
Under onsideration for publiation in J. Funtional Programming 1

PAL

+

: a Lambda-free Logial Framework

Zhaohui Luo

Department of Computer Siene, University of Durham

South Rd, Durham DH1 3LE, U.K.

URL: http://www.dur.a.uk/zhaohui.luo/

Abstrat

A lambda-free logial framework takes parameterisation and de�nitions as the basi no-

tions to provide shemati mehanisms for spei�ation of type theories and their use in

pratie. The framework presented here, PAL

+

, is a logial framework for spei�ation

and implementation of type theories, suh as Martin-L�of's type theory or UTT. As in

Martin-L�of's logial framework (Nordstr�om et al., 1990), omputational rules an be in-

trodued and are used to give meanings to the delared onstants. However, PAL

+

only

allows one to talk about the onepts that are intuitively in the objet type theories: types

and their objets, and families of types and families of objets of types. In partiular, in

PAL

+

, one annot diretly represent families of families of entities, whih ould be done

in other logial frameworks by means of lambda abstration.

PAL

+

is in the spirit of de Bruijn's PAL for Automath (de Bruijn, 1980). Compared

with PAL, PAL

+

allows one to represent parametri onepts suh as families of types

and families of non-parametri objets, whih an be used by themselves as totalities as

well as when they are fully instantiated. Suh parametri objets are represented by loal

de�nitions (let-expressions).

We laim that PAL

+

is a orret meta-language for speifying type theories (e.g., de-

pendent type theories), as it has the advantage of exatly apturing the intuitive onepts

in objet type theories, and that its implementation reets the atual use of type theories

in pratie. We shall study the meta-theory of PAL

+

by developing its typed operational

semantis and showing that it has nie meta-theoreti properties.

1 Motivations and Introdution

A lambda-free logial framework takes parameterisation and de�nitions as the basi

notions to provide shemati mehanisms for spei�ation of type theories and their

use in pratie. The reasons to onsider lambda-free logial frameworks inlude:

� Parametri onstants and de�nitions and the assoiated operations of instan-

tiation (substitution or ut) are more basi and arguably simpler notions and

mehanisms than that of lambda-abstration as found in other logial frame-

works suh as Martin-L�of's logial framework (Nordstr�om et al., 1990). A

parametrially de�ned entity represents a family of entities, rather than a

funtional operation.

� The user of a proof system based on a lambda-free framework does not have to

understand the meta-level lambda-abstration that an be used to represent

onepts suh as families of families of entities, whih do not exist in objet

2 Z. Luo

type theories. Rather, one only has to grasp onepts of the objet type theory

and the de�nitional mehanism.

� The introdution of a lambda-free logial framework makes lear that a logial

framework is a meta-language that provides the shemati mehanisms for

speifying type theories and the de�nitional mehanism for pragmati use. It is

worth remarking that suh mehanisms are neessary for any framework to be

used in pratie, with or without �-abstration. When an objet type theory

has types of funtions, say �-types, there is usually a onfusion between the

objet-level funtions and the meta-level funtional operations, if the latter

exist in the meta-framework. For example, in systems like ALF (Magnusson

& Nordstr�om, 1994), one tends to use the meta-level funtional operations as

funtional programs while ignoring the objet level funtions.

The logial framework presented here, PAL

+

, is suh a framework in the spirit of

de Bruijn's PAL for Automath (de Bruijn, 1980).

PAL

+

is a logial framework for spei�ation and implementation of type theories

suh as Martin-L�of's type theory (Nordstr�om et al., 1990) and UTT (Luo, 1994). As

in Martin-L�of's logial framework (Nordstr�om et al., 1990), omputational rules an

be introdued and are used to give meanings to the delared onstants. However,

PAL

+

only allows one to talk about the onepts that are intuitively in the objet

type theories: types and their objets, and families of types and families of objets

of types. In partiular, in PAL

+

, one annot diretly represent families of families

of entities, whih ould be done in other logial frameworks by means of lambda

abstration. Compared with PAL, PAL

+

allows one to represent parametri on-

epts suh as families of types and families of non-parametri objets, whih an

be used by themselves (as totalities) as well as when they are fully instantiated. An

implementation of a proof development system based on PAL

+

an truly reet the

intended use of a type theory. After a type theory is spei�ed (and implemented),

the user is onerned only with the objet type theory and uses the de�nitional

mehanism for abbreviation.

Parametri objets are represented as let-expressions. One of the distintive fea-

tures of PAL

+

, ompared with other logial frameworks, is that it takes de�nitions

rather than lambda abstrations as basi. Let-expressions do not only represent

loal de�nitions, but parametri objets. The meta-theory for PAL

+

, therefore, is

new and the �rst for suh a alulus as far as we know.We develop typed operational

semantis (Goguen, 1994) for PAL

+

and show that PAL

+

has nie meta-theoreti

properties.

The following setion gives a formal presentation of PAL

+

: its parameterisation

mehanism and de�nitional mehanism, together with some informal explanations.

We also explain how parametri abstrations, whih represent families of types

or objets, an be represented as let-expressions. Setion 3 shows how PAL

+

an

be used in spei�ation of type theories. In Setions 4 and 5, we onsider the

meta-theoreti properties of the logial framework PAL

+

by developing its typed

operational semantis and proving its omputational properties suh as Churh-

PAL

+

: a Lambda-free Logial Framework 3

Rosser, Subjet Redution, and Strong Normalisation. In the Conlusion, we briey

disuss some issues about implementation of PAL

+

and possible further extensions.

2 PAL

+

In PAL

+

, we have objets and kinds. Kinds inlude non-parametri kinds and

parametri kinds. Non-parametri kinds are of the form Type or El(A). Para-

metri kinds of the form (�)T , where � is a non-empty ontext of the form

x

1

:K

1

; :::; x

n

:K

n

and T is a non-parametri kind. Non-parametri objets, objets of

non-parametri kinds, represent types and objets of types; parametri objets, ob-

jets of parametri kinds, represent families of types and families of non-parametri

objets. Let-expressions, representing loal de�nitions, an be used to form kinds

and objets. In partiular, parametri objets are represented by let-expressions.

In the following, we give a formal desription of PAL

+

, with some informal

explanations.

2.1 Terms

Terms are either objet expressions or kind expressions. For presentational purposes

and meta-theoreti reasons, we introdue terms assoiated with arities, whih are

natural numbers. The arity of an objet expression indiates the number of argu-

ments it should take when forming a term of instantiation. The arity of a kind

expression indiates the number of arguments its objets should take. We write

V ar(i) and DV (i) for the sets of ordinary variables and de�nitional variables with

arity i, respetively. We assume that V ar(i) andDV (j) be all disjoint. Furthermore,

V ar =

[

i2!

V ar(i) and DV =

[

i2!

DV (i):

De�nition 2.1 (expressions, ontexts, pure ontexts, and terms)

The following are de�ned simultaneously by strutural indution.

1. The set of objet expressions with arity i 2 !, Obj(i), is de�ned as follows:

� V ar(i) � Obj(i).

� DV (i) � Obj(i).

� f [k

1

; :::; k

n

℄ 2 Obj(0) if f 2 Obj(n) and k

i

are objet expressions.

� let v[�℄ = t:T in k 2 Obj(i) if k 2 Obj(i), t 2 Obj(0), T 2 Kind(0), � is

a pure ontext of length n, and v 2 DV (n).

2. The set of kind expressions with arity i 2 !, Kind(i), is de�ned as follows:

� Type 2 Kind(0).

� El(A) 2 Kind(0) if A 2 Obj(0).

� (�)T 2 Kind(i) if � is a pure ontext of length i and T 2 Kind(0).

� let v[�℄ = t:T in K 2 Kind(i) if K 2 Kind(i), t 2 Obj(0), T 2 Kind(0),

� is a pure ontext of length n, and v 2 DV (n).

3. A pure ontext (�) is a sequene of entries of the form x:K suh that for

some i, x 2 V ar(i) and K 2 Kind(i). A ontext (�) is a sequene of entries

4 Z. Luo

of the form x:K (as above) or v[�℄ = t:T , where t 2 Obj(0), T 2 Kind(0), �

is a pure ontext of length n, and v 2 DV (n). The length of a ontext, l(�),

is the number of its entries.

The set of terms with arity i, Term(i), is de�ned as Obj(i) [Kind(i). We shall

write Arity(M) for the arity of term M .

Remark By de�nition, every term has a unique arity. Substitutions preserve the

arity of a term. More preisely, for terms M and k and variable z, if Arity(k) =

Arity(z), then [k=z℄M is a term and Arity([k=z℄M) = Arity(M).

Notation The following notations are used:

� When � is the empty ontext (hi, whih does not have any entry), we write

v = t:T for v[�℄ = t:T in a ontext and let v = t:T inM for the let-expression

let v[�℄ = t:T in M . By our onvention, f [℄ is taken as the same as f , and

()T (or (hi)T) is taken as the same as T .

� A pure ontext � of the form x

1

:K

1

; :::; x

n

:K

n

is often abbreviated as �x:

�

K

and we also use �

i

to stand for x

1

:K

1

; :::; x

i

:K

i

. We shall sometimes write

�

�x

for � to indiate that � � �x:

�

K for some

�

K.

� We use V ar(M) and DV (M), de�ned indutively on the term struture, to

denote the sets of free ordinary variables and free de�nitional variables in

term M , respetively. We use FV (M), de�ned to be V ar(M) [DV (M), to

denote the set of free variables in term M . These extend to ontexts as well.

We identify terms whih are �-onvertible and use � for syntati equality. In

partiular, in let v[�

�x

℄ = t:T in M , v is bound in M and �x are bound in t and T .

Therefore, terms with hanges of suh bound variables are identi�ed.

2.2 Judgement Forms

The judgement forms are, where � is a ontext, K and K

0

are kind expressions,

and k and k

0

are objet expressions:

� � valid | � is a valid ontext.

� � ` K kind | K is a kind in �.

� � ` k : K | k is an objet of kind K in �.

� � ` K = K

0

| K and K

0

are equal kinds.

� � ` k = k

0

: K | k and k

0

are equal objets of kind K.

Notation

� For � � x

1

:K

1

; :::; x

n

:K

n

and �

0

� x

1

:K

0

1

; :::; x

n

:K

0

n

, we write � ` � = �

0

for the sequene of judgements �;�

i�1

` K

i

= K

0

i

(i = 1; :::; n).

� We shall write � `

�

k :

�

K for the sequene of judgements � ` k

1

: K

1

, � ` k

2

:

[k

1

=x

1

℄K

2

, ..., � ` k

n

: [k

n�1

=x

n�1

℄:::[k

1

=x

1

℄K

n

and similarly the notation

� `

�

k =

�

k

0

:

�

K stands for the sequene of judgements � ` k

1

= k

0

1

: K

1

,

� ` k

2

= k

0

2

: [k

1

=x

1

℄K

2

, ..., � ` k

n

= k

0

n

: [k

n�1

=x

n�1

℄:::[k

1

=x

1

℄K

n

.

� The simultaneous substitution [

�

k=�x℄M stands for [k

n

=x

n

℄:::[k

1

=x

1

℄M ; note

that when this notation is used, we an always assume that �x 62 FV (k

i

) and

so the order of substitutions does not matter.

PAL

+

: a Lambda-free Logial Framework 5

Contexts and assumptions

hi valid

� ` K kind x 62 FV (�) and x 2 V ar(Arity(K))

�; x:K valid

�; x:K;�

0

valid

�; x:K;�

0

` x : K

General equality rules

� ` K kind

� ` K = K

� ` K = K

0

� ` K

0

= K

� ` K = K

0

� ` K

0

= K

00

� ` K = K

00

� ` k : K

� ` k = k : K

� ` k = k

0

: K

� ` k

0

= k : K

� ` k = k

0

: K � ` k

0

= k

00

: K

� ` k = k

00

: K

Equality typing rules

� ` k : K � ` K = K

0

� ` k : K

0

� ` k = k

0

: K � ` K = K

0

� ` k = k

0

: K

0

The kind Type

� valid

� ` Type kind

� ` A : Type

� ` El(A) kind

� ` A = B : Type

� ` El(A) = El(B)

Fig. 1. The basi rules of PAL

+

.

Substitution rules

�; x:K;�

0

valid � ` k : K

�; [k=x℄�

0

valid

�; x:K;�

0

` K

0

kind � ` k : K

�; [k=x℄�

0

` [k=x℄K

0

kind

�; x:K;�

0

` K

0

kind � ` k = k

0

: K

�; [k=x℄�

0

` [k=x℄K

0

= [k

0

=x℄K

0

�; x:K;�

0

` k

0

: K

0

� ` k : K

�; [k=x℄�

0

` [k=x℄k

0

: [k=x℄K

0

�; x:K;�

0

` k

0

: K

0

� ` k

1

= k

2

: K

�; [k

1

=x℄�

0

` [k

1

=x℄k

0

= [k

2

=x℄k

0

: [k

1

=x℄K

0

�; x:K;�

0

` K

0

= K

00

� ` k : K

�; [k=x℄�

0

` [k=x℄K

0

= [k=x℄K

00

�; x:K;�

0

` k

0

= k

00

: K

0

� ` k : K

�; [k=x℄�

0

` [k=x℄k

0

= [k=x℄k

00

: [k=x℄K

0

Fig. 2. The substitution rules of PAL

+

.

2.3 Basi Rules

The basi rules are given in Figure 1 and Figure 2, the latter of whih ontains the

substitution rules. Formally, these rules are the general inferene rules of the logial

framework LF (see Figure 9.1 in Chapter 9 of (Luo, 1994)).

1

1

LF is a typed version of Martin-L�of's logial framework (Nordstr�om et al., 1990) in that the

form of abstration [x:K℄k has type label K, rather than just [x℄k. We should point out that LF

is di�erent from the Edinburgh Logial Framework (ELF) (Harper et al., 1987). Though quite

similar formally, the intended ways of use are very di�erent.

6 Z. Luo

Formation rules for parametri kinds

�;� ` T kind (�)T is a term

� ` (�)T kind

� ` � = �

0

�;� ` T = T

0

(�)T and (�

0

)T

0

are terms

� ` (�)T = (�

0

)T

0

Instantiation rules for parametri objets

� ` f : (�x:

�

K)T � `

�

k :

�

K

� ` f [

�

k℄ : [

�

k=�x℄T

� ` f = f

0

: (�x:

�

K)T � `

�

k =

�

k

0

:

�

K

� ` f [

�

k℄ = f

0

[

�

k

0

℄ : [

�

k=�x℄T

Fig. 3. Rules for parametri kinds in PAL

+

.

The kind Type represents the oneptual universe of types to be introdued, and

for eah type A of kind Type, the kind El(A) is the kind of objets of type A.

2.4 Parametri Kinds and Instantiations

Parametri objets represent families of types or families of non-parametri objets.

They an either be used as a totality or when they are fully instantiated.

The rules for parametri kinds of the form (�)T are given in Figure 3. Note that

a parametri entity of a parametri kind annot be used by partial instantiation.

Only when given appropriate indexing objets

�

k, an a parametri objet f , i.e.,

an objet of a parametri kind, be instantiated into f [

�

k℄.

Besides variables of a parametri kind, parametri objets also inlude para-

metri onstants (introdued when speifying an objet type theory) and some

let-expressions (see below).

2.5 De�nitions in PAL

+

We introdue in PAL

+

both global de�nitions of the form v[�℄ = t:T as entries

in ontexts and loal de�nitions or let-expressions of the form let v[�℄ = t in M ,

where variables �x in �

�x

are bound in t and T and the de�nitional variable v is

bound in M .

2.5.1 Global De�nitions

Global de�nitions an be introdued into ontexts and used by means of the rules

in Figure 4. We also have substitution rules in Figure 5, where in the last rule, J

is of the form K kind, k : K, K = K

0

, or k = k

0

: K.

Remark Several remarks are in order.

� Note that, in the introdution rule for global de�nitions, we require T to be

a kind of arity 0, i.e., it is equal to either Type or El(A). Hene the body

PAL

+

: a Lambda-free Logial Framework 7

Introdution rule for global de�nitions

�;� ` t : T v 62 FV (�) �; v[�℄ = t:T is a ontext

�; v[�℄ = t:T valid

Typing and equality rules for global de�nitions

�; v[�℄ = t:T;�

0

valid

�; v[�℄ = t:T;�

0

` v : (�)T

�; v[�℄ = t:T;�

0

valid

�; v[�℄ = t:T;�

0

` v = let v[�℄ = t:T in v : (�)T

Fig. 4. Rules for global de�nitions.

Substitution rules for global de�nitions

�; v[�℄ = t:T;�

0

valid

�; [let v[�℄ = t:T in v=v℄�

0

valid

�; v[�℄ = t:T;�

0

` J

�; [let v[�℄ = t:T in v=v℄�

0

` [let v[�℄ = t:T in v=v℄J

Fig. 5. Substitution rules for global de�nitions.

of a global de�nition must be a type or an objet of a type. Also, when � is

empty, the rules speialise into those for non-parametri kinds.

� The de�niendum of a global de�nition an either be used when it is fully

applied, or as a totality.

� The `meaning' of a globally de�ned entity v is given diretly by means of

let-expressions of the form let v[�℄ = t:T in v.

2.5.2 Loal De�nitions

Loal de�nitions, or let-expressions, are introdued by the let-introdution rules in

Figure 6. They abide by the ongruene rules in Figure 6 and the equality rules in

Figure 7.

2.6 Parametri Abstration

The let-expressions in PAL

+

play a role of `parametri abstration' as well as loal

de�nitions. In partiular, when � is not empty, the term let v[�℄ = t:T in v an

be viewed as a form of abstration { parametri abstration. We may introdue a

new notation: a parametri abstration is of the form [�℄t and represents either a

family of types or non-parametri objets, indexed by (sequenes of) objets of �.

The variables in � are bound variables.

One may introdue parametri abstrations independently by adding the follow-

ing rules. (This was the ase in (Luo, 2000).)

8 Z. Luo

let-introdution rules

�; v[�℄ = t:T ` K kind

� ` let v[�℄ = t:T in K kind

�; v[�℄ = t:T ` k : K

� ` let v[�℄ = t:T in k : let v[�℄ = t:T in K

Congruene rules for let-expressions

� ` � = �

0

�;� ` T = T

0

�;� ` t = t

0

: T �; v[�℄ = t:T ` K = K

0

� ` (let v[�℄ = t:T in K) = (let v[�

0

℄ = t

0

:T

0

in K

0

)

� ` � = �

0

�;� ` T = T

0

�;� ` t = t

0

: T �; v[�℄ = t:T ` k = k

0

: K

� ` (let v[�℄ = t:T in k) = (let v[�

0

℄ = t

0

:T

0

in k

0

) : let v[�℄ = t:T in K

Fig. 6. Introdution and ongruene rules for let-expressions.

Equality rules for let-expressions

(let

�

)

�; v[�x:

�

K℄ = t:T valid � `

�

k :

�

K

� ` (let v[�x:

�

K℄ = t:T in v)[

�

k℄ = [

�

k=�x℄t : [

�

k=�x℄T

(let

�

)

�; v[�

�x

℄ = g[�x℄:T ` k : K � ` g : (�)T

� ` let v[�℄ = g[�x℄:T in k = [g=v℄k : [g=v℄K

(let

K

�

)

�; v[�

�x

℄ = g[�x℄:T ` K kind � ` g : (�)T

� ` let v[�℄ = g[�x℄:T in K = [g=v℄K

(let

d

)

�; v[�℄ = t:T ` k : K

� ` let v[�℄ = t:T in k = [let v[�℄ = t:T in v=v℄k : let v[�℄ = t:T in K

(let

K

d

)

�; v[�℄ = t:T ` K kind

� ` let v[�℄ = t:T in K = [let v[�℄ = t:T in v=v℄K

Fig. 7. Equality rules for let-expressions.

�;� ` t : T T 2 Kind(0)

� ` [�℄t : (�)T

� ` � = �

0

�;� ` t = t

0

: T T 2 Kind(0)

� ` [�℄t = [�

0

℄t

0

: (�)T

�; �x:

�

K ` t : T � `

�

k :

�

K T 2 Kind(0)

� ` ([�x:

�

K℄t)[

�

k℄ = [

�

k=�x℄t : [

�

k=�x℄T

� ` f : (�x:

�

K)T �x 62 FV (f)

� ` [�x:

�

K℄f [�x℄ = f : (�x:

�

K)T

However, parametri abstrations are a speial form of let-expressions. The fol-

lowing de�nitional rule de�nes parametri abstration in terms of let-expressions

in PAL

+

.

�; v[�℄ = t:T valid

� ` [�℄t = let v[�℄ = t:T in v : (�)T

Remark One might want to take parametri abstration and its appliation as

basi and de�ne let-expressions by means of parametri abstration. There is some

PAL

+

: a Lambda-free Logial Framework 9

tehnial diÆulty in doing so (note that let-expressions have kind information T

whih is not present in parametri abstration). But more importantly, we remark

that let-expressions are more general than parametri abstrations as they an be

used for all expressions inluding parametri kinds. Furthermore, loal de�nitions

are useful in any proof development or programming environment. It is therefore

natural to take let-expressions as basi while taking parametri abstration as a

de�ned notion.

2.7 Simple Properties and Distribution Laws for let-expressions

The rules of PAL

+

, as given in Figure 1 to Figure 7, respet the de�nition of

syntati notions of term, ontext, et. in De�nition 2.1.

Lemma 2.2

The following properties hold:

� If � valid, then � is a ontext.

� If � ` K kind, then � is a ontext and K is a kind expression.

� If � ` K = K

0

, then � is a ontext and K and K

0

are kind expressions of the

same arity.

� If � ` k : K, then � is a ontext, k is an objet expression, K is a kind

expression, and k and K have the same arity.

� If � ` k = k

0

: K, then � is a ontext, k and k

0

are objet expressions, K is a

kind expression, and k, k

0

, and K have the same arity.

Let-expressions satisfy a number of distribution laws, whih say that loal def-

initions an be distributed for all strutured expressions. For instane, when v 62

FV (M), let v[�℄ = t:T in M is omputationally equal to M . (See (Luo, 2000) for

details, where distribution rules are taken to replae the equality rules in Figure 7.)

An example of suh distribution rules is:

�; v[�℄ = t:T ` (�

0

)T

0

kind

� ` (let v[�℄ = t:T in (�

0

)T

0

) = (let v[�℄ = t:T in �

0

)let v[�℄ = t:T in T

0

In PAL

+

as presented in this paper, the distribution rules are all admissible.

3 Spei�ation of Type Theories in PAL

+

As in Martin-L�of's type theory (Nordstr�om et al., 1990), we speify type theories in

the logial frameworkPAL

+

. One of the key observations is that we an speify type

theories with the simpler logial framework without arbitrary lambda-abstration.

For example, all of the types in UTT (Luo, 1994) an be spei�ed, inluding the

imprediative universe of logial propositions, the indutive types and indutive

families overed by the indutive shemata, and prediative universes. Similarly,

Martin-L�of's type theory an be spei�ed in PAL

+

as well.

In general, a spei�ation of a type theory in PAL

+

will onsist of a olletion

of delarations of new onstants (either non-parametri or parametri) and a ol-

letion of assoiated omputational equality rules. Like other parametri objets, a

10 Z. Luo

parametri onstant annot be used by partial instantiation. Suh delarations of

onstants and equalities amount to extensions of (an existing type theory spei�ed

in) PAL

+

by new rules. One should, of ourse, make sure that the new rules lead to

a type theory that has good properties. For example, indutive types with stritly

positive onstrutors an be spei�ed. We do not onsider suh issues here.

Given a kind K, if one introdues a onstant f by delaring

f : K;

it has the e�et of introduing the following rule:

� valid

� ` f : K

Computational equality an only be introdued between two objets of a type, or

between two types.

2

If one introdues a omputation rule by asserting

t = t

0

: T where k

i

: K

i

(i = 1; :::; n);

it extends the type theory with the following rule:

� ` k

i

: K

i

(i = 1; :::; n) � ` T kind T 2 Kind(0)

� ` t = t

0

: T

In the following, we give several examples of introduing type onstrutors and

their assoiated operators as onstants. We omit El to write A for El(A) in the

examples.

Example 3.1

The type of natural numbers an be introdued as follows:

N : Type

0 : N

s : (x:N) N

R : (C:(x:N)Type; :C[0℄; f :(x:N; y:C[x℄)C[s[x℄℄; z:N) C[z℄

The orresponding omputation rules are:

R[C; ; f; 0℄ = : C[0℄

R[C; ; f; s[x℄℄ = f [x;R[C; ; f; x℄℄ : C[s[x℄℄

where C:(x:N)Type, :C[0℄, f :(x:N; y:C[x℄)C[s[x℄℄, and x:N . (We omit suh where-

lauses in the following examples.)

Example 3.2

The �-types, �[A;B℄ for a type A and a family of types B, an be introdued as

2

This onforms to the restrition onsidered in (Luo, 1999), where LF is used to speify type

theories.

PAL

+

: a Lambda-free Logial Framework 11

follows:

� : (A:Type; B:(x:A)Type) Type

� : (A:Type; B:(x:A)Type; f :(x:A)B[x℄) �[A;B℄

E

�

: (A:Type; B:(x:A)Type; C:(F :�[A;B℄)Type;

f :(g:(x:A)B[x℄)C[�[A;B; g℄℄;

z:�[A;B℄)

C[z℄

The orresponding omputation rule is:

E

�

[A;B;C; f; �[A;B; g℄℄ = f [g℄ : C[�[A;B; g℄℄

The following simple example shows how loal de�nitions may be used.

Example 3.3

The appliation operator for �-types

app : (A:Type; B:(x:A)Type; F :�[A;B℄; x:A) B[x℄

an be de�ned by means of loal de�nitions as follows.

app[A;B; F; a℄ = let C[G:�[A;B℄℄ = B[a℄:Type in

let f [g:(x:A)B[x℄℄ = g[a℄:B[a℄ in E

�

[A;B;C; f; F ℄

Or alternatively, parametri abstrations, de�ned as speial forms of let-expressions,

may be used to de�ne the same appliation operator as follows:

app[A;B; F; a℄ =

df

E

�

[A;B; [G:�[A;B℄℄B[a℄; [g:(x:A)B[x℄℄g[a℄; F ℄

With the above de�nition, we an show the expeted equalities hold. For example,

we an show that the usual �-equality holds for the omputational equality:

app[A;B; �[A;B; g℄; a℄ = g[a℄:

Furthermore, for propositional equality =

�[A;B℄

(e.g., the Leibniz equality, whih

an be de�ned when we have an imprediative universe of logial propositions, or

Martin-L�of's equality type de�ned by introduing a single onstrutor eq[a℄ of type

a =

�[A;B℄

a), we an show that the logial �-rule holds, i.e., the following logial

proposition is provable:

�[A;B; [x:A℄app[A;B; F; x℄℄ =

�[A;B℄

F:

Example 3.4

The family of types of vetors of objets of type A an be introdued as follows,

where N is the type of natural numbers as introdued above.

V e : (A:Type; x:N) Type

nil : (A:Type) V e[A; 0℄

ons : (A:Type; n:N; a:A; l:V e[A; n℄) V e[A; su[n℄℄

E

V

: (A:Type; C:(n:N; v:V e[A; n℄)Type;

12 Z. Luo

:C[0; nil[A℄℄; f :(n:N; x:A; v:V e[A; n℄; y:C[n; v℄)C[su[n℄; ons[A; x; v℄℄;

n:N; v:V e[A; n℄)

C[n; v℄;

The orresponding omputation rules are:

E

V

[A;C; ; f; 0; nil[A℄℄ = : C[0; nil[A℄℄;

E

V

[A;C; ; f; su[n℄; ons[A; n; a; v℄℄

= f [n; a; v; E

V

[A;C; ; f; n; v℄℄ : C[su[n℄; ons[A; n; a; v℄℄:

Example 3.5

The W-types, W [A;B℄ for a type A and a family of types B, an be introdued as

follows:

W : (A:Type; B:(x:A)Type) Type

sup : (A:Type; B:(x:A)Type; x:A; y:(v:B[x℄)W [A;B℄) W [A;B℄

E

W

: (A:Type; B:(x:A)Type; C:(w:W [A;B℄)Type;

f :(x:A; y:(v:B[x℄)W [A;B℄; g:(v:B[x℄)C[y[v℄℄)C[sup[A;B; x; y℄℄;

z:W [A;B℄)

C[z℄

The orresponding omputation rule is:

E

W

[A;B;C; f; sup[A;B; x; y℄℄

= f [x; y; [z:B[x℄℄E

W

[A;B;C; f; y[z℄℄℄ : C[sup[A;B; x; y℄℄:

Speial ases of W-types inlude the type of ordinals and various types of well-

founded trees. Note that the notation of parametri abstration is used in the

omputation rule above.

4 Typed Operational Semantis for PAL

+

In the next two setions, we study the meta-theory of PAL

+

. In this setion, we

develop the typed operational semantis for PAL

+

, whih is taken as the basis for

development of the meta-theory for PAL

+

in the next setion.

Typed operational semantis (TOS) was developed for the type theory UTT in

Goguen's thesis (Goguen, 1994), and a onise aount of TOS for LF an be found

in (Goguen, 1999). In (Luo, 2000), we have developed TOS for PAL

+

with only

parametri abstrations (and without global de�nitions or let-expressions.) In this

paper, we take let-expressions as basi and develop the TOS and meta-theory. As

far as we know, this is the �rst treatment of meta-theory onerning suh a alulus

with basi let-expressions (and �-rules).

4.1 TOS

The typed operational semantis for PAL

+

has the following judgement forms:

PAL

+

: a Lambda-free Logial Framework 13

� j= �! �

0

| ontext � has normal form �

0

.

� � j= K ! K

0

| kind K is a well-typed and has normal form K

0

in ontext

�.

� � j= k ! k

0

! k

0

: K | k, k

0

, and k

0

are of kindK in �, and k has weak-head

normal form k

0

and normal form k

0

.

Notation We shall use the following notations:

� For � � �x:

�

K and �

0

� �x

0

:

�

K

0

of the same length, we shall use the notation

� j= � ! �

0

to stand for the sequene of judgements � j= K

1

! K

0

1

,

�;�

1

j= K

2

! K

0

2

, ..., �;�

n�1

j= K

n

! K

0

n

.

� For

�

k,

�

k

0

,

�

k

0

, and

�

K of the same length, we shall use � j=

�

k !

�

k

0

!

�

k

0

:

�

K

to stand for the sequene of judgements

� j= k

1

! k

01

! k

0

1

: K

1

;

� j= k

2

! k

02

! k

0

2

: K

0

2

;

:::;

� j= k

n

! k

0n

! k

0

n

: K

0

n

;

� j= Æ

i

K

i

! K

0

i

(i = 2; :::; n);

where Æ

i

(i = 2; :::; n) is the substitution [k

1

; :::; k

i�1

=x

1

; :::; x

i�1

℄.

The rules of TOS for PAL

+

are given in Figure 8 and Figure 9. For the rules in

Figure 9 for objet let-expressions of the form let v[�℄ = t:T in k, we distinguish

the ases aording to whether k � v and whether � � hi. For example, when

k � v and � � hi, the let-expression let v = t:T in v omputes to the weak-head

normal form and normal form of those of t (the �rst rule in Figure 9).

4.2 Basi Properties and Completeness of the TOS

The TOS de�ned above has the basi properties onerning sub-derivations and

variable ourrenes in ontexts. Furthermore, it has the properties as given by

the following two lemmas, whih are proved by indution on derivations of TOS

judgements.

Lemma 4.1

� If j= �! �

0

, then � and �

0

are ontexts of the same length.

� If � j= K ! K

0

, then � is a ontext and K and K

0

are kind expressions of

the same arity.

� If � j= k ! k

0

! k

0

: K, then � is a ontext, K is a kind expression, and k,

k

0

and k

0

are objet expressions of the same arity.

Lemma 4.2

The following properties hold for the TOS:

1. (Determinay)

14 Z. Luo

Contexts

j= hi ! hi

j= �! �

0

� j= K ! K

0

x =2 FV (�) and x 2 V ar(Arity(K))

j= �; x:K ! �

0

; x:K

0

j= �! �

0

� j= � ! �

0

�;� j= T ! T

0

�;� j= t! t

0

! t

0

: T

0

v 62 FV (�); v 2 DV (l(�)) and T 2 Kind(0)

j= �; v[�℄ = t:T ! �

0

; v[�

0

℄ = t

0

:T

0

Kinds

j= �! �

0

� j= Type! Type

� j= A! A

0

! A

0

: Type

� j= El(A)! El(A

0

)

� j= � ! �

0

�;� j= T ! T

0

T 2 Kind(0)

� j= (�)T ! (�

0

)T

0

Variables

� j= K ! K

0

j= �; x:K;�

0

! �

1

�; x:K;�

0

j= x! x! x : K

0

� j= � ! �

0

�;� j= T ! T

0

�; v[�℄ = t:T;�

0

j= let v[�℄ = t:T in v ! k

0

! k

0

: (�

0

)T

0

�; v[�℄ = t:T;�

0

j= v ! k

0

! k

0

: (�

0

)T

0

Instantiations

� j= f ! x! x : (�x:

�

K)T x 2 V ar and �x:

�

K 6� hi

� j=

�

k !

�

k

0

!

�

k

0

:

�

K � j= [

�

k=�x℄T ! T

0

� j= f [

�

k℄ ! x[

�

k℄ ! x[

�

k

0

℄ : T

0

� j= f ! let v[�x:

�

K℄ = t:T in v ! f

0

: (�x:

�

K

0

)T

0

� j=

�

k !

�

k

0

!

�

k

0

:

�

K

0

� j= [

�

k=�x℄T ! T

00

� j= [

�

k=�x℄t! t

0

! t

0

: T

00

�x:

�

K 6� hi

� j= f [

�

k℄ ! t

0

! t

0

: T

00

Fig. 8. Basi TOS rules for PAL

+

.

� If j= �! �

0

and j= �! �

00

, then �

0

� �

00

.

� If � j= K ! K

0

and � j= K ! K

00

, then K

0

� K

00

.

� If � j= k ! k

1

! k

2

: K and � j= k ! k

0

1

! k

0

2

: K

0

, then k

1

� k

0

1

,

k

2

� k

0

2

, and K � K

0

.

2. (Weakening) If � j= J , j= �

1

! �

0

1

, and �

1

ontains all entries of �, then

�

1

j= J , where J is of the form K ! K

0

or k ! k

0

! k

0

: K.

3. (Strengthening) Let z 2 V ar [DV and Z be either z:K (when z 2 V ar) or

z[�℄ = t:T (when z 2 DV).

� If j= �; Z;�

0

! �

1

and z 62 FV (�

0

), then j= �;�

0

! �

2

for some �

2

.

� If �; Z;�

0

j= K ! K

0

and z 62 FV (�

0

;K), then �;�

0

j= K ! K

0

.

� If �; Z;�

0

j= k ! k

0

! k

0

: K and z 62 FV (�

0

; k), then �;�

0

j= k ! k

0

!

k

0

: K.

PAL

+

: a Lambda-free Logial Framework 15

let-expressions for objets

� j= T ! T

0

� j= t! t

0

! t

0

: T

0

� j= let v = t:T in v ! t

0

! t

0

: T

0

�; v = t:T j= k ! k

1

! k

2

: K k 6� v

� j= let v = t:T in K ! K

0

� j= [t=v℄k ! k

0

! k

0

: K

0

� j= let v = t:T in k ! k

0

! k

0

: K

0

� j= �! �

0

�;� j= T ! T

0

j= �; v[�℄ = t:T ! �

1

� 6� hi

�;�

�x

j= t! t

0

! t

0

: T

0

t

0

6� g[�x℄ suh that �x 62 FV (g)

� j= let v[�℄ = t:T in v ! let v[�℄ = t:T in v ! let v[�

0

℄ = t

0

:T

0

in v : (�

0

)T

0

� j= �! �

0

�;� j= T ! T

0

j= �; v[�℄ = t:T ! �

1

� 6� hi

�;�

�x

j= t! t

0

! g[�x℄ : T

0

� j= g ! g ! g : (�

0

)T

0

� j= let v[�℄ = t:T in v ! let v[�℄ = t:T in v ! g : (�

0

)T

0

�; v[�℄ = t:T j= k ! k

1

! k

2

: K k 6� v and � 6� hi

� j= let v[�℄ = t:T in K ! K

0

� j= [let v[�℄ = t:T in v=v℄k ! k

0

! k

0

: K

0

� j= let v[�℄ = t:T in k ! k

0

! k

0

: K

0

let-expressions for kinds

�; v[�℄ = t:T j= K ! K

1

� j= [let v[�℄ = t:T in v=v℄K ! K

0

� j= let v[�℄ = t:T in K ! K

0

Fig. 9. The TOS rules for let-expressions in PAL

+

.

By indution on derivations of TOS, we an prove that it is omplete with respet

to PAL

+

0

{ PAL

+

without the substitution rules in Figures 2 and 5. We use `

0

to

represent the judgements in PAL

+

0

.

Theorem 4.3 (Completeness)

� If j= �! �

0

, then � valid in PAL

+

0

.

� If � j= K ! K

0

, then � `

0

K kind and � `

0

K = K

0

.

� If � j= k ! k

0

! k

0

: K, then � `

0

k : K, � `

0

k = k

0

: K, � `

0

k = k

0

: K,

and � `

0

K = K.

5 Meta-theoreti Properties of PAL

+

In this setion, we �rst de�ne the notions of redution, weak-head normal form,

and normal form, and then, based on TOS, show that PAL

+

has the desirable

properties suh as Churh-Rosser, Subjet Redution, and Strong Normalisation.

16 Z. Luo

5.1 Redution and Weak-head Normal and Normal forms

Sine we take let-expressions, rather than �-abstrations, as basi expressions, the

notion of redution and the assoiated notions are new, as de�ned below.

De�nition 5.1 (redution)

The redution relation is denoted by � ` M � N , where � is a ontext and M

and N are terms. Redution is the reexive and transitive losure of the one-step

redution (� `M �

1

N) de�ned indutively by the following rules:

� Basi rules (in the �rst three rules below, it is possible that � � hi):

(v)�; v[�℄ = t:T;�

0

` v �

1

let v[�℄ = t:T in v

(�)� ` (let v[�

�x

℄ = t:T in v)[

�

k℄�

1

[

�

k=�x℄t (l(�) = l(

�

k))

(�)� ` let v[�

�x

℄ = t[�x℄:T in M �

1

[t=v℄M (�x 62 FV (t))

(d)� ` let v[�℄ = t:T in M �

1

[let v[�℄ = t:T in v=v℄M (M 6� v; � 6� hi)

� Congruene rules (note that we assume that the expressions involved be

terms):

� ` A�

1

B

� ` El(A)�

1

El(B)

�;� ` T �

1

T

0

� ` (�)T �

1

(�)T

0

�;�

i�1

` K

i

�

1

K

0

i

� ` (x

1

:K

1

; :::; x

n

:K

n

)T �

1

(x

1

:K

1

; :::; x

i

:K

0

i

; :::; x

n

:K

n

)T

� ` f �

1

f

0

� ` f [

�

k℄�

1

f

0

[

�

k℄

� ` k

i

�

1

k

0

i

� ` f [k

1

; :::; k

n

℄�

1

f

0

[k

1

; :::; k

0

i

; :::k

n

℄

�; v[�℄ = t:T `M �

1

M

0

� ` let v[�℄ = t:T in M �

1

let v[�℄ = t:T in M

0

(M 6� v)

�;� ` t�

1

t

0

� ` let v[�℄ = t:T in M �

1

let v[�℄ = t

0

:T in M

�;� ` T �

1

T

0

� ` let v[�℄ = t:T in M �

1

let v[�℄ = t:T

0

in M

�;�

i�1

` K

i

�

1

K

0

i

� ` let v[�℄ = t:T in M �

1

let v[�

0

℄ = t:T in M

where, in the last rule, � � x

1

:K

1

; :::; x

n

:K

n

and �

0

� x

1

:K

1

; :::; x

i

:K

0

i

; :::; x

n

:K

n

.

Remark The redution relation respets the substitution operation.

Lemma 5.2 (Adequay for redution)

� If � j= K ! K

0

, then � ` K �K

0

.

� If � j= k ! k

0

! k

0

: K, then � ` k � k

0

and � ` k

0

� k

0

.

De�nition 5.3 (whnf and nf)

A term M is in weak-head normal form (whnf) if

PAL

+

: a Lambda-free Logial Framework 17

� M � x[k

1

; :::; k

n

℄ suh that x 2 V ar(n) for some n � 0; or

� M � let v[�℄ = t:T in v suh that � 6� hi.

A term M is in normal form, notation M 2 NF , if

� M � x[k

1

; :::; k

n

℄ suh that x 2 V ar(n) for some n � 0 and k

i

2 NF ;

� M � let v[�℄ = t:T in v with � � x

1

:K

1

; :::; x

n

:K

n

, suh that � 6� hi,

K

i

2 NF , t 2 NF , T 2 NF , and t 6� g[�x℄ suh that �x 62 FV (g);

� M � Type;

� M � El(A) suh that A 2 NF ; or

� M � (�)T with � � x

1

:K

1

; :::; x

n

:K

n

, suh that K

i

2 NF and T 2 NF .

Lemma 5.4 (Adequay of whnf and nf)

1. For any term M , M 2 NF if and only if M has no redutions, i.e., for any

ontext � and any term N , DV (M) � DV (�) implies that � 6`M �

1

N .

2. If � j= K ! K

0

, then K

0

is in normal form. If � j= k ! k

0

! k

0

: K, then k

0

is in whnf and k

0

and K are in normal form.

Proof (1) by indution on the struture of M and (2) by indution on derivations

in TOS. 2

5.2 Subjet Redution and Normalisation

The subjet redution theorem aptures both subjet redution and Churh-Rosser.

Therefore, a notion of parallel redution is alled for.

De�nition 5.5 (parallel redution)

The parallel redution relation, � ` M) N , is de�ned as the least relation satis-

fying the following rules:

� ` x) x

v 2 DV (�)

� ` v) v

� ` �) �

0

�;� ` t) t

0

�;� ` T) T

0

�; v[�℄ = t:T;�

0

` v) let v[�

0

℄ = t

0

:T

0

in v

� `

�

k)

�

k

0

�;� ` t) t

0

l(�) = l(

�

k)

� ` (let v[�

�x

℄ = t:T in v)[

�

k℄) [

�

k

0

=�x℄t

0

�;�

�x

` t) t

0

[�x℄ �; v[�

�x

℄ = t:T `M)M

0

�x 62 FV (t

0

)

� ` let v[�

�x

℄ = t:T in M) [t

0

=v℄M

0

� ` �) �

0

�;� ` t) t

0

�;� ` T) T

0

�; v[�℄ = t:T `M)M

0

M 6� v and � 6� hi

� ` let v[�℄ = t:T in M) [let v[�

0

℄ = t

0

:T

0

in v=v℄M

0

� ` f) f

0

� `

�

k)

�

k

0

� ` f [

�

k℄) f

0

[

�

k

0

℄

18 Z. Luo

� ` �) �

0

�;� ` t) t

0

�;� ` T) T

0

�; v[�℄ = t:T `M)M

0

� ` let v[�℄ = t:T in M) let v[�

0

℄ = t

0

:T

0

in M

0

We omit the obvious rules for kinds and ontexts.

Lemma 5.6

Parallel redution has the following properties:

1. � `M)M for any ontext � and term M .

2. If � `M �

1

N , then � `M) N .

3. If � `M) N , then � `M �N .

Remark Parallel redution also respets the substitution operation.

Lemma 5.7 (parallel subjet redution)

� If j= �! �

0

and ` �) �

0

, then ` �

0

) �

0

.

� If � j= K ! K

0

, ` �) �

0

, and � ` K) K

0

, then �

0

j= K

0

! K

0

.

� If � j= k ! k

0

! k

0

: K, ` �) �

0

, and � ` k) k

1

, then for some k

0

1

and

k

01

, �

0

j= k

1

! k

0

1

! k

0

: K, � ` k

0

) k

01

, and � j= k

01

! k

0

1

! k

0

: K.

Proof By indution on derivations in TOS. 2

Corollary 5.8 (subjet redution)

� If � j= K ! K

0

and � j= K �

1

K

1

, then � j= K

1

! K

0

.

� If � j= k ! k

0

! k

0

: K and � ` k �

1

k

1

, then � j= k

1

! k

0

1

! k

0

: K for

some k

0

1

suh that � ` k

0

� k

0

1

.

Proof By Lemmas 5.7, 5.2, and 5.6. 2

Corollary 5.9 (Churh-Rosser)

� If � j= K ! K

0

, � ` K � K

1

, and � ` K � K

2

, then � ` K

1

� K

0

and

� ` K

2

�K

0

.

� If � j= k ! k

0

! k

0

: K, � ` k � k

1

, and � ` k � k

2

, then � ` k

1

� k

0

and

� ` k

2

� k

0

.

Proof By Corollary 5.8 and Lemma 5.2. 2

The following shows that TOS only types strongly normalisable terms. For any

termM , we say thatM is strongly normalisable in ontext �, notationM 2 SN(�),

if for any term N , � `M �

1

N implies that N 2 SN(�).

Lemma 5.10 (strong normalisation)

� If � j= K ! K

0

, then K 2 SN(�).

� If � j= k ! k

0

! k

0

: K, then k 2 SN(�).

Proof By indution on derivations in TOS. We briey onsider two ases. First,

onsider the �rst rule for objet let-expressions (the �rst rule in Figure 9). By

indution hypothesis, T; t 2 SN(�). We show that, if

let v = t:T in v �

1

k;

PAL

+

: a Lambda-free Logial Framework 19

then k 2 SN(�), by onsidering all possible one-step redutions leading to k. In this

ase, it must be either (1) let v = t:T in v�

1

t � k by the basi redution rule (�)

or (�), or (2) it is from a ongruene rule for redution beause t�

1

t

1

or T �

1

T

1

.

For (1), k � t 2 SN(�); for (2), sine T and t are both strongly normalisable in

�, so is any redut from T or t, and therefore k is strongly normalisable (from the

argument of (1)).

Next, we briey onsider a more diÆult ase, the seond instantiation rule (the

last rule in Figure 8). By indution hypothesis, we have f ,

�

k, [

�

k=�x℄t 2 SN(�).

If f [

�

k℄ �

1

k, there are three possible subases, of whih we only onsider the ase

k � f

1

[

�

k℄ suh that � ` f �

1

f

1

. By subjet redution (Corollary 5.8), for some f

0

1

,

we have

� j= f

1

! f

0

1

! f

0

: (�x:

�

K

0

)T

0

and � ` let v[�℄ = t:T in v � f

0

1

:

Then, by ase analysis of f

0

1

being a whnf (by Lemma 5.4), we an show that

f

1

[

�

k℄ 2 SN(�). 2

Remark Note that the above results of Churh-Rosser, subjet redution and strong

normalisation are for the TOS of PAL

+

, but not for PAL

+

itself. To show that

these properties hold for PAL

+

, we need to show the soundness theorem.

5.3 Soundness of TOS

To prove the soundness of the TOS wrt PAL

+

, we �rst prove the following lemma

about admissibility of substitution and instantiation. This lemma is proved by in-

dution on the following measure on kinds:

� jTypej = jEl(A)j = 0.

� j(x

1

:K

1

; :::; x

n

:K

n

)T j = jK

1

j+ :::+ jK

n

j+ n, where n � 1.

� jlet v[�℄ = t:T in Kj = jKj.

The measure extends to pure ontexts as well.

Lemma 5.11

1. Let Z be a ontext entry. When Z is of the form z:K, k is an objet expression

suh that � j= k ! k

0

! k

0

: K

0

and � j= K ! K

0

. When Z is of the form

z[�℄ = t:T , k � let z[�℄ = t:T in z. Then we have

� If j= �; Z;�

0

! �

1

, then j= �; [k=z℄�

0

! �

2

for some �

2

.

� If �; Z;�

0

j= K ! K

1

, then �; [k=z℄�

0

j= [k=z℄K ! K

2

for some K

2

.

� If �; Z;�

0

j= k

0

! k

1

! k

2

: K, then �; [k=z℄�

0

j= [k=z℄k

0

! k

0

1

! k

0

2

: K

0

,

�; [k=z℄�

0

j= [k=z℄k

1

! k

0

1

! k

0

2

: K

0

, and �; [k=z℄�

0

j= [k=z℄K ! K

0

for

some k

0

1

, k

0

2

and K

0

.

2. If � j= f ! f

0

! f

0

: (�x:

�

K)T and � j=

�

k !

�

k

0

!

�

k

0

:

�

K, then � j= f [

�

k℄ !

t

0

! t

0

: T

0

and � j= [

�

k=�x℄T ! T

0

for some t

0

, t

0

and T

0

.

Theorem 5.12 (Soundness)

� If � valid, then j= �! �

0

for some �

0

.

� If � ` K kind, then � j= K ! K

0

for some K

0

.

20 Z. Luo

� If � ` K

1

= K

2

, then � j= K

1

! K

0

and � j= K

2

! K

0

for some K

0

.

� If � ` k : K, then � j= K ! K

0

and � j= k ! k

0

! k

0

: K

0

for some K

0

, k

0

,

and k

0

.

� If � ` k

1

= k

2

: K, then � j= K ! K

0

, � j= k

1

! k

10

! k

0

: K

0

, and

� j= k

2

! k

20

! k

0

: K

0

, for some K

0

, k

0

, k

10

, and k

20

.

Proof By indution on derivations in PAL

+

. We onsider several ases.

� First, onsider the following substitution rule in Figure 2:

�; x:K;�

0

` k

0

: K

0

� ` k : K

�; [k=x℄�

0

` [k=x℄k

0

: [k=x℄K

0

By indution hypothesis, �; x:K;�

0

j= k

0

! k

0

0

! k

00

: K

00

and �; x:K;�

0

j=

K

0

! K

00

, for some K

00

, k

0

0

, and k

00

. By Lemma 5.11(1), we have �; [k=x℄�

0

j=

[k=x℄k

0

! k

0

1

! k

0

2

: K

1

and �; [k=x℄�

0

j= [k=x℄K

0

! K

1

, for some k

0

1

, k

0

2

and

K

1

.

� Consider the following instantiation rule in Figure 3:

� ` f : (�x:

�

K)T � `

�

k :

�

K

� ` f [

�

k℄ : [

�

k=�x℄T

By indution hypothesis, determinay (Lemma 4.2(1)) and inversion, we have

� j= f ! f

0

! f

0

: (�x:

�

K

0

)T

0

and � j=

�

k !

�

k

0

!

�

k

0

:

�

K

0

, with � j=

�

K !

�

K

0

and �; �x:

�

K j= T ! T

0

, for some f

0

; f

0

;

�

K

0

; T

0

;

�

k

0

and

�

k

0

. By Lemma 5.11(2),

we have � j= f [

�

k℄! t

0

! t

0

: T

0

and � j= [

�

k=�x℄T

0

! T

00

for some t

0

, t

0

and T

00

.

Therefore, for this ase, we only have to show that � j= [

�

k=�x℄T ! T

00

. But by

Lemma 5.11(1), � j= [

�

k=�x℄T ! T

000

for some T

000

. By adequay (Lemma 5.2)

and subjet redution (Corollary 5.8), � j= [

�

k=�x℄T

0

! T

000

. By determinay

(Lemma 4.2(1)), T

00

� T

000

. So we have � j= [

�

k=�x℄T ! T

00

.

� Consider the following (let

�

) rule in Figure 7:

�; v[�x:

�

K℄ = t:T valid � `

�

k :

�

K

� ` (let v[�x:

�

K℄ = t:T in v)[

�

k℄ = [

�

k=�x℄t : [

�

k=�x℄T

By indution hypothesis, determinay (Lemma 4.2(1)) and properties of sub-

derivations, we have j= � ! �

0

, � j=

�

K !

�

K

0

, �; �x:

�

K j= T ! T

0

, �; �x:

�

K j=

t! t

0

! t

0

: T

0

, and � j=

�

k !

�

k

0

!

�

k

0

:

�

K

0

, for some �

0

;

�

K

0

; T

0

; t

0

; t

0

;

�

k

0

and

�

k

0

. We show that, for some T

00

; t

1

and t

00

,

1. � j= [

�

k=�x℄T ! T

00

,

2. � j= [

�

k=�x℄t! t

1

! t

00

: T

00

, and

3. � j= (let v[�x:

�

K℄ = t:T in v)[

�

k℄! t

1

! t

00

: T

00

.

For the �rst, applying Lemma 5.11(1) suÆes to show the existene of T

00

. For

the seond, by Lemma 5.11(1), � j= [

�

k=�x℄t! t

1

! t

00

: T

00

1

and � j= [

�

k=�x℄T !

T

00

1

for some t

1

, t

00

and T

00

1

. By determinay (Lemma 4.2(1)), T

00

1

� T

00

.

For the third, we need to onsider two ases aording to whether �x:

�

K � hi.

If �x:

�

K 6� hi, by either the third or the fourth rule in Figure 9, for some f

0

,

� j= let v[�x:

�

K℄ = t:T in v ! let v[�x:

�

K℄ = t:T in v ! f

0

: (�x:

�

K

0

)T

0

:

PAL

+

: a Lambda-free Logial Framework 21

Therefore, by the seond instantiation rule (the last rule in Figure 8), � j=

(let v[�x:

�

K℄ = t:T in v)[

�

k℄! t

1

! t

00

: T

00

.

If �x:

�

K � hi, we only have to show that � j= let v = t:T in v ! t

1

! t

00

: T

00

,

and for this, use of the �rst rule in Figure 9 suÆes. 2

With soundness and ompleteness of the TOS for PAL

+

and the relationship

between redution and TOS, we an easily show that the system PAL

+

has nie

meta-theoreti properties. These inlude admissibility results of the strutural rules

(e.g., the substitution rules), and omputational properties for the redution re-

lation suh as Churh-Rosser, Subjet Redution, and Strong Normalisation for

well-typed terms.

Remark When PAL

+

is extended with new onstants of the objet type theories,

we remark that the tehniques developed in (Goguen, 1994) an be used to prove

the meta-theoreti results of the objet type theories suh as UTT.

6 Conlusions

We have presented and studied PAL

+

, a logial framework based on parameteri-

sation and de�nitions rather than lambda-abstration. Further extensions of meta-

features suh as oerive subtyping (see e.g., (Luo, 1999)) may be onsidered.

PAL

+

is developed partly as an underlying framework for implementing proof

development systems. Most of the proof systems (e.g., those based on type theory

like ALF (Magnusson & Nordstr�om, 1994), Coq (Barras et al. , 2000), Lego (Luo

& Pollak, 1992), NuPRL (Constable et al. , 1986), and Plasti (Callaghan & Luo,

2001)) have some form of de�nition mehanism. Taking de�nition (and parame-

terisation) as basi, the proposed lambda-free framework should lead to a better

understanding of the underlying theories. We also expet that the simpliity and

diretness gained would bene�t implementation as well as the user (e.g., it is ex-

peted that the use of de Bruijn indies would be simpli�ed, and the treatment of

meta-variables may be dealt with using the simple method as proposed in (Luo,

1997) and implemented in Plasti (Callaghan & Luo, 2001)). Paul Callaghan at

Durham has implemented a prototype of PAL

+

, based on his implementation of

LF in the system Plasti. We have done some experiments on proof development

(e.g., about indutive types and universes) based on the prototype implementation.

A better understanding of what we an gain in implementations requires further

researh and a real development of a proof system.

The development of meta-theory here uses the TOS tool heavily, whih shows

that TOS is a robust approah that an be adapted to other aluli. Among other

related work, Severi and Poll have onsidered meta-theory of adding de�nitions

into PTS (Severi & Poll, 1994), but they do not onsider let-expressions as basi

and PTS does not have �-rules either. Another interesting aspet is to onsider

ategorial theories orresponding to PAL

+

, in a similar way as Cartmell's notion

of ontextual ategories (Cartmell, 1978; Cartmell, 1986) orresponds to Martin-

L�of's logial framework.

22 Z. Luo

Another aspet this paper has not disussed is the use of type theories as logi-

al frameworks following the `judgement-as-types' approah (Harper et al., 1987).

We think that the idea to develop lambda-free logial frameworks an similarly

be onsidered and should bene�t the users of systems based on the priniple of

judgement-as-types.

Aknowledgements This work is based on some notes I wrote in 1997 of the same

title, whih I did not �nish, and a further development of my note in LFM'00 (Luo,

2000). It is partly supported by UK EPSRC grants GR/K79130 and GR/M75518,

and the EU TYPES WG grant 29001. I am grateful to Paul Callaghan, Healfdene

Goguen, Conor MBride, Bengt Nordstr�om, Randy Pollak, and others, who have

read this paper or its earlier versions and given many useful suggestions and om-

ments. Callaghan's prototype implementation of PAL

+

has been extremely useful.

I am also grateful to the disussions on this topi I have had with members of the

Computer-Assisted Reasoning Group at Durham.

Referenes

Barras, B., et al. . (2000). The Coq Proof Assistant Referene Manual (Version 6.3.1).

INRIA-Roquenourt.

Callaghan, P., & Luo, Z. (2001). An implementation of LF with oerive subtyping and

universes. Journal of Automated Reasoning, 27(1), 3{27.

Cartmell, J. (1978). Generalized algebrai theories and ontextual ategory. Ph.D. thesis,

University of Oxford.

Cartmell, J. (1986). Generalized algebrai theories and ontextual ategory. Annals of

Pure and Applied Logi, 32.

Constable, R.L., et al. . (1986). Implementing Mathematis with the NuPRL Proof Devel-

opment System. Pretie-Hall.

de Bruijn, N.G. (1980). A survey of the projet AUTOMATH. Hindley, J., & Seldin, J.

(eds), To H. B. Curry: Essays on Combinatory Logi, Lambda Calulus and Formalism.

Aademi Press.

Goguen, H. (1994). A typed operational semantis for type theory. Ph.D. thesis, University

of Edinburgh.

Goguen, H. (1999). Soundness of typed operational semantis for the logial framework.

Typed Lambda Caluli and Appliations (TLCA'99).

Harper, R., Honsell, F., & Plotkin, G. (1987). A framework for de�ning logis. Pro. 2nd

Ann. Symp. on Logi in Computer Siene.

Luo, Z. (1994). Computation and Reasoning: A Type Theory for Computer Siene. Oxford

University Press.

Luo, Z. 1997 (August). Meta-variables and existential judgements. Notes.

Luo, Z. (1999). Coerive subtyping. Journal of Logi and Computation, 9(1), 105{130.

Luo, Z. (2000). pal

+

: a lambda-free logial framework. Pro. of Inter Workshop on Logial

Frameworks and Meta-languages (LFM'2000), Santa Barbara, California.

Luo, Z., & Pollak, R. (1992). LEGO Proof Development System: User's Manual. LFCS

Report ECS-LFCS-92-211. Department of Computer Siene, University of Edinburgh.

Magnusson, L., & Nordstr�om, B. (1994). The ALF proof editor and its proof engine.

Barendregt, H., & Nipkow, T. (eds), Types for Proof and Programs. LNCS 806.

PAL

+

: a Lambda-free Logial Framework 23

Nordstr�om, B., Petersson, K., & Smith, J. (1990). Programming in Martin-L�of's Type

Theory: An Introdution. Oxford University Press.

Severi, P., & Poll, E. (1994). Pure type systems with de�nitions. Pro. of LFCS'94, LNCS

813.

