
A Set-theoreti
 Setting for Stru
turing Theories

in Proof Development

�

Zhaohui Luo and Rod Burstall

Department of Computer S
ien
e, University of Edinburgh

The King's Buildings, Edinburgh EH9 3JZ, U.K.

April 1, 1992

Abstra
t

We present a meta-setting for stru
tured theory development in proof de-

velopment systems, based on whi
h a theory-stru
turing language S-CLEAR

is de�ned. A frame is a logi
 endowed with a latti
e stru
ture and a re-

naming me
hanism whi
h
apture the basi
 notions for stru
tured theory

development. Besides providing basi
 theory operations, S-CLEAR sup-

ports generi
 theories. An important feature is that type-
he
king for the

appli
ation of a generi
 theory is de
idable. Parameterization also supports

stru
ture sharing between theories. Theory bases may be built up using

these me
hanisms and used for stru
tured development of large proofs. The

semanti
s of S-CLEAR is very simple and logi
-independent.

1 Introdu
tion

Interactive proof development systems have been of growing interests in recent

years (see [LMR86] for a survey of existing theorem provers). In order for theorem

provers to be used in real applications, it is generally believed that a notion of

theory should be provided and theories in proof development systems should be

structurally developed so that theory libraries can be developed systematically

and large theorem-proving tasks can be conquered in a structured way.

The notion of theory is often intuitively used to denote a mathematical theory

which is similar to that notion in mathematics. Typical examples of mathematical

theories would be a theory of natural numbers, a theory of groups, etc.. However,

∗The work reported here was done in 1988.

1

how such a notion should be used in a proof development environment seems to be

not well investigated yet. Different theory manipulation mechanisms would give

people rather different impressions of what a theory might be. Currently, a few

proof development systems provide theory structuring facilities. Example systems

in which such a notion has been considered include IPE [Rit87], Cambridge LCF

[Pau87] and OBJ3 [GW88].

In this paper, we take a simple view that a theory in a proof development

system basically consists of

� a signature consisting of a group of symbols representing the basic notions

(say, constants and function symbols),

� a hypothesis-set consisting of a group of hypotheses (say, axioms), and

� a theorem-set consisting of the proved theorems (possibly together with their

proofs).

Based on this and influenced by the notion of institution [GB84,90] and the ideas in

designing specification language CLEAR [BG80][SB83], we propose a set-theoretic

setting called frames based on which a theory-structuring language S-CLEAR is

defined.

A frame endows a logic with a (meta-level) lattice structure and a renaming

mechanism. This provides a set-theoretic setting in which basic relationships be-

tween theories can be captured. Specifically, the embedded partial order expresses

a notion of subtheory and ‘extension/restriction’ of theories; the least upper bound

operator expresses ‘putting theories together’; and the greatest lower bound oper-

ator ‘selecting parts of theories’. Generic theories (or parameterized theories) can

be defined based on the renaming mechanism; it is a very useful tool in abstract-

ing and structuring theories. Type-checking for applications of generic theories is

decidable. Correct structure sharing between theories can be controlled by param-

eterization using generic theories; this sharing style is in a similar spirit of that

in programming language Pebble [Bur84][BL84][LB88]. It can be seen that the

semantics of S-CLEAR is very simple. It should not be difficult to implement the

ideas in this paper in a proof development system as the examples show.

1.1 Institutions and frames

Before presenting the work, we first give a brief explanation of the notion of

institution [GB84,90] and its similarity with and differences from the notion of

frame we are about to describe. This would also be helpful for those familiar with

institutions to understand the basic ideas of our current work.

2

The notion of institution was introduced [GB84] to formalize in general the

informal notion of ‘logical system’ in a model-theoretic way. Informally, an insti-

tution consists of

� a category of signatures (which provides vocabularies for sentence construc-

tions and signature changing facilities through signature morphisms), and

for each signature,

� a set of sentences over the signature,

� a set of models over the signature, and

� a satisfaction relation between models and sentences (over the same signa-

ture),

such that when signatures change by a signature morphism, the satisfaction of

sentences by models changes consistently. Based on the notion of institution,

one can describe different logical systems in the same framework. This gives

many benefits in various applications in theoretical computer science, for example,

semantics for structured specification languages. (see [GB90] for a recent account.)

The work in this paper was strongly influenced by the notion of institution

among others. The introduction of the notion of frame (see below) is based on

a similar idea; it is intended to be used to describe an (arbitrary) logical sys-

tem and, at the same time, to capture the basic notions for structured theory

development. This exactly corresponds to the idea of structured specification as

proposed in e.g., Clear [BG80], ACT1 [EFH83], etc.. However, instead of tak-

ing a categorical and model-theoretic approach, we take a more set-theoretic and

proof-oriented approach, which seems to be suitable for studying structured proof

development. There are several basic differences between the notion of frame and

that of institution and their corresponding notions like theory and parameteriza-

tion in specifications:

� Signatures of a frame are ordered by a partial order (which furthermore gives

a lattice structure over signatures) and signature changing is controlled by

renaming mappings instead of signature morphisms;

� Each frame has a notion of proof, which relates hypotheses with sentences

and determines a notion of consequence relation. This can be seen as a proof-

theoretic counterpart to the notion of satisfaction which relates models with

sentences in an institution;

� The basic notions in theory development (for proof development) like sub-

theories, theory enrichment and putting theories together are given based

3

on the embedded partial orders and lattice operations instead of, as in the

framework of institutions, by signature morphisms and categorical notions

like pushout.

� As to the notion of theory, we do not view a theory as consisting of all of the

logical consequences of the axioms, but as consisting of the proved theorems

(with their proofs). This, in our view, is more suitable to describing theories

in proof development systems and has a nice consequence that the problem

of checking well-typedness of an application of a generic theory becomes

decidable.

2 Frames and Theory Stru
turing

In this section, we define the notion of frame and show how the notion of theory can

be described in a frame and, in particular, how the notions in theory structuring

can be captured by set-theoretic (lattice-theoretic, more specifically) operations

provided by a frame. We shall give two examples of frames: one for many-sorted

equational logic (see [MG81] for example), a representative for ‘ordinary’ logics,

and the other for the calculus of constructions [CH88], a typical type theory which

can be viewed as a logical system. We believe that we have thus shown the

generality of our setting for discussing theory structuring in proof development

systems.

2.1 Frames

A frame is a meta-setting which endows a logical system with a lattice structure

and a renaming mechanism so that some ideas in theory-structuring in proof

development can be captured. In the following definition of frame,

� Lat is the class of lattices with 0 and 1 partially ordered by the sublattice

relation;1

� Set is the class of sets partially ordered by set inclusion �; and

�

m
! denotes the order-preserving (i.e., monotonic) function space from a poset

to a partially ordered class;

Here is the definition followed by some explanations.

1For a lattice A, we also use A to denote its supporting set and, use ⊑A, ⊔A, ⊓A, 0A and

1A (often with the subscript A omitted) to denote the partial order, the least upper bound, the

greatest lower bound, the least element and the greatest element, respectively, over A.

4

Definition 2.1 (frame) A frame F is a five-tuple

F = (Sig,Sen,Hyp,Prf ,R)

consisting of

� Sig 2 Lat;

� Sen : Sig
m
! Set;

� Hyp : Sig
m
! Lat;

� Prf , a set-valued function which gives a set Prf(σ,H, e) of proofs for every

signature σ 2 Sig, hypothesis H 2 Hyp(σ) and sentence e 2 Sen(σ); these

sets satisfy the following condition: for σ, σ
′
2 Sig, H 2 Hyp(σ), H

′
2

Hyp(σ′), and e 2 Sen(σ),

– σ v σ
′
^H v H

′
) Prf(σ,H, e) � Prf(σ′

,H
′
, e);

� R, a set of mappings (i.e., single-valued functions) such that, for r 2 R,

– 8σ 2 Sig. rσ 2 Sig,

– 8e 2 Sen(σ). re 2 Sen(rσ),

– 8H 2 Hyp(σ). rH 2 Hyp(rσ), and

– 8p 2 Prf(σ,H, e). rp 2 Prf(rσ, rH, re).

We now explain the motivation for the above definition.

Sig is the set of signatures which has a lattice structure. A signature is an

entity consisting of the basic symbols from which sentences (formulas) of a logic

are formed. The lattice structure over the signatures endows Sig not only with a

subsignature relation v (a subsignature usually has ‘fewer’ symbols) but also with

an assumption that any two signatures σ and σ
′ can be put together (combined) to

get a new signature σ tσ
′ which contain symbols in both σ and σ

′. The ‘common

part’ of two signatures s and s
′ is σ u σ

′. The existence of a largest signature and

a smallest signature is assumed. A typical example of signature structure is the

power set of a universal set of symbols partially ordered by set inclusion.

Sen(σ) is the set of sentences over a signature σ which are the basic statements

(or, propositions) in a logic. A sentence over a subsignature of σ is also a sentence

over σ; this is expressed by the monotonicity of Sen.

Hyp(σ) is the set of hypothesis units over a signature σ. A hypothesis unit can

be thought of as consisting of the axioms of a theory.2 There is a lattice structure

2A hypothesis unit may be more general entities, for example, consisting of the axioms and

rules of an object logic. In such a case, one may discuss ‘structured specification of logics’.

5

over Hyp(σ) for every signature σ. In a simple and typical case, Hyp(σ) is the

power set of Sen(σ) and the lattice structure is then naturally defined by the set

operations; and in this case, we may call a hypothesis unit a hypothesis set. The

lattice structure endows Hyp(σ) with a partial order. H v H
′ usually means that

H has ‘less power’ or has ‘fewer consequences’ than H
′, and this is reflected in

the condition for proofs. Putting two hypothesis units H and H
′ together, one

gets the minimal hypothesis unit H tH
′ such that it is stronger than both H and

H
′. (Dually for H uH

′.) For σ v σ
′, Hyp(σ) is a sublattice of Hyp(σ′); this is

expressed by the monotonicity of Hyp.

Hypothesis units and sentences are related through proofs. Prf(σ,H, e) is the

set of proofs of sentence e (more precisely, the judgement, say, ‘e is true’) under the

assumption of H . The proofs also induce a notion of consequence relation between

hypothesis units and sentences (H `σ e if and only if Prf(σ,H, e) 6= ;). A proof of

a sentence over a subsignature of σ under the assumption of a weaker hypothesis

unit than H 2 Hyp(σ) is also a proof of the sentence under the assumption of H ;

this is expressed as the condition for Prf .

The mappings in R are called renamings (or renaming operations), which

are syntactic operations which rename basic symbols in the frame under certain

conditions of respecting the required relations; those conditions say that, under a

renaming r 2 R,

� a signature is transformed to a signature;

� a sentence over a signature σ is transformed to a sentence over the resulting

signature of σ under r;

� a hypothesis unit over a signature σ is transformed to a hypothesis unit over

the resulting signature of σ under r; and

� a proof of a sentence under the assumption of a hypothesis unit is trans-

formed to a proof of the transformed sentence under the transformed hy-

pothesis unit.

When a universal set of symbols is assumed, a typical renaming is a function from

the symbol universe to itself which respects the above requirements. Renamings

are used to deal with name controlling in theory structuring; particularly for

applications of generic theories.

Some properties about frames are useful in considering theory-structuring op-

erations. We give two definitions here which describe some technical conditions

to be used later.

6

Definition 2.2 (u-preserving frames) A frame is called u-preserving if the

following hold for all signatures σ, σ
′
2 Sig:

Sen(σ u σ
′
) = Sen(σ) \ Sen(σ

′
)

Hyp(σ u σ
′
) = Hyp(σ) uHyp(σ

′
)

Prf(σ u σ
′
,H uH

′
, e) = Prf(σ,H, e) \Prf(σ

′
,H

′
, e)

Definition 2.3 (left-closed frames) A frame is called left-closed if

8H 2 Hyp(1Sig)8σ 2 Sig. H v 1Hyp(σ)) H 2 Hyp(σ)

where 1Sig and 1Hyp(σ) are the largest signature and largest hypothesis unit over

σ, respectively.

2.2 The notion of theory in a frame

Based on an arbitrary frame, we can develop a notion of theory in it; that is, a

theory consists of a signature, a hypothesis set over the signature and a set of

theorems.

Definition 2.4 (theory) Let F = (Sig,Sen,Hyp,Prf ,R) be a frame. A theory

(in frame F) is a triple

(σ,H,C)

consisting of

� a signature σ 2 Sig,

� a hypothesis unit H 2 Hyp(σ), and

� a set C of theorems which are sentence-proof pairs (e, p) with e 2 Sen(σ)

and p 2 Prf(σ,H, e).

We shall use THF (or just TH) to denote the set of theories (in frame F), which

is the following set:

TH =df

∑

σ 2 Sig
∑

H 2 Hyp(σ). P ow(Thmσ(H))

where Thmσ(H) is the set of theorems with proofs (or simply theorems):

Thmσ(H) =df

∑

e 2 Sen(σ). Prf(σ,H, e)

Pow is the power-set operator and
∑

is the set-theoretic dependent sum operator,

i.e., for a set A and a set-valued function B : A ! Set,
∑

x 2 A. B(x) =df f (a, b) j a 2 A, b 2 B(a) g

7

Note that the theorems in a theory are in general a subset of Thmσ(H); in

other words, it is meant to be the set of the proved theorems instead of all of the

provable theorems Thmσ(H). In practice, one only proves a (finite) set of the

theorems in a theory and these proved theorems (together with their proofs) are

incorporated as a part of the theory.

One may compare this notion of theory with that considered in algebraic spec-

ifications (e.g., [BG80]). The latter considers the closure (i.e., all of the conse-

quences) of an axiom set as a theory and a specification denotes such a closure

(usually an undecidable infinite set). When parameterized theories (theory proce-

dures called in [BG80]) are considered, it is not decidable whether an application of

a parameterized theory to actual parameters is legal. This undecidability seems to

be harmless for specification languages. However, as theory-structuring languages

for proof development systems, this decidability becomes rather important. When

the notion of theory given in the above definition is adopted, the set of the proved

theorems is always finite in practice and hence the problem of type-checking is

decidable.

Notations We shall use the following notations in the sequel:

� HYP denotes the set of all hypothesis units:

HYP =
⋃

σ∈Sig

Hyp(σ)

� THM denotes the set of all of the (provable) theorems with their proofs:

THM =
⋃

σ∈Sig

⋃

H∈Hyp(σ)

Thmσ(H)

� Renamings in R are extended to theorems, theorem-sets and theories in a

natural way. Suppose r 2 R. Then,

– for (e, p) 2 THM, r(e, p) =df (re, rp);

– for C � THM, rC =df f r(e, p) j (e, p) 2 C g;

– for (σ,H,C) 2 TH, r(σ,H,C) =df (rσ, rH, rC).

Note that, by the conditions that a renaming satisfies, the above transfor-

mations send a theorem, a hypothesis unit and a theory to a theorem, a

hypothesis unit and a theory, respectively.

� sign , hyps and thms are used as the obvious projection functions which

take a theory and result in its signature, hypothesis unit and theorem-set,

respectively.

8

We can define partial orders between theories. One of the natural ones is to re-

quire that each component of one theory is less than or equal to the corresponding

component of the other, i.e., for A,B 2 TH,

A v B
df
, sign (A) v sign (B)^hyps (A) v hyps (B)^thms (A) � thms (B)

However, one can also define other reasonable orders according to different motiva-

tions. (See section 2.3 for an example.) We shall take a partial order over theories

as a parameter when giving the semantics of the theory-structuring language in

section 3.2.

2.3 EQ: a frame for many-sorted equational logi

In this and the following sections, we give two example frames, one for the many-

sorted equational logic and the other for the calculus of constructions.

Many-sorted equational logic (see [MG81] for example) is chosen as a repre-

sentative of the ordinary logics. We show how it can be endowed with a lattice

structure to become a frame so that we can talk about theories as described in the

previous section. We believe that this gives a rather general (and typical) way of

viewing a logic as a frame.

A frame for many-sorted equational logic can be given as:

EQ = (SigEQ,SenEQ,HypEQ,PrfEQ,REQ)

each of whose components is described as follows.

Signatures: A signature of EQ consists of a set of sorts and a set of function

symbols with finite sequence of sorts as their ranks; more precisely,

SigEQ =df

∑

S 2 Pow(Sorts). P ow(OpnsS)

where

� Sorts is the set of sort symbols, and

� for a set of sorts S � Sorts, OpnsS is the set of function symbols

together with their ranks which are in S
∗
� S, where, S

∗ is the set of

finite sequences of sorts in S. We shall use Opns to denote the set of

all function symbols, i.e.,

Opns =df

⋃

S⊆Sorts

OpnsS

9

The lattice operations v, t and u for SigEQ are the pairwise set operations

�, [and \, respectively. Note that the largest and smallest signatures are

then (Sorts,Opns) and (;, ;), respectively.

Sentences: A sentence in EQ is an equation between terms of the same sort

indexed by a set of (free) variables; more precisely, for σ = (S,O) 2 SigEQ,

SenEQ(σ) =df

∑

X 2 Pow(VS)
∑

k 2 S. Tσ(X
◦
)k � Tσ(X

◦
)k

where

� VS is the set of variables whose sorts are in S,

� X
◦ is the S-indexed set of variables induced by X � VS defined as, for

k 2 S,

X
◦

k
=df fx 2 X j sort(x) = k g

and

� Tσ(X◦) is (the supporting set of) the term algebra of σ over X
◦.

Hypothesis units: A hypothesis unit (set) in EQ is just a subset of sentences;

i.e.,

HypEQ(σ) =df Pow(SenEQ(σ))

The lattice operations for HypEQ(σ) are just the set operations �, [and

\.

Proofs: Let `σ be the consequence relation defined by the usual set of rules for

many-sorted equational logic (see [MG81]). A proof of a sentence over σ

under the assumption H is just a derivation of judgement H `σ e, i.e.,

PrfEQ(σ,H, e) =df f p j p is a derivation of H `σ e g

Renamings: The renamings for EQ are induced by the pairs of functions of the

form

(f :Sorts ! Sorts, g:Opns ! Opns)

such that g is rank-preserving for f , i.e., for any op 2 Opns with rank uk,

g(op) has rank f
#(uk), where f

is the free extension of f to Sorts
∗. More

precisely, any such pair (f, g) induces a renaming r 2 REQ such that, for

σ = (S,O) 2 SigEQ,

rσ = (f(S), g(O))

and the images for sentences, hypothesis sets and proofs are the free exten-

sions of r.

10

Proposition 2.1 EQ defined above is a frame. Furthermore, it is u-preserving

and left-closed.

The notion of theory as we described in the previous section can be specialized

to this frame of equational logic. Examples of theory specifications and structuring

will be discussed after we introduce a theory-structuring language.

Remark As we mentioned before, one may define other partial orders between

theories for different frames, besides the one given in the last section. Here is

another useful order between theories in EQ: for A,B 2 THEQ,

A v B
df
, sign (A) v sign (B) ^ hyps (A) � hyps (B)[f e j 9p.(e, p) 2 thms (B) g

This says that B is not weaker than A. In particular, we require that each hy-

pothesis for theory A be either a hypothesis for B or a proved theorem in B. The

theorems proved in A are not necessarily the assumptions or theorems in B. With

this order, one then has a different and more useful parameterization mechanism

for theory structuring.

As one may see from the above construction of the frame EQ, we can construct

frames for ordinary logics which are presented in a proof-theoretic way (by giving

inductively a set of formulas and a notion of proof which determines a notion of

theoremhood). One can similarly deal with, for example, first-order (or higher-

order) logics, modal logics, etc..

We now turn to another kind of presentation of logical systems, that is, via

type systems and explain how one may view them as frames.

2.4 CC: a frame for the
al
ulus of
onstru
tions

The calculus of constructions [CH88] is a typed functional calculus which pro-

vides a nice formalism for constructive proofs in natural deduction style. By

Curry-Howard principle of formulas-as-types [CF58][How69], there is an embed-

ded (intuitionistic) higher-order logic in Constructions. Various extensions of the

calculus have also been considered (e.g., [Luo89]). We will use the notations and

terminology in [Luo89,90], where one can also find how the type system can be

viewed as a logic. We first explain intuitively how to endow a type theory like

Constructions with a lattice structure to become a frame. (In fact, what is de-

scribed below is a general way to do so for an arbitrary type theory, as the required

properties like weakening are really a good type theory should have.)

A context in a type theory consists of a group of assumed constants with

specified types and (logical) assumptions (e.g., some axioms). In general, one

11

may consider such a context Γ to consist of two parts: Γ � SigΓ,HypΓ where

SigΓ contains a sequence of constants and HypΓ a sequence of (usually logical)

assumptions about the constants. For example, the formalization of the semigroup

theory may be expressed as the following context:

ΓSG � SigSG,HypSG

where

SigSG � X:Type0, Æ:X ! X ! X

HypSG � ass:Πx, y, z:X. (x Æ (y Æ z) = (x Æ y) Æ z)

(Thus, ass is an assumed proof of the associativity axiom.)

Remark The separation of signature and axiomatic hypotheses seems to be desir-

able as well as possible in general. This idea is influenced by the idea of institution

[GB84] and is reflected in our definition of frame.

Based on such a view that a context consists of two parts, we can consider how

to deal with contexts so that a type theory may be endowed with a lattice structure

to consider theory-structuring based on type theories. However, instead of dealing

with contexts as sequences, we shall consider how contexts can be viewed as sets.

2.4.1 environments

It is in general easy to impose a lattice structure over sets, but it is less evident

for sequences. As in usual presentations of a context in a theory of dependent

types contexts are presented as sequences of bindings (i.e., variable-term pairs) in

a way that an assumed variable (or constant) may occur free in latter components,

we try to consider how to view such contexts as sets in a consistent way without

losing the useful information of dependency.3

A basic starting point of making a linear context into a set without losing

useful information is to notice that the weakening lemma always holds for most

(if not all) of the type theories; that is,

weakening lemma If Γ ` M : A is a derivable judgement and Γ′ is a valid

context which contains every component of Γ, then Γ′
` M : A is derivable

as well.

3In general, one may consider more complicated structures of contexts (e.g., as partially

ordered trees). For our purpose here, considering them as sets is the simplest choice.

12

In the following, we introduce a notion of environment which are sets correspond-

ing to contexts. We assume that the variables under consideration are all associ-

ated with their ‘ranks’ (i.e., types); so it is assured that name-clashing between

variables having different types will not occur.

Definition 2.5 (environments) Let γ and γ
′ be finite sets of bindings (i.e.,

variable-term pairs of the form x:M) and #A denote the cardinality of a set A.

1. γ is called a (valid) signature environment if and only if there exists a per-

mutation

η : f1, ...,#γg ! f1, ...,#γg

such that, letting γ = fxi:Mi j 1 � i � #γ g,

ηγ =df xη(1):Mη(1), ..., xη(#γ):Mη(#γ)

is a valid context.

2. γ
′ is called a (valid) hypothesis environment under γ, where γ is a signature

environment by permutation η, if and only if

� for every x:M 2 γ
′, M is an ηγ-type, and

� there exists a permutation

η
′
: f1, ...,#γ

′
g ! f1, ...,#γ

′
g

such that ηγ, η
′
γ
′ is a valid context.

Furthermore, we also take the (infinite) set of all variables with their types as a

special signature environment; if γ is a signature environment with permutation

η, the (infinite) set of all variables with their types which are ηγ-types as a special

hypothesis environment under γ.

The following is an important lemma which assures that the operations union

and intersection between sets preserve the property of being an environment.

Lemma 2.1 If γ1 and γ2 are signature environments, then so are γ1 [γ2 and

γ1 \ γ2. If γ
′

1
and γ

′

2
are hypothesis environments under γ1 and γ2, respectively,

then γ
′

1
[γ

′

2
and γ

′

1
\ γ

′

2
are hypothesis environments under γ1 [γ2 and γ1 \ γ2,

respectively.

13

2.4.2 the frame CC

A frame for Constructions can be defined as:

CC =df (SigCC ,SenCC ,HypCC ,PrfCC ,RCC)

each of whose components can be described as follows:

Signatures: The signatures of CC are just the signature environments.

The lattice operations are the operations �, [and \ for sets. The smallest

signature is the empty signature environment and the largest is the special

signature environment containing all of the variables with their types. Note

that, by lemma 2.1, the union and intersection of any two signatures are

signatures as well.

Sentences: Let γ 2 SigCC with η as its permutation. The sentences over γ are

the ηγ-types.

Hypothesis units: Let γ 2 SigCC with η as its permutation. The hypothesis

sets over γ are the hypothesis environments under γ.

The lattice operations are also �, [and \ for sets. The smallest hypothesis

set is the empty set and the largest is the special hypothesis environment

under γ containing all variables with their types being ηγ-types.

Proofs: For γ 2 SigCC with η as its permutation, γ
′
2 HypCC(γ) with η

′ as

its permutation, and A 2 SenCC(γ), a proof of A under γ
′ is a term which

inhabits A in context ηγ, η
′
γ
′, i.e.,

PrfCC(γ, γ
′
, A) =df f t j ηγ, η

′
γ
′
` t : A g

(It is easy to show that PrfCC(γ, γ
′
, A) is uniquely defined, independent of

η and η
′.)

Renamings: The renamings for the frame CC are induced by the functions from

the variable space V ar to V ar which are ‘type-preserving’ in the obvious

sense with type dependency being preserved4.

Proposition 2.2 CC is a frame. Furthermore, it is left-closed and u-preserving.

Proof By induction and using lemma 2.1

4For example, let X :Type and x:X , and rX = X ′ and rx = x′. Then, r ∈ R only if X ′:Type

and x′:X ′.

14

3 S-CLEAR | a Theory Stru
turing Language

In this section, we present a simple theory-structuring language which we shall call

S-CLEAR. As its name suggests, S-CLEAR inherits many basic properties of the

algebraic specification language CLEAR [BG80]. However, it is based on the no-

tion of frame we introduced in the previous section. The semantics of S-CLEAR is

frame-independent and very simple. In particular, applications of generic theories

(or parameterized theory procedures) are in general decidable, since our semantics

will be based on the notion of theory we considered in the previous section, which

reflects the idea that the theorems included in a theory are just those proved ones

instead of the provable ones. Furthermore, the parameterization mechanism can

be used to control correct structure sharing in a style similar to that of Pebble

[BL84][Bur84].

3.1 The syntax of S-CLEAR

The main category of expressions of S-CLEAR is that of theory expressions, de-

fined by the following BNF-like grammar:

A :: = x j theory (σ,H,C) j

join(A,A
′) j meet(A,A

′) j

enrich(A, σ,H,C) j select(A, σ,H,C) j

([x1::A1, ..., xn::An]A)(r,A′

1
, ..., A

′

n
)

rA

where the A’s range over theory expressions, x’s over theory variables, and σ, H ,

C and r range over signature expressions, hypothesis-unit expressions, theorem-

set expressions and renaming expressions, respectively; these latter categories of

expressions are given by the following grammars:

σ :: = sign σ0 j rσ

H :: =hyps H0 j rH

C :: = thms C0 j rC

r :: = r0 j r Æ r
′

where σ0, H0, C0 and r0 stand for atomic expressions of signatures, hypothesis-

sets, theorem-sets and renamings, respectively, which are frame-dependent and

left open here. (We shall see examples of them for EQ in latter examples.)

The semantics of the operations given in the above syntax will be formally

given in the next section. We first give some intuitive explanations here. The

basic theory

theory (σ,H,C)

15

stands for the theory consisting of the signature, hypothesis unit and theorem set

denoted by σ, H and C, respectively.

The operation join puts two theories together; that is,

join(A,A
′
)

denotes the least upper bound of the theories denoted by A and A
′. Dually,

meet(A,A
′
)

stands for the greatest lower bound — the shared common part of the theories

denoted by A and A
′.

The operation enrich, as the name suggests, enlarges a theory by the given

compatible signature, hypothesis unit and theorems; while select selects a part

of a theory. One can view select as an operation complementary to an operation

‘delete’; that is, we can delete some part of a theory to form a new theory if what

is left after the deletion is indeed a theory.

If r is a renaming expression, the theory expression rA, roughly speaking,

denotes the theory obtained by the theory expression got from A by renaming

the basic symbols in A by the renaming denoted by r (see below for a precise

semantics).

An expression of the form

[x1::A1, ..., xn::An]A

may be viewed as expressing a generic theory expression with n parameters; using

a syntactic sugar, we may declare a generic theory as follows by assigning it a

name G:

Generic G (x1::A1, ..., xn::An)

body A

end

which can be applied to n theory expressions A
′

1
, ..., A

′

n
through a renaming r as

G(r,A
′

1
, ..., A

′

n
)

The semantics of such an application shall be given in the next section.

Remark Note that we do not formally take generic theory expressions as entities

in the language but only their applications are considered. We could have intro-

duced let-expressions to treat declarations of generic theories formally. Also, we

could have introduced syntactic operations such as join for signatures, hypothe-

sis units and theorem-sets and allow parameterization over them. For simplicity,

16

these are not dealt with here.

The renaming expressions are supposed to be syntactic operations rather than

semantic. We give the following reduction rules for renamings. Convertible the-

ory expressions are considered to be identical, where convertibility is defined as

the reflexive, symmetric and transitive closure of the following notion of one-step

reduction.

Definition 3.1 (renaming reduction on expressions) The renaming reduc-

tion relation on the theory expressions is induced by the following contraction

schemata, where r and r
′ are arbitrary renaming expressions and G is a generic

theory expressions as defined above:

rx x

r(r
′
A) (r Æ r

′
)A

r(join(A,A
′
)) join(rA, rA

′
)

r(meet(A,A
′
)) meet(rA, rA

′
)

r(enrich(A, σ,H,C)) enrich(rA, rσ, rH, rC)

r(select(A, σ,H,C)) select(rA, rσ, rH, rC)

r(G(r
′
, A

′

1
, ..., A

′

n
)) G(r Æ r

′
, rA

′

1
, ..., rA

′

n
)

The renaming reduction on expressions b of signatures, hypothesis units or theorem

sets, is induced by the following contraction:

r(r
′
b) (r Æ r

′
)b

The expressions of the forms in the left hand side above are called redexes with the

corresponding right-hand-side expressions called their contractums. An expression

is in normal form if it contains no redex.

Proposition 3.1 (normalization) There is no infinite reduction sequence. And,

every expression reduces to a unique normal form under all reducing orders.

Henceforth, we will write nf(A) for the normal form of an expression A.

17

3.2 The semanti
s of S-CLEAR

The semantics of S-CLEAR will be given subject to an arbitrary frame which is

u-preserving and left-closed; let F = (Sig,Sen,TH,Prf ,R) be such a frame.

First, we introduce some (semantic) theory operations corresponding to the

syntactic operations join, meet, enrich and select. In the following definition,

we use
∏

to denote the operator for set-theoretic product (or dependent function

space), i.e., for set A and a set-valued function B : A ! Set,

∏

x 2 A. B(x) =df f f : A !

⋃

x∈A

B(x) j 8x 2 A. f(x) 2 B(x) g

Definition 3.2 (some theory operations)

� The union operation on theories:

t : TH�TH ! TH

is defined as the component-wise ‘unions’:

AtB =df (sign (A)tsign (B),hyps (A)thyps (B), thms (A)[thms (B))

� The meet operation on theories:

u : TH�TH ! TH

is defined as the component-wise ‘meets’:

AuB =df (sign (A)usign (B),hyps (A)uhyps (B), thms (A)\thms (B))

� The enrichment operation is a function of the following type:

enrich :
∏

A 2 TH
∏

σ 2 fσ
′
2 Sig j sign (A) v σ

′
g

∏

H 2 Hyp(σ)
∏

C 2 Pow(Thmσ(hyps (A) tH)). TH

defined as

enrich(A, σ,H,C) =df (σ,hyps (A) tH, thms (A) [C)

18

� The selection operation is a function of the following type:

select :
∏

A 2 TH
∏

σ 2 fσ
′
2 Sig j σ

′
v sign (A) g

∏

H 2 fH 2 Hyp(1Sig) j H v hyps (A) g
∏

C 2 Pow(thms (A)). TH

defined as

select(A, σ,H,C) =df (σ,H u 1Hyp(σ), C \Thmσ(H u 1Hyp(σ)))

When these operations are applied to arguments that are not in the required do-

mains, they are undefined.

Remark t and enrich are well-defined in any frame where the requirement that

the frame under consideration be u-preserving and left-closed is not needed. select

is well-defined in any left-closed frame. u is well-defined in any frame which is

left-closed and u-preserving.

Now, we give the semantics of the theory expressions. In the definition, we

write V ar, ThExp, RenExp, SigExp, HypExp and ThmExp for the sets of

theory variables, theory expressions, renaming expressions, signature expressions,

hypothesis-unit expressions and theorem-set expressions, respectively.

Definition 3.3 (semantics) Let ρ be a (theory) valuation, i.e., a function ρ:V ar !

TH and assume that the semantics [] of the atomic expressions is given, that is,

for any atomic expression c of renamings, signatures, hypothesis-sets and theorem-

sets, [c] is an element of R, Sig, HYP and THM, respectively.

Then, we define the semantics of the theory expressions (under valuation ρ) as

a partial function

[[]]ρ :ThExp ⇀ TH

as follows:

1. Variable theory expressions: for x 2 V ar,

[[x]]ρ =df ρ(x)

2. Basic theory expressions:

[[theory σ,H,C]]ρ =df

{

([[σ]], [[H]], [[C]]) if ([[σ]], [[H]], [[C]]) 2 TH

" otherwise

where ‘undefined’ is denoted by ".

19

3. Join operation:

[[join(A,B)]]ρ =df [[A]]ρ t [[B]]ρ

4. Meet operation:

[[meet(A,B)]]ρ =df [[A]]ρ u [[B]]ρ

5. Enrichment operation:

[[enrich(A, σ,H,C)]]ρ =df enrich([[A]]ρ, [[σ]], [[H]], [[C]])

6. Selection operation:

[[select(A, σ,H,C)]]ρ =df select([[A]]ρ, [[σ]], [[H]], [[C]])

7. Renaming of a theory:

[[rA]]ρ =df

{

[[r]]([[A]]ρ) if A is of the form theory (σ,H,C)

[[nf(rA)]]ρ otherwise

8. Applications of generic theories:

[[([x1::A1, ..., xn::An]A)(r,A
′

1
, ..., A

′

n
)]]

ρ
=df

{

[[rA]]ρ[xi 7→[[A′

i
]]
ρ
] if [[rAi]]ρ v [[A′

i
]]
ρ

" otherwise

where ρ[xi 7! [[A′

i
]]
ρ
] is the valuation that is the same as ρ except that xi is

assigned to [[A′

i
]]
ρ

(i = 1, ..., n) and v is the partial order between theories

defined for the underlying frame5.

In the above, the semantics for expressions of renamings, signatures, hypothesis

units and theorem-sets are functions defined as follows:

� renamings: [[]] :RenExp ! R given by

[[r0]] =df [r0]

[[r Æ r
′
]] =df [[r]] Æ [[r

′
]]

where Æ in the right-hand-side is the composition of maps.

� signatures: [[]] :SigExp ! Sig given by

[[sign s0]] =df [σ0]

[[rσ]] =df

{

[[r]]([σ0]) if σ � sign σ0

[[nf(rσ)]] otherwise

5As we have noted before, we take such a partial order as a parameter of the semantics.

20

� hypothesis units: [[]] :ThExp ! TH given by

[[hyps H0]] =df [H0]

[[rH]] =df

{

[[r]]([H0]) if H � hyps H0

[[nf(rH)]] otherwise

� theorem sets: [[]] :ThmExp ! THM given by

[[thms C0]] =df [C0]

[[rC]] =df

{

[[r]]([C0]) if C � thms C0

[[nf(rC)]] otherwise

Some notes on the above definition of semantics follow.

1. Renamings are syntactic operations; this is reflected in the semantics of

rA (clause 7) which is defined in the following way: we first normalize the

expression rA and then calculate its denotation. For example, the semantics

of theory expression

r join(A,B)

is not

[[r]]([[join(A,B)]])

but

[[join(rA, rB)]] = [[rA]]t [[rB]]

This syntactic feature of renamings is important for the mechanism of generic

theories, as we see below.

2. The definition of the semantics for generic theory applications (clause 8) is

the central part of the above definition. Suppose that G is the generic theory

declared as follows:

Generic G (x1::A1, x2::A2)

body B

end

and A
′

1
and A

′

2
are two theory expressions. Then, G can legally be applied to

A
′

1
and A

′

2
through a renaming r subject to some satisfaction requirements.

The application

G(r,A
′

1
, A

′

2
)

21

is intended to denote the theory expressed by the body of G (B in this case)

after the formal variables x1 and x2 are instantiated as the theories denoted

by the actual arguments A
′

1
and A

′

2
; that is, G(r,A′

1
, A

′

2
) denotes the theory

[[rB]]ρ[x1 7→[[A′

1
]]
ρ
, x2 7→[[A′

2
]]
ρ
]

Renamings play an essential role in such an application. The most basic

role of renaming r is to rename the symbols in the body of the generic

theory to match the symbols in the theories applied to so that the resulting

theory can be formed as intended. Note that it is their syntactic feature that

makes renamings play such a role in the intended way. Furthermore, as a

renaming may map different symbols to the same one, structure sharing can

be controlled by parameterization. (See later for more discussions on this.)

The above application of generic theories is only ‘legal’ under the condition

that, under renaming r, the theory denoted by the actual argument A
′

i
sat-

isfies the requirements specified by the formal parameter theory expression

Ai, i.e.,

� [[rA1]] v [[A′

1
]] and [[rA2]] v [[A′

2
]],

The formal parameters Ai specifies the ‘type’ of the legal actual arguments

so that the resulting theory is well-formed and indeed the intended one.

Examples of applications of generic theories will be given in the following

section.

3. The semantics of the other theory-structuring operations are simple and

clear enough not to need explanation. We remark that one might consider

an auxiliary operation delete, a complement to select, which removes some

symbols, hypotheses and theorems from a given theory to form a new theory.

This can not be directly defined in our semantic framework as there is no

complementary operator in our lattice structure. However, select can be

used to mimic delete at the meta-level — to delete a part of a theory is just

to select the remaining part.

4. In the current language, every expression of signature, hypothesis unit or

theorem set has its normal form of the form

(r1 Æ ... Æ rn)b0

where b0 is a basic expression (e.g., sign σ0). The semantics of the above is

simply

([[r1]] Æ... Æ [[rn]])([[b0]])

22

4 Theory Examples in S-CLEAR

In this section, we give some examples of theory development in the language S-

CLEAR described in the previous section. These examples, which are given in the

frame EQ of the many-sorted equational logic as described in section 2.3, show

how the basic structuring operations can be used to construct larger theories by

‘putting together’ several smaller theories or extract useful parts of a large theory

to form theories interested. Examples of generic theories will show the power of

parameterization in abstract and structured reasoning.

In the examples, we shall use some syntactic sugars to ease readability, most of

which we think are clear enough to self-explain. In particular, we shall use ‘with

... as ...’ as the syntactic sugar for renamings.

4.1 Basi
 examples

We can define the theories for semigroups, monoids, groups and rings by stepwise

enrichments as follows. The proved theorems for each theory are omitted as ‘...

...’.

semigroup � theory

sign X, Æ:X2
! X

hyps 8x1, x2, x3 2 X. x1 Æ (x2 Æ x3) = (x1 Æ x2) Æ x3

thms

monoid � enrich semigroup

sign id:X

hyps 8x 2 X. id Æ x = x ^ x Æ id = x

thms

group � enrich monoid

sign �1:X ! X

hyps 8x 2 X. x Æ x
−1 = id

thms

ring � enrich join(group with +,0 as Æ, id

monoid with �,1 as Æ, id)

sign

hyps 8a, b 2 X. a + b = b + a

23

8a, b, c 2 X. a� (b + c) = (a� b) + (a� c)

8a, b, c 2 X. (b + c)� a = (b� a) + (c� a)

thms

If one have first defined the theory of groups directly as follows,

group � theory

sign X, Æ:X2
! X, id:X, �1:X ! X

hyps 8x1, x2, x3 2 X. x1 Æ (x2 Æ x3) = (x1 Æ x2) Æ x3

8x 2 X. id Æ x = x

8x 2 X. x Æ id = x

8x 2 X. x Æ x
−1 = id

thms

then, the theories semigroup and monoid can be defined by using select oper-

ation to select the relevant parts of group; for instance,

monoid � select group

sign X, Æ, id

hyps hyps (group)

thms

Note that, according to the semantics of the operation select, only the hypotheses

about the function symbols Æ and id are selected as those for monoid.

4.2 Some examples of generi
 theories

Generic theories are normally used to express abstraction in the course of theory

development. We give examples to show how they may be used in the following

aspects:

1. abstract reasoning,

2. structured theory development, and

3. simulation of ‘open/close’ operations for theory libraries.

Recall that the semantics of generic theory applications are parameterized by a

partial order between theories. For EQ, we take the order described in section 2.3,

that is,

A v B
df
, sign (A) v sign (B) ^ hyps (A) � hyps (B)[f e j 9p.(e, p) 2 thms (B) g

24

Example (theorems inheritance) For any theory A, we can define a family of

generic theories Inherit A, one for each theory A, which applied to an actual

theory A0 will result in a new theory that inherits all of the theorems in A as its

own theorems:

Generic Inherit A (x::A)

body enrich x by thms (A)

end

For instance, for the theory group defined in the last section, we can define

Generic Inherit group (x::group)

body enrich x by thms (group)

end

If int is a theory of integers specified as follows:

int � theory

sign int, +: int2
! int, -:int!int, 0: int, ...

hyps axioms for integers

thms ‘(int,+,0,-) is a group’, ...

then the application

Inherit group(int) with X, Æ, id,�1 as int,+, 0,

will result in the theory of integers with all theorems proved in group as its theo-

rems as well. This gives a way of abstract reasoning; one can first prove theorems

about some ‘abstract’ theories (like group) and take advantage of genericity to

inherit the proved theorems to various theories (like int) which satisfy the hy-

potheses of the abstract theory. Note that, according to the partial order between

theories above, we only require that the hypotheses (but not the theorems) in

group be contained in int as theorems (or hypotheses).

One may also use generic theories to structure theory development (for exam-

ple, when building up a theory library). The following simple example shows how

parameterization can be used to control correct structure sharing when trying to

develop larger theories from smaller ones.

Example (sharing by parameterization) We specify a simple generic theory distr

as follows, where we use ‘sign ...’ to denote a theory whose hypothesis set and

theorem set are empty:

25

Generic distr (x :: sign X, �:X2
! X, y :: sign X, +:X2

! X)

body enrich join(x, y) by hyps Distr(X,+, �)

end

where Distr(X,+, �) expresses the distributive laws about the binary function

symbols + and � (c.f., the specification of the theory ring before). This generic

theory distr, when applied successfully, will combine the two theories as actual

arguments with an additional hypothesis of the distributive laws. For instance,

applying it to a theory of monoids and a theory of a theory of abelian groups will

give us a theory of rings.

Although very simple, this example explains an important mechanism generic

theories provide for structured theory development — structure sharing by param-

eterization. Note that the two formal parameters of distr has the same sort symbol

X. First, this is necessary for the hypothesis Distr(X,+, �) to make sense. More

importantly, it guarantees that the two actual arguments of the generic theory

must have the same sort symbol corresponding to X as well; otherwise, type-

checking for the application will fail. This style of structure sharing is similar to

and inspired by that in the programming language PEBBLE [BL84][Bur84].

As the final example in this section, we show that the generic theory mechanism

can be used to simulate the operations of opening and closing a theory.

Example (open and close by genericity) Every theory A can be closed by being

made into a generic theory:

Generic closeA ()

body A

end

In order to use such a theory, one must provide a renaming to open (‘apply’) it;

Application opens the closed theory and results in a theory with names being

renamed by the supplied renaming.

The above example shows that it is possible to build up theory libraries using

the mechanism of generic theories. In general, a theory library consists of devel-

oped generic theories; in other words, when a library developer puts a theory into

the library, he closes the theory (i.e., he makes it generic). When the theories are

used, they are opened by application using different renamings and different theo-

ries as actual arguments to form new theories. (See Figure 1.) To summarize, the

names in a closed (parameterized) theory are just ‘placeholders’ and, when they

are opened, real names are provided by renamings. In practice, this should make

26

✬
✫

✩
✪

theory library
(closed generic theories)

✫✪
✬✩

user1 ✫✪
✬✩

user2
q q q

✫✪
✬✩

usern

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✕✁
✁

✁
✁

✁
✁

✁
✁

✁
✁☛

close
(generic)

open
(apply)

✁
✁
✁
✁
✁
✁
✁
✁
✁✕ ✁
✁

✁
✁

✁
✁

✁
✁

✁✁☛ ❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❑❆

❆
❆
❆
❆
❆
❆
❆
❆
❆❯

Figure 1: Theory library.

it possible for different people working cooperatively on a large theorem-proving

task communicating through a common theory library.

Remark In general, we assume that there is a global name space from which users

can choose names for entities to be described. This assumption of global name

space might seem to violate a desirable property of ‘independence’ of theory de-

velopment. However, our suggestion is that a group of cooperative users (or a user

doing a large theorem-proving task) should use a theory library as described above

as a tool of communication. We remark that a theory version control mechanism

would be very helpful.

5 Dis
ussions and Related Work

Frames are introduced as a set-theoretic meta-setting for theory development in

proof development based on the idea that lattice structures can be used to capture

the basic notions of structured theory constructions. A simple language S-CLEAR

for structured theory development is described; its semantics is given based on

arbitrary frames (and hence in a logic-independent way). There are several topics

for further research and some related work to be discussed in this section.

The renaming operations considered in this paper are syntactic operations

which are used to deal with name-control in proof development. We remark here

that the usual naming convention of ‘dot notation’, which appears in various

programming or specification languages, may be introduced as a special case of

27

renamings. In other words, we may define the meaning of the dot notation as that

of some special renaming operation. Consider the following syntax of renamings

with dotN as a new renaming expression:

r :: = r0 j r Æ r
′
j dotN

where N stands for an arbitrary name. With such a special renaming expression

dot, the renaming reduction remains the same as before; in particular, for a theory

variable x, dotNx contracts to x. We can assign the basic semantics of a renaming

of the form dotN as

[dotN] : n 7! N.n

Based on this, naming a theory specified by theory expression A by name N can

be done by introducing the following definition (a special zero-argument generic

theory):

N =df dotN(A)

One may also have a special useful renaming expression of the form

dotN except n1, ..., nm

which will denote the renaming

[N.n1 7! n1, ..., N.nm 7! nm] Æ [dotN]

Among the related work, the work on institutions [GB84,90] and algebraic

specification languages (like Clear [BG80]) has most influenced ours. In [SB83],

a structured theory development approach to LCF is discussed, which is later

further developed in a more general setting by considering the Edinburgh Logical

Framework [HST89] and is related to the idea of using consequence relations to

describe a logical system [FS88]. Category theory is used in these approaches while

we use set-theoretic notions. Also, the notion of theory they take is that which

contains all of the logical consequences, and we do not feel that this is suitable

for proof development systems and it causes problems when parameterization of

theories is considered, as we have discussed.

Based on a type-theoretic setting, one can also talk about the notion of theory

as shown in [Luo91][LPT89], where Σ-types are used to describe a notion of the-

ory and an approach to structured abstract reasoning is developed. It would be

interesting to compare the two approaches and look for a way of combining them

into a unified proof development environment.

acknowledgements We would like to thank Don Sannella for his helpful re-

marks on this work.

28

Referen
es

[BG80] R. Burstall and J.Goguen, ‘The Semantics of CLEAR, a Specification

Language’, LNCS 86.

[BL84] R. Burstall and B.Lampson, ‘Pebble, a Kernel Language for Modules

and Abstract Data Types’, LNCS 173.

[Bur84] R. Burstall, ‘Programming with Modules as Typed Functional Pro-

gramming’, Proc. Inter. Conf. on Fifth Generation Computer Systems,

Tokyo.

[CH88] Th.Coquand and G.Huet, ‘The Calculus of Constructions’, Informa-

tion and Computation, 2/3, vol. 76.

[EFH83] H. Ehrig, W. Fey and H. Hansen, ACT ONE: an Algebraic Specifica-

tion Language with Two Levels of Semantics, Report 83-03, Technical

University of Berlin, Fachbereich Informatik, 1983.

[FS88] J. Fiadeiro and A. Sernadas, ‘Structuring Theories on Consequences’,

in Recent Trends in Data Type Specification (eds., D. Sannella and A.

Tarlecki), Springer-Verlag.

[GB84] J. Goguen and R. Burstall, ‘Introducing Institutions’, LNCS 164.

[GB90] J. Goguen and R. Burstall, Institutions: Abstract Model Theory for

Specification and Programming, LFCS Report Series ECS-LFCS-90-

106, Dept. of Computer Science, University of Edinburgh.

[GW88] J. Goguen and T. Winkler, Introducing OBJ3, SRI report SRI-CSL-

88-9, 1988.

[HST89] R. Harper, D. Sannella and A. Tarlecki, ‘Structure and Representation

in LF’, Proc. of the Fourth Ann. Symp. on Logic in Computer Science,

June 1989, Asilomar, California, U.S.A.

[LB88] B.Lampson and R.Burstall, ‘Pebble, a Kernel Language for Modules

and Abstract Data Types’, Information and Computation, 2/3, vol. 76.

[LMR86] P. Lindsay, R. Moore and B. Ritchie, Review of Existing Theorem

Provers, IPSE 2.5 report 060/00047/1.3, 1986.

[LPT89] Z. Luo, R. Pollack and P. Taylor. How to Use LEGO: a preliminary

user’s manual. LFCS Technical Notes LFCS-TN-27, Dept. of Com-

puter Science, Edinburgh Univ., 1989.

29

[Luo89] Zhaohui Luo, ‘ECC, an Extended Calculus of Constructions’, Proc.

of the Fourth Ann. Symp. on Logic in Computer Science, June 1989,

Asilomar, California, U.S.A.

[Luo90] Zhaohui Luo, An Extended Calculus of Constructions, PhD thesis, Uni-

versity of Edinburgh.

[Luo91] Zhaohui Luo, ‘A Higher-order Calculus and Theory Abstraction’, In-

formation and Computation, 90(1), 1991.

[MG81] J. Meseguer and J. Goguen, ‘Initiality, Induction and Computability’

in Algebraic Methods in Semantics, (eds.) M. Nivat and J. Reynolds.

[Pau87] L. Paulson, Logic and Computation: Interactive Proof with Cambridge

LCF, Cambridge University Press.

[Rit87] B. Ritchie, The Design and Implementation of an Interactive Proof

Editor, Ph.D. Thesis, Dept. of Computer Science, Edinburgh Univer-

sity.

[SB83] D.Sannella and R.Burstall, ‘Structured Theories in LCF’, 8th Collo-

quium on Trees in Algebra and Programming.

30

