), notation POSp(®), if ® is of the form (x:Ky)...(z,:K,)X,
where n > 0 and K; is a small (T, x: K, ...,x;_1:K;_1)-kind.



e O is a I'-schema, notation SCHp(0O), if

1. 6= X, or
2. O = (2:K)0O, where K is a small I'-kind and SCHr ,.x(0,), or
3. © = (9)O,, where Posp(®) and SCHp(O,).

Notations We shall use ®, @', ... for strictly positive operators and ©, ©’; ... for schemata. We shall also
write © for a sequence of schemata O, ...,0,,.

We write ®(A) and O(A) for [A/X]® and [A/X]O, respectively. For any small kind K, K(A) is just K.
Note that, for any (small) I-kind A, ®(A) and O(A) are (small) I'-kinds, if Posp(®) and ScHp(O).

Definition 2.2 (LF with schemata) The logical framework with schemata, LF, is the extension of LF
by terms of the forms M[O], ;0] (i = 1,...,n), and E[O], where © = O, ...,0,, is any finite sequence of

schemata, and the following equality rule:

ScHp(0,0) T, A:Type - O(A4)

=0'(A) THk[O]: K
[+ kO] =k[O]: K
X

(k€ {M,;, E})

where the second premise stands for n premises I', A:Type

(A) =0l4), (i=1,...n).

3 Inductive Types

3.1 A schematic formulation of inductive types

The idea is that any finite sequence of schemata specifies a set of introduction rules and hence generates
an inductive data type whose meaning is determined by the introduction rules. First, we introduce several
notational definitions.

Definition 3.1 Let ® be a strictly positive operator.

e Define ®°(A,C,z), for A : Type, C : (A)Type and z : ®(A), by induction on the structure of ® as
follows:

1. If ® = X, then ®°(A,C, z) =4 C(z).
2. If ® = (0:K)®,, then ®°(A,C,z) =4 (x:K)PG(A)(C, z(z)).

o Define ®(A) : (C:(A)Type)(f:(2:A)C(x))(z:®(A))@°(A,C, 2), the functorial extension of ®(A), by

induction on the structure of ® as follows:
1. If ® = X, then ®(A)(C, f) =q4 f-
2. If & = (2:K)®,, then ®*(A)(C, f,2) =ar [¢:K]®5(A)(C, f, 2(x)).
Definition 3.2 Let © = (x:M)...(x,,:M,) X be a kind schema.

e The arity of O, notation ARI(O), is the subsequence of (M, ..., M,) consisting of the strictly positive
operators. (This can be defined by induction on the structure of ©.)

o Let ARI(O) be (M;,,...,M; ). Then, for A: Type, C:(A)Type and z : ©(A),

O°(A,C,z) =4 (z1:Mi(A))...(z,:M,(A))
(M5, (4, C,z;,)). (M5 (A, C, ;) Clz(2y, ..., 7))



Let © = (04,...,0,,) (n € w) be a sequence of I'-schemata which have arities ARI(0;) = (®,,, ..., D;,).
Then, © generates a [-type M[O] that is introduced by (with context I' omitted)

M[B] : Type

O]+ O;M[O]) (i=1,..,n)
E[©] : (C:(M[O])Type) (f1:07(M[O],C,u[O)]) ... (f,:05(M[O],C,1.[0])

(2=:M[O])C(2)

with the computation rules (i = 1,...,n)

where f stands for fi,..., f, and a for aq, ..., a,.

3.2 Examples
The following are some examples covered by the schema for inductive types.
1. Empty type: 0 =4 M]].
2. Unit type: 1 =4 M[X].
3. Natural numbers: N =4 M[X, (X)X].
4. Lists: List =4 [A:Type] M[X, (A)(X)X].
5. Function space: —=4 [A:Type][B:Type] M[((A)B)X].
6. Dependent product: II =4 [A:Type]|[B:(A)Type] M[((z:A)B(z))X].
7. Product: x =4 [A:Type|[B:Type] M[(A4)(B)X].
8. Strong sum: ¥ =4 [A:Type][B:(A)Type] M[(z:A)(B(x))X].
9. Disjoint sum: + =4 [A:Type][B:Type] M[(A)X, (B)X].
10. Well-ordering: W =4 [A:Type][B:(A)Type] M[(z:A)((B(x))X)X].

Other examples like binary trees, ordinals, etc. can be similarly defined. Note that, these definitions give de-
sirable rules for the corresponding types. For example, one may easily check that the above type constructors
have exactly the same rules as those given in [NPS90].

3.3 Intensionality and filling-up rules

The computational equality between objects of the inductive types introduced by the schemata are inten-
sional, which in our view, captures the notion of computation in a satisfactory way. For example, the n-rule
does not hold in general for the functions of type II(A, B), although they are true for closed functions. It
is worth remarking that, although they do not hold computationally, the filling-up equality rules are in fact
valid logically.

Proposition 3.3 (logical validity of filling-up rules) Let C' : (M[O])Type and f : (2:M[O))C(z),
where SCH(O). Then, the following proposition is provable (i.e., its proof type is inhabited):

Vu:MIO]. (/ () =c(w) BION(C,  o7,u))



where  =c(,) 45 the Leibniz’s equality> over C(u), f o © stands for f o t1,..f o v, and
(f o Li)(a’la ey Ay Y1, "'7yk) =df f(Li(ala ---;an))'

Since the usual ‘np-rules’ (n for II, surjective pairing for X, etc.) are equivalent to the filling-up rules,
the above proposition shows that, for the inductive data types in general, the n-rules hold logically (for the
Leibniz’s equality). Note that the n-rules express that every object of an inductive type is equal to a canonical
object and the filling-up rules express that the elimination operator covers all of the use of the inductive type.
From this point of view, the above proposition may be regarded as an internal (or logical) justification of the
adequacy of the formulation of inductive types, in particular, the intrinsic harmony between the introduction
and elimination rules (c.f., [Dum91]).

The above fact is also a benefit of using a logical framework to define an intensional type theory with a
general schema of inductive types. It seems impossible to prove the n-rule for the Leibniz’s equality if we do
not use a meta-language to formulate II-types (in the case of the direct formulation of ECC, for instance),
unless one introduces 7 as a computational rule for the II-types, which would destroy the intensionality of
the theory.

4 Predicative Universes and Reflection Principle
We introduce predicative universes
Type; : Type (i € w)

with lifting operators

T, : (T'ype;) Type tip1 - (Type;)Type; to : (Prop)T'ypeg

The reflection rules about the predicative universes and the impredicative universe and propositions are the
following;:

type; : Type,1  prop : Typeg
T;;1(type;) = Type; : Type  To(prop) = Prop : Type
Tiyi(tir1(a)) = Ti(a) : Type  To(to(P)) = Prf(P) : Type
where a : T'ype; and P : Prop.

Now, we consider the reflection of the inductive types introduced by the schemata.

Definition 4.1 Let K, ® and © be a small I'-kind, a strictly positive operator in I' and a I'-schema, respec-
tively. The sets TYPESp(K), TYPESp(®) and TYPESR(O) are defined as follows:

(LK)} if K is a I'-type
Tyeusp(K) =ar {TYPESF(Kl) UTYPESr ..k, (K3) if K = (0:K,)K,
0 if®=X
Typuse(®) = { TypESy(K)) U TYPES: 4, (Bg)  if & = (2:K,) B
0 ifO=X
TYPESp(0©) =4r { TYPESp (K1) U TYPESr .., (©9) if © = (2:K4)0,
TYPESH(®,) U TYPESK(Oy) if © = (9,)0,

For © = 0,...,0,, TYPES:(0) =4 Uy<;<, TYPESH(O,).

2The Leibniz’s equality is defined as: for any type A and any objects a and b of type A, (¢ =a b) =aqr VP:A —
Prop. app(A, Prop, P,a) D app(A, Prop, P,b), where app is the application operator for the function type and D is the
logical implication operator.



Let © be a finite sequence of ['-schemata. Then, if, for any (I, A) € TYPES(©), there exists an a such
that
["Fa:Type, and I+ T,(a) =A:Type

we have the following reflection rules for the inductive type M[O] (we omit context I'):*

I'F ;0] : Type;

I'FT(u[0]) = M[O] : Type
' Ti+1(ti+1(ﬂi[é])) = Ti(#i[(:)]) : Type
For example, the type of natural numbers has a name in any predicative universe T'ype;. For the II-types,
II(A, B) has a name in T'ype; if and only if A has a name in T'ype; and B(x) has a name in T'ype;, assuming
T:A.

Remark Using a logical framework with schemata, we have introduced inductive data types independently
with the existence of the predicative type universes. In other words, the inductive types exist independently
with predicative universes and their names are introduced when universes are introduced. Note that the
type universes in our theory are not inductively defined since there is no elimination rules to impose in-
duction principle over them. In fact, being aware of the potential infinity of conceptions in type formation,
it does not seem to be reasonable to consider such universes as closed for finitely many type constructors.

Using predicative universes, one can define families of types. For example, supposing type A has a name
in Type,, we can define a function Listn of type N — Type, such that, for natural number n : N, Listn(n)
is the (name of the) inductive type of lists of objects in A of length n. Listn can be defined by induction
over N as Listn(0) = ug[X] and Listn(n + 1) = uo[(A)(To(Listn(n)))X].

5 Summary and Discussions

We have presented a theory of dependent types (call it UT'T") which consists of the impredicative universe
(see section 2.2), a class of inductive types covered by a general form of schemata (see section 3.1), and
predicative universes (see section 4). It may be seen as an extension of ECC by a large class of inductive
data types, and we claim that, as ECC, UT'T" has nice meta-theoretic properties. The realizability model in
[Luo91la] can be extended to UTT (c.f., [Ore90, CPM90]) to show its model-theoretic consistency. We also
conjecture that UTT has the Church-Rosser and strong normalization properties (subject to the obvious
notion of reduction) and is decidable. The strong normalization theorem may be proved by extending the
method of quasi-normalization used to prove strong normalization of ECC in [Luo90a]. Also, the notion
of head-normal form as investigated in [Coq91] can be used to study the meta-theory and type-checking
algorithm for UTT. It is expected that the intensionality of the system should make the study of its meta-
theory easier than the systems with filling-up rules such as that considered in [GL91], and it seems that the
separation between the meta-level (logical framework) and the type theory is beneficial as well.
Now, we discuss several issues about the theory that we think interesting for further research.

5.1 Compositional understanding

A verificationistic meaning theory may be given for the type theory UTT', using a proof-theoretic justification
method based on the notion of computation and a notion of canonical object, in a similar way as explained by
Dummett [Dum?75, Dum91], Prawitz [Pra74], and particularly, Martin-Lof [ML84]. It would be interesting to
see whether the language of the type theory allows a compositional understanding in the sense of Dummett
[Dum91]. The following notion and conjecture of logical conservativity seems to be interesting to consider
in this aspect.

$We may also include rules of name uniqueness for inductive types: T'F t;11(u:[0]) = wi+1[0] : Typeit1.



Definition 5.1 (logical conservativity) Let T' and T" be type systems specified in LF, both of which con-
tain the impredicative universe specified in section 2.2, such that T is a subsystem of T'. Then, T" is logically
conservative over T if and only if, for any proposition P (of type Prop) in T, if P is provable in T', then P
1s provable i T'.

Conjecture 5.2 (logical conservativity) Let UTT, be the type theory UTT without predicative universes,
UTT;,, be the extension of UTT; by the ith predicative universe Type; (i € w), and T be any subsystem of
UTT, containing the impredicative universe specified in section 2.2 and a finite set of inductive types specified
by kind schemata. Then, we conjecture that the following hold:

1. LC,: The extension of T by any inductive type M[O] is logically conservative over T.

2. LCy: UTT,; 4 is logically conservative over UT'T; for i € w.

The above conjecture, if true, allows us to understand the language of UTT in a compositional or
hierarchical way and will have interesting impact on learning and using the theory. It may be the case
that the conjecture is too strong and that one needs to understand some types simultaneously. Either a
proof of the conjecture or a counter-example against it (which might then lead to a more proper way in
understanding) will enhance the understanding of the type theory.

5.2 Inductive relations

Note that in our formulation we have not included more general schemata to cover general inductive relations
or inductive families of types (c.f., [CPM90, Dyb91]). For example, we do not seem to be able to define
Martin-Lof’s weak equality types Eq(A,a,b) in UTT. Although it is possible to extend the notion of kind
schemata to do so, there seem to be good reasons in favor of the more moderate approach. First, since we
distinguish the notions of logical propositions and data types, logical inductive relations can be defined by
impredicative definitions. For instance, a logical equality should be of type A — A — Prop in our theory and
can be defined impredicatively (e.g., Leibniz’s equality). Second, many families of types can be defined using
predicative universes (or parametric definitions in the framework). Listn defined at the end of section 4 is
an example of inductive family of types. Having said these, it is ceratinly interesting to investigate more
general forms of schemata for more sophisticated inductive types.

Another consideration to exclude families of types like Eq(A) concerns with the desire to gain a compo-
sitional understanding of the language as explained above. Including inductive families of types like Eq(A)
would make a hierarchical understanding of such a theory much more difficult. This can be seen from Smith’s
proof that adding a universe to Martin-Lof’s type theory without universes (but with the equality types) is
not conservative [Smi88]. If we included Martin-Lof’s weak equality types as inductive types in UTT, the
conjecture LC; would fail to hold.

5.3 Subtyping

An interesting application of the general notion of schemata is that it provides a general guideline to introduce
subtyping relations between inductive types. For example, the subtyping relation between II and X-types in
ECC, induced by the (Russell-style) universe inclusions, is a special case of a general notion of subtyping
between inductive types. To see this, define a partial order < between schemata and the subtyping relation
=< (a partial order subject to the computational equality) by simultaneous induction as follows: © < ©" if
and only if

1.O=0'=X;or

2. © = (x:K)0, and O = (z:K")0] with K = (z:4,)...(z,,:A4,,)A and K' = (z,:4})...(z,,:A4},) A", and
A=A fori=1,..m, A< A and ©, < ©}; or

3. 0=(9)0,, 0 =(9')0], and ®(A) = ¢'(A) for A:Type, and O, < O].



And, M[O] X M[©'] if and only if ©, < O for i = 1,...,n. It is easy to check that this gives the desirable
subtyping for the type constructors such as I, 3, + and W.

5.4 Proofs and implementation

Regarding the propositions of type Prop in UTT, we remark that there is a stronger elimination operator
for the proof types which might be introduced as:

E, : (A:Type)(P:(A)Prop)(C:(Prf(V(A, P)))Type)
((g:(w:A)Prf(P(2)))C(A(A, P,g))) (z:Prf(V(4, P)))C(2)

E{ is different from Ey in that, with E{, one can define functions from a proof type to any type, instead of
just to proof types. It may be interesting to investigate this to see whether it can provide a stronger version
of the theory to manipulate proofs.

Defining UT'T" by a logical framework also raises an interesting issue in implementation of proof devel-
opment systems like Lego [Pol89, LPT89]. Although the notion of computational equality (between objects
of types) is intensional, it seems nice to have a weakly extensional meta-level definitional mechanism in the
sense that n-rule holds for the meta-level functional operations. Note that, although one might think that the
[I-types are the internal version of the dependent product kinds in the logical framework, there is no one-one
correspondence between the objects of type II(A, B) and the objects of kind (z:A)B(x), as the former is the
type of intensional functions while the latter is the kind of extensional operations. We also remark that the
separation of meta-reasoning (in LF in our case) from reasoning in the type theory is important.
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A The Inference Rules of LF

contexts and assumptions

' Kkind z¢ FV(I)

I, 2:K, T valid

() valid I', z:K valid oK I'kFz: K
general equality rules
' valid 'K =K' I'YK=K I'rK'=K"
r- K=K r-K'=K -K=K"
I valid k=K K 'rk=FK:KTFE=FK'K
'k=k: K -k =k:K PHk=k':K

equality typing

'k:K I'K=K'
I'kk:K’

substitution rules

k=K :K I'K=K’
'Fk=FkK:K'

Io:K,I'valid THEk: K

T, [k/z]T" valid

DK, T'F K kind TFk: K
T, [k/z]l' I [k/z] K’ kind

IoKTI'FE K TrE:K
D, [k/z]T" + [k/x]k' : [k/x]K'

Na:K,I'FK' =K' TFE: K
T, [k/x]T" + [k/2)K' = [k/2] K"

dependent product kinds

'+ K kind T,2:K + K’ kind
Ik (z:K)K’' kind

IaeKFk: K

I,o:K,I'F K kind TFk=k: K
T, [k/]T" F [k/2]K’ = k' /2] K’

DK, T'Fk K Trk=k K

'K =K,

L, [k/z|T" + [k/x]k' = [K'[x]k : [k/x]K'

Mae:K,I'FE =k"K THE: K
T, [k/x]T" + [k/z)k" = [k/z]k" : [k/x] K’

'Ky =Ky TI'm:Ki+ K] =K,
I'F (e:K)K] = (2:K2) K}

F,,TZKl |—/€1 :kQZK

Ik [x:K]k: (x:K)K'

'f:(xK)K'" TrFk:K
'k f(k): [k/z]K'

MoKrHE K TrE:K
[k ([x:K]E) (k) = [k/x]k" : [k/x] K’

Type rules

T" valid
I'+ Type kind

'cf=f (KK

[F [x:K4)k = [x:Ka)ks : (2: K1) K

FkklszZK

LF f(k1) = f'(ka) : [k /o] K

Ik f:(x:K)K' x¢FV(f)
'k [x:K]f(zx)=f: (:K)K'

'k A: Type
'tk El(A) kind



