
Type-Theoretical Semantics with Coercive Subtyping∗

Zhaohui Luo
Dept of Computer Science,

Royal Holloway, Univ of London
Egham, Surrey TW20 0EX, U.K.

zhaohui@cs.rhul.ac.uk

Summary There have been a lot of interesting developments in lexical semantics including, for
example, the Generative Lexicon Theory [9]. However, the research so far has failed to provide a
satisfactory formal account to explain the important linguistic phenomena in the lexical theories.
Most of the employed formalisms are based on (extensions of) Montague grammar [7] and unable
to capture the linguistic phenomena satisfactorily. This paper studies type-theoretical semantics
and shows that the modern type theory, together with the theory of coercive subtyping [5],
offers a powerful and adequate logical language for formal semantics in which interesting lexical
phenomena such as logical polysemy [9] and copredication [2] can be properly interpreted.

Type Theory and Coercive Subtyping Some of the basic ideas of studying logical se-
mantics in type theory have been considered by Ranta based on Martin-Löf’s type theory [10]
where, in particular, common nouns are interpreted as types (rather than as functional subsets
of entities as in Montague grammar). This is natural in type theory, but has some unwelcome
consequences since there are fewer operations on types as compared with those on functional
subsets. As shown in the paper, subtyping is not only useful but crucial in solving this problem
and coercive subtyping provides us with such a framework.

Coercive subtyping [5] is a general theory of subtyping for dependent type theories such
as Martin-Löf’s type theory [8] and UTT [4]. The basic idea is to consider subtyping as an
abbreviation mechanism: A is a subtype of B (A ≤ B) if there is a unique implicit coercion
c from type A to type B and, if so, an object a of type A can be used in any context CB[]
that expects an object of type B: CB[a] is legal (well-typed) and equal to CB[c(a)]. For a type
theory with nice meta-theoretic properties such as Strong Normalisation (and hence logical
consistency), its extension with coercive subtyping has those properties, too. In computer
science, coercive subtyping has been implemented in many proof assistants such as Coq, Lego,
Matita and Plastic, and used effectively in interactive theorem proving. As shown in this paper,
when applied to linguistic semantics, coercive subtyping plays a crucial role in application of
type theory to logical semantics.

Coercive Subtyping in Type-Theoretical Semantics In a type-theoretical semantics,
common nouns are interpreted as types and verbs and adjectives as predicates. For example, we
have [[book]], [[human]] : Type, [[heavy]] : [[book]] → Prop and [[read]] : [[human]] → [[book]] → Prop,
where Prop is the type of propositions. Modified common noun phrases can be interpreted by
means of Σ-types of dependent pairs: for instance, [[heavy book]] = Σ([[book]], [[heavy]]).

Now, how could we reflect the fact that, for example, a heavy book is a book? Such
phenomena are captured by means of coercive subtyping, by declaring the first projection π1 as
a coercion: Σ(A,B) ≤π1

A. For example, if h : [[human]] and b : [[heavy book]], then [[read]](h, b),

∗Abstract for presentation at Semantics and Linguistic Theory 20 (SALT20), Vancouver, 2010.

1

the interpretation of ‘h reads b’, is well-typed (by coercive subtyping). This shows that coercive
subtyping solves a key problem in type-theoretical semantics. This problem is discussed in
[10] (pp. 62-64), where three possible solutions are considered, but none of them is completely
satisfactory. One of them is closest to ours where explicit first projections are employed; it is
one step short: using π1 as an implicit coercion, we have managed to capture the phenomena
as intended.

Subtyping relations propagate through the type constructors such as Π and Σ (they become
→ and × in the non-dependent cases, respectively). For instance, they propagate through the
function types, contravariantly: if A′ ≤ A and B ≤ B′, then A → B ≤ A′ → B′. For example,
[[book]] → Prop ≤ [[heavy book]] → Prop.

As another example, let’s consider the dot-types as studied in [9]. Let Phy and Info be the
types of physical objects and informational objects, respectively. One may consider the dot-type
Phy• Info as the type of the objects with both physical and informational aspects. Intuitively,
a dot-type is a subtype of its constituent types: Phy • Info ≤ Phy and Phy • Info ≤ Info.
A book may be considered as having both physical and informational aspects, reflected as:
[[book]] ≤ Phy • Info. By contravariance,

Phy → Prop ≤ Phy • Info → Prop ≤ [[book]] → Prop

Info → Prop ≤ Phy • Info → Prop ≤ [[book]] → Prop

Therefore, for example, for [[burn]] : Phy → Prop and [[interesting]] : Info → Prop, ‘burn
an interesting book’ can be interpreted as intended.1

Dot-Types, Lexical Entries and Coercion Contexts In the type-theoretical semantics
with coercive subtyping, several useful constructions can be defined and used to model various
linguistic phenomena. They include (and the details will be in the full paper): (1) Dot-types:
Although the meaning of a dot-type [9] is intuitively clear, its proper formal account has been
surprisingly tricky (see, for example, [1]). In type theory with coercive subtyping, a dot-type
A • B can be defined by means of the product type A×B together with its two projections as
implicit coercions, provided that ‘the components of A and B are disjoint’. This gives, for the
first time to our knowledge, an adequate formal treatment of dot-types and can hence be used in
a satisfactory way in formal semantics to interpret, for instance, copredication as discussed in [2]
and logical polysemy [9]. (2) Lexical entries as studied in the Generative Lexicon Theory [9] can
be expressed formally as dependent record types [6]. (3) Coercion contexts can be introduced
to model the more complicated phenomena such as those involving reference transfers [3].

References

[1] N. Asher. A type driven theory of predication with complex types. Fundamenta Infor., 84(2), 2008.

[2] N. Asher. Lexical Meaning in Context: A Web of Words. 2009. (Draft book to be published by CUP).

[3] R. Jackendoff. The Architecture of the Language Faculty. MIT, 1997.

[4] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.

[5] Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–130, 1999.

[6] Z. Luo. Manifest fields and module mechanisms in intensional type theory. In LNCS 5497, 2009.

[7] R. Montague. Formal Philosophy. Yale University Press, 1974. (Collection edited by R. Thomason).

[8] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf’s Type Theory. OUP, 1990.

[9] J. Pustejovsky. The Generative Lexicon. MIT, 1995.

[10] A. Ranta. Type-Theoretical Grammar. OUP, 1994.

1In Montague grammar (and its extensions), common nouns are interpreted as functional subsets of type
e0 → t, where t is the type of propositions and e0 is a subtype of the type of entities. For instance, [[book]] :
Phy • Info → t and [[heavy]] : (Phy → t) → (Phy → t). In such a situation, in order to interpret, e.g., ‘a heavy

book’, one would have to apply [[heavy]] to [[book]] by requiring, for example, Phy • Info → t ≤ Phy → t, which
is not the case – type clashes would happen, leading to unnatural and complicated treatments [1].

2

