
Formal Semantics in Modern Type Theories (MTT-semantics is both model/proof-theoretic)

Zhaohui Luo Royal Holloway University of London

Natural Language Semantics

- Semantics study of meaning (communicate = convey meaning)
- Various kinds of theories of meaning
 - Meaning is reference ("referential theory")
 Word meanings are things (abstract/concrete) in the world.
 c.f., Plato, ...
 - Meaning is concept ("internalist theory")
 Word meanings are ideas in the mind.
 - ✤ c.f., Aristotle, ..., Chomsky.
 - Meaning is use ("use theory")
 Word meanings are understood by their uses.
 - c.f., Wittgenstein, ..., Dummett.

Type-Theoretical Semantics

Montague Semantics (MG)

- R. Montague (1930–1971)
- ✤ Dominating in linguistic semantics since 1970s
- Set-theoretic, using simple type theory as intermediate
- * Types ("single-sorted"): e, t, e→t, ...

MTT-semantics: formal semantics in modern type theories

- ✤ Examples of MTTs:
 - Martin-Löf's TT: predicative; non-standard FOL
 - PCIC (Coq) & UTT (Luo 1994): impredicative; HOL
- ✤ Ranta (1994): formal semantics in Martin-Löf's type theory

Recent development on rich typing in NL semantics

- ✤ MTT-semantics is one of these developments.
- Chatzikyriakidis and Luo (eds.) Modern Perspectives in Type Theoretical Sem. Springer, 2017. (Collection on rich typing)
- Chatzikyriakidis and Luo. Formal Semantics in Modern Type Theories. Wiley/ISTE. (Monograph on MTT-sem, to appear)
- Advantages of MTT-semantics, including
 - Both model-theoretic & proof-theoretic offering a new perspective not available before.
 - ✤ Today: focus on this after introducing MTT-semantics.

MTT-semantics compared with Montague sem.

	Example	Montague semantics	Semantics in MTTs
CN	man, human	$\llbracket man \rrbracket, \llbracket human \rrbracket : e \to t$	$\llbracket man \rrbracket, \llbracket human \rrbracket : Type$
IV	talk	$[\![talk]\!]:e\to t$	$\llbracket talk \rrbracket : \llbracket human \rrbracket \to Prop$
Adj	handsome	$\llbracket handsome \rrbracket: (e \to t) \to (e \to t)$	$\llbracket handsome \rrbracket : \llbracket man \rrbracket \to Prop$
MCN	handsome man	$[\![handsome]\!]([\![man]\!])$	$\sum [m : \llbracket man \rrbracket, h : \llbracket handsome \rrbracket(m)]$
S	A man talks	$\exists m:e. ~\llbracket man \rrbracket(m)\& \llbracket talk \rrbracket(m)$	$\exists m: \llbracket man \rrbracket. \ \llbracket talk \rrbracket(m)$

E.g., in MTT-semantics, CNs are types rather than predicates: (*) John is a man.

- ♦ Montague: man(j) where man : $e \rightarrow t$
- ✤ MTT-sem: j : Man where Man : Type
- (#) The table talks. What about talk(t)?
 - ♦ Well-typed/false in Montague (talk : $e \rightarrow t \& t : e$)

 - * "selectional restriction": meaningfulness v.s. truth

Modelling Adjective Modifications [CL13, Luo18, XLC18]

Classical classification	Example	Characterisation of Adj(N)	MTT-semantics
intersective	handsome man	N & Adj	Σ x:Man.handsome(x)
subsective	large mouse	N (Adj depends on N)	large : ∏A:CN. A→Prop large(mouse) : Mouse→Prop
privative	fake gun		$G = G_R + G_F$ with $G_R \leq_{inl} G, G_F \leq_{inr} G$
non-committal	alleged criminal	nothing implied	∃h:Human. B _h ()

Note on Subtyping

- Subtyping essential for MTT-semantics
 - Could a "handsome man" talk?
 - Paul talks → talk(p)?
 where talk:Human→Prop and p:[handsome man]
 - * talk(p) : Prop, because
 - p : [handsome man] = Σ (Man,handsome) \leq Man \leq Human
- Remarks
 - ✤ Subtyping is crucial for MTT-semantics.
 - ✤ Coercive subtyping [Luo97, XLS12] is adequate for MTTs and we use it in MTT-semantics.

Advanced features in MTT-semantics: examples

Anaphora analysis

* MTTs provide alternative mechanisms for proper treatments via Σ -types [Sundholm 1989] (cf, DRTs, dynamic logic, ...)

Linguistic coercions

* Coercive subtyping provides a promising mechanism [Asher & Luo 2012]

Copredication

- * Cf, [Pustejovsky 1995, Asher 2011, Retoré et al 2010]
- * Dot-types [Luo 2009, Xue & Luo 2012, Chatzikyriakidis & Luo 2018]

Several recent developments

- * Dependent event types in event sem. [Luo & Soloviev (WoLLIC17, TYPES19)]
- Propositional Forms of Judgemental Interpretations [Xue et al (NLCS18)]
- * CNs as Setoids [Chatzikyriakidis & Luo (J of Oslo meeting 2018)]
- ✤ HoTT-logic for MTT-semantics in Martin-Löf's TT (LACompLing18)

PTS, Tubingen 2019

MTT-semantics is both model/proof-theoretic

Model-theoretic semantics (traditional)

 Meaning as denotation (Tarski, ...)
 Montague: NL → (simple TT) → set theory

 Proof-theoretic semantics

 Meaning as inferential use (proof/consequence)
 Gentzen, Prawitz, ..., Martin-Löf
 e.g., Martin-Löf's meaning theory

 MTT-semantics

- Both model-theoretic and proof-theoretic in what sense?
- What does this imply?

Formal semantics in Modern Type Theories (MTT-semantics) is both model-theoretic and proof-theoretic.

- * NL \rightarrow MTT (representational, model-theoretic)
 - MTT as meaning-carrying language with its <u>types</u> representing collections (or "sets") and <u>signatures</u> representing situations
- MTT → meaning theory (inferential roles, proof-theoretic)
 MTT-judgements, which are semantic representations, can be understood proof-theoretically by means of their inferential roles
- ☆ Z. Luo. Formal Semantics in Modern Type Theories: Is It Modeltheoretic, Proof-theoretic, or Both? Invited talk at LACL14.

MTT-semantics being model-theoretic

MTTs offer powerful representations.

- Rich type structure
 - * Collections represented by types
 - Eg, CNs and their adjective modifications (see earlier slides)
 - ✤ Wide coverage a major advantage of model-theoretic sem
- Useful contextual mechanisms signatures
 - Various phenomena in linguistic semantics
 - (eg, coercion & infinity)
 - Situations (incomplete world) represented by signatures (next slide)

MTT-semantics being model-theoretic (cont^{ed})

Signatures Σ as in (cf, Edin LF [Harper et al 1987]) $\Gamma \vdash_{\Sigma} a : A$

with $\Sigma = c_1:A_1, ..., c_n:A_n$

New forms besides c:A [Luo LACL14]

..., c:A, ..., A ≤_c B, ..., c ~ a : A, ...

- Subtyping entries (cf, Lungu's PhD thesis 2018)
- Manifest entries (can be emulated by coercive subtyping)

Theorem (conservativity)

The extension with new signature entries preserves the meta-theoretic properties for coherent signatures.

MTT-semantics being proof-theoretic

- MTTs are representational with proof-theoretic sem
 - Not available before cf, use theory of meaning
- MTT-based proof technology
 - Reasoning based on MTT-semantics can be carried out in proof assistants like Coq:
 - pretty straightforward but nice application of proof technology to NL reasoning (not-so-straightforward in the past ...)
 - Some Coq codes can be found in:
 - Z. Luo. Contextual analysis of word meanings in type-theoretical semantics.
 Logical Aspects in Computational Linguistics. 2011.
 - ✤ S. Chatzikyriakidis & Z. Luo. NL Inference in Coq. JoLLI 23(4). 2014.
 - ✤ S. Chatzikyriakidis & Z. Luo. Proof assistants for NL semantics. LACL 2016.
 - ✤ T. Xue et al. Propositional Forms of Judgemental Interpretations. NLCS 2018.

Why important?

- Model-theoretic powerful semantic tools
 - Much richer typing mechanisms for formal semantics
 - Powerful contextual mechanism to model situations
- Proof-theoretic practical reasoning on computers
 - Existing proof technology: proof assistants (Coq, Agda, Lego/Plastic, Nuprl)
 - Applications to NL reasoning
- ✤ Leading to both of
 - Wide-range modelling as in model-theoretic semantics
 - Effective inference based on proof-theoretic semantics

Remark: MTT-semantics offers a new perspective – new possibility not available before!

(+