 Proof assistants 	
* FIUUI assistd11ts	
 Dependently typed programming 	g
 Modelling and formal reasoning 	
In this lecture: an example in	linguistic semantics
 Type-theoretical semantics with 	coercive subtyping

Fo	rmal semantics in linguistics
•	• Questions (asked about linguistic semantics)
	A: Is semantics objective or conceptual?
	B: Is semantics mathematical or psychological?
	Formal semantics
	 Positive answer to B
	♦ What about A?
•	• Examples of formal semantics
	 Montague semantics (Montague 1974)
	Objective and mathematical
	Type-theoretical semantics (Ranta 1994, Luo 2010) Conceptual (?) and mathematical
	 Others (see, eg, references in Portner & Partee 2002)

Histo	rical remarks
✤ Hi	storical developments of Montague semantics
*	Richard Montague (1930 – 1971)
	In early 1970s: Montague, Lewis, Cresswell, Parsons,
*	Later developments: Dowty, Partee,
 Ot 	her formal semantics
	Discourse Representation Theory (Kemp 1981, Heim 1982)
*	Situation semantics (Barwise & Berry 1983)
Rem	ark on anaphora analysis:
*	Donkey sentences: a (difficult) form of anaphora
*	Eg, "Every farmer who owns a donkey beats it."
	$\forall x. farmer(x) \& [\exists y. donkey(y) \& own(x,y)] \Rightarrow beat(x,?y)$

🔹 Ту	pe-theoretical semantics
*	Ranta 1994 (not firmly considered as a logical semantics)
	Formal semantics with TTs with canonical objects
*	Solutions to the problems caused by the limitation of Montague semantics based on Church's simple type theory
*	Potential application to NL reasoning based on the current proof technology
(RH	UL project on lexical semantics in type theory:
	http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html)
April 2011	

Montag	jue semantics	
Sema	antic language of Montague semantics	
♦ Ch	urch's simple type theory (1940)	
	 Montague's "Intensional Logic" (this aspect of ensionality is omitted for simplification here.) 	
Synta	actic categories of NLs	
♦ Se	ntences (S): "John walks."	
* Co	mmon Nouns (CN): bank, school, book, man	
+ Int	ransitive Verbs (IV): run, walk, talk, work	
♦ Ad	jectives (Adj): pretty, tired, handsome	
*		

ype Informal explana rop Type of truth values Type of all entities Type of all entities	values
Type of all entities	ntities

Category	Semantic Type
	Prop
CN	e→Prop
v	e→Prop
dj (CN/CN)	(e→Prop)→(e→Prop)

	ntague semantics: examples
*	Common nouns (as functional subsets of entities)
	man : CN
	♦ [man] : e → Prop
\$	Verbs (as predicates over entities)
	* walk : IV
	↔ [walk] : e → Prop
	↓ [John walks] = [walk](j), if j = [John] : e.
*	Adjectives (as functions from subsets to subsets)
	♦ handsome : CN/CN
	↔ [handsome] : (e→Prop) → (e→Prop)

Ne	w developments in lexical semantics
*	Generative lexicon (Pustegovsky 1995)
*	Copredication (Asher 2010)
🔹 Lir	nitation of the Montagovian setting
*	Formalisation of new lexical theories in Montagovian setting plus subtyping (Asher & Pustejovsky. 2005; Asher 2008/2010)
*	Difficulties of the above approach (Luo 2010)
	Reason: incompatibility of the Motagovian setting with subtyping

Examp	ole in Montague semantics	
	pes in Generative Lexicon (Pustejovsky 1995)	
	kample: PHY•INFO	
	$Y \bullet INFO \leq PHY$ and $PHY \bullet INFO \leq INFO$	
Exam		
	ooks are both physical and informational.	
	eavy" ("boring") is about physical (informational) entities. ◆ [heavy] : (PHY→Prop)→(PHY→Prop)	
	◊ [boring] : (INFO→Prop)→(INFO→Prop)	
What	about "a heavy book" or "a boring book"?	
♦ T	apply [heavy] or [boring] to [book], we would need	
	$PHY \bullet INFO \rightarrow Prop \leq PHY \rightarrow Prop$	
	$PHY \bullet INFO \rightarrow Prop \leq INFO \rightarrow Prop$	
N	DT the case! (It is just the other way around!)	

٠	Some new developments in, eg, lexical sem Reference transfers (cf, Jackendoff)
	 "The ham sandwich shouts." (in a special context)
	Logical polysemy (cf, Pustejovsky 95) "burn a boring book" ("book": both "physical" and
	 "burn a boring book" ("book": both "physical" and "informational")
	Problem and solution
	 Montague Grammar is not fit for the purpose! (cf, work by Pustejovsky, Asher,)
	 Types instead of functional subsets + coercive subtyping

	Type-theoretical semantics – a promising approach
	♦ Formal semantics based on modern TTs
	 A key difference: multi-sorted (v.s. single-sorted Montagovian setting) (Ranta 1994)
*	May offer solutions, but
	New problem
	Not enough oprns on types (as compared with oprns on functional subsets of type $e → t$)
	 Promising solution: coercive subtyping
	 Offers natural solutions (Luo 2010)

S Prop CNs (book, man,) types (each CN is interpreted as a tr IV A→Prop (A is the "meaningful dom.	
IV A→Prop (A is the "meaningful dom	type: [book]. [man],
	ain" of a verb)
Adj A→Prop (A is the "meaningful dom	ain" of an adjective)

 CNs as types (not sets!) [human] : Type [man] : Type [book] : Type Verbs are interpreted as predicates [walk] : [human] → Prop [John walks] = [walk] (j): Prop where j = [John] : [human] , Adjectives are interpreted as predicates [handsome] : [man] → Prop [handsome] : [man] → Prop [handsome man] = ∑([man] , [handsome]) Note: Many types in a modern type theory (e.g., ∑-types for modified CNs.)) () ()			
$ \begin{array}{c} [human]: Type \\ [man]: Type \\ [book]: Type \\ [book]: Type \\ \hline \\ $					
$ \begin{array}{c} [human]: Type \\ [man]: Type \\ [book]: Type \\ [book]: Type \\ \hline \\ $					
$ \begin{array}{c} [human]: Type \\ [man]: Type \\ [book]: Type \\ [book]: Type \\ \hline \\ $	CNIs as types (not	cetcl)			
$ \begin{bmatrix} man \end{bmatrix} : Type \\ [book] : Type \\ [book] : Type \\ $					
$ \begin{array}{c} [book]: Type \\ \bullet \ Verbs are interpreted as predicates \\ [walk]: [human] \rightarrow Prop \\ [John walks] = [walk] (j): Prop \\ where j = [John]: [human]. \\ \bullet \ Adjectives are interpreted as predicates \\ [handsome]: [man] \rightarrow Prop \\ [handsome man] = \Sigma([man], [handsome]) \\ Note: Many types in a modern type theory (e.g., $$-types for $$$					
 ♦ Verbs are interpreted as predicates					
		ted as predicat	ec		
[John walks] = [walk] (j) : Prop where j = [John] : [human] ,					
where $j = [John] : [human]$. Adjectives are interpreted as predicates [handsome] : [man] \rightarrow Prop [handsome man] = $\Sigma([man] , [handsome])$ Note: Many types in a modern type theory (e.g., Σ -types for			on		
• Adjectives are interpreted as predicates [handsome] : [man] \rightarrow Prop [handsome man] = Σ ([man], [handsome]) Note: Many types in a modern type theory (e.g., Σ -types for			op		
$ \begin{array}{c} [handsome] : [man] \rightarrow Prop \\ [handsome man] = \Sigma([man], [handsome]) \\ Note: Many types in a modern type theory (e.g., $\sigma-types for $\eqref{eq:sigma}. \eqref{eq:sigma} \end{array} $			licates		
[handsome man] = Σ ([man], [handsome]) Note: Many types in a modern type theory (e.g., Σ -types for					
Note: Many types in a modern type theory (e.g., S-types for					
		+-+			
modified CNs.)		a modern type	theory (e.g.,	Σ -types fo	r
	modified CNs.)				
SAIT20 14	SAIT20				14

-70	imples in Type-Theoretical Semantics
٠	What about, eg,
	"A handsome man is a man"?
	"Paul walks", with p = (Paul) : (handsome man] ?
٠	Solution: coercive subtyping
	First projection π_1 as coercion: $\sum(A,B) \leq_{\pi_1} A$
	• [handsome man] = $\sum ([man], [handsome]) \leq_{\pi_1} [man]$
	Paul walks] = [walk] (p) : Prop
	because
	$[walk] : [man] \rightarrow Prop and$
	$p: [handsome man] \leq_{\pi_1} [man].$
۲	Remark:
	 Subtyping is crucial in type-theoretical semantics.

Exam	ple involving dot-types	
Reca		
	Example: PHY•INFO	
	PHY•INFO ≤ PHY and PHY•INFO ≤ INFO	
🔹 In ty	/pe-theoretical semantics,	
b	ook] ≤ PHY•INFO	
(b	$oring] \ : \ INFO \to Prop \leq \ PHY \bullet INFO \to Prop \leq [\ book] \to Prop$	
So,	[boring book] : Type	
(b	urn] : Human \rightarrow PHY \rightarrow Prop	
	= [John] : Man ≤ Human	
	: [boring book] \leq [book] \leq PHY•INFO \leq PHY	
So,	[burn] (j, b) : Prop	
So,	[John burned a boring book]	
	= ∃ b : [boring book] . [burn] (j, b) : Prop	

	ample on Copredication
٠	Another example (copredication [Asher & Pustejovsky 05])
	"John picked up and mastered the book." [pick up] : [human] \rightarrow PHY \rightarrow Prop
	$ pick up \rangle$ $[numan] \rightarrow PHY \rightarrow Prop$ $\leq [human] \rightarrow PHY \bullet INFO \rightarrow Prop$
	\leq [human] \rightarrow [book] \rightarrow Prop
	$[master]$ $[human] \rightarrow INFO \rightarrow Prop$
	\leq [human] \rightarrow PHY•INFO \rightarrow Prop
	\leq [human] \rightarrow [book] \rightarrow Prop
۲	Remark:
	 CNs as types in type-theoretical semantics – so things work.
	 Problematic if sticking to Montague's interpretations of CNs as functional subsets.

What	is A•B?
	adequate accounts (cf, [Asher 08]): Intersection types or product types
	esenting A•B as A×B with π_1/π_2 as coercions (formally as ent type constructors):
	A : Type B : Type C(A)∩C(B)=∅
	A•B : Type
	ypes have two projections $p_1(a,b)=a$ and $p_2(a,b)=b$, both ich are coercions (see Luo 2010 for formal details).
Remark:	The "C-condition" (disjointness of A/B-components) guarantees
that the d	coercions concerned are coherent.

More	e subtyping for lexical semantics in TT
se Se	ense selection via overloading by coercive subtyping
	Sense enumeration of homonymous words
	Eg, John runs quickly.
	John runs a bank.
	[run] ₁ : [human]→Prop
	[run] ₂ : [human]→[institution]→Prop
*	In general, let word w have different meanings $[w]_i:A_i$ (As are not equal or related by subtyping). Then, the sense enumeration model can be represented as coercions $c_i:$
	$\cdots \cdots c_i : 1_w \to A_i \cdots c_i (w) = [w]_i : A_i \cdots \cdots a_i (w)$
*	Then, correct senses are automated selected as expected.

♦ Coercion contexts	
 Reference transfers (Nunberg 1995) 	
The ham sandwich shouts	
 Coercion contexts with entries such as 	
[ham sandwich] < [human]	
Remark: we need <u>coherent</u> contexts.	
April 2011	20

,		
Local coerci	ons	
* coercion A	< _c B <u>in</u> t	
 Example of 	f use: simultaneous use of	f
the	e bank of the river	
the	e richest bank in the city	
 More than 	one coercion from [bank]	
Difficult t	o know which should be used.	
They cou	ld even be incoherent!	
 With local 	coercions, fine as expecte	.d.
April 2011		21

۰.	N. Asher. Lexical Meaning in Context: A Web of Words. CUP, 2010. (to appear)
	A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5(1). 1940.
*	Z. Luo. Type-theoretical semantics with coercive subtyping. Semantics and Linguistic Theor 20 (SALT20). 2010.
٠	Z. Luo. Contextual analysis of word meanings in type-theoretical semantics. Logical Aspects of Computational Semantics (LACL 2011). LNCS (to appear).
\$	R. Montague. Formal philosophy. Yale Univ Press, 1974. (Collection edited by R. Thomason)
÷	P. Pontner and B. Partee (eds). Formal Semantics: The Essential Readings. Blackwell, 2002.
4	J. Pustejovsky. The Generative Lexicon. MIT, 1995.
۰.	A. Ranta. Type-Theoretical Grammar. OUP, 1994.