
1

Implementing a Model Checker for LEGO

Shenwei Yu and Zhaohui Luo

??

Department of Computer Science, University of Durham,

South Road, Durham, DH1 3LE, UK

Abstract. Interactive theorem proving provides a general approach to

modelling and veri�cation of both hardware and software systems but re-

quires signi�cant human e�orts to deal with many tedious proofs. To be

e�ectively used in practice, we need some automatic tools such as model

checkers to deal with those tedious proofs. In this paper, we formalise

a veri�cation system of both CCS and an imperative language in the

proof development system LEGO which can be used to verify both �nite

and in�nite problems. Then a model checker, LegoMC, is implemented

to generate LEGO proof terms for �nite-state problems automatically.

Therefore people can use LEGO to verify a general problem with some of

its �nite sub-problems veri�ed by LegoMC. On the other hand, this inte-

gration extends the power of model checking to verify more complicated

and in�nite models as well.

1 Introduction

Interactive theorem proving gives a general approach to modelling and veri�ca-

tion of both hardware and software systems but requires signi�cant human e�orts

to deal with many tedious proofs. Even a simple model like the 2-processes mu-

tual exclusion problem is fairly complicated to verify. On the other hand, model

checking is automatic but limited to certain problems - i.e., simple �nite state

processes, although this limitation can be partially overcome to deal with more

complicated problems by improving the e�ciency through BDD techniques [4].

Since theorem proving and model checking are complementary techniques, both

schools have been trying to combine the strength of these two approaches by

using theorem provers to reduce or divide the problems to ones which can be

checked by model checkers.

Wolper and Lovinfosse [26] and Kurshan and McMillan [14] extended model

checking for inductive proofs by using an invariant to capture the induction

hypothesis in the inductive step. Joyce and Seger [11] used HOL theorem prover

to verify formulas which contain uninterpreted constants as lemmas which are

veri�ed by Voss's model checker. Kurshan and Lamport [12] proved a multiplier

where the 8-bit multiplier can be veri�ed by COSPAN model checker [13] and the

n-bit multiplier composed from 8-bit multipliers can be veri�ed by TLP theorem

prover [10]. In principle, these approaches are to divide the whole problem to

?

Email address:fShenwei.Yu, Zhaohui.Luog@durham.ac.uk

separated sub-problems and then use di�erent tools to solve individual problems.

Their works based on paper and pencils are the early attempts of combining

theorem proving and model checking.

However, the integration of these two approaches is still not tight enough.

M�uller and Nipkow [20] used HOL theorem prover to reduce the alternating bit

protocol expressed in I/O automata to a �nite state one to be veri�ed by their

own model checker. PVS proof checker [21] even includes a model checker as a

decision procedure which presented the possibility of combining theorem proving

and model checking in a smooth and tight way [24]. However, the correctness of

model checkers is still a big concern since they themselves are computer softwares

which could contain bugs. The output of most model checkers including the

model checker of PVS for a correct system is only a "TRUE." People can only

choose to believe that "TRUE" as a pure act of faith, or not at all.

On the other hand, the proofs of type theory based theorem provers, such as

LEGO [16], ALF [1, 17], Coq [8] and Nuprl [6], are proof terms(� terms) which in

principle can be justi�ed by di�erent proof checkers so that people can have more

con�dence on formal proofs. Moreover, proof terms provide a common interface

for di�erent tools so that we can easily integrate various tools to complete more

complicated proofs. Our work is to implement a model checker for LEGO by

producing proof terms. One of the major contributions of our model checker is

the automatic generation of proof terms so that we can enhance the e�ciency

of veri�cation in a general theorem prover, LEGO.

We use the Calculus of Communicating Systems (CCS) [19], a message-

passing concurrent language, to model the systems and propositional �-calculus

to express the system properties. Both CCS and propositional �-calculus are for-

malised in LEGO for both �nite and in�nite state systems. Our model checker

(LegoMC) is an independent program which takes the syntax of CCS and propo-

sitional �-calculus in LEGO and then returns a string which is a proof term in

the syntax of LEGO. We can therefore integrate this proof term with other proof

terms to complete a larger proof. This system can also deal with other tempo-

ral logics by giving their abbreviations in �-calculus. Furthermore, the domain

model can be changed to imperative languages as well. The system structure is

shown in Fig. 1.

Using this system, we have successfully veri�ed some �nite state processes

automatically such as the ticking clock, the vending machine, 2-process mutual

exclusion : : :. For in�nite state problems, we have veri�ed a n-process mutual

exclusion problem by reducing the model to a �nite state abstract model. LEGO

is used to prove that the abstract model preserves the property of the original

model, and LegoMC is used to verify the abstract model. We have also veri�ed

some �nite examples in an imperative language such as Peterson's algorithm and

the dining philosophers problem.

In the following section, a brief introduction to CCS and propositional �-

calculus is given. Their formalisation in LEGO is presented in section 3. The

implementation of the model checker is discussed in section 4. Section 5 presents

an example of a n-process token ring network. In section 6, we discuss the exten-

Model: CCS

Logic:�-calculus

LEGO Model Checker

LEGO formulas

-

LEGO proof terms

�

�

�

�

�

�

�	

@

@

@

@

@

@R

@

@

@

@

@

@I

�

�

�

�

�

��

Fig. 1. The system structure of LegoMC

sion to an imperative programming language. Conclusions are given in section

7.

2 Model and Logic

2.1 CCS: Calculus of Communicating Systems

We recall only the essential information about pure CCS, which does not involve

value passing, and refer to [19] for more details.

Let Act be a set of actions consisting of internal action � , base actions a

and complement actions a with the property a = a. The process expressions are

de�ned by the following grammar.

P ::= Nil j X j �:P j P

1

+ P

2

j P

1

jP

2

j PnL j P [f] j rec X:P

where � ranges over actions, P; P

1

; P

2

range over processes, L is a subset of base

actions or complement actions, f is a relabelling function from Act to Act with

f(a) = f(a) and f(�) = � . The operational semantics is given via a labelled

transition system with processes as states and actions as labels. The transition

relations are given by the following transition rules in terms of the structure of

process expressions.

�:P

�

! P

P

1

�

! P

P

1

+ P

2

�

! P

P

2

�

! P

P

1

+ P

2

�

! P

P

1

�

! P

P

1

jP

2

�

! P jP

2

P

2

�

! P

P

1

jP

2

�

! P

1

jP

P

1

a

! P

1

P

2

a

! P

2

P

1

jP

2

�

! P

1

jP

2

P

a

! P

0

PnL

a

! P

0

nL

(a; a 62 L)

P

�

! P

0

P [f]

f(�)

! P

0

[f]

P [(rec X:P)=X]

�

! P

0

rec X:P

�

! P

0

Whenever P

�

! P

0

, we call the pair (�; P

0

) an immediate derivative of P , �

an action of P , and P

0

an �-derivative of P .

2.2 �-calculus

Kozen's (propositional) modal �-calculus(�K) has expressive power subsuming

many modal and temporal logics such as LTL and CTL [4, 5, 9]. We take a

negation-free version of the modal �-calculus and use Winskel's construction of

tagging �xed points with sets of states [25]. The assertions are constructed from

the following grammar:

� ::= X j � _ 	 j � ^ 	 j hKi� j [K]�j�Z:U� j �Z:U�

where U is called a tag which is a subset of states, X ranges over a set of assertion

variables, and K ranges over subsets of labels. We will use �K to abbreviate

the universal set of labels except K. The tag-free �xed points �Z:� and �Z:�

are special cases with empty tags.

Let S be the set of states in a labelled transition system. The semantics of

assertions [[�]]

�

� S is given by induction on the structure of � as follows.

[[X]]

�

= �(X)

[[�_]]

�

= [[�]]

�

[[[]]

�

[[�^]]

�

= [[�]]

�

\ [[]]

�

[[hKi�]]

�

= fs 2 Sj9� 2 K:9s

0

2 S:s

�

! s

0

and s

0

2 [[�]]

�

g

[[[K]�]]

�

= fs 2 Sj8� 2 K:8s

0

2 S:s

�

! s

0

implies s

0

2 [[�]]

�

g

[[�Z:U�]]

�

= fs 2 Sj9P � S:P � [[�]]

�[P=Z]

[U and s 2 Pg

[[�Z:U�]]

�

= fs 2 Sj8P � S: [[�]]

�[P=Z]

=U � P implies s 2 Pg

where the map � is an evaluation function which assigns to each assertion variable

X a subset of S, and �[�=Z] is the evaluation �

0

which agrees with � everywhere

except on Z when �

0

(Z) = [[�]]

�

. Satisfaction between a state s and an assertion

� is now de�ned by: s j= � iff s 2 [[�]]

�

for all �.

The inference rules for � and � operators can be expressed as follows, where

`

s

� means that state s satis�es the property �.

nu base

`

s

�Z:U�

(s 2 U)

nu unfold

`

s

�[�Z:U [fsg�=Z]

`

s

�Z:U�

(s 62 U)

mu base

6`

s

�Z:U�

(s 2 U)

mu unfold

`

s

�[�Z:U [fsg�=Z]

`

s

�Z:U�

(s 62 U)

To simplify the proof terms, we de�ne two functions Succ and Filter for []

and h i operators. (Succ s) generates a list of successor (label-state) pairs of a

state s. (Filter K slist) �lters the states satisfying the Modality K from slist

which is the output of Succ. Thus we can prove lemma dia and lemma box as

follows.

lemma dia

`

s

0

�

`

s

hKi�

(s

0

2 Filter K (Succ s))

lemma box

`

s

1

�; : : : ;`

s

n

�

`

s

[K]�

(fs

1

; : : : ; s

n

g = Filter K (Succ s))

3 The Formalisation in LEGO

The syntax and semantics of both CCS and �-calculus can be formalised by

means of inductive data types of LEGO. Before describing the formalisation, we

will give a brief introduction to LEGO. Further details of LEGO are referred to

[16].

3.1 LEGO

LEGO is an interactive proof development system designed and implemented by

Randy Pollack in Edinburgh [16]. It implements the type theory UTT [15]. LEGO

is a powerful tool for interactive proof development in the natural deduction style

and supports re�nement proof as a basic operation and a de�nitional mechanism

to introduce de�nitional abbreviations. LEGO also allows users to specify new

inductive data type (computational theories), which supports the computational

use of the type theory. General applications of LEGO at the moment are to

formalise a system and reason about its properties, such as the veri�cation of

proof checkers [23].

There is an Inductive command in LEGO [22] to simplify the declaration

of inductive types and relations by automatically constructing the basic LEGO

syntax from a `high level' presentation. The syntax is as follows.

Inductive [T1:M1] ... [Tm:Mm]

Constructors [CONS1:L1] ... [CONSn:Ln]

<Options>

This command declares the mutually recursive datatype T1 ... Tm with the

constructors CONS1 ... CONSn which have corresponding types L1 ... Ln.

3.2 CCS

We use lists to represent sets and natural numbers to introduce the base names

of actions and variables of processes: Base = nat and Var = nat. Then we de�ne

the types of actions and processes as follows.

Inductive [ActB : SET] ElimOver Type

Constructors [base : Base->ActB][comp : Base->ActB];

Inductive [Act : SET] ElimOver Type

Constructors [tau:Act][act : ActB->Act];

Inductive [Process : SET] ElimOver Type

Constructors

[Nil : Process]

[dot : Act->Process->Process]

[cho : Process->Process->Process]

[par : Process->Process->Process]

[hide: Process->(list ActB)->Process]

[ren : Process->(Base->Base)->Process]

[var : Var->Process]

[rec : Process->Process];

In the above, the natural way to express rec constructor should be

[rec:(Process->Process)->Process]. However, LEGO does not allow this

sort of expressions since in general they could introduce paradoxes [15]. Instead,

we use de Bruijn's indexes [7] to deal with variable binding.

The transition relation can be de�ned as an inductive relation with each of

the constructors in the de�nition corresponding to one or two rules. For instance,

the constructor of rule Dot : �:P

�

! P is

[Dot : {a:Act}{p:Process}

(*---*)

TRANS a (dot a p) p

]

which means 8a 2 Act 8p 2 Process (p is an a-derivative of a:p). The constructor

of rule ChoL :

P

1

�

!P

P

1

+P

2

�

!P

is

[ChoL : {a:Act}{p1,p2,p:Process}

(TRANS a p1 p)->

(*---*)

(TRANS a (cho p1 p2) p)

]

which means 8a 2 Act 8p; p1; p2 2 Process (if p is an a-derivative of p1, then p

is an a-derivative of p1 + p2).

The complete de�nition of the transition relation in LEGO syntax is given

in Appendix 1.

3.3 �-calculus

First of all, we formalise the label sets of [] and h i operators as an inductive

data type Modality. The modality type has two constructors, Modal and Neg-

modal, which correspond to the positive operator [K] and negative operator [-K],

respectively. The precise LEGO de�nition is as follows, where we use de Bruijn's

indexes to deal with the binding of � and � operators.

Inductive [Modality:SET] ElimOver Type

Constructors [Modal:(list Label)->Modality]

[Negmodal:(list Label)->Modality];

[Tag= list State];

Inductive [Form:SET] ElimOver Type

Constructors

[VarF:Var->Form]

[OrF:Form->Form->Form]

[AndF:Form->Form->Form]

[Dia:Modality->Form->Form]

[Box:Modality->Form->Form]

[Tnu:Tag->Form->Form]

[Tmu:Tag->Form->Form];

3.4 The Semantics and Inference Rules

The semantics is de�ned as a function which takes a �-calculus formula and

an evaluation mapping as arguments and returns a predicate over states. A

function in LEGO can be de�ned by constructing a proof of the function type.

Because LEGO proof scripts are not easy to read, we present the construction

of the �-calculus semantics in Appendix 2 in equational form to make it more

understandable.

Using the above formalisation of syntax and semantics, we are able to prove

the rules and the lemmas, nu base, nu unfold, mu unfold, lemma box and

lemma dia, in LEGO. We note that our embedding is deep embedding, not shal-

low embedding.

4 The Model Checker, LegoMC

We can verify �nite and in�nite problems using the above formalisation already.

However, there are so many tedious and trivial proof steps; we expect to use

model checking to develop parts of the proofs automatically. In the following

subsection, we describe the structure of our LegoMC. We then discuss the im-

plementation in subsection 4.2.

4.1 The Structure of LegoMC

Given a �le which contains the de�nition of a �nite model and a speci�cation

(formula), LegoMC will produce the proof term of LEGO which could be put

into LEGO proof processes if the model satis�es the speci�cation. If the model

does not satisfy the speci�cation, LegoMC simply produces an error message.

The rules are as follows, where p : (`

s

P) means p is a proof term of `

s

P .

OR

p : (`

s

P)

inl p q : (`

s

P _Q)

q : (`

s

Q)

inr p q : (`

s

P _Q)

AND

p : (`

s

P) q : (`

s

Q)

pair p q : (`

s

P ^Q)

BOX

p

1

: (`

s

1

�); : : : ; p

n

: (`

s

n

�)

lemma box prove state list : (`

s

[a]�)

(fs

1

; : : : ; s

n

g = Filter M (Succ s))

where prove state list=[s

0

:State]mem ind p

1

. . .mem ind p

n

(not mem nil s

0

)

DIA

p

0

: (`

s

0

P)

lemma dia (ExIntro s

0

p

0

) : (`

s

hKiP)

(s

0

2 Filter M (Succ s))

NU

nu base : (`

s

�Z:U�)

(s 2 U)

p : (`

s

�[�Z:U [fsg�=Z])

nu unfold p : (`

s

�Z:U�)

(s 62 U)

MU

p : (`

s

�[�Z:U [fsg�=Z])

mu unfold p : (`

s

�Z:U�)

(s 62 U)

In the above rules, inr and inl are the or-introduction proof operators, pair

is that for and-introduction, ExIntro for exists-introduction, mem ind for the

membership induction rule and not member nil for the rule that no element is

the member of an empty set.

4.2 The Implementation

We have implemented LegoMC as a separate program in ML given in Appendix

3. In the following, we explain the implementation of And, Dia and Mu opera-

tors, and the others are omitted.

AND

Assume we want to �nd a proof term p of `

s

P

1

^P

2

. We should �nd the proof

term p

1

of `

s

P

1

and the proof term p

2

of `

s

P

2

. If we can �nd both p

1

and p

2

,

then p is `pair p

1

p

2

'.

DIA

Assume we want to �nd a proof term p of `

s

hKiP . By lemma dia, that is

9s

0

2 Filter K (Succ s): `

s

0

P . Therefore we try to �nd the proof term p

0

of

`

s

0

P for all the states in Filter K (Succ s). If p

0

exists, then p is `lemma dia

(ExIntro s

0

p

0

)'.

MU

Assume we want to �nd a proof term p of (`

s

�Z:U�), we check whether s 2 U

�rst. If s 62 U , we try to �nd the proof term p

0

of `

s

�[�Z:U [fsg�=Z]. If we

can �nd p

0

, then p is `mu unfold p

0

'.

5 An Example

One of the applications is to �nd an abstract �nite-state model which is bisimular

to the original model. Since bisimulation equivalence preserves the properties of

a model[19], we can then use abstract model instead of the original one. Here

bisimilarity is proved in LEGO, and LegoMC is used to prove the abstract �nite-

state model. We take a simple token ring network from [3] as an example to

explain the above approach.

Assume that there are n workstations in a ring network as shown in Fig. 2.

Every workstation which wants to enter its critical section should hold a token

which passes around the ring. The workstation which holds the token can also

merely do nothing and pass on the token. If the workstation enters its critical

section, it can only exit the critical section but still keep the token. The whole

model can be expressed in CCS as follows:

I = �:I + pass:IT

IT = enter:exit:IT + �:IT + pass:I

Ring(n) = (IT jIj : : : jI)nfpassg with n+ 1 Is(n � 0)

where I is the idle workstation and IT is the workstation which holds the token.

We can �nd that the abstract model

Ring

abst

= �:Ring

abst

+ enter:exit:Ring

abst

is a bisimular ofRing(n). The Bisimulation is f(Ring

abst

,Ring(n)), (exit:Ring

abst

,

(exit:IT jIj : : : jI)nfpassg)g. As a result, we can use LegoMC to prove Ring

abst

against various properties such as mutual exclusion and deadlock freedom.

First, we prove in LEGO the bisimularity,

` Bisimular Ring(n) Ring

abst

;

and we have the lemma

` Bisimular A B and `

A

� �! `

B

�:

Therefore the proof term of `

Ring

abst

�, which is generated by LegoMC, can be

integrated into LEGO to complete the whole proof.

��

��

I

��

��

I

��

��

I

��

��

IT

��

��

I

��

��

I

��

��

I

��

��

I

��

��

I

��

��

I

��

��

I

��

��

I

&%

'$

-

exit

�

enter

@

@

@

@

@

@

@

@

@R

pass

�

�

�

�

�

�

�

�

�	

pass

Critical

Section

Fig. 2. A token ring network with 12 workstations

6 A Simple Imperative and Concurrent Language

Our system has been extended to a simple imperative and concurrent language

and used to verify some �nite state examples. In the following subsection, we

describe the syntax and semantics of the imperative language. An example is

given in subsection 6.2.

6.1 The Syntax and Semantics

We consider a concurrent program as several sequential processes in progress at

the same time by interleaved execution sequences of atomic statements. There

is an underlying set of global variables that are shared among the processes for

inter-process communication and synchronisation. We de�ne labels as primitive

statements and boolean expressions, the sequential processes as lists of state-

ments and the programs as lists of processes. The syntax of our language can

be described as follows, where BE ranges over boolean expressions, NE ranges

over natural number expressions, andwait and signal are semaphore statements.

1. primitive statements

Primitive ::= x := NE j skip j wait until BE j wait s j signal s

2. processes

Statement ::= Primitive j if BE Process Process j while BE Process

Process = Statement list

Program = Process list

3. labels

Label ::= Primitive j BE

We de�ne a state as a pair (P;M), consisting of a program P and a memory

M . The memory is a table containing the current values of variables represented

as a list of (Variable, Value) pair. We shall use M (e) to denote the value of e

under evaluation in memory M and M

x

e

to denote changing the value of x to

M (e) in memory M . Therefore, the operational semantics of our language can

be de�ned via a labelled transition system as follows.

([x := e; p];M)

x:=e

�! ([p];M

x

e

)

([skip; p];M)

skip

�! ([p];M)

M (b) = true

([wait until(b); p];M)

wait until(b)

�! ([p];M)

M (s) > 0

([wait(s); p];M)

wait(s)

�! ([p];M

s

s�1

)

([signal(s); p];M)

signal(s)

�! ([p];M

s

s+1

)

M (b) = true

([if b then p

1

else p

2

; p];M)

b

�! ([p

1

; p];M)

M (b) = false

([if b then p

1

else p

2

; p];M)

:b

�! ([p

2

; p];M)

M (b) = true

([while b do p; p

0

];M)

b

�! ([p;while b do p; p

0

];M)

M (b) = false

([while b do p; p

0

];M)

:b

�! ([p

0

];M)

(p

1

;M)

l

�! (p;M

0

)

(p

1

kp

2

;M)

l

�! (pkp

2

;M

0

)

(p

2

;M)

l

�! (p;M

0

)

(p

1

kp

2

;M)

l

�! (p

1

kp;M

0

)

6.2 An Example

As an example, we consider a semaphore solution of the mutual exclusion prob-

lem for two processes. The individual sequential process is as follows.

Critical = skip

P = [while True [wait S, Critical, signal S]]

The program is Pro = [P; P]. The initial value of semaphore S is 1, init =

[(S; 1)]. The mutual exclusion property de�ned in �-calculus is "For all the states

after the initial state, if the program can perform wait S to enter the critical

section, the program cannot perform wait S again unless it performs signal S

�rst." The �-calculus formula is as follow.

ME = 2([wait S]�Z.(inable [wait S])^ [-(signal S)]Z)

where 2� = �Z:[�]Z ^ � and inable X = [X]�Z:Z.

We can prove the following two theorems by LegoMC.

`

(init;Pro)

ME

`

(init;Pro)

deadlockfree

where deadlockfree = 2(h�i�Z:Z).

The second author of this paper used the direct LEGO formalisation to prove

these properties, it is much harder.

7 Conclusions and Future Work

Theorem proving based on type theory produces not only a `TRUE' or `FALSE'

answer to a problem but also an explicit proof term. We can therefore integrate

various proof generators, interactive or automatic ones, if they can produce proof

terms. No matter how complicated those proof generators are, the correctness of

proofs is assured by the simple proof checking algorithm. In this paper, we have

showed how to verify concurrent programs in LEGO by combining interactive

theorem proving with model checking. This approach can be generalised to other

temporal logic model checker such as SMV [18].

Beside the proof terms, another di�erence of LegoMC with model checkers in

HOL and PVS is the domain languages. Rather than automata, we use CCS and

the imperative language which are more natural to express a software system.

Another di�erence is that we use deep embedding instead of shallow embedding

so that we can prove the correctness of our model checking rules.

In this paper, the proof of in�nite part is mostly based on the semantics.

Although we can use LegoMC to simplify the proof work signi�cantly, part of

the proof which cannot use LegoMC to solve can still be di�cult. Brad�eld and

Stirling developed a sound and complete tableau proof system of local model

checking for in�nite state spaces [2]. It is expected that we can formalise their

proof system in LEGO to help the veri�cation of in�nite problems.

Since LegoMC generates the proof terms of LEGO syntax, it depends on the

formalisation of concurrent languages (CCS) in LEGO. Once the formalisation

is changed, the model checker has to be changed as well. However, we design

the interface to �-calculus as a succ function which takes a state and returns a

list of successor states so that we do not have to change the �-calculus part if

we change the concurrent languages. In this way, we have implemented a simple

imperative language using the same formalisation of �-calculus. In the future, it

is expected that the model checker can accept the inductive de�nition of LEGO

directly so that the model checker can become generic.

At the moment, the size of generated proof terms is quite big so that LegoMC

is not very e�cient and also needs a lot of memory. To enhance the e�ciency,

we need to further develop some pre-proved lemmas and use abbreviations; this

will be done in the near future.

References

1. L. Augustsson, Th. Coquand, and B. Nordstr�om. A short description of another

logical framework. In G. Huet and G. Plotkin, editors, Preliminary Proc. of Logical

Frameworks, 1990.

2. Julian Brad�eld and Colin Stirling. Local model checking for ini�nite state spaces.

Theoretical Computer Science, 96:157{174, 1992.

3. Glenn Bruns. Algebraic Abstraction with Process Preorders. in preparation, 1995.

4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic

model checking: 10

20

states and beyond. Information and Computation, 98(2):142{

170, June 1992.

5. E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model check-

ing. In D.L. Dill, editor, Proc. 6th Conference on Computer Aided Veri�cation,

volume 818 of Lecture Notes in Computer Science, pages 415{427, Stanford, CA,

June 1994. Springer Verlag.

6. R. L. Constable et al. Implementing Mathematics with the NuPRL Proof Develop-

ment System. Pretice-Hall, 1986.

7. Nicolaas G. de Bruijn. Lamda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser theorem.

Indag. Math., 34:381{392, 1972.

8. G. Dowek et al. The Coq Proof Assistent: User's Guide (version 5.6). INRIA-

Rocquencourt and CNRS-ENS Lyon, 1991.

9. E.A. Emerson and C.L. Lei. E�cient model checking in fragments of the propo-

sitional mu-calculus. In Proceedings of the 10th Symposium on Principles of Pro-

gramming Languages, pages 84{96, New Orleans, LA, January 1985. Association

for Computing Machinery.

10. Urban Engberg, Peter Gronning, and Leslie Lamport. Mechanical veri�cation

of concurrent systems with TLA. In G.V. Bochmann and D.K. Probst, editors,

Computer-Aided Veri�cation 92, volume 663 of Lecture Notes in Computer Science,

pages 44{55. Springer-Verlag, 1992.

11. Je�rey J. Joyce and Carl-Johan H. Seger. Linking Bdd-based symbolic evaluation

to interactive theorem proving. In Proceedings of the 30th Design Automation

Conference. Association for Computing Machinery, 1993.

12. R. Kurshan and L. Lamport. Veri�cation of a multiplier: 64 bits and beyond.

In Costas Courcoubetis, editor, Computer-Aided Veri�cation 93, volume 697 of

Lecture Notes in Computer Science, pages 166{179, Elounda, Greece, June/July

1993. Springer Verlag.

13. Robert P. Kurshan. Computer-Aided Veri�cation of Coordinating Processes: The

Automata-Theoretic Approach. Princeton University Press, Princeton, New Jersey,

1994.

14. R.P. Kurshan and K. McMillan. A structural induction theorem for processes.

In 8th ACM Symposium on Principles of Distributed Computing, pages 239{248,

Edmonton, Albera, Canada, August 1989.

15. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. In-

ternational Series of Monographs on Computer Science. Oxford University Press,

1994.

16. Z. Luo and R. Pollack. LEGO Proof Development System: User's Manual. LFCS

Report ECS-LFCS-92-211, Department of Computer Science, University of Edin-

burgh, 1992.

17. L. Magnusson. The new implementation of ALF. In Informal Proceedings of Work-

shop on Logical Frameworks, Bastad, 1992.

18. Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

Boston, MA, 1993.

19. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

20. Olaf M�uller and Tobias Nipkow. Combining Model Checking and Deduction for

I/O-Automata. In Tools and Algorithms for the Construction and Analysis of

Systems, volume 1019 of Lecture Notes in Computer Science, pages 1{16. Springer-

Verlag, 1995.

21. S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype veri�cation system.

In Deepak Kapur, editor, 11th International Conference on Automted Deduc-

tion(CADE), volume 607 of Lecture Notes in Arti�cial Intelligence, pages 748{752,

Saratoga, NY, June 1992. Springer-Verlag.

22. Randy Pollack. Incremental Changes in LEGO: 1994, May 1994. Available by ftp

with LEGO distribution.

23. Robert Pollack. A Veri�ed Typechecker. In M. Dezani-Ciancaglini and G. Plotkin,

editors, Proceedings of the Second International Conference on Typed Lambda Cal-

culi and Applications, volume 902 of Lecture Notes in Computer Science, Edin-

burgh, 1995. Springer-Verlag.

24. S. Rajan, N. Shankar, and M. K. Srivas. An Integration of Model Checking with

Automated Proof checking. In Computer Aided Veri�cation, Proc. 7th Int. Con-

ference, volume 939 of Lecture Notes in Computer Science, pages 84{97, Li�ege,

Belgium, July 1995. Springer-Verlag.

25. Glynn Winskel. A note on model checking the modal �-calculus. In G. Ausiello,

M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, editors, Proceedings of ICALP,

volume 372 of Lecture Notes in Computer Science, pages 761{772. Springer-Verlag,

1989.

26. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with

network invariants. In J. Sifakis, editor, International Workshop on Automatic

Veri�cation Methods for Finite State Systems, volume 407 of Lecture Notes in

Computer Science, pages 68{80, Grenoble, France, June 1989. Springer-Verlag.

Appendix 1: The Transition Relation of �-calculus

Inductive [TRANS : Act->Process->Process->Prop] Relation

Constructors

[Dot : {a:Act}{p:Process}

(*---*)

TRANS a (dot a p) p

]

[ChoL : {a:Act}{p1,p2,p:Process}

(TRANS a p1 p)->

(*---*)

(TRANS a (cho p1 p2) p)

]

[ChoR : {a:Act}{p1,p2,p:Process}

(TRANS a p2 p)->

(*---*)

(TRANS a (cho p1 p2) p)

]

[ParL : {a:Act}{p1,p2,p:Process}

(TRANS a p1 p)->

(*---*)

(TRANS a (par p1 p2) (par p p2))

]

[ParR : {a:Act}{p1,p2,p:Process}

(TRANS a p2 p)->

(*---*)

(TRANS a (par p1 p2) (par p1 p))

]

[Tau1 : {n:Base}{p1,p2,q1,q2:Process}

(TRANS n.base.act p1 q1)->(TRANS n.comp.act p2 q2)->

(*---*)

(TRANS tau (par p1 p2) (par q1 q2))

]

[Tau2 : {n:Base}{p1,p2,q1,q2:Process}

(TRANS n.comp.act p1 q1)->(TRANS n.base.act p2 q2)->

(*---*)

(TRANS tau (par p1 p2) (par q1 q2))

]

[Hide : {a:ActB}{p,q:Process}{R:list ActB}

(TRANS a.act p q)->

(is_false (orelse(member_act a R)(member_act a.comple R)))->

(*---*)

(TRANS a.act (hide p R) (hide q R))

]

[Ren : {a:Act}{p,q:Process}{f:Base->Base}

(TRANS a p q)->

(*---*)

(TRANS (rename f a) (ren p f) (ren q f))

]

[TauH : {p,q:Process}{R:list ActB}

(TRANS tau p q)->

(*---*)

(TRANS tau (hide p R) (hide q R))

]

[Rec : {a:Act}{p,p':Process}

(TRANS a (subst p one p.rec) p')->

(*---*)

(TRANS a p.rec p')];

Appendix 2: The Semantics of �-calculus

Sem : Form -> map_Form -> State.Pred

Sem (VarF X) V = V X

Sem (OrF P Q) V = Or (Sem P V) (Sem Q V)

Sem (AndF P Q) V = And (Sem P V) (Sem Q V)

Sem (Dia (Modal K) P) V = [s:State]Ex[l:Label]Ex[s':State]

and3 (Member l K)(Trans l s s')(Sem P V s')

Sem (Dia (Negmodal K) P) V = [s:State]Ex[l:Label]Ex[s':State]

and3 (not(Member l K))(Trans l s s')(Sem P V s')

Sem (Box (Modal K) P) V = [s:State]All[l:Label]All[s':State]

((Member l K).and (Trans l s s'))->(Sem P V s')

Sem (Box (Negmodal K) P) V = [s:State]All[l:Label]All[s':State]

((not(Member l K)).and (Trans l s s'))->(Sem P V s')

Sem (Tnu T P) V = [s:State]Ex[Q:State.Pred]

(Q.Subset ((Sem P (change V Q one)).Union T).and (Q s)

Sem (Tmu T P) V = [s:State]All[Q:State.Pred]

(((Sem P (change V Q one)).Minus T).Subset Q)->(Q s)

Appendix 3: The Model Checking Algorithm

fun check s � =

case � of

Var V �! error

�

1

_�

2

�! return "inl "+(check s �

1

) or "inr "+(check s �

2

)

�

1

^�

2

�! return "pair "+(check s �

1

)+(check s �

2

)

hKi�

0

�! if exists a state s'2 xs=Filter K (succ s) such that check s' �

0

is provable

then return "lemma dia (ExIntro "+state2str(s')+")

([s':State] and (Member s' (Filter "+(modality2str K)

+"(Succ "+state2str(s)+")))(sem Form "+(form2str �

0

)

+" V s'))(pair "+(prove member s' xs)+(check s' �

0

)

else error

[K]�

0

�! return "lemma boxj"+(modality2str K)+"j?j"+(state2str s)

+" ([s':State]"+(checklist (Filter K (Succ s)) �

0

)+"))"

�X:U�

0

�! if s 2 U then return "nu base "+(prove member s U)

else return "nu unfoldj?j"+(form2str �

0

)

+(check s �

0

[�X:(U [s)�

0

=X])

�X:U�

0

�! if s 2 U then error

else return "mu unfoldj?j"+(form2str �

0

)

+(check s �

0

[�X:(U [s)�

0

=X])

fun checklist xs P =

case xs of

[] �! return "([h: Member s' (nil State)] Not Member nil h

(sem Form "+(form2str P)+" V s'))"

y::ys �! return "([h:Member s' (cons ("+(state2str y)+") ("

+(liststate2str ys)+"))]Mem ind1 h "+(checklist ys P))

+"([h:Eq "+(state2str y)+" s'] Eq subst h ([z:State]sem Form"

+(form2str P)+" V z) "+(check y P)+"))"

fun prove member s U =

case U of

[] �! error

x::xs �! if s=x then "member headj?j?j?" else "member tail "

+prove member s xs

where Succ is a function with type state ! list (label*state) which takes a state

and returns a list of successor states with the corresponding labels, Filter is a

function which takes a list of (label*state) pairs and returns the list of states with

corresponding labels which satisfy the modalityK. Several ***2str functions are

used to convert a type value to a corresponding string in LEGO's syntax.

This article was processed using the L

A

T

E

X macro package with LLNCS style

