
Semi-simplicial Types in Logic-enriched Homotopy
Type Theory
Fedor Part1 and Zhaohui Luo∗2

1 Royal Holloway, University of London
Email: fedor.part@gmail.com

2 Royal Holloway, University of London
Email: zhaohui.luo@hotmail.co.uk

Abstract
The problem of defining Semi-Simplicial Types (SSTs) in Homotopy Type Theory (HoTT) has
been recognized as important during the Year of Univalent Foundations at the Institute of Ad-
vanced Study [14]. According to the interpretation of HoTT in Quillen model categories [5], SSTs
are type-theoretic versions of Reedy fibrant semi-simplicial objects in a model category and sim-
plicial and semi-simplicial objects play a crucial role in many constructions in homotopy theory
and higher category theory. Attempts to define SSTs in HoTT lead to some difficulties such as
the need of infinitary assumptions which are beyond HoTT with only non-strict equality types.

Voevodsky proposed a definition of SSTs in Homotopy Type System (HTS) [26], an exten-
sion of HoTT with non-fibrant types, including an extensional strict equality type. However,
HTS doesn’t have the desirable computational properties such as decidability of type checking
and strong normalization. In this paper, we study a logic-enriched homotopy type theory, an
alternative extension of HoTT with equational logic based on the idea of logic-enriched type
theories [1, 17]. In contrast to Voevodsky’s HTS, all types in our system are fibrant and it can
be implemented in existing proof assistants. We show how SSTs can be defined in our system
and outline an implementation in the proof assistant Plastic [8].

1998 ACM Subject Classification F.4.1 Lambda calculus and related systems

Keywords and phrases Homotopy type theory, Semi-simplicial types, Logic-enriched type theory

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Homotopy Type Theory (HoTT) [25], an extension of Martin-Löf’s intensional Type Theory
(MLTT), lies in the center of the research area that explores the striking connections between
homotopy theory and type theory in the study of Univalent Foundations of mathematics.
Providing a direct language for formalization of homotopy theory, HoTT inherits constructiv-
ity and some computational properties of MLTT so that proof assistants like Coq [10]
and Agda [3] can be used for proof verification and partial automatization. Sophisticated
constructions from homotopy theory, whose complete formal description in set theory like ZF
would be hopelessly cumbersome, can be expressed very concisely in HoTT, where the notion
of a space is taken as primitive. For example, homotopy groups of spheres, fiber sequences,
van Kampen theorem and many other things have been formalized in this way in HoTT [25].

∗ Partially supported by research grants from Royal Academy of Engineering and the CAS/SAFEA
International Partnership Program for Creative Research Teams.

© F. Part and Z.Luo;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

50
6.

04
99

8v
1

 [
cs

.L
O

]
 1

6
Ju

n
20

15

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Semi-simplicial Types in Logic-enriched Homotopy Type Theory

Unfortunately, these developments are obstructed by a substantial problem. A type
in HoTT is not only characterised by its elements, but by the whole structure of weak
∞-groupoid, generated by the type of paths. Correspondingly, a function in HoTT is not just
one on elements of types, but a proper ∞-functor between ∞-groupoids and, as a result, the
types form a weak∞-category. However,∞-functors and∞-categories are meta-level notions
for HoTT, whereas attempts to define them internally lead to the need to encode an infinite
amount of coherence data, which is unclear how to do in HoTT. Only weak n-categories for
concrete n can be defined so far in HoTT. As a consequence, the notion of homotopy coherent
diagram of types, which is a ∞-functor from homotopy coherent nerve of a 1-category to the
∞-category of types, is also problematic. Therefore, no general notion of homotopy limit
can be formulated in HoTT, although for freely generated diagrams it is possible [4].

A particular case of the problem is the internalisation of the notion of (semi-)simplicial
objects in a type universe U or, in short, (semi-)simplicial types. A simplicial type is the
family of types Xi : U (i ∈ ω), together with maps di

n : Xn+1 → Xn and si
n : Xn → Xn+1,

where Xn should be thought of as the type of n-dimensional simplices, di
n assigns to a simplex

x : Xn+1 the n-dimensional simplex, which should be thought of as i-th face of x, and si
n

assigns to a simplex x : Xn its degenerated version at the dimension n + 1. Formally, di
n

and si
n are just some maps that satisfy certain equational conditions which, if expressed by

means of the path-equality in HoTT, should be accompanied by coherence conditions for
these paths and this cannot be expressed in HoTT. Among many other things, simplicial
types may serve as a useful tool for talking about weak ∞-categories in HoTT in terms of
complete Segal spaces [24].

If one omits degeneracy maps in the definition of simplicial types, one would obtain
Semi-Simplicial Types (SSTs). It simplifies the definition, but is still interesting as SSTs may
be used, for example, to define complete semi-Segal spaces, which are ∞-categories without
identities. What seems to be missing in HoTT while trying to define SSTs inductively is
some kind of proof-irrelevant or strict equality. Two definitions of SSTs have been proposed
independently by Herbelin [12] and Voevodsky [27]. Both definitions rely on a notion of strict
equality which, in the former case, is proof-irrelevant equality of the universe of propositions
Prop in CIC1 and, in the latter case, is the extensional equality of Voevodsky’s Homotopy
Type System (HTS) [27]. Unfortunately, CIC with the proof-irrelevant equality in Prop is
known to be inconsistent with univalent universes. HTS extends HoTT with auxiliary types,
which do not carry the structure of weak ∞-groupoid and correspond to non-fibrant objects
in Quillen model category. The major disadvantage of HTS is the lack of basic computational
properties such as decidability of type checking or strong normlization, which makes it not
implementable in any existing proof assistant.2

In this paper we exploit the ideas from Logic-enriched Type Theories (LTTs) [1, 17] to
study an extension of HoTT, HoTTEq, where all types are fibrant and SSTs are definable.3
LTTs are type theories in which logical propositions and datatypes are completely separate.
It is thus possible to introduce axioms or new rules of deduction without affecting the world of

1 The Calculus of Inductive Constructions (CIC) is the type theory implemented in the Coq proof assistant.
More accurately, the current Coq system [10] implements the predicative CIC (pCIC) where Set has
become a predicative universe (we omit the details here).

2 Please also note that decidability of type checking is a basic requirement for a type theory to be a
reasonable logical system and one may regard this as not only a desirable but necessary property.

3 LTTs are related to the logic with dependent sorts [6], Cartmell’s Generalized Algebraic Theories [9],
Makkai’s First Order Logic with Dependent Sorts [21] and Maietti’s PhD thesis [20]. We omit a detailed
analysis here.

F. Part and Z.Luo 3

datatypes. For instance, classical principles can be applied merely to logic without destroying
the constructive nature of types (see, for example, [17, 2]). LTTs have been implemented in
the Plastic proof assistant [8, 7] where formalization tasks based on LTTs have been done
including, for instance, formalization of Weyl’s predicative foundation of mathematics [2].

We shall consider a strict equality in an LTT-setting whose datatype part is HoTT. Our
system HoTTEq extends HoTT with two kinds of logical formulas, logical equality and
universal quantification, and a new induction principle for N, the type of natural numbers.
The inductive definition of SSTs in HoTTEq may be related to Voevodsky’s definition in
HTS as follows. Let T =

∑
x:U

A(x), where A(x) encodes some data over a type x. In HTS

the type family sstn of all n-truncated SSTs is defined by recursion on natural numbers
sst_rec : N→

∑
t:T
P (t), where sstn := π1(π1(sst_rec(n))) and P (t) is essentially a predicate,

which expresses the functoriality of some maps in π2(π1(t)) by means of the strict equality. As
P (t) contains the strict equality,

∑
t:T
P (t) is non-fibrant. In HoTTEq such non-fibrant types

are avoided by means of the new induction principle for natural numbers, which allows one to
define a function sst_rec : N→ T and to prove that ∀n : N.P (sst_rec(n)) simultaneously.

The plan of the paper is as follows. Section 2 contains some background information on
SSTs and LTTs. HoTTEq is described in Section 3. Section 4 demonstrates how SSTs can
be defined in HoTTEq and Section 5 outlines an implementation in Plastic.

2 Background: Semi-simplicial Types and Logic-enriched Type
Theories

Originally, Martin-Löf’s intensional type theory (MLTT) was developed as a constructive
foundation of mathematics with meaning explanations based on the notions of canonical
object and computation [22, 23]. Surprisingly, the system admits a non-trivial interpretation
in abstract homotopy theory, with types as abstract spaces, terms as continuous functions
and identity types as spaces of paths. This unveils intensional type theories as a general
syntactic framework for formal reasoning about constructions of homotopy theory. Formally,
such a theory is modelled in a category with the Quillen model structure, allowing to talk
about homotopical constructions internal to the category [5]. A Quillen model structure
consists of three classes of maps - fibrations, cofibrations and weak equivalences, which satisfy
certain axioms [13]. Examples of Quillen model categories include categories of topological
spaces, groupoids and simplicial sets.

In particular, HoTT extends MLTT to reflect some important properties of the simplicial
set model [15] and, among other things, adds the Univalence Axiom, which is a type-theoretic
version of the existence of object classifier in an elementary ∞-topos [19]. HoTT hence
provides a direct language for formalization of homotopy theory and higher category theory
[25] but, as mentioned in the Introduction, there is an obstacle in defining (semi-)simplicial
types, a notion to be introduced below. We shall also review the LTT-framework whose ideas
are used in this paper.

2.1 Semi-simplicial types
Let ∆ denote the simplicial category with finite ordinals Ob∆ = {[n]|n ∈ N} as objects and
with morphisms generated by two classes of monotonic maps: face maps di

n : [n] ↪→ [n+ 1],
omitting i in the image, and degeneracy maps si

n : [n + 1] → [n], merging i and i + 1.
A simplicial type is a simplicial object in a universe U , that is a contravariant functor
X : ∆op → U , corresponding to a sequence of types X([0]) : U , X([1]) : U , X([2]) : U , . . . ,

4 Semi-simplicial Types in Logic-enriched Homotopy Type Theory

X([n]) : U , . . . , together with maps d̄i
n : X([n+ 1])→ X([n]) and s̄i

n : X([n])→ X([n+ 1]),
satisfying equational conditions as determined by functoriality. X([0]) is the type of points,
X([1]) the type of segments, . . . , and X([n]) the type of n-simplices, and so on. The maps
d̄i

n assign a face to (n+ 1)-simplices by omitting the i-th vertex and the maps s̄i
n form the

degenerated (n+ 1)-simplices out of n-simplices by repeating the i-th vertex.
In the case of semi-simplicial types (SSTs), one only needs to define the notion of a

functor from the semi-simplicial category, which is a subcategory of the simplicial category
on face maps. In this paper we are mostly concerned with SSTs and shall use ∆ to denote
the semi-simplicial category, unless stated otherwise.

During the Year of Univalent Foundations at IAS [14] the following presentation of SSTs
as a family of dependency structures of HoTT has been proposed. Consider the following
boundary map:

d̄n := d̄0
n × · · · × d̄n

n : X([n+ 1])→ X([n])× · · · ×X([n])

that assigns to each (n+ 1)-simplex a tuple of its n-faces. Then X([n+ 1]) is equivalent to
the total space of fibration:

X([n+ 1]) '
∑

x0:X([n]),...,xn:X([n])

(d̄n)−1(x0, . . . , xn)

where fiber (d̄n)−1(x0, . . . , xn) is the type of all (n+ 1)-simplicies with boundary (x0, . . . , xn)
and is non-empty iff (x0, . . . , xn) forms a valid boundary. In the case that there’s a type
of all valid boundaries bndn, X([n+ 1]) can be defined by means of the dependent type of
fillings of boundaries Yn : bndn → U :

X([n+ 1]) :=
∑

x:bndn

Yn(x)

Thus an SST is the following dependency structure (Yn):

Y0 : U
Y1 : Y0 → Y0 → U

Y2 :
∏

a,b,c:Y0

Y1(a, b)→ Y1(b, c)→ Y1(a, c)→ U

. . . (1)

In this way one may define n-truncated SSTs in HoTT for any concrete n, but not for
hypothised n. This only constitutes a meta-level definition.

2.2 Logic-enriched type theories
The concept of an LTT, an extension of the notion of type theory, was proposed by Aczel
and Gambino in their study of type-theoretic interpretations of constructive set theory [1].
It provided them with flexibility to consider logics distinct from the propositions-as-types
logic. A type-theoretic framework, which formulates LTTs in a logical framework, has been
proposed in [17] to support formal reasoning with different logical foundations.

An LTT is a dependent type theory such as MLTT extended with judgements of the
following forms:

Γ ` P : Prop, asserting that P is a logical proposition under context Γ.

F. Part and Z.Luo 5

Γ ` p : Prf(P), asserting that p is a proof of proposition P (we often omit the Prf-
operator.)4

In this paper, we shall employ the LTT-framework as studied in [17] where a logical framework
is used to specify LTTs, which is implemented in the proof assistant Plastic [8, 7]. A logical
frmawork is a meta-language for specifying type theories, which is itself a dependent type
theory. The rules of this framework for LTTs can be found in [2] (particularly its Appendix
A). Besides the kind Type of types, we also have the kind Prop whose objects are logical
propositions.5 These kinds are governed by the following rules:

Γ valid

Γ ` Type kind
Γ ` A : Type

Γ ` El(A) kind
Γ ` A = B : Type
Γ ` El(A) = El(B)

Γ valid

Γ ` Prop kind

Γ ` P : Prop
Γ ` Prf(P) kind

Γ ` P = Q : Prop
Γ ` Prf(P) = Prf(Q)

The rules for valid context formation is as usual:

〈〉 valid
Γ ` K kind x 6∈ FV (Γ)

Γ, x : K valid

Please note, however, since there are new kinds Prop and Prf(P), one can assume proposi-
tions and their proofs as well as types and their objects. There are also parametric kinds
of the form (x : K)K ′, which are Π-constructors at the level of kinds. They are also called
Π-kinds, not to be confused with Π-types: the former is meta-level constructs while the latter
is at the object level. Π-types can be introduced as follows:

Π: (A : Type, B : (x : A)Type)Type
λ : (A : Type, B : (x : A)Type, f : (x : A)B[x])Π[A,B]
EΠ : (A : Type, B : (x : A)Type, C : (F : Π[A,B])Type,
f : (g : (x : A)B[x])C[λ[A,B, g]], z : Π[A,B])C[z]

plus a computation rule which we omit here.
The nice property of LTTs is that the introduction of new logical axioms or logical rules

doesn’t affect world of types. This has given birth to an interesting direction of research. For
instance, traditionally, the propositions-as-types logic in dependent type theories cannot be
made classical without introducing unwanted closed terms in the data-types such as that of
natural numbers, which do not compute to any canonical objects. For example, in MLTT the
law of Exluded Middle would generate an element of N + (N→ 0), which doesn’t compute
to any canonical element of the type. As LTTs are free of such a problem, they are better
suited for classical reasoning with type theory. Work on the subject includes [17, 2] and the
Plastic proof assistant has been developed to support LTTs [8, 7] and it was used to give
computer checked formalization of Weyl’s classical predicative mathematics [2].

In this work we investigate another interesting application of the LTT-framework: resolving
the coherence problem in HoTT. For this purpose we slightly diverge from what has been
understood as an LTT in [1] or [17] in the following sense.

4 It is possible to consider a system without proof terms by only considering judgements of the form
Γ ` φ1, . . . , φn ⇒ φ true, as in [1]. Here we consider proof terms and they do not make any essential
difference in most of the cases (and definitely not in this paper).

5 Note that, different from Coq, Prop is not a type and, hence, we do not automatedly have higher-order
logic in LTTs.

6 Semi-simplicial Types in Logic-enriched Homotopy Type Theory

We form HoTTEq by adding a logical equality and universal quantification, but it doesn’t
have full first-order logic of LTTs. In another words, in HoTTEq, only equational reasining
is considered and, in a sense, it is closely related to generalized algebraic theories.
Logically equal terms in HoTTEq are interchangeble in both propositions and types,
whereas in LTTs they are interchangeble only in propositions.
Induction principles of HoTTEq are more sophisticated than those in LTTs. In LTTs an
inductive type is characterised by an elimination principle and logical axioms of induction.
These are two separate mechanisms for constructing functions and proving propositions.
In HoTTEq these mechanisms are merged into one.

However, having said the above, the key idea of LTTs that propositions and datatypes are
separated plays a key role in the work to be described below.

3 HoTTEq: HoTT Enriched with Logical Equality

As in the LTT-framework (see §2.2), HoTTEq extends HoTT with two forms of judgements:
Γ ` P : Prop and Γ ` p : P . Contexts of HoTTEq can contain both type/object variables and
proposition/proof variables. We shall follow the rules for LTT1 [17]. In LTT1, however, every
context can be split: Γ is equivalent to (ΓType,ΓProp), where ΓType contains type/object
variables and ΓProp contains proposition/proof variables. This is because that, in traditional
LTTs, propositions or their proofs do not occur in types or their objects. For a type theory
like LTT1, we have: ΓType,ΓProp ` JType if, and only if, ΓType ` JType, where JType is
either A : Type or a : A. In contrast, in HoTTEq one can construct more objects with
assumptions of the logical equality between terms. This property will be crucial for the
definition of SSTs.

We shall also have the rule for proof irrelevance:

Γ ` P : Prop Γ ` p : P Γ ` q : P (PI)Γ ` p ≡ q : P

which states that any two proofs of a proposition are definitionally equal.

3.1 Logical operators
HoTTEq contains only two logical operators: equality x =A y : Prop and universal quantific-
ation ∀x : σ.P (x) : Prop, where σ is either a type or a proposition. The rules for the logical
equality are reminiscent of those of the Martin-Löf identity, where the J-like eliminator is
duplicated for propositions and types. Additionally, the logical equality is defined to satisfy
function extensionality by the rule (LEqFE). The rules are as follows:

Γ ` A : Type Γ ` a : A Γ ` b : A (LEqForm)Γ ` a =A b : Prop

Γ ` A : Type Γ ` a : A (LEqIntro)
Γ ` rA

a : a =A a

Γ, x : A, y : A, p : x =A y ` T [x, y, p] : Type Γ, x : A ` t(x) : T [x, x, r]
(LEqElimT)

Γ, x : A, y : A, p : x =A y ` ET
=(x, y, p, t) : T [x, y, p]

Γ, x : A, y : A, p : x =A y ` P [x, y, p] : Prop Γ, x : A ` q(x) : P [x, x, r]
(LEqElimP)

Γ, x : A, y : A, p : x =A y ` EP
= (x, y, p, q) : P [x, y, p]

F. Part and Z.Luo 7

Γ, x : A, y : A, p : x =A y ` T [x, y, p] : Type Γ, x : A ` t(x) : T [x, x, r]
(LEqComp)

Γ, x : A ` Cmpt(x) : ET
=(x, x, r, t) =T [x,x,r] t(x)

Γ ` A : Type Γ, x : A ` B(x) : Type
(LEqFE)

Γ, f, g : F, p : (∀x : A.f(x) =B(x) g(x)) ` FE(f, g, p) : f =F g

where F ≡
∏
x:A

B(x).

And for the universal quantification (where σ is either Type or Prop):

Γ ` X : σ Γ, x : X ` P (x) : Prop
(FAForm)

Γ ` ∀x : X.P (x) : Prop

Γ ` X : σ Γ, x : X ` p(x) : P (x)
(FAIntro)

Γ ` I∀(p) : (∀x : X.P (x))

Γ ` X : σ Γ ` p : (∀x : X.P (x))
(FAElim)

Γ, x : X ` E∀(p, x) : P (x)

Using the eliminators EP
= and ET

= and the universal quantification, one can construct the
transitivity proof: for p : a =A b and q : b =A c, the proof q · p : a =A c. Also, for p : a =A b

and (x : A)Y (x) : σ, one can construct the substitution substYp (y) : Y (b), where y : Y (a).
The following straightforward lemmas assure that logical equality, defined in this way,

behaves as expected. They will be required in Section 4.

I Lemma 1. For any type A : Type, any type family T : (A)Type over A, if p : x =A y,
q : y =A z, then substTq ◦ substTp = substTq·p.

I Lemma 2. For any family of functional types T ≡ (x : A)
∏
y:B

C(x, y), any object a : A,

any function f :
∏
y:B

C(a, y) and any equality proof p : a =A b, the following holds:

∀y : B.substTp (f)(y) = substC(−,y)
p (f(y)).

3.2 Induction
In LTTs, an inductive type is characterised by an elimination rule that specifies how one can
construct elements of other types out of the objects of the inductive type, and an induction
rule that specifies how propositions about objects of the inductive type can be proven. For
example, for the type of natural numbers N, it does not only have the familiar elimination
rule but have the following induction rule:

Γ, n : N ` Pn : Prop Γ ` b : P0 Γ, n : N, p : Pn ` ih : Pn+1

Γ, n : N ` IndN(b, ih, n) : Pn

This is fine as long as proof terms do not occur in types or their objects. In HoTTEq this
property doesn’t hold and the above form of induction becomes insufficient. This happens
because, if inductive hypothesis has the form:

n : N, t : Tn, p : Pn(t) ` ihT (t, p) : Tn+1

n : N, t : Tn, p : Pn(t) ` ihP (t, p) : Pn+1(ihT (t, p))

8 Semi-simplicial Types in Logic-enriched Homotopy Type Theory

where Tn are types and Pn(t) are propositions, then the elimination rule for N cannot be
applied to obtain a function of type

∏
n:N

Tn. However note, that if propositions were types,

this inductive hypothesis could have been rewritten in terms of type family
∑

t:Tn

Pn(t). Thus,

instead, we introduce a mechanism that not only constructs a function from an inductive
type but, simulteniously, proves a property of the function (the premises are the same):

Γ ` b : T0 Γ ` pb : P0(b)
Γ, n : N, t : Tn, p : Pn(t) ` ihT (t, p) : Tn+1

Γ, n : N, t : Tn, p : Pn(t) ` ihP (t, p) : Pn+1(ihT (t, p))
Γ, n : N ` ET

N (b, pb, ihT , ihP , n) : Tn

and

Γ ` b : T0 Γ ` pb : P0(b)
Γ, n : N, t : Tn, p : Pn(t) ` ihT (t, p) : Tn+1

Γ, n : N, t : Tn, p : Pn(t) ` ihP (t, p) : Pn+1(ihT (t, p))
Γ, n : N ` EP

N (b, pb, ihT , ihP , n) : Pn(ET
N (b, pb, ihT , ihP , n))

with the following computation rules:

Γ `EN (b, pb, ihT , ihP , 0) ≡ b

Γ, n : N `EN (b, pb, ihT , ihP , n+ 1) ≡ ihT (ET
N (b, pb, ihT , ihP , n), EP

N (b, pb, ihT , ihP , n))

4 Inductive Definition of Semi-Simplicial Types

We shall first give an outline on how to define SSTs in HoTTEq and then describe the
constructions in more details.

4.1 Outline
In this subsection we show how the inductive construction, as described by Voevodsky [27],
of the tower of dependency structures of SSTs (see (1) at the end of §4) fails in HoTT, but
can be done in HoTTEq.

The inductive procedure constructs (n+ 1)-truncated SSTs out of an n-truncated ones.
Explicitly, types sstn of all n-truncated SSTs are defined inductively by assigning a type of
(n+ 1)-simplices to every valid n-dimensional bounary of a (n+ 1)-simplex:

sstn+1 ≡
∑

x:sstn

bndn+1
n (x)→ U

where bndm
n (x) is the type of n-boundaries of a m-simplex in x. The type bndm

n (x) is defined
inductively by representing bndm

n+1(x) as the type of pairs (y, aug), where y : bndm
n (x) and

aug :
∏

f :[n+1]→[m]
Fill(restf,x

n (y)) is an augmentation of n-boundary y, obtained by choosing

a (n + 1)-simplex for every restriction of y to (n + 1)-dimensional subsimplex f of a m-
dimensional simplex. Here restriction maps restf,x

n (y) can only be defined inductively in the
assumption of functoriality of them. Then functoriality can be defined inductively only with
further coherence assumptions and so on.

F. Part and Z.Luo 9

We avoid this obstacle in HoTTEq by using the induction principle for natural numbers
as given in §3.2, which makes it possible to prove functoriality mutually with the type
construction. In §1 P denotes this functoriality predicate.

The rest of the section is devoted to the detailed exposition of how to construct the type
family sstn.

4.2 Face maps
We define combinatorics of semi-simplicial category in type theory by the type ∆(i, j) : U0 of
all increasing functions between standard intervals Stn(i) and Stn(j), namely:

∆(i, j) :=
∑

f :Stn(i)→Stn(j)

is_incrT (f)

where:

Stn(i) :=
∑
n:N

leq(n, i)

is_incrT (f) :=
∏

n,m:Stn(i)

ls(n,m)→ ls(f(n), f(m))

Composition − ◦∆ − of two face maps (f, pf) : ∆(i, j) and (g, pg) : ∆(j, k) is defined as
follows:

(g, pg) ◦∆ (f, pf) :=
(g ◦ f, λn,m : Stn(i).pg(f(n), f(m)) ◦ pf (n,m))

Note that, by the η-rule, the associativity of composition holds definitionally.

4.3 Inductive construction
We use induction for natural numbers HoTTEq to define simultaneously the data and a
proof of a predicate on this data. Data construction is as follows:

Type family sstn : U1 of all n-truncated SST, such that sstn+1 computes to
∑

x:sstn

bndn+1
n (x)→

U0 and sst0 ≡ U0.
Type family bndm

n (x : sstn) : U1 of n-boundaries of m-simplex in x, such that:

bndm
0 (x : sst0) ≡ Stn(m)→ x.

A (n+1)-boundary is a pair (y, aug), consisting of n-boundary y and it’s augmentation
aug. Precisely, bndm

n+1(x, F ill), where x : sstn, Fill : bndn+1
n (x)→ U0, computes to:∑

y:bndm
n (x)

∏
f :[n+1]→[m]

Fill(restf,x
n (y))

Family of maps restf,x:sstn
n (y) : bndk

n(x), where y : bndm
n (x), restricting n-boundary of

m-simplex y to the n-subboundary of face f : ∆(k,m) of m-simplex, such that:

restf,x:sst0
0 (y) ≡ y ◦ π1(f)

10 Semi-simplicial Types in Logic-enriched Homotopy Type Theory

Inductive step here deserves a comment as this is the point, where functoriality is
required. At this stage the value of the following expression should be specified, where
(y, aug) is unfolded presentation of (n+ 1)-boundary bndm

n+1(x):

rest
f :∆(k,m),x
n+1 (y, aug)

This can be done by taking n-boundary restf,x
n (y) : bndk

n(x) together with some aug-
mentation of it, which should be of type

∏
h:∆(n+1,k)

Fill(resth,x
n (restf,x

n (y))). But if

we try to use given augmentation λh.aug(f ◦ h), we would obtain a term of type∏
h:∆(n+1,k)

Fill(restf◦h,x
n (y)). Thus we require, that restn satisfy the following func-

toriality condition:

funcn : ∀k, l,m : N.∀f : ∆(k, l),g : ∆(l,m).
∀y : bndm

n (x).restg◦f,x
n (y) = restf,x

n (restg,x
n (y))

The correct augmentation can be obtained by using substitution:

λh.substF ill
funch,f

n (y)(aug(f ◦ h))

To complete the inductive definition, it remains to prove functoriality for rest0 and for
restn+1, provided it holds for restn. Assume that f : ∆(k, l) and g : ∆(l,m). The base case
is straightforward:

restg◦f,x:sst0
0 (y) ≡ y ◦ π1(g ◦ f) ≡ y ◦ (π1(g) ◦ π1(f)) ≡

≡ (y ◦ π1(g)) ◦ π1(f) ≡ restf,x
0 ◦ restg,x

0 (y)

and thus funcf,g
0 (y) is just reflexivity.

Using funcn, we now construct the proof funcf,g
n+1(y) : (restg◦f,x

n+1 (y) = restf,x
n+1◦rest

g,x
n+1(y)).

By definition restg◦f,x
n+1 (y) and restf,x

n+1 ◦ rest
g,x
n+1(y), where y : bndm

n+1(x), compute to the
following pairs:

restg◦f,x
n+1 (y, aug) ≡

(
restg◦f,x

n (y), λh : ∆(n+ 1, k).substF ill
funch,g◦f

n
(aug((g ◦ f) ◦ h))

)

restf,x
n+1 ◦ rest

g,x
n+1(y) ≡ restf,x

n+1

(
restg,x

n (y), λh : ∆(n+ 1, l).substF ill
funch,g

n
(aug(g ◦ h))

)
≡

≡
(
restf,x

n (restg,x
n (y)), λh : ∆(n+ 1, k).substF ill

funch,f
n

(substF ill
funcg,f◦h

n
(aug(g ◦ (f ◦ h))))

)
Each of these pairs is a point in a fiber of the family ΠF := (y : bndk

n(x))
∏

h:∆(n+1,k)
Fill(resth,x

n (y)).

By inductive hypothesis, there is equality funcf,g
n (y) between first components. Denote aug1

and aug2 the second components of the first and the second pair respectively. It remains
to prove, that substΠF

funcf,g
n

(aug1) = aug2. By Lemma 2 and (LEqFE) rule this equality is
equivalent to (h : ∆(n+1, k))substF ill

funcf,g
n

(aug1 h) = aug2 h. aug(g ◦ (f ◦h)) computationally
equals to aug((g◦f)◦h) and by Lemma 1 substF ill

funch,f
n
◦substF ill

funcg,f◦h
n

= substF ill
funch,f

n ·funcg,f◦h
n

.
Thus substF ill

funcf,g
n

(aug1 h) and aug2 h are two substitutions of the same term, therefore by
(PI) they are equal.

F. Part and Z.Luo 11

5 Implementation in Plastic

Plastic is a light-weight proof assistant, developed by Paul Callaghan in 1999 [7]. It’s
underlying system is Luo’s Logical Framework [16] and it’s syntax is very similar to that of
Lego [18]. Plastic is the only proof assistant that supports LTTs and is flexible enough for
the developments, described in this paper.

In this section we outline the key aspects of the implementation of HoTTEq and SSTs in
Plastic. The source code of Plastic together with this implementation is available at github [11]
(the SST implementation is located at the subdirectory lib/Univalence/SimplicialTypes).

5.1 HoTTEq: Implementation in Plastic
Rules of a type theory are expressed in Plastic by means of LF. For example, rules (LEqForm),
(LEqIntro), (LEqElimT) and (LEqElimP) for logical equality are expressed as the following
code in Plastic (here A→ B is the abbreviation for the kind (_ : A)B):

[Eq : (A : Type) A -> A -> Prop];
[Eqr : (A : Type) (a : A) Eq A a a];
[EqE_T : (A : Type) (T : (x:A)(y:A)(_:Eq ? x y)Type)

(_:(x:A)T x x (Eqr ? x))(x:A)(y:A)(p:Eq ? x y) T x y p];
[EqE_P : (A : Type) (P : (x:A)(y:A)(_:Eq ? x y)Prop)

(_:(x:A)P x x (Eqr ? x))(x:A)(y:A)(p:Eq ? x y) P x y p];

Plastic supports standard pattern of inductive definitions. For example, the type of paths
is defined as follows:

Inductive [A:Type][Id_ : (x:El A)(y:El A)Type]
Constructors

[Idr : (z:El A)Id_ z z];

One of key features of Plastic is the mechanism to specify computation rules for customised
eliminators of inductive types. This makes it possible to implement induction of HoTTEq
(and even higher inductive types). Specialised computation rules can be defined by the
command SimpleElimRule. This gives access to the underlying mechanism of Plastic, used
for inductive types and universes. Basically, the term, which is to be used as the combinator
for elimination operator and constructor arguments, is specifyed in this way. The general
syntax is as follows:

SimpleElimRule TYPE_NAME ELIM_NAME ELIM_ARITY
[CONSTR_1 CONSTR_1_ARITY = TERM : TYPE]
...
[CONSTR_n CONSTR_n_ARITY = TERM : TYPE];

For example, this command allows one to define the recursion principle for a circle, so
that it computes on the point constructor:

[Circle : Type];
[base : Circle];
[loop : Id_ ? base base];
[CircRec : (A:Type)(a:A)(l:Id_ ? a a)Circle ->A];

SimpleElimRule Circle CircRec 4
[base 0 = [A:Type][a:A][l:Id_ A a a] a :

(A:Type)(a:A)(_:Id_ A a a)A];

12 Semi-simplicial Types in Logic-enriched Homotopy Type Theory

Because there’s no way to implement the strong proof-irrelevance (PI) in the current
version of Plastic, we replace it with the following rule:

[PI : (P : Prop) (A : Type) (t : P -> A) (p , q : P)
Eq ? (t p) (t q)];

5.2 Semi-simplicial types
The definition of SSTs by means of an inductive procedure, as described in §4, is implemented
as two maps: t : T, p : P (t) ` ihT (t, p) : T and t : T, p : P (t) ` ihP (t, p) : P (ihT (t, p)), where:

T :=
∑

SST :U1

∑
bnd:SST→N→U1

∏
x:SST,k,m:N,f :∆(k,m)

bndm(x)→ bndk(x)

P ((SST, bnd, rest) : T) := ∀x : SST.∀k, l,m : N.∀f : ∆(k, l), g : ∆(l,m).
∀y : bndm(x).restg◦f,x(y) = restf,x(restg,x(y))

Then, desired functions sst_recT : N→ T and sst_recP (n : N) : P (sst_recT (n)), such
that sst_recT (n+ 1) ≡ ihT (sst_recT (n), sst_recP (n)), are obtained by applying induction
principle of Section 3. With proof scripts omitted as they are too cumbersome (see [11]) the
code is as follows:

[T = Sigma ? ([SST:Type ^1] Sigma ? ([bnd :(T^1 SST)== >(Nat ==> Type ^1)]
Pi3 ? ? ? ([x:El (T^1 SST)][k:Nat][m:Nat]
Pi ? ([f:El (Delta k m)]
T^1 (ap2_ ? ? ? bnd x m) ==> T^1 (ap2_ ? ? ? bnd x k)

))))];

[P = [t:T] All_T ? ([x:(SST_pr t)]
AllNat3 ([k,l,m:Nat]
All_T ? ([f:El (Delta k l)] All_T ? ([g:El (Delta l m)]
All_T ? ([y:(T^1 (bnd_pr t x m))]
Eq ? (rest_pr t x k m (fm_comp k l m f g) y)

(rest_pr t x k l f (rest_pr t x l m g y)))))))];

Claim ih_T : (n : Nat)(t : T)(p : (P t))T;
...

Claim ih_P : (n : Nat)(t : T)(p : (P t))P (ih_T n t p);
...

Claim t0 : T;
...

Claim p0 : P t0;
...

And the type of all n-truncated SSTs is obtained by application of the data component
IE_NatT of induction for natural numbers:

pi1 ? ? (IE_NatT T P t0 p0 ih_T ih_P n);

F. Part and Z.Luo 13

6 Conclusion

The system HoTTEq and the succsessful definition of SSTs in HoTTEq, presented in this
paper, is just one example of how HoTT can benefit from a logic enrichment. In general,
strict Prop of logic-enriched HoTT allows to talk about subsets (ΓType,ΓProp) of the fibrant
object, which represents a context of types ΓType. In further work we plan to explore in
more detail a categorical semantics of the logic-enriched HoTT.

Definition of SSTs in HoTTEq clears up also many interesting directions for a further
formalisation work.

Extending this definition to the definition of full simplicial types seems to us to be possible,
although it requires some technical details to be worked out.

Another possibility is to explore, what can be already done by means of SSTs. For
example, straighforward definitins can be done for natural transformations between SSTs and
complete semi-Segal types, which reflect the structure of weak ∞-category without identities.
In further work we plan to figure out, how the globular structure of the type of paths on a
universe can be realized as a complete semi-Segal type.

References
1 Peter Aczel and Nicola Gambino. The generalised type-theoretic interpretation of con-

structive set theory. J. Symb. Log., 71(1):67–103, 2006.
2 R. Adams and Z. Luo. Weyl’s predicative classical mathematics as a logic-enriched type

theory. ACM Trans. on Computational Logic, 11(2), 2010.
3 The Agda proof assistant (version 2). Available from the web page:

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php, 2008.
4 J. Avigad, K. Kapulkin, and P.-L. Lumsdaine. Homotopy limits in Coq. CoRR,

abs/1304.0680, 2013.
5 Steven Awodey. Type theory and homotopy. In Epistemology versus Ontology - Essays

on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf, pages
183–201. 2012.

6 Joao Belo. Dependently sorted logic. In Proceedings of the 2007 international conference
on Types for proofs and programs, Springer- Verlag Berlin, Heidelberg, 2007.

7 P. Callaghan. Plastic proof assistant. http://homepages.inf.ed.ac.uk/wadler/
realworld/plastic.html, 1999.

8 P. Callaghan and Z. Luo. An implementation of LF with coercive subtyping and universes.
Journal of Automated Reasoning, 27(1):3–27, 2001.

9 J. Cartmell. Generalized algebraic theories and contextual categories. Annals of Pure and
Applied Logic, 32:209–243, 1986.

10 The Coq Development Team. The Coq Proof Assistant Reference Manual (Version 8.1),
INRIA, 2007.

11 F. Part. Implementation of HoTTEq and SSTs in Plastic. https://github.com/part-xx/
hott-plastic, 2015.

12 Hugo Herbelin. A dependently-typed construction of semi-simplicial types. Mathematical
Structures in Computer Science, 2014. to appear.

13 M. Hovey. Model categories. American Mathematical Soc., 2007.
14 IAS-web-on-SST. Semi-Simplicial Types, Year of Univalent Foundations, IAS at Princeton.

http://uf-ias-2012.wikispaces.com/Semi-simplicial+types, 2012.
15 C. Kapulkin, P.-L. Lumsdaine, and V. Voevodsky. The simplicial model of univalent found-

ations. 2012.

http://homepages.inf.ed.ac.uk/wadler/realworld/plastic.html
http://homepages.inf.ed.ac.uk/wadler/realworld/plastic.html
https://github.com/part-xx/hott-plastic
https://github.com/part-xx/hott-plastic
http://uf-ias-2012.wikispaces.com/Semi-simplicial+types

14 Semi-simplicial Types in Logic-enriched Homotopy Type Theory

16 Z. Luo. Computation and Reasonong: a Type Theory for Computer Science. Oxford
University Press, 1994.

17 Z. Luo. A type-theoretic framework for formal reasoning with different logical foundations.
In Advances in Computer Science - ASIAN 2006. Secure Software and Related Issues, 11th
Asian Computing Science Conference, Tokyo, Japan, December 6-8, 2006, Revised Selected
Papers, pages 214–222, 2006.

18 Z. Luo and R. Pollack. LEGO Proof Development System: User’s Manual. LFCS Report
ECS-LFCS-92-211, Dept of Comp. Sci., U of Edinburgh, 1992.

19 Jacob Lurie. Higher Topos Theory. Annals of Mathematics Studies. Princeton University
Press, Princeton, NJ, 2009.

20 M. Maietti. The type theory of categorical universes. PhD thesis, University of Padova,
1998.

21 M. Makkai. First order logic with dependent sorts. preprint, 1995.
22 P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
23 P. Martin-Löf. Truth of a proposition, evidence of a judgement, validity of a proof. Talk

given at Workshop of Theories of Meaning, Florence, June 1985.
24 C. Rezk. A model for the homotopy theory of homotopy theory. In Trans. Amer. Math.

Soc., pages 973–1007.
25 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations

of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

26 V. Voevodsky. Homotopy Type System. http://ncatlab.org/homotopytypetheory/
show/Homotopy+Type+System, 2012.

27 V. Voevodsky. Semi-simplicial types in HTS. http://uf-ias-2012.wikispaces.com/
file/detail/semisimplicial.v, 2012.

http://homotopytypetheory.org/book
http://ncatlab.org/homotopytypetheory/show/Homotopy+Type+System
http://ncatlab.org/homotopytypetheory/show/Homotopy+Type+System
http://uf-ias-2012.wikispaces.com/file/detail/semisimplicial.v
http://uf-ias-2012.wikispaces.com/file/detail/semisimplicial.v

	1 Introduction
	2 Background: Semi-simplicial Types and Logic-enriched Type Theories
	2.1 Semi-simplicial types
	2.2 Logic-enriched type theories

	3 HoTTEq: HoTT Enriched with Logical Equality
	3.1 Logical operators
	3.2 Induction

	4 Inductive Definition of Semi-Simplicial Types
	4.1 Outline
	4.2 Face maps
	4.3 Inductive construction

	5 Implementation in Plastic
	5.1 HoTTEq: Implementation in Plastic
	5.2 Semi-simplicial types

	6 Conclusion

