
A Unifying Theory of Dependent Types:

the Schematic Approach

Zhaohui Luo

Department of Computer Science, University of Edinburgh

JCMB, KB, Mayfield Rd., Edinburgh EH9 3JZ, U.K.

1 Introdution

We present a theory of dependent types whih uni�es oherently Martin-L�of's type theory with universes

[ML75, ML84, NPS90℄ and Coquand-Huet's Calulus of Construtions [CH88, Coq89℄. The theory an be

seen as an extension of the Extended Calulus of Construtions [Luo89, Luo90a℄ by a large lass of indutive

data types. It is a further development of the idea to enhane in type theory a oneptual distintion between

the notions of logial formula (proposition) and data type, and is another step aiming at the development of

a unifying language for modular development of programs, spei�ations, and proofs (.f., [Luo91b℄).

The presentation here is partiularly inspired by Martin-L�of's presentation of type theory by logial

framework [NPS90℄ and Coquand and Mohring's work on indutive types [CPM90℄. The type theory is

formulated in a logial framework extended by kind shemata. It onsists of an imprediative universe of

logial propositions, a lass of indutive data types overed by a general form of shemata, and prediative

type universes. Our presentation is di�erent from that of [CPM90℄ in the following aspets. Using a logial

framework allows us to de�ne a purely intensional type theory with a general shema for indutive types. In

partiular, besides distinguishing the notions of logial proposition and data type, we pay speial attention

to the intensionality of omputational equality and how to obtain a learly non-irular reetion priniple

in introduing prediative universes. Furthermore, our approah is more moderate in that, for example, our

shemata only over indutive types but not indutive relations. There are two reasons in favor of suh a

moderate approah. First, it seems that the neessity to over general indutive relations by the shemata

is still to be justi�ed; in our setting, logial indutive relations an be obtained by imprediative de�nitions

and many indutive families of data types an be de�ned using prediative universes. Seond, by taking

suh a moderate approah, we hope that the resulting type theory allows a moleular or ompositional

understanding, as we shall briey explain in the onlusion.

Several basi ideas are elaborated below to explain our motivations and points of view.

1.1 Data types vs. logical propositions

The Curry-Howard orrespondene between propositions and types has been the basi key idea in the devel-

opment of various type theories. However, although propositions an be viewed as types, identifying types

with propositions does not seem to be neessary or satisfatory. In other words, logial propositions an be

viewed as types of their proofs, but it is not neessary that every type be viewed as a logial proposition.

It is our view that, even in type theory, a distintion between the notions of logial formula and data type

is both oneptually natural and pragmatially important. This idea has been reeted, for example, in the

development of the Extended Calulus of Construtions (ECC) [Luo89, Luo90a℄, where higher-order logial

propositions reside in the imprediative universe (.f., the alulus of onstrutions [CH88℄), while the data

types (or sets) reside in the prediative universes (see Figure 1).

Intuitively, suh a type theory may be understood by onsidering its oneptual universe of types, whih

reets the way we try to understand the real world of objets of interest. To grasp this oneptual universe,

we pik out types and type onstrutors to study, examples of whih inlude the type of natural numbers,

1



Logi

Types:

� � :::

T ypei Prop

✻

`open'

❄

Figure 1: The oneptual universe of types in ECC.

the dependent produt types, the strong sum types, et. In partiular, one may onsider a type of logial

propositions whih are themselves (names of) types of their proofs and provide the means to desribe the

logial properties of objets of any type. One an also introdue (formal) type universes in a strati�ed or

prediative way, whih onsist of names of the types already introdued into the theory. The prediativity

of a universe means that the existene of the data types that have names in it should be independent

on the existene of the universe itself. Sine we do not expet to exhaust the possible oneptions of type

formation, the oneptual universe of types is supposed to be open. However, it seems possible and reasonable

to onsider the (imprediative) world of logial propositions as relatively losed, in the sense that the ways

(e.g., in the ase of higher-order logi, the universal quanti�ation) in whih logial propositions are formed

are not supposed to be further extended. Therefore, the openness essentially onerns the prediative part

of the theory, where the objets like programs and data types reside.

The general struture of the oneptual universe of types as skethed above provides a partiular but

oherent view whih seems to be of importane both in pragmati appliations and theoretial study. For

example, sine the logial universe is relatively losed, there is an internal notion of prediate (as propositional

funtion) in the theory whih is useful in many appliations (e.g., in developing an approah to program

spei�ation and development [BM91℄[Luo91b℄ and a notion of mathematial theory in the appliation of

abstrat reasoning [Luo91a℄[Pol90℄). Another evidene supporting this view is that, sine data types (sets)

reside in prediative universes, the embedded logi (in ECC, for example) is a onservative extension of the

higher-order prediate logi [Luo90b℄, and we are also able to grasp and use type onstrutors like the strong

sum (large �-types), whih is useful in abstrat and modular development of programs and proofs. It is also

our hope that, although the logial universe of propositions is imprediative, a hierarhial understanding of

the language of the type theory an be obtained in ertain reasonable sense (see setion 5.1).

1.2 The philosophical openness vs. pragmatic considerations

The openness of the oneptual universe of types, as well-explained by Martin-L�of for his type theory, is

philosophially sound and satisfatory. On the other hand, when studying a formal type theory, one has to

`lose' the system at some stage of its development in order to, e.g., study its meta theory or implement it on

omputer. Suh a onsideration enourages people to onsider various general formulations of lasses of types

in order to deal with them in a uniform way. In fat, suh a generality is not a new subjet. It is analogous

to, for example, the introdution of all of the dependent produt types by a shemati type onstrutor

(�) instead of introduing them one by one. The issue of introduing a large lass of indutive data types

has been onsidered by, for example, Bakhouse [Ba88℄ and Dybjer [Dyb89, Dyb91℄ for Martin-L�of's type

theory, and Coquand and Mohring [CPM90℄, Ore [Ore90℄ and Goguen and Luo [GL91℄ for imprediative

systems. A useful idea, whih goes bak to Gentzen and is developed by Prawitz and Martin-L�of among

others, is that the meaning of an indutive type may be viewed as determined by its introdution rules. This



idea has in partiular been developed by Bakhouse, Dybier, Coquand and Mohring in the ontext of type

theory to onsider general shemata for indutive types. The work reported here is partly along this line of

researh.

1.3 Intensionality vs. extensionality

From a omputational point of view, we think that the omputational equality between objets of types

(say, natural numbers, funtions of �-types) should be intensional. By this, we mean that neither the strong

extensionality (for example, formulated by the strong equality types in [ML84℄) nor the weak extensionality

as expressed by the so-alled �lling-up rules expressing the uniqueness of the elimination operator in a type

theory

1
should be viewed as omputational.

However, in most of the urrent formulations of indutive data types, ertain extensional equalities have

been used in order to get satisfatory representation of indutive types. For example, in [CPM90℄, �-rule for

the dependent produt types is inluded in order to gain a satisfatory formulation of the general shema

for indutive types. In [GL91℄, various �lling-up rules are studied and shown to be suÆient and neessary

for the well-ordering types to be used to represent various indutive types faithfully. It seems to be the ase

that ertain extensionality is alled for in order to over a large lass of indutive data types by a general

representation shema.

A solution to suh a dilemma is to separate the type theory (objet language to be de�ned) from a

meta-language used to de�ne it. This latter meta-language an (and should) be weakly extensional. This

seems to be exatly Martin-L�of's idea of using a logial framework with �-rule to de�ne his type theory (see

[NPS90℄, also .f., [HHP87℄). As shown below, based on suh an idea, we an onsider a notion of kind

shemata at the level of framework whih an be used to de�ne a large lass of indutive types, inluding the

�-types, whih are intensional in the sense that no extensional equality rule between objets of types holds

at the omputational level. Furthermore, the �lling-up equality rules like � do hold logially in the sense

that one an prove the orresponding logial proposition by indution.

Another advantage of using a meta-level logial framework is that we gain a lear reetion priniple in

the sense that we do not need to use a prediative type universe to help the formulation of indutive types

residing in it, whih, otherwise, would give a avor of imprediativity. In our setting, indutive types are

introdued independently and prediative universes are viewed as introdued later by delaring names of

ertain data types in it.

In setion 2, we �rst desribe Martin-L�of's logial framework LF, where as an example, we formulate the

imprediative universe in the type theory, and then introdue LFθ, a simple extension of LF by shemata.

The general rules for indutive data types are introdued in setion 3, where we give examples and disuss

intensionality. Prediative universes and the reetion of indutive types are introdued in setion 4, followed

by setion 5 giving a summary of the type theory and disussing some related topis.

2 Logial Framework with Shemata

2.1 Martin-Löf’s logical framework

We onsider LF, a typed version of Martin-L�of's logial framework [NPS90℄. The inferene rules of LF are

given in Appendix A. For those who are familiar with the presentation in [NPS90℄, please notie the following

notational hanges:

1. We all the types in LF kinds and write `K kind' (instead of `K type').

2. The kind of all types is denoted by Type (instead of Set). We shall often omit the lifting operator El.

3. We shall write (K1)K2 for the dependent produt kind (x:K1)K2 in LF when x does not our free in

K2. We have typed �-terms of the form [x:A℄b (instead of the untyped (x)b).

1The filling-up rules are equivalent to the η-rules such as η for functions, surjective pairing for pairs.



K is alled a �-kind if � ` K kind. A is alled a �-type if � ` A : Type. K is alled a small �-kind if

K � (x1:A1):::(xn:An)An+1 suh that �; x1:A1; :::; xi−1:Ai−1 ` Ai : Type.

We take LF seriously as a meta-language to speify objet languages, i.e., a type theory in our ase.

A spei�ation will onsist of a set of delarations of onstants and ertain omputation rules. In general,

introduing a onstant k of kind K and asserting a omputation rule by `k = k

′
: K for ki : Ki (i = 1; :::; n)'

are to extend the LF system by the following rules, respetively:

� valid

� ` k : K

� ` ki : Ki (i = 1; :::; n)

� ` k = k

′
: K

The spei�ed type theory has �ve forms of judgements, whih are

� valid � ` A : Type � ` A = B : Type � ` a : El(A) � ` a = b : El(A)

where ontext � is of the form x1:El(A1); :::; xn:El(An). A judgement in the spei�ed type theory is derivable

if it is derivable in the LF extended by the onstants and omputation rules.

2.2 An impredicative universe of logical propositions

As an example of introduing types in LF, we introdue a type (imprediative universe) Prop of logial

propositions and the proof types of propositions, whih, together with the �-types to be introdued, give

the higher-order logi embedded in the type theory. They are introdued by

Prop : Type

Prf : (Prop)Type

8 : (A:Type)((A)Prop)Prop

� : (A:Type)(P :(A)Prop)((x:A)Prf (P (x)))Prf(8(A;P ))

E∀ : (A:Type)(P :(A)Prop)(R:(Prf (8(A;P )))Prop)

((g:(x:A)Prf (P (x)))Prf (R(�(A;P; g)))) (z:Prf(8(A;P )))Prf (R(z))

with omputation rule

E∀(A;P;R; f;�(A;P; g)) = f(g) : Prf(R(�(A;P; g)))

We shall use usual notations later, e.g., writing 8x:A:P (x) for 8(A;P ). Note that the usual appliation

operator,

App : (A:Type)(P :(A)Prop)(Prf (8(A;P )))(a:A)Prf (P (a))

an be de�ned as

App(A;P; F; a) =df E∀(A;P; [G:Prf (8(A;P ))℄P (a); [g:(x:A)Prf (P (x))℄g(a); F )

whih satis�es the �-equality: App(A;P;�(A;P; g); a) = g(a) : Prf(P (a)).

2.3 Kind schemata in logical framework

In order to formulate shemata for indutive data types, we extend the logial framework by a notion of

kind shema, whih is very similar to Coquand and Mohring's notion of onstrutor in [CPM90℄, with the

di�erene that we onsider the shema in the logial framework, while they onsider it based on the �-types

in the alulus of onstrutions with universes.

De�nition 2.1 (kind shemata) Let X be a �xed speial symbol (a plaeholder) and � be a valid ontext.

� � is a stritly positive operator (in �), notation PosΓ(�), if � is of the form (x1:K1):::(xn:Kn)X,

where n � 0 and Ki is a small (�; x1:K1; :::; xi−1:Ki−1)-kind.



� � is a �-shema, notation ShΓ(�), if

1. � � X, or

2. � � (x:K)�0, where K is a small �-kind and ShΓ,x:K(�0), or

3. � � (�)�0, where PosΓ(�) and ShΓ(�0).

Notations We shall use �; �

′
; ::: for stritly positive operators and �; �

′
; ::: for shemata. We shall also

write

�

� for a sequene of shemata �1; :::;�n.

We write �(A) and �(A) for [A=X℄� and [A=X℄�, respetively. For any small kind K, K(A) is just K.

Note that, for any (small) �-kind A, �(A) and �(A) are (small) �-kinds, if PosΓ(�) and ShΓ(�).

De�nition 2.2 (LF with shemata) The logial framework with shemata, LFθ, is the extension of LF

by terms of the forms M[

�

�℄, �i[
�

�℄ (i = 1; :::; n), and E[

�

�℄, where

�

� � �1; :::;�n is any �nite sequene of

shemata, and the following equality rule:

ShΓ(
�

�;

�

�

′
) �; A:Type `

�

�(A) =

�

�

′
(A) � ` �[

�

�℄ : K

� ` �[

�

�℄ = �[

�

�

′
℄ : K

(� 2 fM; �i;Eg)

where the seond premise stands for n premises �; A:Type ` �i(A) = �

′
i(A), (i = 1; :::; n).

3 Indutive Types

3.1 A schematic formulation of inductive types

The idea is that any �nite sequene of shemata spei�es a set of introdution rules and hene generates

an indutive data type whose meaning is determined by the introdution rules. First, we introdue several

notational de�nitions.

De�nition 3.1 Let � be a stritly positive operator.

� De�ne �

◦
(A;C; z), for A : Type, C : (A)Type and z : �(A), by indution on the struture of � as

follows:

1. If � � X, then �

◦
(A;C; z) =df C(z).

2. If � � (x:K)�0, then �

◦
(A;C; z) =df (x:K)�

◦
0(A)(C; z(x)).

� De�ne �

♮
(A) : (C:(A)Type)(f :(x:A)C(x))(z:�(A))�

◦
(A;C; z), the funtorial extension of �(A), by

indution on the struture of � as follows:

1. If � � X, then �

♮
(A)(C; f) =df f .

2. If � � (x:K)�0, then �

♮
(A)(C; f; z) =df [x:K℄�

♮
0(A)(C; f; z(x)).

De�nition 3.2 Let � � (x1:M1):::(xn:Mn)X be a kind shema.

� The arity of �, notation Ari(�), is the subsequene of hM1; :::;Mni onsisting of the stritly positive

operators. (This an be de�ned by indution on the struture of �.)

� Let Ari(�) be hMi1 ; :::;Mik
i. Then, for A : Type, C:(A)Type and z : �(A),

�

◦
(A;C; z) =df (x1:M1(A)):::(xn:Mn(A))

(M

◦
i1(A;C; xi1)):::(M

◦
ik
(A;C; xik

)) C(z(x1; :::; xn))



Let

�

� � h�1; :::;�ni (n 2 !) be a sequene of �-shemata whih have arities Ari(�i) � h�i1 ; :::;�ik
i.

Then,

�

� generates a �-type M[

�

�℄ that is introdued by (with ontext � omitted)

M[

�

�℄ : Type

�i[
�

�℄ : �i(M[

�

�℄) (i = 1; :::; n)

E[

�

�℄ : (C:(M[

�

�℄)Type) (f1:�
◦
1(M[

�

�℄; C; �1[
�

�℄) ::: (fn:�
◦
n(M[

�

�℄; C; �n[
�

�℄)

(z:M[

�

�℄)C(z)

with the omputation rules (i = 1; :::; n)

E[

�

�℄(C;

�

f; �i(�a))

= fi(�a;�
♮
i1
(M[

�

�℄)(C;E[

�

�℄(C;

�

f); ai1); :::;�
♮
ik
(M[

�

�℄)(C;E[

�

�℄(C;

�

f ); aik
))

: C(�i(�a))

where

�

f stands for f1; :::; fn and �a for a1; :::; an.

3.2 Examples

The following are some examples overed by the shema for indutive types.

1. Empty type: ; =df M[℄.

2. Unit type: 1 =df M[X℄.

3. Natural numbers: N =df M[X; (X)X℄.

4. Lists: List =df [A:Type℄ M[X; (A)(X)X℄.

5. Funtion spae: !=df [A:Type℄[B:Type℄ M[((A)B)X℄.

6. Dependent produt: � =df [A:Type℄[B:(A)Type℄ M[((x:A)B(x))X℄.

7. Produt: � =df [A:Type℄[B:Type℄ M[(A)(B)X℄.

8. Strong sum: � =df [A:Type℄[B:(A)Type℄ M[(x:A)(B(x))X℄.

9. Disjoint sum: + =df [A:Type℄[B:Type℄ M[(A)X; (B)X℄.

10. Well-ordering: W =df [A:Type℄[B:(A)Type℄ M[(x:A)((B(x))X)X℄.

Other examples like binary trees, ordinals, et. an be similarly de�ned. Note that, these de�nitions give de-

sirable rules for the orresponding types. For example, one may easily hek that the above type onstrutors

have exatly the same rules as those given in [NPS90℄.

3.3 Intensionality and filling-up rules

The omputational equality between objets of the indutive types introdued by the shemata are inten-

sional, whih in our view, aptures the notion of omputation in a satisfatory way. For example, the �-rule

does not hold in general for the funtions of type �(A;B), although they are true for losed funtions. It

is worth remarking that, although they do not hold omputationally, the �lling-up equality rules are in fat

valid logially.

Proposition 3.3 (logial validity of �lling-up rules) Let C : (M[

�

�℄)Type and f : (z:M[

�

�℄)C(z),

where Sh(

�

�). Then, the following proposition is provable (i.e., its proof type is inhabited):

8u:M[

�

�℄: (f(u) =C(u) E[
�

�℄(C; f Æ ��; u))



where =C(u) is the Leibniz's equality

2
over C(u), f Æ �� stands for f Æ �1; :::; f Æ �n and

(f Æ �i)(a1; :::; an; y1; :::; yk) =df f(�i(a1; :::; an)).

Sine the usual `�-rules' (� for �, surjetive pairing for �, et.) are equivalent to the �lling-up rules,

the above proposition shows that, for the indutive data types in general, the �-rules hold logially (for the

Leibniz's equality). Note that the �-rules express that every objet of an indutive type is equal to a anonial

objet and the �lling-up rules express that the elimination operator overs all of the use of the indutive type.

From this point of view, the above proposition may be regarded as an internal (or logial) justi�ation of the

adequay of the formulation of indutive types, in partiular, the intrinsi harmony between the introdution

and elimination rules (.f., [Dum91℄).

The above fat is also a bene�t of using a logial framework to de�ne an intensional type theory with a

general shema of indutive types. It seems impossible to prove the �-rule for the Leibniz's equality if we do

not use a meta-language to formulate �-types (in the ase of the diret formulation of ECC, for instane),

unless one introdues � as a omputational rule for the �-types, whih would destroy the intensionality of

the theory.

4 Prediative Universes and Reetion Priniple

We introdue prediative universes

Typei : Type (i 2 !)

with lifting operators

Ti : (Typei)Type ti+1 : (Typei)Typei+1 t0 : (Prop)Type0

The reetion rules about the prediative universes and the imprediative universe and propositions are the

following:

typei : Typei+1 prop : Type0

Ti+1(typei) = Typei : Type T0(prop) = Prop : Type

Ti+1(ti+1(a)) = Ti(a) : Type T0(t0(P )) = Prf(P ) : Type

where a : Typei and P : Prop.

Now, we onsider the reetion of the indutive types introdued by the shemata.

De�nition 4.1 Let K, � and � be a small �-kind, a stritly positive operator in � and a �-shema, respe-

tively. The sets TypesΓ(K), TypesΓ(�) and TypesΓ(�) are de�ned as follows:

TypesΓ(K) =df

{

f(�;K)g if K is a �-type

TypesΓ(K1) [TypesΓ,x:K1
(K2) if K � (x:K1)K2

TypesΓ(�) =df

{

; if � � X

TypesΓ(K1) [TypesΓ,x:K1
(�0) if � � (x:K1)�0

TypesΓ(�) =df











; if � � X

TypesΓ(K1) [TypesΓ,x:K1
(�0) if � � (x:K1)�0

TypesΓ(�1) [TypesΓ(�0) if � � (�1)�0

For

�

� � �1; :::;�n, TypesΓ(
�

�) =df

⋃

1≤i≤n TypesΓ(�i).

2The Leibniz’s equality is defined as: for any type A and any objects a and b of type A, (a =A b) =df ∀P :A →

Prop. app(A,Prop, P, a) ⊃ app(A, Prop,P, b), where app is the application operator for the function type and ⊃ is the

logical implication operator.



Let

�

� be a �nite sequene of �-shemata. Then, if, for any (�

′
; A) 2 TypesΓ(

�

�), there exists an a suh

that

�

′
` a : Typei and �

′
` Ti(a) = A : Type

we have the following reetion rules for the indutive type M[

�

�℄ (we omit ontext �):

3

� ` �i[
�

�℄ : Typei

� ` Ti(�i[
�

�℄) =M[

�

�℄ : Type

� ` Ti+1(ti+1(�i[
�

�℄)) = Ti(�i[
�

�℄) : Type

For example, the type of natural numbers has a name in any prediative universe Typei. For the �-types,

�(A;B) has a name in Typei if and only if A has a name in Typei and B(x) has a name in Typei, assuming

x:A.

Remark Using a logial framework with shemata, we have introdued indutive data types independently

with the existene of the prediative type universes. In other words, the indutive types exist independently

with prediative universes and their names are introdued when universes are introdued. Note that the

type universes in our theory are not indutively de�ned sine there is no elimination rules to impose in-

dution priniple over them. In fat, being aware of the potential in�nity of oneptions in type formation,

it does not seem to be reasonable to onsider suh universes as losed for �nitely many type onstrutors.

Using prediative universes, one an de�ne families of types. For example, supposing type A has a name

in Type0, we an de�ne a funtion Listn of type N ! Type0 suh that, for natural number n : N , Listn(n)

is the (name of the) indutive type of lists of objets in A of length n. Listn an be de�ned by indution

over N as Listn(0) = �0[X℄ and Listn(n + 1) = �0[(A)(T0(Listn(n)))X℄.

5 Summary and Disussions

We have presented a theory of dependent types (all it UTT ) whih onsists of the imprediative universe

(see setion 2.2), a lass of indutive types overed by a general form of shemata (see setion 3.1), and

prediative universes (see setion 4). It may be seen as an extension of ECC by a large lass of indutive

data types, and we laim that, as ECC, UTT has nie meta-theoreti properties. The realizability model in

[Luo91a℄ an be extended to UTT (.f., [Ore90, CPM90℄) to show its model-theoreti onsisteny. We also

onjeture that UTT has the Churh-Rosser and strong normalization properties (subjet to the obvious

notion of redution) and is deidable. The strong normalization theorem may be proved by extending the

method of quasi-normalization used to prove strong normalization of ECC in [Luo90a℄. Also, the notion

of head-normal form as investigated in [Coq91℄ an be used to study the meta-theory and type-heking

algorithm for UTT . It is expeted that the intensionality of the system should make the study of its meta-

theory easier than the systems with �lling-up rules suh as that onsidered in [GL91℄, and it seems that the

separation between the meta-level (logial framework) and the type theory is bene�ial as well.

Now, we disuss several issues about the theory that we think interesting for further researh.

5.1 Compositional understanding

A veri�ationisti meaning theory may be given for the type theory UTT , using a proof-theoreti justi�ation

method based on the notion of omputation and a notion of anonial objet, in a similar way as explained by

Dummett [Dum75, Dum91℄, Prawitz [Pra74℄, and partiularly, Martin-L�of [ML84℄. It would be interesting to

see whether the language of the type theory allows a ompositional understanding in the sense of Dummett

[Dum91℄. The following notion and onjeture of logial onservativity seems to be interesting to onsider

in this aspet.

3We may also include rules of name uniqueness for inductive types: Γ ⊢ ti+1(µi[Θ̄]) = µi+1[Θ̄] : Typei+1.



De�nition 5.1 (logial onservativity) Let T and T

′
be type systems spei�ed in LF, both of whih on-

tain the imprediative universe spei�ed in setion 2.2, suh that T is a subsystem of T

′
. Then, T

′
is logially

onservative over T if and only if, for any proposition P (of type Prop) in T , if P is provable in T

′
, then P

is provable in T .

Conjeture 5.2 (logial onservativity) Let UTT0 be the type theory UTT without prediative universes,

UTTi+1 be the extension of UTTi by the ith prediative universe Typei (i 2 !), and T be any subsystem of

UTT0 ontaining the imprediative universe spei�ed in setion 2.2 and a �nite set of indutive types spei�ed

by kind shemata. Then, we onjeture that the following hold:

1. LC1: The extension of T by any indutive type M[

�

�℄ is logially onservative over T .

2. LC2: UTTi+1 is logially onservative over UTTi for i 2 !.

The above onjeture, if true, allows us to understand the language of UTT in a ompositional or

hierarhial way and will have interesting impat on learning and using the theory. It may be the ase

that the onjeture is too strong and that one needs to understand some types simultaneously. Either a

proof of the onjeture or a ounter-example against it (whih might then lead to a more proper way in

understanding) will enhane the understanding of the type theory.

5.2 Inductive relations

Note that in our formulation we have not inluded more general shemata to over general indutive relations

or indutive families of types (.f., [CPM90, Dyb91℄). For example, we do not seem to be able to de�ne

Martin-L�of's weak equality types Eq(A; a; b) in UTT . Although it is possible to extend the notion of kind

shemata to do so, there seem to be good reasons in favor of the more moderate approah. First, sine we

distinguish the notions of logial propositions and data types, logial indutive relations an be de�ned by

imprediative de�nitions. For instane, a logial equality should be of type A! A! Prop in our theory and

an be de�ned imprediatively (e.g., Leibniz's equality). Seond, many families of types an be de�ned using

prediative universes (or parametri de�nitions in the framework). Listn de�ned at the end of setion 4 is

an example of indutive family of types. Having said these, it is eratinly interesting to investigate more

general forms of shemata for more sophistiated indutive types.

Another onsideration to exlude families of types like Eq(A) onerns with the desire to gain a ompo-

sitional understanding of the language as explained above. Inluding indutive families of types like Eq(A)

would make a hierarhial understanding of suh a theory muh more diÆult. This an be seen from Smith's

proof that adding a universe to Martin-L�of's type theory without universes (but with the equality types) is

not onservative [Smi88℄. If we inluded Martin-L�of's weak equality types as indutive types in UTT , the

onjeture LC2 would fail to hold.

5.3 Subtyping

An interesting appliation of the general notion of shemata is that it provides a general guideline to introdue

subtyping relations between indutive types. For example, the subtyping relation between � and �-types in

ECC, indued by the (Russell-style) universe inlusions, is a speial ase of a general notion of subtyping

between indutive types. To see this, de�ne a partial order < between shemata and the subtyping relation

� (a partial order subjet to the omputational equality) by simultaneous indution as follows: � < �

′
if

and only if

1. � � �

′
� X; or

2. � � (x:K)�1 and �

′
� (x:K

′
)�

′
1 with K � (x1:A1):::(xm:Am)A and K

′
� (x1:A

′
1):::(xm:A

′
m)A

′
, and

Ai = A

′
i for i = 1; :::;m, A � A

′
and �1 < �

′
1; or

3. � � (�)�1, �
′
� (�

′
)�

′
1, and �(A) = �

′
(A) for A:Type, and �1 < �

′
1.



And, M[

�

�℄ � M[

�

�

′
℄ if and only if �i < �

′
i for i = 1; :::; n. It is easy to hek that this gives the desirable

subtyping for the type onstrutors suh as �, �, + and W .

5.4 Proofs and implementation

Regarding the propositions of type Prop in UTT , we remark that there is a stronger elimination operator

for the proof types whih might be introdued as:

E

′
∀ : (A:Type)(P :(A)Prop)(C:(Prf (8(A;P )))Type)

((g:(x:A)Prf (P (x)))C(�(A;P; g))) (z:Prf(8(A;P )))C(z)

E

′
∀ is di�erent from E∀ in that, with E

′
∀, one an de�ne funtions from a proof type to any type, instead of

just to proof types. It may be interesting to investigate this to see whether it an provide a stronger version

of the theory to manipulate proofs.

De�ning UTT by a logial framework also raises an interesting issue in implementation of proof devel-

opment systems like Lego [Pol89, LPT89℄. Although the notion of omputational equality (between objets

of types) is intensional, it seems nie to have a weakly extensional meta-level de�nitional mehanism in the

sense that �-rule holds for the meta-level funtional operations. Note that, although one might think that the

�-types are the internal version of the dependent produt kinds in the logial framework, there is no one-one

orrespondene between the objets of type �(A;B) and the objets of kind (x:A)B(x), as the former is the

type of intensional funtions while the latter is the kind of extensional operations. We also remark that the

separation of meta-reasoning (in LF in our ase) from reasoning in the type theory is important.

Aknowledgement I would like to thank Per Martin-L�of, Thierry Coquand and Peter Dybjer for in-

teresting onversations on related topis and Healfdene Goguen for many helpful disussions.

Referenes

[Ba88℄ R. Bakhouse. On the meaning and onstrution of the rules in Martin-L�of's theory of types. In

A. Avron et al, editor, Workshop on General Logi. LFCS Report Series, ECS-LFCS-88-52, Dept.

of Computer Siene, University of Edinburgh, 1988.

[BM91℄ R. Burstall and J. MKinna. Deliverables: an approah to program development in the alu-

lus of onstrutions. LFCS report ECS-LFCS-91-133, Dept of Computer Siene, University of

Edinburgh, 1991.

[CH88℄ Th. Coquand and G. Huet. The alulus of onstrutions. Information and Computation, 76(2/3),

1988.

[Coq89℄ Th. Coquand. Metamathematial investigations of a alulus of onstrutions. manusript, 1989.

[Coq91℄ Th. Coquand. An algorithm for testing onversion in Type Theory. In G. Huet and G. Plotkin,

editors, Logial Frameworks. Cambridge University Press, 1991.

[CPM90℄ Th. Coquand and Ch. Paulin-Mohring. Indutively de�ned types. Leture Notes in Computer

Siene, 417, 1990.

[Dum75℄ M. Dummett. The philosophial basis of intuitionisti logi. In H. Rose and J. Shepherdson,

editors, Pro. of the Logi Colloquium, 1973. North Holland, 1975. Reprinted in P. Benaerraf and

H. Putnam (eds.), Philosophy of Mathematis: seleted readings, Campbridge University Press.

[Dum91℄ M. Dummett. The Logial Basis of Metaphysis. Dukworth, 1991.



[Dyb89℄ P. Dybjer. An inversion priniple for Martin-L�of's type theory. In P. Dybjer et al, editor, Workshop

on Programming Logi. Programming Methodology Group, Report 54, 1989.

[Dyb91℄ P. Dybjer. Indutive sets and families in Martin-L�of's type theory and their set-theoreti semantis.

In G. Huet and G. Plotkin, editors, Logial Frameworks. Cambridge University Press, 1991.

[GL91℄ H. Goguen and Z. Luo. Indutive data types: Well-ordering types revisited. submitted manusript,

1991.

[HHP87℄ R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logis. Pro. 2nd Ann. Symp. on

Logi in Computer Siene, 1987.

[LPT89℄ Z. Luo, R. Pollak, and P. Taylor. How to Use LEGO: a preliminary user's manual. LFCS Tehnial

Notes LFCS-TN-27, Dept. of Computer Siene, Edinburgh University, 1989.

[Luo89℄ Z. Luo. ECC, an extended alulus of onstrutions. In Pro. of the Fourth Ann. Symp. on Logi

in Computer Siene, Asilomar, California, U.S.A., June 1989.

[Luo90a℄ Z. Luo. An Extended Calulus of Construtions. PhD thesis, University of Edinburgh, 1990. Also as

Report CST-65-90/ECS-LFCS-90-118, Department of Computer Siene, University of Edinburgh.

[Luo90b℄ Z. Luo. A problem of adequay: onservativity of alulus of onstrutions over higher-order

logi. Tehnial report, LFCS report series ECS-LFCS-90-121, Department of Computer Siene,

University of Edinburgh, 1990.

[Luo91a℄ Z. Luo. A higher-order alulus and theory abstration. Information and Computation, 90(1):107{

137, 1991.

[Luo91b℄ Z. Luo. Program spei�ation and data re�nement in type theory. Pro. of the Fourth Inter. Joint

Conf. on the Theory and Pratie of Software Development (TAPSOFT), 1991. Also as LFCS

report ECS-LFCS-91-131, Dept. of Computer Siene, Edinburgh University.

[ML75℄ P. Martin-L�of. An intuitionisti theory of types: prediative part. In H.Rose and J.C.Shepherdson,

editors, Logi Colloquium'73, 1975.

[ML84℄ P. Martin-L�of. Intuitionisti Type Theory. Bibliopolis, 1984.

[NPS90℄ B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's Type Theory: an intro-

dution. Oxford University Press, 1990.

[Ore90℄ C.-E. Ore. The Extended Calulus of Construtions (ECC) with indutive types. To appear in

Information and Computation, 1990.

[Pol89℄ R. Pollak. The theory of LEGO. manusript, 1989.

[Pol90℄ R. Pollak. The Tarski �xpoint theorem. ommuniation on TYPES e-mail network, 1990.

[Pra74℄ D. Prawitz. On the idea of a general proof theory. Synthese, 27, 1974.

[Smi88℄ J. Smith. The independene of Peano's fourth axiom from Martin-L�of's type theory without

universes. Journal of Symboli Logi, 53(3), 1988.



A The Inferene Rules of LF

ontexts and assumptions

〈〉 valid

Γ ⊢ K kind x 6∈ FV (Γ)

Γ, x:K valid

Γ, x:K, Γ′ valid

Γ, x:K, Γ′ ⊢ x : K

general equality rules

Γ valid

Γ ⊢ K = K

Γ ⊢ K = K ′

Γ ⊢ K ′ = K

Γ ⊢ K = K ′ Γ ⊢ K ′ = K ′′

Γ ⊢ K = K ′′

Γ valid

Γ ⊢ k = k : K

Γ ⊢ k = k′ : K

Γ ⊢ k′ = k : K

Γ ⊢ k = k′ : K Γ ⊢ k′ = k′′ : K

Γ ⊢ k = k′′ : K

equality typing

Γ ⊢ k : K Γ ⊢ K = K ′

Γ ⊢ k : K ′

Γ ⊢ k = k′ : K Γ ⊢ K = K ′

Γ ⊢ k = k′ : K ′

substitution rules

Γ, x:K, Γ′
valid Γ ⊢ k : K

Γ, [k/x]Γ′
valid

Γ, x:K, Γ′ ⊢ K ′ kind Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]K ′ kind

Γ, x:K, Γ′ ⊢ K ′ kind Γ ⊢ k = k′ : K

Γ, [k/x]Γ′ ⊢ [k/x]K ′ = [k′/x]K ′

Γ, x:K, Γ′ ⊢ k′ : K ′ Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]k′ : [k/x]K ′

Γ, x:K, Γ′ ⊢ k′ : K ′ Γ ⊢ k = k′ : K

Γ, [k/x]Γ′ ⊢ [k/x]k′ = [k′/x]k′ : [k/x]K ′

Γ, x:K, Γ′ ⊢ K ′ = K ′′ Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]K ′ = [k/x]K ′′

Γ, x:K, Γ′ ⊢ k′ = k′′ : K ′ Γ ⊢ k : K

Γ, [k/x]Γ′ ⊢ [k/x]k′ = [k/x]k′′ : [k/x]K ′

dependent produt kinds

Γ ⊢ K kind Γ, x:K ⊢ K ′ kind

Γ ⊢ (x:K)K ′ kind

Γ ⊢ K1 = K2 Γ, x:K1 ⊢ K ′
1 = K ′

2

Γ ⊢ (x:K1)K ′
1 = (x:K2)K ′

2

Γ, x:K ⊢ k : K ′

Γ ⊢ [x:K]k : (x:K)K ′

Γ ⊢ K1 = K2 Γ, x:K1 ⊢ k1 = k2 : K

Γ ⊢ [x:K1]k1 = [x:K2]k2 : (x:K1)K

Γ ⊢ f : (x:K)K ′ Γ ⊢ k : K

Γ ⊢ f(k) : [k/x]K ′

Γ ⊢ f = f ′ : (x:K)K ′ Γ ⊢ k1 = k2 : K

Γ ⊢ f(k1) = f ′(k2) : [k1/x]K ′

Γ, x:K ⊢ k′ : K ′ Γ ⊢ k : K

Γ ⊢ ([x:K]k′)(k) = [k/x]k′ : [k/x]K ′

Γ ⊢ f : (x:K)K ′ x 6∈ FV (f)

Γ ⊢ [x:K]f(x) = f : (x:K)K ′

Type rules

Γ valid

Γ ⊢ Type kind

Γ ⊢ A : Type

Γ ⊢ El(A) kind


