
Under
onsideration for publi
ation in J. Fun
tional Programming 1

PAL

+

: a Lambda-free Logi
al Framework

Zhaohui Luo

Department of Computer S
ien
e, University of Durham

South Rd, Durham DH1 3LE, U.K.

URL: http://www.dur.a
.uk/zhaohui.luo/

Abstra
t

A lambda-free logi
al framework takes parameterisation and de�nitions as the basi
 no-

tions to provide s
hemati
 me
hanisms for spe
i�
ation of type theories and their use in

pra
ti
e. The framework presented here, PAL

+

, is a logi
al framework for spe
i�
ation

and implementation of type theories, su
h as Martin-L�of's type theory or UTT. As in

Martin-L�of's logi
al framework (Nordstr�om et al., 1990),
omputational rules
an be in-

trodu
ed and are used to give meanings to the de
lared
onstants. However, PAL

+

only

allows one to talk about the
on
epts that are intuitively in the obje
t type theories: types

and their obje
ts, and families of types and families of obje
ts of types. In parti
ular, in

PAL

+

, one
annot dire
tly represent families of families of entities, whi
h
ould be done

in other logi
al frameworks by means of lambda abstra
tion.

PAL

+

is in the spirit of de Bruijn's PAL for Automath (de Bruijn, 1980). Compared

with PAL, PAL

+

allows one to represent parametri

on
epts su
h as families of types

and families of non-parametri
 obje
ts, whi
h
an be used by themselves as totalities as

well as when they are fully instantiated. Su
h parametri
 obje
ts are represented by lo
al

de�nitions (let-expressions).

We
laim that PAL

+

is a
orre
t meta-language for spe
ifying type theories (e.g., de-

pendent type theories), as it has the advantage of exa
tly
apturing the intuitive
on
epts

in obje
t type theories, and that its implementation re
e
ts the a
tual use of type theories

in pra
ti
e. We shall study the meta-theory of PAL

+

by developing its typed operational

semanti
s and showing that it has ni
e meta-theoreti
 properties.

1 Motivations and Introdu
tion

A lambda-free logi
al framework takes parameterisation and de�nitions as the basi

notions to provide s
hemati
 me
hanisms for spe
i�
ation of type theories and their

use in pra
ti
e. The reasons to
onsider lambda-free logi
al frameworks in
lude:

� Parametri

onstants and de�nitions and the asso
iated operations of instan-

tiation (substitution or
ut) are more basi
 and arguably simpler notions and

me
hanisms than that of lambda-abstra
tion as found in other logi
al frame-

works su
h as Martin-L�of's logi
al framework (Nordstr�om et al., 1990). A

parametri
ally de�ned entity represents a family of entities, rather than a

fun
tional operation.

� The user of a proof system based on a lambda-free framework does not have to

understand the meta-level lambda-abstra
tion that
an be used to represent

on
epts su
h as families of families of entities, whi
h do not exist in obje
t

2 Z. Luo

type theories. Rather, one only has to grasp
on
epts of the obje
t type theory

and the de�nitional me
hanism.

� The introdu
tion of a lambda-free logi
al framework makes
lear that a logi
al

framework is a meta-language that provides the s
hemati
 me
hanisms for

spe
ifying type theories and the de�nitional me
hanism for pragmati
 use. It is

worth remarking that su
h me
hanisms are ne
essary for any framework to be

used in pra
ti
e, with or without �-abstra
tion. When an obje
t type theory

has types of fun
tions, say �-types, there is usually a
onfusion between the

obje
t-level fun
tions and the meta-level fun
tional operations, if the latter

exist in the meta-framework. For example, in systems like ALF (Magnusson

& Nordstr�om, 1994), one tends to use the meta-level fun
tional operations as

fun
tional programs while ignoring the obje
t level fun
tions.

The logi
al framework presented here, PAL

+

, is su
h a framework in the spirit of

de Bruijn's PAL for Automath (de Bruijn, 1980).

PAL

+

is a logi
al framework for spe
i�
ation and implementation of type theories

su
h as Martin-L�of's type theory (Nordstr�om et al., 1990) and UTT (Luo, 1994). As

in Martin-L�of's logi
al framework (Nordstr�om et al., 1990),
omputational rules
an

be introdu
ed and are used to give meanings to the de
lared
onstants. However,

PAL

+

only allows one to talk about the
on
epts that are intuitively in the obje
t

type theories: types and their obje
ts, and families of types and families of obje
ts

of types. In parti
ular, in PAL

+

, one
annot dire
tly represent families of families

of entities, whi
h
ould be done in other logi
al frameworks by means of lambda

abstra
tion. Compared with PAL, PAL

+

allows one to represent parametri

on-

epts su
h as families of types and families of non-parametri
 obje
ts, whi
h
an

be used by themselves (as totalities) as well as when they are fully instantiated. An

implementation of a proof development system based on PAL

+

an truly re
e
t the

intended use of a type theory. After a type theory is spe
i�ed (and implemented),

the user is
on
erned only with the obje
t type theory and uses the de�nitional

me
hanism for abbreviation.

Parametri
 obje
ts are represented as let-expressions. One of the distin
tive fea-

tures of PAL

+

,
ompared with other logi
al frameworks, is that it takes de�nitions

rather than lambda abstra
tions as basi
. Let-expressions do not only represent

lo
al de�nitions, but parametri
 obje
ts. The meta-theory for PAL

+

, therefore, is

new and the �rst for su
h a
al
ulus as far as we know.We develop typed operational

semanti
s (Goguen, 1994) for PAL

+

and show that PAL

+

has ni
e meta-theoreti

properties.

The following se
tion gives a formal presentation of PAL

+

: its parameterisation

me
hanism and de�nitional me
hanism, together with some informal explanations.

We also explain how parametri
 abstra
tions, whi
h represent families of types

or obje
ts,
an be represented as let-expressions. Se
tion 3 shows how PAL

+

an

be used in spe
i�
ation of type theories. In Se
tions 4 and 5, we
onsider the

meta-theoreti
 properties of the logi
al framework PAL

+

by developing its typed

operational semanti
s and proving its
omputational properties su
h as Chur
h-

PAL

+

: a Lambda-free Logi
al Framework 3

Rosser, Subje
t Redu
tion, and Strong Normalisation. In the Con
lusion, we brie
y

dis
uss some issues about implementation of PAL

+

and possible further extensions.

2 PAL

+

In PAL

+

, we have obje
ts and kinds. Kinds in
lude non-parametri
 kinds and

parametri
 kinds. Non-parametri
 kinds are of the form Type or El(A). Para-

metri
 kinds of the form (�)T , where � is a non-empty
ontext of the form

x

1

:K

1

; :::; x

n

:K

n

and T is a non-parametri
 kind. Non-parametri
 obje
ts, obje
ts of

non-parametri
 kinds, represent types and obje
ts of types; parametri
 obje
ts, ob-

je
ts of parametri
 kinds, represent families of types and families of non-parametri

obje
ts. Let-expressions, representing lo
al de�nitions,
an be used to form kinds

and obje
ts. In parti
ular, parametri
 obje
ts are represented by let-expressions.

In the following, we give a formal des
ription of PAL

+

, with some informal

explanations.

2.1 Terms

Terms are either obje
t expressions or kind expressions. For presentational purposes

and meta-theoreti
 reasons, we introdu
e terms asso
iated with arities, whi
h are

natural numbers. The arity of an obje
t expression indi
ates the number of argu-

ments it should take when forming a term of instantiation. The arity of a kind

expression indi
ates the number of arguments its obje
ts should take. We write

V ar(i) and DV (i) for the sets of ordinary variables and de�nitional variables with

arity i, respe
tively. We assume that V ar(i) andDV (j) be all disjoint. Furthermore,

V ar =

[

i2!

V ar(i) and DV =

[

i2!

DV (i):

De�nition 2.1 (expressions,
ontexts, pure
ontexts, and terms)

The following are de�ned simultaneously by stru
tural indu
tion.

1. The set of obje
t expressions with arity i 2 !, Obj(i), is de�ned as follows:

� V ar(i) � Obj(i).

� DV (i) � Obj(i).

� f [k

1

; :::; k

n

℄ 2 Obj(0) if f 2 Obj(n) and k

i

are obje
t expressions.

� let v[�℄ = t:T in k 2 Obj(i) if k 2 Obj(i), t 2 Obj(0), T 2 Kind(0), � is

a pure
ontext of length n, and v 2 DV (n).

2. The set of kind expressions with arity i 2 !, Kind(i), is de�ned as follows:

� Type 2 Kind(0).

� El(A) 2 Kind(0) if A 2 Obj(0).

� (�)T 2 Kind(i) if � is a pure
ontext of length i and T 2 Kind(0).

� let v[�℄ = t:T in K 2 Kind(i) if K 2 Kind(i), t 2 Obj(0), T 2 Kind(0),

� is a pure
ontext of length n, and v 2 DV (n).

3. A pure
ontext (�) is a sequen
e of entries of the form x:K su
h that for

some i, x 2 V ar(i) and K 2 Kind(i). A
ontext (�) is a sequen
e of entries

4 Z. Luo

of the form x:K (as above) or v[�℄ = t:T , where t 2 Obj(0), T 2 Kind(0), �

is a pure
ontext of length n, and v 2 DV (n). The length of a
ontext, l(�),

is the number of its entries.

The set of terms with arity i, Term(i), is de�ned as Obj(i) [Kind(i). We shall

write Arity(M) for the arity of term M .

Remark By de�nition, every term has a unique arity. Substitutions preserve the

arity of a term. More pre
isely, for terms M and k and variable z, if Arity(k) =

Arity(z), then [k=z℄M is a term and Arity([k=z℄M) = Arity(M).

Notation The following notations are used:

� When � is the empty
ontext (hi, whi
h does not have any entry), we write

v = t:T for v[�℄ = t:T in a
ontext and let v = t:T inM for the let-expression

let v[�℄ = t:T in M . By our
onvention, f [℄ is taken as the same as f , and

()T (or (hi)T) is taken as the same as T .

� A pure
ontext � of the form x

1

:K

1

; :::; x

n

:K

n

is often abbreviated as �x:

�

K

and we also use �

i

to stand for x

1

:K

1

; :::; x

i

:K

i

. We shall sometimes write

�

�x

for � to indi
ate that � � �x:

�

K for some

�

K.

� We use V ar(M) and DV (M), de�ned indu
tively on the term stru
ture, to

denote the sets of free ordinary variables and free de�nitional variables in

term M , respe
tively. We use FV (M), de�ned to be V ar(M) [DV (M), to

denote the set of free variables in term M . These extend to
ontexts as well.

We identify terms whi
h are �-
onvertible and use � for synta
ti
 equality. In

parti
ular, in let v[�

�x

℄ = t:T in M , v is bound in M and �x are bound in t and T .

Therefore, terms with
hanges of su
h bound variables are identi�ed.

2.2 Judgement Forms

The judgement forms are, where � is a
ontext, K and K

0

are kind expressions,

and k and k

0

are obje
t expressions:

� � valid | � is a valid
ontext.

� � ` K kind | K is a kind in �.

� � ` k : K | k is an obje
t of kind K in �.

� � ` K = K

0

| K and K

0

are equal kinds.

� � ` k = k

0

: K | k and k

0

are equal obje
ts of kind K.

Notation

� For � � x

1

:K

1

; :::; x

n

:K

n

and �

0

� x

1

:K

0

1

; :::; x

n

:K

0

n

, we write � ` � = �

0

for the sequen
e of judgements �;�

i�1

` K

i

= K

0

i

(i = 1; :::; n).

� We shall write � `

�

k :

�

K for the sequen
e of judgements � ` k

1

: K

1

, � ` k

2

:

[k

1

=x

1

℄K

2

, ..., � ` k

n

: [k

n�1

=x

n�1

℄:::[k

1

=x

1

℄K

n

and similarly the notation

� `

�

k =

�

k

0

:

�

K stands for the sequen
e of judgements � ` k

1

= k

0

1

: K

1

,

� ` k

2

= k

0

2

: [k

1

=x

1

℄K

2

, ..., � ` k

n

= k

0

n

: [k

n�1

=x

n�1

℄:::[k

1

=x

1

℄K

n

.

� The simultaneous substitution [

�

k=�x℄M stands for [k

n

=x

n

℄:::[k

1

=x

1

℄M ; note

that when this notation is used, we
an always assume that �x 62 FV (k

i

) and

so the order of substitutions does not matter.

PAL

+

: a Lambda-free Logi
al Framework 5

Contexts and assumptions

hi valid

� ` K kind x 62 FV (�) and x 2 V ar(Arity(K))

�; x:K valid

�; x:K;�

0

valid

�; x:K;�

0

` x : K

General equality rules

� ` K kind

� ` K = K

� ` K = K

0

� ` K

0

= K

� ` K = K

0

� ` K

0

= K

00

� ` K = K

00

� ` k : K

� ` k = k : K

� ` k = k

0

: K

� ` k

0

= k : K

� ` k = k

0

: K � ` k

0

= k

00

: K

� ` k = k

00

: K

Equality typing rules

� ` k : K � ` K = K

0

� ` k : K

0

� ` k = k

0

: K � ` K = K

0

� ` k = k

0

: K

0

The kind Type

� valid

� ` Type kind

� ` A : Type

� ` El(A) kind

� ` A = B : Type

� ` El(A) = El(B)

Fig. 1. The basi
 rules of PAL

+

.

Substitution rules

�; x:K;�

0

valid � ` k : K

�; [k=x℄�

0

valid

�; x:K;�

0

` K

0

kind � ` k : K

�; [k=x℄�

0

` [k=x℄K

0

kind

�; x:K;�

0

` K

0

kind � ` k = k

0

: K

�; [k=x℄�

0

` [k=x℄K

0

= [k

0

=x℄K

0

�; x:K;�

0

` k

0

: K

0

� ` k : K

�; [k=x℄�

0

` [k=x℄k

0

: [k=x℄K

0

�; x:K;�

0

` k

0

: K

0

� ` k

1

= k

2

: K

�; [k

1

=x℄�

0

` [k

1

=x℄k

0

= [k

2

=x℄k

0

: [k

1

=x℄K

0

�; x:K;�

0

` K

0

= K

00

� ` k : K

�; [k=x℄�

0

` [k=x℄K

0

= [k=x℄K

00

�; x:K;�

0

` k

0

= k

00

: K

0

� ` k : K

�; [k=x℄�

0

` [k=x℄k

0

= [k=x℄k

00

: [k=x℄K

0

Fig. 2. The substitution rules of PAL

+

.

2.3 Basi
 Rules

The basi
 rules are given in Figure 1 and Figure 2, the latter of whi
h
ontains the

substitution rules. Formally, these rules are the general inferen
e rules of the logi
al

framework LF (see Figure 9.1 in Chapter 9 of (Luo, 1994)).

1

1

LF is a typed version of Martin-L�of's logi
al framework (Nordstr�om et al., 1990) in that the

form of abstra
tion [x:K℄k has type label K, rather than just [x℄k. We should point out that LF

is di�erent from the Edinburgh Logi
al Framework (ELF) (Harper et al., 1987). Though quite

similar formally, the intended ways of use are very di�erent.

6 Z. Luo

Formation rules for parametri
 kinds

�;� ` T kind (�)T is a term

� ` (�)T kind

� ` � = �

0

�;� ` T = T

0

(�)T and (�

0

)T

0

are terms

� ` (�)T = (�

0

)T

0

Instantiation rules for parametri
 obje
ts

� ` f : (�x:

�

K)T � `

�

k :

�

K

� ` f [

�

k℄ : [

�

k=�x℄T

� ` f = f

0

: (�x:

�

K)T � `

�

k =

�

k

0

:

�

K

� ` f [

�

k℄ = f

0

[

�

k

0

℄ : [

�

k=�x℄T

Fig. 3. Rules for parametri
 kinds in PAL

+

.

The kind Type represents the
on
eptual universe of types to be introdu
ed, and

for ea
h type A of kind Type, the kind El(A) is the kind of obje
ts of type A.

2.4 Parametri
 Kinds and Instantiations

Parametri
 obje
ts represent families of types or families of non-parametri
 obje
ts.

They
an either be used as a totality or when they are fully instantiated.

The rules for parametri
 kinds of the form (�)T are given in Figure 3. Note that

a parametri
 entity of a parametri
 kind
annot be used by partial instantiation.

Only when given appropriate indexing obje
ts

�

k,
an a parametri
 obje
t f , i.e.,

an obje
t of a parametri
 kind, be instantiated into f [

�

k℄.

Besides variables of a parametri
 kind, parametri
 obje
ts also in
lude para-

metri

onstants (introdu
ed when spe
ifying an obje
t type theory) and some

let-expressions (see below).

2.5 De�nitions in PAL

+

We introdu
e in PAL

+

both global de�nitions of the form v[�℄ = t:T as entries

in
ontexts and lo
al de�nitions or let-expressions of the form let v[�℄ = t in M ,

where variables �x in �

�x

are bound in t and T and the de�nitional variable v is

bound in M .

2.5.1 Global De�nitions

Global de�nitions
an be introdu
ed into
ontexts and used by means of the rules

in Figure 4. We also have substitution rules in Figure 5, where in the last rule, J

is of the form K kind, k : K, K = K

0

, or k = k

0

: K.

Remark Several remarks are in order.

� Note that, in the introdu
tion rule for global de�nitions, we require T to be

a kind of arity 0, i.e., it is equal to either Type or El(A). Hen
e the body

PAL

+

: a Lambda-free Logi
al Framework 7

Introdu
tion rule for global de�nitions

�;� ` t : T v 62 FV (�) �; v[�℄ = t:T is a
ontext

�; v[�℄ = t:T valid

Typing and equality rules for global de�nitions

�; v[�℄ = t:T;�

0

valid

�; v[�℄ = t:T;�

0

` v : (�)T

�; v[�℄ = t:T;�

0

valid

�; v[�℄ = t:T;�

0

` v = let v[�℄ = t:T in v : (�)T

Fig. 4. Rules for global de�nitions.

Substitution rules for global de�nitions

�; v[�℄ = t:T;�

0

valid

�; [let v[�℄ = t:T in v=v℄�

0

valid

�; v[�℄ = t:T;�

0

` J

�; [let v[�℄ = t:T in v=v℄�

0

` [let v[�℄ = t:T in v=v℄J

Fig. 5. Substitution rules for global de�nitions.

of a global de�nition must be a type or an obje
t of a type. Also, when � is

empty, the rules spe
ialise into those for non-parametri
 kinds.

� The de�niendum of a global de�nition
an either be used when it is fully

applied, or as a totality.

� The `meaning' of a globally de�ned entity v is given dire
tly by means of

let-expressions of the form let v[�℄ = t:T in v.

2.5.2 Lo
al De�nitions

Lo
al de�nitions, or let-expressions, are introdu
ed by the let-introdu
tion rules in

Figure 6. They abide by the
ongruen
e rules in Figure 6 and the equality rules in

Figure 7.

2.6 Parametri
 Abstra
tion

The let-expressions in PAL

+

play a role of `parametri
 abstra
tion' as well as lo
al

de�nitions. In parti
ular, when � is not empty, the term let v[�℄ = t:T in v
an

be viewed as a form of abstra
tion { parametri
 abstra
tion. We may introdu
e a

new notation: a parametri
 abstra
tion is of the form [�℄t and represents either a

family of types or non-parametri
 obje
ts, indexed by (sequen
es of) obje
ts of �.

The variables in � are bound variables.

One may introdu
e parametri
 abstra
tions independently by adding the follow-

ing rules. (This was the
ase in (Luo, 2000).)

8 Z. Luo

let-introdu
tion rules

�; v[�℄ = t:T ` K kind

� ` let v[�℄ = t:T in K kind

�; v[�℄ = t:T ` k : K

� ` let v[�℄ = t:T in k : let v[�℄ = t:T in K

Congruen
e rules for let-expressions

� ` � = �

0

�;� ` T = T

0

�;� ` t = t

0

: T �; v[�℄ = t:T ` K = K

0

� ` (let v[�℄ = t:T in K) = (let v[�

0

℄ = t

0

:T

0

in K

0

)

� ` � = �

0

�;� ` T = T

0

�;� ` t = t

0

: T �; v[�℄ = t:T ` k = k

0

: K

� ` (let v[�℄ = t:T in k) = (let v[�

0

℄ = t

0

:T

0

in k

0

) : let v[�℄ = t:T in K

Fig. 6. Introdu
tion and
ongruen
e rules for let-expressions.

Equality rules for let-expressions

(let

�

)

�; v[�x:

�

K℄ = t:T valid � `

�

k :

�

K

� ` (let v[�x:

�

K℄ = t:T in v)[

�

k℄ = [

�

k=�x℄t : [

�

k=�x℄T

(let

�

)

�; v[�

�x

℄ = g[�x℄:T ` k : K � ` g : (�)T

� ` let v[�℄ = g[�x℄:T in k = [g=v℄k : [g=v℄K

(let

K

�

)

�; v[�

�x

℄ = g[�x℄:T ` K kind � ` g : (�)T

� ` let v[�℄ = g[�x℄:T in K = [g=v℄K

(let

d

)

�; v[�℄ = t:T ` k : K

� ` let v[�℄ = t:T in k = [let v[�℄ = t:T in v=v℄k : let v[�℄ = t:T in K

(let

K

d

)

�; v[�℄ = t:T ` K kind

� ` let v[�℄ = t:T in K = [let v[�℄ = t:T in v=v℄K

Fig. 7. Equality rules for let-expressions.

�;� ` t : T T 2 Kind(0)

� ` [�℄t : (�)T

� ` � = �

0

�;� ` t = t

0

: T T 2 Kind(0)

� ` [�℄t = [�

0

℄t

0

: (�)T

�; �x:

�

K ` t : T � `

�

k :

�

K T 2 Kind(0)

� ` ([�x:

�

K℄t)[

�

k℄ = [

�

k=�x℄t : [

�

k=�x℄T

� ` f : (�x:

�

K)T �x 62 FV (f)

� ` [�x:

�

K℄f [�x℄ = f : (�x:

�

K)T

However, parametri
 abstra
tions are a spe
ial form of let-expressions. The fol-

lowing de�nitional rule de�nes parametri
 abstra
tion in terms of let-expressions

in PAL

+

.

�; v[�℄ = t:T valid

� ` [�℄t = let v[�℄ = t:T in v : (�)T

Remark One might want to take parametri
 abstra
tion and its appli
ation as

basi
 and de�ne let-expressions by means of parametri
 abstra
tion. There is some

PAL

+

: a Lambda-free Logi
al Framework 9

te
hni
al diÆ
ulty in doing so (note that let-expressions have kind information T

whi
h is not present in parametri
 abstra
tion). But more importantly, we remark

that let-expressions are more general than parametri
 abstra
tions as they
an be

used for all expressions in
luding parametri
 kinds. Furthermore, lo
al de�nitions

are useful in any proof development or programming environment. It is therefore

natural to take let-expressions as basi
 while taking parametri
 abstra
tion as a

de�ned notion.

2.7 Simple Properties and Distribution Laws for let-expressions

The rules of PAL

+

, as given in Figure 1 to Figure 7, respe
t the de�nition of

synta
ti
 notions of term,
ontext, et
. in De�nition 2.1.

Lemma 2.2

The following properties hold:

� If � valid, then � is a
ontext.

� If � ` K kind, then � is a
ontext and K is a kind expression.

� If � ` K = K

0

, then � is a
ontext and K and K

0

are kind expressions of the

same arity.

� If � ` k : K, then � is a
ontext, k is an obje
t expression, K is a kind

expression, and k and K have the same arity.

� If � ` k = k

0

: K, then � is a
ontext, k and k

0

are obje
t expressions, K is a

kind expression, and k, k

0

, and K have the same arity.

Let-expressions satisfy a number of distribution laws, whi
h say that lo
al def-

initions
an be distributed for all stru
tured expressions. For instan
e, when v 62

FV (M), let v[�℄ = t:T in M is
omputationally equal to M . (See (Luo, 2000) for

details, where distribution rules are taken to repla
e the equality rules in Figure 7.)

An example of su
h distribution rules is:

�; v[�℄ = t:T ` (�

0

)T

0

kind

� ` (let v[�℄ = t:T in (�

0

)T

0

) = (let v[�℄ = t:T in �

0

)let v[�℄ = t:T in T

0

In PAL

+

as presented in this paper, the distribution rules are all admissible.

3 Spe
i�
ation of Type Theories in PAL

+

As in Martin-L�of's type theory (Nordstr�om et al., 1990), we spe
ify type theories in

the logi
al frameworkPAL

+

. One of the key observations is that we
an spe
ify type

theories with the simpler logi
al framework without arbitrary lambda-abstra
tion.

For example, all of the types in UTT (Luo, 1994)
an be spe
i�ed, in
luding the

impredi
ative universe of logi
al propositions, the indu
tive types and indu
tive

families
overed by the indu
tive s
hemata, and predi
ative universes. Similarly,

Martin-L�of's type theory
an be spe
i�ed in PAL

+

as well.

In general, a spe
i�
ation of a type theory in PAL

+

will
onsist of a
olle
tion

of de
larations of new
onstants (either non-parametri
 or parametri
) and a
ol-

le
tion of asso
iated
omputational equality rules. Like other parametri
 obje
ts, a

10 Z. Luo

parametri

onstant
annot be used by partial instantiation. Su
h de
larations of

onstants and equalities amount to extensions of (an existing type theory spe
i�ed

in) PAL

+

by new rules. One should, of
ourse, make sure that the new rules lead to

a type theory that has good properties. For example, indu
tive types with stri
tly

positive
onstru
tors
an be spe
i�ed. We do not
onsider su
h issues here.

Given a kind K, if one introdu
es a
onstant f by de
laring

f : K;

it has the e�e
t of introdu
ing the following rule:

� valid

� ` f : K

Computational equality
an only be introdu
ed between two obje
ts of a type, or

between two types.

2

If one introdu
es a
omputation rule by asserting

t = t

0

: T where k

i

: K

i

(i = 1; :::; n);

it extends the type theory with the following rule:

� ` k

i

: K

i

(i = 1; :::; n) � ` T kind T 2 Kind(0)

� ` t = t

0

: T

In the following, we give several examples of introdu
ing type
onstru
tors and

their asso
iated operators as
onstants. We omit El to write A for El(A) in the

examples.

Example 3.1

The type of natural numbers
an be introdu
ed as follows:

N : Type

0 : N

s : (x:N) N

R : (C:(x:N)Type;
:C[0℄; f :(x:N; y:C[x℄)C[s[x℄℄; z:N) C[z℄

The
orresponding
omputation rules are:

R[C;
; f; 0℄ =
 : C[0℄

R[C;
; f; s[x℄℄ = f [x;R[C;
; f; x℄℄ : C[s[x℄℄

where C:(x:N)Type,
:C[0℄, f :(x:N; y:C[x℄)C[s[x℄℄, and x:N . (We omit su
h where-

lauses in the following examples.)

Example 3.2

The �-types, �[A;B℄ for a type A and a family of types B,
an be introdu
ed as

2

This
onforms to the restri
tion
onsidered in (Luo, 1999), where LF is used to spe
ify type

theories.

PAL

+

: a Lambda-free Logi
al Framework 11

follows:

� : (A:Type; B:(x:A)Type) Type

� : (A:Type; B:(x:A)Type; f :(x:A)B[x℄) �[A;B℄

E

�

: (A:Type; B:(x:A)Type; C:(F :�[A;B℄)Type;

f :(g:(x:A)B[x℄)C[�[A;B; g℄℄;

z:�[A;B℄)

C[z℄

The
orresponding
omputation rule is:

E

�

[A;B;C; f; �[A;B; g℄℄ = f [g℄ : C[�[A;B; g℄℄

The following simple example shows how lo
al de�nitions may be used.

Example 3.3

The appli
ation operator for �-types

app : (A:Type; B:(x:A)Type; F :�[A;B℄; x:A) B[x℄

an be de�ned by means of lo
al de�nitions as follows.

app[A;B; F; a℄ = let C[G:�[A;B℄℄ = B[a℄:Type in

let f [g:(x:A)B[x℄℄ = g[a℄:B[a℄ in E

�

[A;B;C; f; F ℄

Or alternatively, parametri
 abstra
tions, de�ned as spe
ial forms of let-expressions,

may be used to de�ne the same appli
ation operator as follows:

app[A;B; F; a℄ =

df

E

�

[A;B; [G:�[A;B℄℄B[a℄; [g:(x:A)B[x℄℄g[a℄; F ℄

With the above de�nition, we
an show the expe
ted equalities hold. For example,

we
an show that the usual �-equality holds for the
omputational equality:

app[A;B; �[A;B; g℄; a℄ = g[a℄:

Furthermore, for propositional equality =

�[A;B℄

(e.g., the Leibniz equality, whi
h

an be de�ned when we have an impredi
ative universe of logi
al propositions, or

Martin-L�of's equality type de�ned by introdu
ing a single
onstru
tor eq[a℄ of type

a =

�[A;B℄

a), we
an show that the logi
al �-rule holds, i.e., the following logi
al

proposition is provable:

�[A;B; [x:A℄app[A;B; F; x℄℄ =

�[A;B℄

F:

Example 3.4

The family of types of ve
tors of obje
ts of type A
an be introdu
ed as follows,

where N is the type of natural numbers as introdu
ed above.

V e
 : (A:Type; x:N) Type

nil : (A:Type) V e
[A; 0℄

ons : (A:Type; n:N; a:A; l:V e
[A; n℄) V e
[A; su

[n℄℄

E

V

: (A:Type; C:(n:N; v:V e
[A; n℄)Type;

12 Z. Luo

:C[0; nil[A℄℄; f :(n:N; x:A; v:V e
[A; n℄; y:C[n; v℄)C[su

[n℄;
ons[A; x; v℄℄;

n:N; v:V e
[A; n℄)

C[n; v℄;

The
orresponding
omputation rules are:

E

V

[A;C;
; f; 0; nil[A℄℄ =
 : C[0; nil[A℄℄;

E

V

[A;C;
; f; su

[n℄;
ons[A; n; a; v℄℄

= f [n; a; v; E

V

[A;C;
; f; n; v℄℄ : C[su

[n℄;
ons[A; n; a; v℄℄:

Example 3.5

The W-types, W [A;B℄ for a type A and a family of types B,
an be introdu
ed as

follows:

W : (A:Type; B:(x:A)Type) Type

sup : (A:Type; B:(x:A)Type; x:A; y:(v:B[x℄)W [A;B℄) W [A;B℄

E

W

: (A:Type; B:(x:A)Type; C:(w:W [A;B℄)Type;

f :(x:A; y:(v:B[x℄)W [A;B℄; g:(v:B[x℄)C[y[v℄℄)C[sup[A;B; x; y℄℄;

z:W [A;B℄)

C[z℄

The
orresponding
omputation rule is:

E

W

[A;B;C; f; sup[A;B; x; y℄℄

= f [x; y; [z:B[x℄℄E

W

[A;B;C; f; y[z℄℄℄ : C[sup[A;B; x; y℄℄:

Spe
ial
ases of W-types in
lude the type of ordinals and various types of well-

founded trees. Note that the notation of parametri
 abstra
tion is used in the

omputation rule above.

4 Typed Operational Semanti
s for PAL

+

In the next two se
tions, we study the meta-theory of PAL

+

. In this se
tion, we

develop the typed operational semanti
s for PAL

+

, whi
h is taken as the basis for

development of the meta-theory for PAL

+

in the next se
tion.

Typed operational semanti
s (TOS) was developed for the type theory UTT in

Goguen's thesis (Goguen, 1994), and a
on
ise a

ount of TOS for LF
an be found

in (Goguen, 1999). In (Luo, 2000), we have developed TOS for PAL

+

with only

parametri
 abstra
tions (and without global de�nitions or let-expressions.) In this

paper, we take let-expressions as basi
 and develop the TOS and meta-theory. As

far as we know, this is the �rst treatment of meta-theory
on
erning su
h a
al
ulus

with basi
 let-expressions (and �-rules).

4.1 TOS

The typed operational semanti
s for PAL

+

has the following judgement forms:

PAL

+

: a Lambda-free Logi
al Framework 13

� j= �! �

0

|
ontext � has normal form �

0

.

� � j= K ! K

0

| kind K is a well-typed and has normal form K

0

in
ontext

�.

� � j= k ! k

0

! k

0

: K | k, k

0

, and k

0

are of kindK in �, and k has weak-head

normal form k

0

and normal form k

0

.

Notation We shall use the following notations:

� For � � �x:

�

K and �

0

� �x

0

:

�

K

0

of the same length, we shall use the notation

� j= � ! �

0

to stand for the sequen
e of judgements � j= K

1

! K

0

1

,

�;�

1

j= K

2

! K

0

2

, ..., �;�

n�1

j= K

n

! K

0

n

.

� For

�

k,

�

k

0

,

�

k

0

, and

�

K of the same length, we shall use � j=

�

k !

�

k

0

!

�

k

0

:

�

K

to stand for the sequen
e of judgements

� j= k

1

! k

01

! k

0

1

: K

1

;

� j= k

2

! k

02

! k

0

2

: K

0

2

;

:::;

� j= k

n

! k

0n

! k

0

n

: K

0

n

;

� j= Æ

i

K

i

! K

0

i

(i = 2; :::; n);

where Æ

i

(i = 2; :::; n) is the substitution [k

1

; :::; k

i�1

=x

1

; :::; x

i�1

℄.

The rules of TOS for PAL

+

are given in Figure 8 and Figure 9. For the rules in

Figure 9 for obje
t let-expressions of the form let v[�℄ = t:T in k, we distinguish

the
ases a

ording to whether k � v and whether � � hi. For example, when

k � v and � � hi, the let-expression let v = t:T in v
omputes to the weak-head

normal form and normal form of those of t (the �rst rule in Figure 9).

4.2 Basi
 Properties and Completeness of the TOS

The TOS de�ned above has the basi
 properties
on
erning sub-derivations and

variable o

urren
es in
ontexts. Furthermore, it has the properties as given by

the following two lemmas, whi
h are proved by indu
tion on derivations of TOS

judgements.

Lemma 4.1

� If j= �! �

0

, then � and �

0

are
ontexts of the same length.

� If � j= K ! K

0

, then � is a
ontext and K and K

0

are kind expressions of

the same arity.

� If � j= k ! k

0

! k

0

: K, then � is a
ontext, K is a kind expression, and k,

k

0

and k

0

are obje
t expressions of the same arity.

Lemma 4.2

The following properties hold for the TOS:

1. (Determina
y)

14 Z. Luo

Contexts

j= hi ! hi

j= �! �

0

� j= K ! K

0

x =2 FV (�) and x 2 V ar(Arity(K))

j= �; x:K ! �

0

; x:K

0

j= �! �

0

� j= � ! �

0

�;� j= T ! T

0

�;� j= t! t

0

! t

0

: T

0

v 62 FV (�); v 2 DV (l(�)) and T 2 Kind(0)

j= �; v[�℄ = t:T ! �

0

; v[�

0

℄ = t

0

:T

0

Kinds

j= �! �

0

� j= Type! Type

� j= A! A

0

! A

0

: Type

� j= El(A)! El(A

0

)

� j= � ! �

0

�;� j= T ! T

0

T 2 Kind(0)

� j= (�)T ! (�

0

)T

0

Variables

� j= K ! K

0

j= �; x:K;�

0

! �

1

�; x:K;�

0

j= x! x! x : K

0

� j= � ! �

0

�;� j= T ! T

0

�; v[�℄ = t:T;�

0

j= let v[�℄ = t:T in v ! k

0

! k

0

: (�

0

)T

0

�; v[�℄ = t:T;�

0

j= v ! k

0

! k

0

: (�

0

)T

0

Instantiations

� j= f ! x! x : (�x:

�

K)T x 2 V ar and �x:

�

K 6� hi

� j=

�

k !

�

k

0

!

�

k

0

:

�

K � j= [

�

k=�x℄T ! T

0

� j= f [

�

k℄ ! x[

�

k℄ ! x[

�

k

0

℄ : T

0

� j= f ! let v[�x:

�

K℄ = t:T in v ! f

0

: (�x:

�

K

0

)T

0

� j=

�

k !

�

k

0

!

�

k

0

:

�

K

0

� j= [

�

k=�x℄T ! T

00

� j= [

�

k=�x℄t! t

0

! t

0

: T

00

�x:

�

K 6� hi

� j= f [

�

k℄ ! t

0

! t

0

: T

00

Fig. 8. Basi
 TOS rules for PAL

+

.

� If j= �! �

0

and j= �! �

00

, then �

0

� �

00

.

� If � j= K ! K

0

and � j= K ! K

00

, then K

0

� K

00

.

� If � j= k ! k

1

! k

2

: K and � j= k ! k

0

1

! k

0

2

: K

0

, then k

1

� k

0

1

,

k

2

� k

0

2

, and K � K

0

.

2. (Weakening) If � j= J , j= �

1

! �

0

1

, and �

1

ontains all entries of �, then

�

1

j= J , where J is of the form K ! K

0

or k ! k

0

! k

0

: K.

3. (Strengthening) Let z 2 V ar [DV and Z be either z:K (when z 2 V ar) or

z[�℄ = t:T (when z 2 DV).

� If j= �; Z;�

0

! �

1

and z 62 FV (�

0

), then j= �;�

0

! �

2

for some �

2

.

� If �; Z;�

0

j= K ! K

0

and z 62 FV (�

0

;K), then �;�

0

j= K ! K

0

.

� If �; Z;�

0

j= k ! k

0

! k

0

: K and z 62 FV (�

0

; k), then �;�

0

j= k ! k

0

!

k

0

: K.

PAL

+

: a Lambda-free Logi
al Framework 15

let-expressions for obje
ts

� j= T ! T

0

� j= t! t

0

! t

0

: T

0

� j= let v = t:T in v ! t

0

! t

0

: T

0

�; v = t:T j= k ! k

1

! k

2

: K k 6� v

� j= let v = t:T in K ! K

0

� j= [t=v℄k ! k

0

! k

0

: K

0

� j= let v = t:T in k ! k

0

! k

0

: K

0

� j= �! �

0

�;� j= T ! T

0

j= �; v[�℄ = t:T ! �

1

� 6� hi

�;�

�x

j= t! t

0

! t

0

: T

0

t

0

6� g[�x℄ su
h that �x 62 FV (g)

� j= let v[�℄ = t:T in v ! let v[�℄ = t:T in v ! let v[�

0

℄ = t

0

:T

0

in v : (�

0

)T

0

� j= �! �

0

�;� j= T ! T

0

j= �; v[�℄ = t:T ! �

1

� 6� hi

�;�

�x

j= t! t

0

! g[�x℄ : T

0

� j= g ! g ! g : (�

0

)T

0

� j= let v[�℄ = t:T in v ! let v[�℄ = t:T in v ! g : (�

0

)T

0

�; v[�℄ = t:T j= k ! k

1

! k

2

: K k 6� v and � 6� hi

� j= let v[�℄ = t:T in K ! K

0

� j= [let v[�℄ = t:T in v=v℄k ! k

0

! k

0

: K

0

� j= let v[�℄ = t:T in k ! k

0

! k

0

: K

0

let-expressions for kinds

�; v[�℄ = t:T j= K ! K

1

� j= [let v[�℄ = t:T in v=v℄K ! K

0

� j= let v[�℄ = t:T in K ! K

0

Fig. 9. The TOS rules for let-expressions in PAL

+

.

By indu
tion on derivations of TOS, we
an prove that it is
omplete with respe
t

to PAL

+

0

{ PAL

+

without the substitution rules in Figures 2 and 5. We use `

0

to

represent the judgements in PAL

+

0

.

Theorem 4.3 (Completeness)

� If j= �! �

0

, then � valid in PAL

+

0

.

� If � j= K ! K

0

, then � `

0

K kind and � `

0

K = K

0

.

� If � j= k ! k

0

! k

0

: K, then � `

0

k : K, � `

0

k = k

0

: K, � `

0

k = k

0

: K,

and � `

0

K = K.

5 Meta-theoreti
 Properties of PAL

+

In this se
tion, we �rst de�ne the notions of redu
tion, weak-head normal form,

and normal form, and then, based on TOS, show that PAL

+

has the desirable

properties su
h as Chur
h-Rosser, Subje
t Redu
tion, and Strong Normalisation.

16 Z. Luo

5.1 Redu
tion and Weak-head Normal and Normal forms

Sin
e we take let-expressions, rather than �-abstra
tions, as basi
 expressions, the

notion of redu
tion and the asso
iated notions are new, as de�ned below.

De�nition 5.1 (redu
tion)

The redu
tion relation is denoted by � ` M � N , where � is a
ontext and M

and N are terms. Redu
tion is the re
exive and transitive
losure of the one-step

redu
tion (� `M �

1

N) de�ned indu
tively by the following rules:

� Basi
 rules (in the �rst three rules below, it is possible that � � hi):

(v)�; v[�℄ = t:T;�

0

` v �

1

let v[�℄ = t:T in v

(�)� ` (let v[�

�x

℄ = t:T in v)[

�

k℄�

1

[

�

k=�x℄t (l(�) = l(

�

k))

(�)� ` let v[�

�x

℄ = t[�x℄:T in M �

1

[t=v℄M (�x 62 FV (t))

(d)� ` let v[�℄ = t:T in M �

1

[let v[�℄ = t:T in v=v℄M (M 6� v; � 6� hi)

� Congruen
e rules (note that we assume that the expressions involved be

terms):

� ` A�

1

B

� ` El(A)�

1

El(B)

�;� ` T �

1

T

0

� ` (�)T �

1

(�)T

0

�;�

i�1

` K

i

�

1

K

0

i

� ` (x

1

:K

1

; :::; x

n

:K

n

)T �

1

(x

1

:K

1

; :::; x

i

:K

0

i

; :::; x

n

:K

n

)T

� ` f �

1

f

0

� ` f [

�

k℄�

1

f

0

[

�

k℄

� ` k

i

�

1

k

0

i

� ` f [k

1

; :::; k

n

℄�

1

f

0

[k

1

; :::; k

0

i

; :::k

n

℄

�; v[�℄ = t:T `M �

1

M

0

� ` let v[�℄ = t:T in M �

1

let v[�℄ = t:T in M

0

(M 6� v)

�;� ` t�

1

t

0

� ` let v[�℄ = t:T in M �

1

let v[�℄ = t

0

:T in M

�;� ` T �

1

T

0

� ` let v[�℄ = t:T in M �

1

let v[�℄ = t:T

0

in M

�;�

i�1

` K

i

�

1

K

0

i

� ` let v[�℄ = t:T in M �

1

let v[�

0

℄ = t:T in M

where, in the last rule, � � x

1

:K

1

; :::; x

n

:K

n

and �

0

� x

1

:K

1

; :::; x

i

:K

0

i

; :::; x

n

:K

n

.

Remark The redu
tion relation respe
ts the substitution operation.

Lemma 5.2 (Adequa
y for redu
tion)

� If � j= K ! K

0

, then � ` K �K

0

.

� If � j= k ! k

0

! k

0

: K, then � ` k � k

0

and � ` k

0

� k

0

.

De�nition 5.3 (whnf and nf)

A term M is in weak-head normal form (whnf) if

PAL

+

: a Lambda-free Logi
al Framework 17

� M � x[k

1

; :::; k

n

℄ su
h that x 2 V ar(n) for some n � 0; or

� M � let v[�℄ = t:T in v su
h that � 6� hi.

A term M is in normal form, notation M 2 NF , if

� M � x[k

1

; :::; k

n

℄ su
h that x 2 V ar(n) for some n � 0 and k

i

2 NF ;

� M � let v[�℄ = t:T in v with � � x

1

:K

1

; :::; x

n

:K

n

, su
h that � 6� hi,

K

i

2 NF , t 2 NF , T 2 NF , and t 6� g[�x℄ su
h that �x 62 FV (g);

� M � Type;

� M � El(A) su
h that A 2 NF ; or

� M � (�)T with � � x

1

:K

1

; :::; x

n

:K

n

, su
h that K

i

2 NF and T 2 NF .

Lemma 5.4 (Adequa
y of whnf and nf)

1. For any term M , M 2 NF if and only if M has no redu
tions, i.e., for any

ontext � and any term N , DV (M) � DV (�) implies that � 6`M �

1

N .

2. If � j= K ! K

0

, then K

0

is in normal form. If � j= k ! k

0

! k

0

: K, then k

0

is in whnf and k

0

and K are in normal form.

Proof (1) by indu
tion on the stru
ture of M and (2) by indu
tion on derivations

in TOS. 2

5.2 Subje
t Redu
tion and Normalisation

The subje
t redu
tion theorem
aptures both subje
t redu
tion and Chur
h-Rosser.

Therefore, a notion of parallel redu
tion is
alled for.

De�nition 5.5 (parallel redu
tion)

The parallel redu
tion relation, � ` M) N , is de�ned as the least relation satis-

fying the following rules:

� ` x) x

v 2 DV (�)

� ` v) v

� ` �) �

0

�;� ` t) t

0

�;� ` T) T

0

�; v[�℄ = t:T;�

0

` v) let v[�

0

℄ = t

0

:T

0

in v

� `

�

k)

�

k

0

�;� ` t) t

0

l(�) = l(

�

k)

� ` (let v[�

�x

℄ = t:T in v)[

�

k℄) [

�

k

0

=�x℄t

0

�;�

�x

` t) t

0

[�x℄ �; v[�

�x

℄ = t:T `M)M

0

�x 62 FV (t

0

)

� ` let v[�

�x

℄ = t:T in M) [t

0

=v℄M

0

� ` �) �

0

�;� ` t) t

0

�;� ` T) T

0

�; v[�℄ = t:T `M)M

0

M 6� v and � 6� hi

� ` let v[�℄ = t:T in M) [let v[�

0

℄ = t

0

:T

0

in v=v℄M

0

� ` f) f

0

� `

�

k)

�

k

0

� ` f [

�

k℄) f

0

[

�

k

0

℄

18 Z. Luo

� ` �) �

0

�;� ` t) t

0

�;� ` T) T

0

�; v[�℄ = t:T `M)M

0

� ` let v[�℄ = t:T in M) let v[�

0

℄ = t

0

:T

0

in M

0

We omit the obvious rules for kinds and
ontexts.

Lemma 5.6

Parallel redu
tion has the following properties:

1. � `M)M for any
ontext � and term M .

2. If � `M �

1

N , then � `M) N .

3. If � `M) N , then � `M �N .

Remark Parallel redu
tion also respe
ts the substitution operation.

Lemma 5.7 (parallel subje
t redu
tion)

� If j= �! �

0

and ` �) �

0

, then ` �

0

) �

0

.

� If � j= K ! K

0

, ` �) �

0

, and � ` K) K

0

, then �

0

j= K

0

! K

0

.

� If � j= k ! k

0

! k

0

: K, ` �) �

0

, and � ` k) k

1

, then for some k

0

1

and

k

01

, �

0

j= k

1

! k

0

1

! k

0

: K, � ` k

0

) k

01

, and � j= k

01

! k

0

1

! k

0

: K.

Proof By indu
tion on derivations in TOS. 2

Corollary 5.8 (subje
t redu
tion)

� If � j= K ! K

0

and � j= K �

1

K

1

, then � j= K

1

! K

0

.

� If � j= k ! k

0

! k

0

: K and � ` k �

1

k

1

, then � j= k

1

! k

0

1

! k

0

: K for

some k

0

1

su
h that � ` k

0

� k

0

1

.

Proof By Lemmas 5.7, 5.2, and 5.6. 2

Corollary 5.9 (Chur
h-Rosser)

� If � j= K ! K

0

, � ` K � K

1

, and � ` K � K

2

, then � ` K

1

� K

0

and

� ` K

2

�K

0

.

� If � j= k ! k

0

! k

0

: K, � ` k � k

1

, and � ` k � k

2

, then � ` k

1

� k

0

and

� ` k

2

� k

0

.

Proof By Corollary 5.8 and Lemma 5.2. 2

The following shows that TOS only types strongly normalisable terms. For any

termM , we say thatM is strongly normalisable in
ontext �, notationM 2 SN(�),

if for any term N , � `M �

1

N implies that N 2 SN(�).

Lemma 5.10 (strong normalisation)

� If � j= K ! K

0

, then K 2 SN(�).

� If � j= k ! k

0

! k

0

: K, then k 2 SN(�).

Proof By indu
tion on derivations in TOS. We brie
y
onsider two
ases. First,

onsider the �rst rule for obje
t let-expressions (the �rst rule in Figure 9). By

indu
tion hypothesis, T; t 2 SN(�). We show that, if

let v = t:T in v �

1

k;

PAL

+

: a Lambda-free Logi
al Framework 19

then k 2 SN(�), by
onsidering all possible one-step redu
tions leading to k. In this

ase, it must be either (1) let v = t:T in v�

1

t � k by the basi
 redu
tion rule (�)

or (�), or (2) it is from a
ongruen
e rule for redu
tion be
ause t�

1

t

1

or T �

1

T

1

.

For (1), k � t 2 SN(�); for (2), sin
e T and t are both strongly normalisable in

�, so is any redu
t from T or t, and therefore k is strongly normalisable (from the

argument of (1)).

Next, we brie
y
onsider a more diÆ
ult
ase, the se
ond instantiation rule (the

last rule in Figure 8). By indu
tion hypothesis, we have f ,

�

k, [

�

k=�x℄t 2 SN(�).

If f [

�

k℄ �

1

k, there are three possible sub
ases, of whi
h we only
onsider the
ase

k � f

1

[

�

k℄ su
h that � ` f �

1

f

1

. By subje
t redu
tion (Corollary 5.8), for some f

0

1

,

we have

� j= f

1

! f

0

1

! f

0

: (�x:

�

K

0

)T

0

and � ` let v[�℄ = t:T in v � f

0

1

:

Then, by
ase analysis of f

0

1

being a whnf (by Lemma 5.4), we
an show that

f

1

[

�

k℄ 2 SN(�). 2

Remark Note that the above results of Chur
h-Rosser, subje
t redu
tion and strong

normalisation are for the TOS of PAL

+

, but not for PAL

+

itself. To show that

these properties hold for PAL

+

, we need to show the soundness theorem.

5.3 Soundness of TOS

To prove the soundness of the TOS wrt PAL

+

, we �rst prove the following lemma

about admissibility of substitution and instantiation. This lemma is proved by in-

du
tion on the following measure on kinds:

� jTypej = jEl(A)j = 0.

� j(x

1

:K

1

; :::; x

n

:K

n

)T j = jK

1

j+ :::+ jK

n

j+ n, where n � 1.

� jlet v[�℄ = t:T in Kj = jKj.

The measure extends to pure
ontexts as well.

Lemma 5.11

1. Let Z be a
ontext entry. When Z is of the form z:K, k is an obje
t expression

su
h that � j= k ! k

0

! k

0

: K

0

and � j= K ! K

0

. When Z is of the form

z[�℄ = t:T , k � let z[�℄ = t:T in z. Then we have

� If j= �; Z;�

0

! �

1

, then j= �; [k=z℄�

0

! �

2

for some �

2

.

� If �; Z;�

0

j= K ! K

1

, then �; [k=z℄�

0

j= [k=z℄K ! K

2

for some K

2

.

� If �; Z;�

0

j= k

0

! k

1

! k

2

: K, then �; [k=z℄�

0

j= [k=z℄k

0

! k

0

1

! k

0

2

: K

0

,

�; [k=z℄�

0

j= [k=z℄k

1

! k

0

1

! k

0

2

: K

0

, and �; [k=z℄�

0

j= [k=z℄K ! K

0

for

some k

0

1

, k

0

2

and K

0

.

2. If � j= f ! f

0

! f

0

: (�x:

�

K)T and � j=

�

k !

�

k

0

!

�

k

0

:

�

K, then � j= f [

�

k℄ !

t

0

! t

0

: T

0

and � j= [

�

k=�x℄T ! T

0

for some t

0

, t

0

and T

0

.

Theorem 5.12 (Soundness)

� If � valid, then j= �! �

0

for some �

0

.

� If � ` K kind, then � j= K ! K

0

for some K

0

.

20 Z. Luo

� If � ` K

1

= K

2

, then � j= K

1

! K

0

and � j= K

2

! K

0

for some K

0

.

� If � ` k : K, then � j= K ! K

0

and � j= k ! k

0

! k

0

: K

0

for some K

0

, k

0

,

and k

0

.

� If � ` k

1

= k

2

: K, then � j= K ! K

0

, � j= k

1

! k

10

! k

0

: K

0

, and

� j= k

2

! k

20

! k

0

: K

0

, for some K

0

, k

0

, k

10

, and k

20

.

Proof By indu
tion on derivations in PAL

+

. We
onsider several
ases.

� First,
onsider the following substitution rule in Figure 2:

�; x:K;�

0

` k

0

: K

0

� ` k : K

�; [k=x℄�

0

` [k=x℄k

0

: [k=x℄K

0

By indu
tion hypothesis, �; x:K;�

0

j= k

0

! k

0

0

! k

00

: K

00

and �; x:K;�

0

j=

K

0

! K

00

, for some K

00

, k

0

0

, and k

00

. By Lemma 5.11(1), we have �; [k=x℄�

0

j=

[k=x℄k

0

! k

0

1

! k

0

2

: K

1

and �; [k=x℄�

0

j= [k=x℄K

0

! K

1

, for some k

0

1

, k

0

2

and

K

1

.

� Consider the following instantiation rule in Figure 3:

� ` f : (�x:

�

K)T � `

�

k :

�

K

� ` f [

�

k℄ : [

�

k=�x℄T

By indu
tion hypothesis, determina
y (Lemma 4.2(1)) and inversion, we have

� j= f ! f

0

! f

0

: (�x:

�

K

0

)T

0

and � j=

�

k !

�

k

0

!

�

k

0

:

�

K

0

, with � j=

�

K !

�

K

0

and �; �x:

�

K j= T ! T

0

, for some f

0

; f

0

;

�

K

0

; T

0

;

�

k

0

and

�

k

0

. By Lemma 5.11(2),

we have � j= f [

�

k℄! t

0

! t

0

: T

0

and � j= [

�

k=�x℄T

0

! T

00

for some t

0

, t

0

and T

00

.

Therefore, for this
ase, we only have to show that � j= [

�

k=�x℄T ! T

00

. But by

Lemma 5.11(1), � j= [

�

k=�x℄T ! T

000

for some T

000

. By adequa
y (Lemma 5.2)

and subje
t redu
tion (Corollary 5.8), � j= [

�

k=�x℄T

0

! T

000

. By determina
y

(Lemma 4.2(1)), T

00

� T

000

. So we have � j= [

�

k=�x℄T ! T

00

.

� Consider the following (let

�

) rule in Figure 7:

�; v[�x:

�

K℄ = t:T valid � `

�

k :

�

K

� ` (let v[�x:

�

K℄ = t:T in v)[

�

k℄ = [

�

k=�x℄t : [

�

k=�x℄T

By indu
tion hypothesis, determina
y (Lemma 4.2(1)) and properties of sub-

derivations, we have j= � ! �

0

, � j=

�

K !

�

K

0

, �; �x:

�

K j= T ! T

0

, �; �x:

�

K j=

t! t

0

! t

0

: T

0

, and � j=

�

k !

�

k

0

!

�

k

0

:

�

K

0

, for some �

0

;

�

K

0

; T

0

; t

0

; t

0

;

�

k

0

and

�

k

0

. We show that, for some T

00

; t

1

and t

00

,

1. � j= [

�

k=�x℄T ! T

00

,

2. � j= [

�

k=�x℄t! t

1

! t

00

: T

00

, and

3. � j= (let v[�x:

�

K℄ = t:T in v)[

�

k℄! t

1

! t

00

: T

00

.

For the �rst, applying Lemma 5.11(1) suÆ
es to show the existen
e of T

00

. For

the se
ond, by Lemma 5.11(1), � j= [

�

k=�x℄t! t

1

! t

00

: T

00

1

and � j= [

�

k=�x℄T !

T

00

1

for some t

1

, t

00

and T

00

1

. By determina
y (Lemma 4.2(1)), T

00

1

� T

00

.

For the third, we need to
onsider two
ases a

ording to whether �x:

�

K � hi.

If �x:

�

K 6� hi, by either the third or the fourth rule in Figure 9, for some f

0

,

� j= let v[�x:

�

K℄ = t:T in v ! let v[�x:

�

K℄ = t:T in v ! f

0

: (�x:

�

K

0

)T

0

:

PAL

+

: a Lambda-free Logi
al Framework 21

Therefore, by the se
ond instantiation rule (the last rule in Figure 8), � j=

(let v[�x:

�

K℄ = t:T in v)[

�

k℄! t

1

! t

00

: T

00

.

If �x:

�

K � hi, we only have to show that � j= let v = t:T in v ! t

1

! t

00

: T

00

,

and for this, use of the �rst rule in Figure 9 suÆ
es. 2

With soundness and
ompleteness of the TOS for PAL

+

and the relationship

between redu
tion and TOS, we
an easily show that the system PAL

+

has ni
e

meta-theoreti
 properties. These in
lude admissibility results of the stru
tural rules

(e.g., the substitution rules), and
omputational properties for the redu
tion re-

lation su
h as Chur
h-Rosser, Subje
t Redu
tion, and Strong Normalisation for

well-typed terms.

Remark When PAL

+

is extended with new
onstants of the obje
t type theories,

we remark that the te
hniques developed in (Goguen, 1994)
an be used to prove

the meta-theoreti
 results of the obje
t type theories su
h as UTT.

6 Con
lusions

We have presented and studied PAL

+

, a logi
al framework based on parameteri-

sation and de�nitions rather than lambda-abstra
tion. Further extensions of meta-

features su
h as
oer
ive subtyping (see e.g., (Luo, 1999)) may be
onsidered.

PAL

+

is developed partly as an underlying framework for implementing proof

development systems. Most of the proof systems (e.g., those based on type theory

like ALF (Magnusson & Nordstr�om, 1994), Coq (Barras et al. , 2000), Lego (Luo

& Polla
k, 1992), NuPRL (Constable et al. , 1986), and Plasti
 (Callaghan & Luo,

2001)) have some form of de�nition me
hanism. Taking de�nition (and parame-

terisation) as basi
, the proposed lambda-free framework should lead to a better

understanding of the underlying theories. We also expe
t that the simpli
ity and

dire
tness gained would bene�t implementation as well as the user (e.g., it is ex-

pe
ted that the use of de Bruijn indi
es would be simpli�ed, and the treatment of

meta-variables may be dealt with using the simple method as proposed in (Luo,

1997) and implemented in Plasti
 (Callaghan & Luo, 2001)). Paul Callaghan at

Durham has implemented a prototype of PAL

+

, based on his implementation of

LF in the system Plasti
. We have done some experiments on proof development

(e.g., about indu
tive types and universes) based on the prototype implementation.

A better understanding of what we
an gain in implementations requires further

resear
h and a real development of a proof system.

The development of meta-theory here uses the TOS tool heavily, whi
h shows

that TOS is a robust approa
h that
an be adapted to other
al
uli. Among other

related work, Severi and Poll have
onsidered meta-theory of adding de�nitions

into PTS (Severi & Poll, 1994), but they do not
onsider let-expressions as basi

and PTS does not have �-rules either. Another interesting aspe
t is to
onsider

ategori
al theories
orresponding to PAL

+

, in a similar way as Cartmell's notion

of
ontextual
ategories (Cartmell, 1978; Cartmell, 1986)
orresponds to Martin-

L�of's logi
al framework.

22 Z. Luo

Another aspe
t this paper has not dis
ussed is the use of type theories as logi-

al frameworks following the `judgement-as-types' approa
h (Harper et al., 1987).

We think that the idea to develop lambda-free logi
al frameworks
an similarly

be
onsidered and should bene�t the users of systems based on the prin
iple of

judgement-as-types.

A
knowledgements This work is based on some notes I wrote in 1997 of the same

title, whi
h I did not �nish, and a further development of my note in LFM'00 (Luo,

2000). It is partly supported by UK EPSRC grants GR/K79130 and GR/M75518,

and the EU TYPES WG grant 29001. I am grateful to Paul Callaghan, Healfdene

Goguen, Conor M
Bride, Bengt Nordstr�om, Randy Polla
k, and others, who have

read this paper or its earlier versions and given many useful suggestions and
om-

ments. Callaghan's prototype implementation of PAL

+

has been extremely useful.

I am also grateful to the dis
ussions on this topi
 I have had with members of the

Computer-Assisted Reasoning Group at Durham.

Referen
es

Barras, B., et al. . (2000). The Coq Proof Assistant Referen
e Manual (Version 6.3.1).

INRIA-Ro
quen
ourt.

Callaghan, P., & Luo, Z. (2001). An implementation of LF with
oer
ive subtyping and

universes. Journal of Automated Reasoning, 27(1), 3{27.

Cartmell, J. (1978). Generalized algebrai
 theories and
ontextual
ategory. Ph.D. thesis,

University of Oxford.

Cartmell, J. (1986). Generalized algebrai
 theories and
ontextual
ategory. Annals of

Pure and Applied Logi
, 32.

Constable, R.L., et al. . (1986). Implementing Mathemati
s with the NuPRL Proof Devel-

opment System. Preti
e-Hall.

de Bruijn, N.G. (1980). A survey of the proje
t AUTOMATH. Hindley, J., & Seldin, J.

(eds), To H. B. Curry: Essays on Combinatory Logi
, Lambda Cal
ulus and Formalism.

A
ademi
 Press.

Goguen, H. (1994). A typed operational semanti
s for type theory. Ph.D. thesis, University

of Edinburgh.

Goguen, H. (1999). Soundness of typed operational semanti
s for the logi
al framework.

Typed Lambda Cal
uli and Appli
ations (TLCA'99).

Harper, R., Honsell, F., & Plotkin, G. (1987). A framework for de�ning logi
s. Pro
. 2nd

Ann. Symp. on Logi
 in Computer S
ien
e.

Luo, Z. (1994). Computation and Reasoning: A Type Theory for Computer S
ien
e. Oxford

University Press.

Luo, Z. 1997 (August). Meta-variables and existential judgements. Notes.

Luo, Z. (1999). Coer
ive subtyping. Journal of Logi
 and Computation, 9(1), 105{130.

Luo, Z. (2000). pal

+

: a lambda-free logi
al framework. Pro
. of Inter Workshop on Logi
al

Frameworks and Meta-languages (LFM'2000), Santa Barbara, California.

Luo, Z., & Polla
k, R. (1992). LEGO Proof Development System: User's Manual. LFCS

Report ECS-LFCS-92-211. Department of Computer S
ien
e, University of Edinburgh.

Magnusson, L., & Nordstr�om, B. (1994). The ALF proof editor and its proof engine.

Barendregt, H., & Nipkow, T. (eds), Types for Proof and Programs. LNCS 806.

PAL

+

: a Lambda-free Logi
al Framework 23

Nordstr�om, B., Petersson, K., & Smith, J. (1990). Programming in Martin-L�of's Type

Theory: An Introdu
tion. Oxford University Press.

Severi, P., & Poll, E. (1994). Pure type systems with de�nitions. Pro
. of LFCS'94, LNCS

813.

