
Coheren
e and transitivity in 
oer
ive subtyping

Yong Luo and Zhaohui Luo

?

Department of Computer S
ien
e,

University of Durham,

South Road, Durham, DH1 3LE , U.K.

E-mail: fYong.Luo, Zhaohui.Luog�durham.a
.uk

Abstra
t Coer
ive subtyping is a general approa
h to subtyping, inher-

itan
e and abbreviation in dependent type theories. A vital requirement

for 
oer
ive subtyping is that of 
oheren
e { 
omputational uniqueness

of 
oer
ions between any two types. In this paper, we develop te
hniques

useful in proving 
oheren
e and its related result on admissibility of tran-

sitivity and substitution. In parti
ular, we 
onsider suitable subtyping

rules for �-types and �-types and prove its 
oheren
e and the admis-

sibility of substitution and transitivity rules at the type level in the


oer
ive subtyping framework.

1 Introdu
tion

Coer
ive subtyping, as studied in [Luo97,Luo99,SL01℄, represents a novel general

approa
h to subtyping and inheritan
e in type theory. In parti
ular, it provides a

framework in whi
h subtyping, inheritan
e, and abbreviation 
an be understood

in dependent type theories where types are understood as 
onsisting of 
anoni
al

obje
ts.

In this paper, we 
onsider the issue of 
oheren
e in the framework of 
oer
ive

subtyping; in parti
ular, we develop te
hniques useful for proving 
oheren
e in


oer
ive subtyping. The 
oheren
e 
onditions are the most basi
 requirement

for the subtyping rules. In essen
e, it says that any two 
oer
ions between two

types must be the same, whi
h ensures the uniqueness of 
oer
ions (if any).

Among other things, 
oheren
e is the basis for the whole 
oer
ive subtyping

framework to be 
onsistent and for it to be implemented in a 
orre
t way. A

related important issue is that of admissibility of transitivity and substitution,

whi
h apart from its relationship with 
oheren
e, is essential for implementation

of the theory.

We shall develop methods to prove 
oheren
e and the admissibility results. In

parti
ular, we 
onsider suitable subtyping rules for � and �-types as examples

to demonstrate these proof te
hniques. Although some important meta-theoreti


results su
h as the 
onservativity result have been obtained for 
oer
ive subtyp-

ing, the 
urrent paper is the �rst attempt to prove 
oheren
e and admissibility

?

The �rst author thanks the support of the ORS Award and the Durham University

studentship. This work by the se
ond author is partly supported by the UK EPSRC

grant GR/M75518 and the EU grant on the TYPES proje
t.



results at the type level in the framework. The te
hniques developed here have

wider and further appli
ations.

In Se
tion 2, we give an overview of 
oer
ive subtyping, presenting the formal

framework and giving informal explanations of the 
oheren
e problem. In Se
-

tion 3, a general strategy for proving 
oheren
e and the admissibility results is


onsidered, and a formal de�nition of the so-
alled well-de�ned 
oer
ions is given

as the basis for the proof te
hniques to be 
onsidered in the following se
tions.

In Se
tions 4 and 5, we prove 
oheren
e and the admissibility of substitution and

transitivity rules, respe
tively. Dis
ussions are given in the 
on
luding se
tion

(Se
tion 6), where we dis
uss issues su
h as de
idability and weak transitivity,

the latter of whi
h is important for the 
oer
ive subtyping framework and its

appli
ations.

2 Coer
ive subtyping and the 
oheren
e problem

In this se
tion, we give a brief introdu
tion to 
oer
ive subtyping, explain the

notion of 
oheren
e and its importan
e, and lay down the ne
essary formal details

to be used in the following se
tions.

2.1 Coer
ive subtyping

The basi
 idea of 
oer
ive subtyping, as studied in e.g., [Luo99℄, is that A is

a subtype of B if there is a (unique) 
oer
ion 
 from A to B, and therefore,

any obje
t of type A may be regarded as obje
t of type B via 
, where 
 is a

fun
tional operation from A to B in the type theory.

A 
oer
ion plays the role of abbreviation. More pre
isely, if 
 is a 
oer
ion

from K

0

to K, then a fun
tional operation f with domain K 
an be applied to

any obje
t k

0

of K

0

and the appli
ation f(k

0

) is de�nitionally equal to f(
(k

0

)).

Intuitively, we 
an view f as a 
ontext whi
h requires an obje
t of K; then

the argument k

0

in the 
ontext f stands for its image of the 
oer
ion, 
(k

0

).

Therefore, one 
an use f(k

0

) as an abbreviation of f(
(k

0

)).

The above simple idea, when formulated in the logi
al framework, be
omes

very powerful. The se
ond author and his 
olleagues have developed the frame-

work of 
oer
ive subtyping that 
overs variety of subtyping relations in
luding

those represented by parameterised 
oer
ions and 
oer
ions between parame-

terised indu
tive types. See [Luo99,Bai99,CL01,LC98,CLP01℄ for details of some

of these development and appli
ations of 
oer
ive subtyping.

Some important meta-theoreti
 aspe
ts of 
oer
ive subtyping have been stud-

ied. In parti
ular, the results on 
onservativity and on transitivity elimination

for subkinding have been proved in [JLS98,SL01℄. The 
onservativity result says,

intuitively, that every judgement that is derivable in the theory with 
oer
ive

subtyping and that does not 
ontain 
oer
ive appli
ations is derivable in the

original type theory. Furthermore, for every derivation in the theory with 
oer-


ive subtyping, one 
an always insert 
oer
ions 
orre
tly to obtain a derivation

2



in the original type theory. The main result of [SL01℄ is essentially that 
oher-

en
e of basi
 subtyping rules does imply 
onservativity. These results not only

justify the adequa
y of the theory from the proof-theoreti
 
onsideration, but

also provide the proof-theoreti
 basis for implementation of 
oer
ive subtyping.

(However, how to prove 
oheren
e and admissibility of transitivity at the type

level has not been studied; this is the subje
t of this paper.)

Coer
ion me
hanisms with 
ertain restri
tions have been implemented both

in the proof development system Lego [LP92℄ and Coq [B

+

00℄, by Bailey [Bai99℄

and Saibi [Sai97℄, respe
tively. Callaghan of the Computer Assisted Reasoning

Group at Durham has implemented Plasti
 [CL01℄, a proof assistant that sup-

ports logi
al framework and 
oer
ive subtyping with a mixture of simple 
oer-


ions, parameterised 
oer
ions, 
oer
ion rules for parameterised indu
tive types,

and dependent 
oer
ions [LS99℄.

A formal presentation Here, before dis
ussing further the problems of 
o-

heren
e and transitivity, we �rst give a formal presentation of the framework of


oer
ive 
ubtyping, whi
h is also the basis for our development in latter se
tions.

We shall be brief in this paper (for details and more explanations, see [Luo99℄).

Coer
ive subtyping is formally formulated as an extension of (type theories

spe
i�ed in) the logi
al frameworkLF [Luo94℄, whose rules are given in Appendix

A. In LF, Type represents the 
on
eptual universe of types and (x : K)K

0

rep-

resents the dependent produ
t with fun
tional operations f as obje
ts (e.g.,

abstra
tion [x : K℄k) whi
h 
an be applied to obje
ts of kind K to form appli-


ation f(k). LF 
an be used to spe
ify type theories, su
h as Martin-L�of's type

theory [NPS90℄ and UTT [Luo94℄.

For example, �-types, types of dependent fun
tions, 
an be spe
i�ed by in-

trodu
ing the 
onstants for (1) formation: �(A;B) is a type for any type A and

any family of types B, (2) introdu
tion: �(A;B; f) is a fun
tion of type �(A;B)

if f is a fun
tional operation of kind (x : A)B(x), and (3) elimination, from whi
h

we 
an de�ne the appli
ation operator app(A;B; F; a). Similarly, we 
an intro-

du
e �-types �(A;B) with introdu
tion operator to form pair(A;B; a; b) and

an elimination operator from whi
h the proje
tions �

1

(A;B; p) and �

2

(A;B; p)


an be de�ned.

Notation We shall use the following notations:

� We shall often omit the El-operator in LF to write A for El(A) when no


onfusion may o

ur and may write (K)K

0

for (x : K)K

0

when x does not

o

ur free in K

0

.

� We sometimes use M [x℄ to indi
ate that variable x may o

ur free in M and

subsequently write M [N ℄ for [N=x℄M , when no 
onfusion may o

ur.

� Fun
tional 
omposition: for f : (K

1

)K

2

and g: (y : K

2

)K

3

[y℄, de�ne gÆf =

df

[x :

K

1

℄g(f(x)): (x : K

1

)K

3

[f(x)℄, where x does not o

ur free in f or g.

� Context equality: for � � x

1

: K

1

; :::; x

n

: K

n

and �

0

� x

1

: K

0

1

; :::; x

n

: K

0

n

,

we shall write ` � = �

0

for the sequen
e of judgements ` K

1

= K

0

1

, ...,

x

1

: K

1

; :::; x

n�1

: K

n�1

` K

n

= K

0

n

.

3



A system with 
oer
ive subtyping, T[R℄, is an extension of any type theory

T spe
i�ed in LF by a set of basi
 subtyping rules R. It 
an be presented in two

stages: �rst we formulate the intermediate system T[R℄

0

with subtyping judge-

ments of the form � ` A <




B:Type, and then add the subkinding judgements

of the form � ` K <




K

0

and rules 
on
erning 
oer
ions between kinds.

T[R℄

0

is an extension of T (only) with the subtyping judgement form � `

A <




B:Type and the following rules:

� A set R of basi
 subtyping rules whose 
on
lusions are subtyping judgements

of the form � ` A <




B:Type.

� The following 
ongruen
e rule for subtyping judgements

(Cong)

� ` A <




B:Type

� ` A = A

0

:Type � ` B = B

0

:Type � ` 
 = 


0

: (A)B

� ` A

0

<




0

B

0

:Type

In the presentation of 
oer
ive subtyping in [Luo99℄, T[R℄

0

also has the fol-

lowing substitution and transitivity rules:

(Subst)

�; x : K;�

0

` A <




B:Type � ` k:K

�; [k=x℄�

0

` [k=x℄A <

[k=x℄


[k=x℄B:Type

(Trans)

� ` A <




B:Type � ` B <




0

C:Type

� ` A <




0

Æ


C:Type

Sin
e we 
onsider in this paper how to prove that the substitution and transi-

tivity rules are admissible, we do not in
lude them as basi
 rules.

Remark 1. We have the following remarks.

� T[R℄

0

is obviously a 
onservative extension of the original type theory T ,

sin
e the subtyping judgements do not 
ontribute to any derivation of a

judgement of any other form.

� The set of basi
 
oer
ion rules is supposed to be 
oherent; we shall give

de�nition and dis
ussions of this in the next subse
tion.

The system T[R℄, the extension of T with 
oer
ive subtyping with respe
t to

R, is the system obtained from T[R℄

0

by adding the new subkinding judgement

form � ` K <




K

0

and the rules in Appendix B. Note that the substitution

rule and the transitivity rule for kinds (the last two rules in Appendix B) 
an

be eliminated under the assumption that the set of basi
 subtyping rules R is


oherent [SL01℄.

Notation Sin
e we are not mu
h 
on
erned with the subkinding judgements

and are mainly 
on
erned with the subtyping judgements, we shall simply write

� ` A <




B for � ` A <




B:Type, when there is no 
onfusion may o

ur.

Sometimes, we shall also write � ` A = B for � ` A = B:Type.

4



2.2 Coheren
e of the basi
 subtyping rules

The basi
 subtyping rules are the basis for the 
oer
ive subtyping system. Ex-

amples of su
h rules in
lude

� simple 
oer
ion de
larations su
h as those between basi
 indu
tive types:

Even is a subtype of Nat;

� parameterised 
oer
ions representing (point-wise) subtyping (or subfamily

relation) between two families of types indexed by obje
ts of the same type;

for example, ea
h ve
tor type V e
(A; n) 
an be taken as a subtype of that of

lists List(A), parameterised by the index n, where the 
oer
ion would map

the ve
tor < a

1

; :::; a

n

> to the list [a

1

; :::; a

n

℄.

� 
oer
ions between parameterised indu
tive type: e.g., �(A;B) is a subtype

of �(A

0

; B

0

) if A is a subtype of A

0

and B is a subfamily of B

0

.

The most basi
 requirement for su
h basi
 subtyping rules is that of 
oher-

en
e, given in the following de�nition, whi
h essentially says that basi
 
oer
ions

between any two types must be unique.

De�nition 1 (
oheren
e 
ondition). We say that the basi
 subtyping rules

are 
oherent if T[R℄

0

has the following 
oheren
e properties:

1. If � ` A <




B:Type, then � ` A:Type, � ` B:Type, and � ` 
: (A)B.

2. � 6` A <




A:Type for any � , A and 
.

3. If � ` A <




B:Type and � ` A <




0

B:Type, then � ` 
 = 


0

: (A)B.

Remark 2. This is a weaker notion of 
oheren
e as 
ompared with that given in

[Luo99℄, sin
e there the rules (Subst)(Trans) are in
luded in T[R℄

0

. In general,

when parameterised 
oer
ions and substitutions are present, 
oheren
e is unde-


idable. This is one of the reasons one needs to 
onsider proofs of 
oheren
e in

general.

Examples of basi
 
oer
ion rules in
lude those mentioned above, among whi
h

one 
an �nd the lifting operators between type universes, overloading 
oer
ions,

et
. Also, for example, for parameterised �-types and �-types, we 
an have

their subtyping rules as given in Figure 1 and Figure 2. Note that these rules

are suitable ones for whi
h we 
an show that transitivity is admissible. If one


hose indu
tively de�ned 
oer
ions, strong transitivity would not be admissible

(see Se
tion 6.2 for dis
ussions.)

3 Well-de�ned 
oer
ions

As mentioned above, unless the 
oer
ions 
an be represented as a �nite graph,


oheren
e is in general unde
idable, espe
ially when we have parameterised 
o-

er
ions. So we need to 
onsider how to prove 
oheren
e and the related admis-

sibility results.

A general strategy we adopt is to 
onsider su
h proofs in a stepwise way.

That is, if we know that some existing 
oer
ions (possibly generated by some

5



Domain rule

� ` A

0

<




A � ` B : (A)Type

� ` �(A;B) <

d

1

�(A

0

; B Æ 
)

where d

1

= [f : �(A;B)℄�(A

0

; B Æ 
; app(A;B; f) Æ 
).

Codomain rule

� ` B : (A)Type � ` B

0

: (A)Type �; x : A ` B(x) <

e[x℄

B

0

(x)

� ` �(A;B) <

d

2

�(A;B

0

)

where d

2

= [f : �(A;B)℄�(A;B

0

; [x : A℄e[x℄(app(A;B; f; x))).

Domain-Codomain rule

� ` A

0

<




A � ` B : (A)Type � ` B

0

: (A

0

)Type

�; x : A

0

` B(
(x)) <

e[x℄

B

0

(x)

� ` �(A;B) <

d

3

�(A

0

; B

0

)

where d

3

= [f : �(A;B)℄�(A

0

; B

0

; [x : A

0

℄e[x℄(app(A;B; f; 
(x)))).

Figure1. Basi
 subtyping rules for �-types.

First Component rule

� ` A <




A

0

� ` B : (A

0

)Type

� ` �(A;B Æ 
) <

d

1

�(A

0

; B)

where d

1

= [x : �(A;B Æ 
)℄pair(A

0

; B; 
(�

1

(A;B Æ 
; x)); �

2

(A;B Æ 
; x)).

Se
ond Component rule

� ` B : (A)Type � ` B

0

: (A)Type �; x : A ` B(x) <

e[x℄

B

0

(x)

� ` �(A;B) <

d

2

�(A;B

0

)

where d

2

= [x : �(A;B)℄pair(A;B

0

; �

1

(A;B; x); e[�

1

(A;B; x)℄(�

2

(A;B; x))).

First-Se
ond Component rule

� ` A <




A

0

� ` B : (A)Type � ` B

0

: (A

0

)Type

�; x : A ` B(x) <

e[x℄

B

0

(
(x))

� ` �(A;B) <

d

3

�(A

0

; B

0

)

where d

3

= [x : �(A;B)℄pair(A

0

; B

0

; 
(�

1

(A;B; x)); e[�

1

(A;B; x)℄(�

2

(A;B; x))).

Figure2. Basi
 subtyping rules for �-types.

6



existing rules) are 
oherent and have good admissibility properties, and we add

some more subtyping rules, 
an we show that the newly extended system is still


oherent and has good admissibility properties? This has led us to de�ne the

following 
on
ept of well-de�ned 
oer
ions. We shall then use subtyping rules

for � and �-types to demonstrate how 
oheren
e et
 
an be proved.

De�nition 2 (Well-de�ned 
oer
ions). If C is a set of subtyping judgements

of the form � `M <

d

M

0

:Type whi
h satis�es the following 
onditions, we say

that C is a well-de�ned set of judgements for 
oer
ions, or brie
y 
alled well-

de�ned 
oer
ions (WDC):

1. (Coheren
e)

(a) � ` A <




B 2 C implies � ` A : Type , � ` B : Type and � ` 
: (A)B.

(b) � ` A <




A =2 C for any � , A , and 
.

(
) � ` A <




1

B 2 C and � ` A <




2

B 2 C imply � ` 


1

= 


2

: (A)B.

2. (Congruen
e) � ` A <




B 2 C, � ` A = A

0

, � ` B = B

0

and � ` 
 =




0

: (A)B imply � ` A

0

<




0

B

0

2 C.

3. (Transitivity) � ` A <




1

B 2 C and � ` B <




2

A

0

2 C imply � ` A <




3

A

0

2 C for some 


3

su
h that � ` 


3

= 


2

Æ 


1

: (A)A

0

.

4. (Substitution) �; x : K;�

0

` A <




B 2 C implies for any k su
h that � ` k :

K, �; [k=x℄�

0

` [k=x℄A <




0

[k=x℄B 2 C for some 


0

su
h that �; [k=x℄�

0

`




0

= [k=x℄
: ([k=x℄A)[k=x℄B.

5. (Weakening) � ` A <




B 2 C, � � �

0

and �

0

is valid imply �

0

` A <




B

2 C.

Remark 3. A WDC 
an be thought of as a set of 
oer
ions generated from some

basi
 
oer
ions, some basi
 subtyping rules, and the rules (Cong)(Subst)(Trans)

and that of weakening.

We have the following properties of WDCs.

Lemma 1.

1. If � ` A <




1

B 2 C, � ` B

0

<




2

A

0

2 C and � ` B = B

0

, then � ` A <




3

A

0

2 C for some 


3

and � ` 


3

= 


2

Æ 


1

: (A)A

0

.

2. If �; x : K;�

0

` A <




B 2 C, � ` K = K

0

, then �; x : K

0

; �

0

` A <




B 2 C.

3. If � ` A <




B 2 C, ` � = �

0

, then �

0

` A <




B 2 C.

4. If � ` A <




B 2 C, �

0

` A

0

<




0

B

0

2 C, ` � = �

0

, � ` A = A

0

and

� ` B = B

0

, then � ` 
 = 


0

: (A)B.

In the following se
tions, we shall 
onsider the system of 
oer
ive subtyping

whose basi
 subtyping rules (R) 
onsist of the following rule, where C is a WDC:

(C)

� ` A <




B:Type 2 C

� ` A <




B:Type

and the � and �-subtyping rules in Figures 1 and 2. Furthermore, we assume

that for any judgement � ` A <




B 2 C, neither A nor B is 
omputationally

7



equal to a �-type or a �-type. We denote the derivable subtyping judgements

of this system by C

M

. We also assume that the original type theory T has good

properties, in parti
ular the Chur
h-Rosser property and the property of 
ontext

repla
ement by equal kinds. In the following two se
tions, we shall show that

C

M

is also a WDC.

Remark 4. The above system is equivalent to T[R℄

0

where R 
onsists of (C)

and the �/� subtyping rules.

4 Coheren
e

In this se
tion, we give a proof of 
oheren
e of basi
 subtyping rules of �-types

and �-types.

Lemma 2. If � `M

1

<

d

M

2

2 C

M

, then one of the following holds:

� � `M

1

<

d

M

2

2 C;

� Both M

1

and M

2

are 
omputationally equal to �-types; or

� Both M

1

and M

2

are 
omputationally equal to �-types.

Proof. By indu
tion on derivations. If � `M

1

<

d

M

2

=2 C, its derivation must

end with a �-subtyping rule, a �-subtyping rule, or the 
ongruen
e rule. If it is

one of the � or �-subtyping rules, then we know both M

1

and M

2

are �-types

or �-types. If the last rule is the 
ongruen
e rule (Cong),

� ` M

0

1

<

d

0

M

0

2

:Type � ` M

1

= M

0

1

: Type � ` M

2

=M

0

2

: Type � ` d

0

= d: (M

0

1

)M

0

2

� ` M

1

<

d

M

2

then by indu
tion hypothesis, the lemma holds for � `M

0

1

<

d

0

M

0

2

. If both M

0

1

and M

0

2

are 
omputationally equal to �-types or �-types, so are M

1

and M

2

.

If � `M

0

1

<

d

0

M

0

2

2 C, then � `M

1

<

d

M

2

2 C be
ause C is a WDC, whi
h is


losed under 
ongruen
e. ut

Lemma 3.

1. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

then � ` A = A

0

or � ` A

0

<




A 2 C

M

for some 
.

2. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

then � ` A = A

0

or � ` A <




A

0

2 C

M

for some 
.

3. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

and � ` A = A

0

then �; x : A `

B(x) <

e[x℄

B

0

(x) 2 C

M

for some e.

4. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

and � ` A = A

0

then �; x : A `

B(x) <

e[x℄

B

0

(x) 2 C

M

for some e.

5. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

and � ` A

0

<




A 2 C

M

then �; x : A

0

`

B(
(x)) = B

0

(x) or �; x : A

0

` B(
(x)) <

e[x℄

B

0

(x) 2 C

M

for some e.

6. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

and � ` A <




A

0

2 C

M

then �; x : A `

B(x) = B

0

(
(x)) or �; x : A ` B(x) <

e[x℄

B

0

(
(x)) 2 C

M

for some e.

8



Proof. By indu
tion on derivations. We only 
onsider the �rst statement; the

proofs of the others are similar. For the �rst, a derivation of the judgement

� ` �(A;B) <

d

�(A

0

; B

0

) must be of the form

:

:

one of three � � subtyping rules

� ` �(A

1

; B

1

) <

d

0

�(A

2

; B

2

)

:

:::(Congruen
e rules):::

:

� ` �(A;B) <

d

�(A

0

; B

0

)

where � ` �(A

1

; B

1

) = �(A;B):Type, � ` �(A

2

; B

2

) = �(A

0

; B

0

):Type, and

� ` d

0

= d: (C)C

0

for some C and C

0


omputationally equal to �(A;B) and

�(A

0

; B

0

), respe
tively. Hen
e, by the Chur
h-Rosser theorem of the original

type theory T and 
onservativity of T[R℄

0

over T, � ` A

1

= A, � ` B

1

= B,

� ` A

2

= A

0

and � ` B

2

= B

0

. So � ` A = A

0

or � ` A

0

<




A by the


ongruen
e rule. ut

Lemma 4. If � `M

1

<




M

2

2 C

M

, then � 6`M

1

=M

2

.

Theorem 1 (Coheren
e). If � ` M

1

<

d

M

2

2 C

M

, �

0

` M

0

1

<

d

0

M

0

2

2 C

M

,

` � = �

0

, � `M

1

=M

0

1

, and � `M

2

=M

0

2

then � ` d = d

0

: (M

1

)M

2

.

Proof. By indu
tion on derivations. By Lemma 2, we only have to 
onsider the

following 
ases.

� � ` M

1

<

d

M

2

2 C. Then, none of M

1

and M

2

is 
omputationally equal

to a �-type or �-type. Therefore, nor is M

0

1

or M

0

2

. So, by Lemma 2, �

0

`

M

0

1

<

d

0

M

0

2

2 C. Now, by Lemma 1(2), we have � ` d = d

0

: (M

1

)M

2

.

� BothM

1

andM

2

are 
omputationally equal to�-types. Then any derivation

of � `M

1

<

d

M

2


ontains a subderivation whose last rule is one of the �-

subtyping rules followed by 
ongruen
e rules. We only 
onsider the 
ase the

�-subtyping rule 
on
erned is the third rule in Figure 1; i.e., the derivation

is of the form

:

:

:

� ` A

2

<




A

1

:

:

:

�; x : A

2

` B

1

(
(x)) <

e[x℄

B

2

(x)

� ` �(A

1

; B

1

) <

d

1

�(A

2

; B

2

)

:

:::(Congruen
e rules):::

:

� `M

1

<

d

M

2

where � ` �(A

1

; B

1

) = M

1

, � ` �(A

2

; B

2

) = M

2

, and � ` d

1

=

d: (M

1

)M

2

.

9



Now, it must be the 
ase that any derivation of �

0

` M

0

1

<

d

0

M

0

2

must


ontain a subderivation whose last rule is also the same �-subtyping rule as

above, followed by appli
ations of the 
ongruen
e rule; i.e., it must be of the

form

:

:

:

�

0

` A

0

2

<




0

A

0

1

:

:

:

�

0

; x : A

0

2

` B

0

1

(


0

(x)) <

e

0

[x℄

B

0

2

(x)

�

0

` �(A

0

1

; B

0

1

) <

d

0

1

�(A

0

2

; B

0

2

)

:

:::(Congruen
e rules):::

:

�

0

`M

0

1

<

d

0

M

0

2

where �

0

` �(A

0

1

; B

0

1

) = M

0

1

, �

0

` �(A

0

2

; B

0

2

) = M

0

2

, and �

0

` d

0

=

d

0

1

: (M

0

1

)M

0

2

. To see this is the 
ase, by Lemma 3, we only have to show

that

1. �

0

6` A

0

2

= A

0

1

, and

2. �

0

; x : A

0

2

6` B

0

1

(


0

(x)) = B

0

2

(x).

For the �rst 
ase, sin
e � ` M

1

= M

0

1

and � ` M

2

= M

0

2

, we have

� ` �(A

1

; B

1

) = �(A

0

1

; B

0

1

) and � ` �(A

2

; B

2

) = �(A

0

2

; B

0

2

). Hen
e, by

Chur
h-Rosser theorem in T and 
onservativity of T[R℄

0

over T, � ` A

1

=

A

0

1

, � ` B

1

= B

0

1

, � ` A

2

= A

0

2

and � ` B

2

= B

0

2

. As � ` A

2

<




A

1

, we

have by Lemma 4, � 6` A

2

= A

1

. So �

0

6` A

0

2

= A

0

1

.

For the se
ond 
ase, a similar argument suÆ
es, ex
ept that we use the fa
t

that, by the argument of the �rst 
ase and indu
tion hypothesis, � ` 
 =




0

: (A

2

)A

1

.

Sin
e the derivations must be of the above forms, by indu
tion hypothesis,

we have � ` 
 = 


0

: (A

2

)A

1

and �; x : A

2

` e[x℄ = e

0

[x℄: (B

1

(
(x)))B

2

(x).

Hen
e � ` d = d

0

: (M

1

)M

2

.

� Both M

1

and M

2

are 
omputationally equal to �-types. The proof of this


ase is similar to the above 
ase. ut

5 Admissibility of Substitution and Transitivity

In the presentation of 
oer
ive subtyping in [Luo99℄, substitution and transi-

tivity are two of the basi
 rules in the theoreti
al framework. However, in an

implementation of 
oer
ive subtyping, these rules are ignored simply be
ause

that they 
annot be dire
tly implemented. For this reason among others, prov-

ing admissibility of su
h rules (or their elimination) is always an important task

for any subtyping systems.

In this paper, we do not take substitution and transitivity as basi
 rules, but

we prove that they are both admissible when we extend a WDC by the � and

�-subtyping rules. In order to prove admissibility of transitivity, we also need

to prove the theorem about weakening.

10



Theorem 2 (Substitution and weakening).

1. (Substitution) If �; x : K;�

0

` M

1

<

d

M

2

2 C

M

and � ` k : K, then

�; [k=x℄�

0

` [k=x℄M

1

<

d

0

[k=x℄M

2

2 C

M

for some d

0

su
h that �; [k=x℄�

0

`

d

0

= [k=x℄d: ([k=x℄M

1

)[k=x℄M

2

.

2. (Weakening) If � ` M

1

<

d

M

2

2 C

M

, � � �

0

and �

0

is valid then �

0

`

M

1

<

d

M

2

2 C

M

.

Proof. By indu
tion on derivations and using Lemma 2. ut

To prove the admissibility of transitivity, the usual measures (e.g., the size

of types 
on
erned) do not seem to work (or even to be de�nable), sin
e types

essentially involve 
omputations. We use a measure developed by Chen in his

PhD thesis [Che98℄, whi
h only 
onsiders subtyping judgements in a derivation,

de�ned as follows.

De�nition 3 (depth). Let D be a derivation of a subtyping judgement of the

form � ` A <




B:Type. Then

1. If the last rule of D is

� ` A <




B : Type 2 C

� ` A <




B:Type

then depth(D) = 1.

2. If the last rule of D is

S

1

; :::; S

n

; D

1

; :::; D

m

� ` A <




B:Type

where S

1

, ..., S

n

are derivations of subtyping judgements of the form �

0

`

A

0

<




0

B

0

:Type and D

1

, ..., D

m

are derivations of other forms of judge-

ments, then depth(D) = maxfdepth(S

1

); :::; depth(S

n

)g+ 1.

The following lemma shows that, from a derivation D of a subtyping judge-

ment J one 
an always get a derivation D

0

of the judgement obtained from J

by 
ontext repla
ement su
h that D and D

0

have the same depth.

Lemma 5.

1. If ` � = �

0

, � ` M

1

<

d

M

2

:Type 2 C

M

, and D is a derivation of � `

M

1

<

d

M

2

:Type, then

(a) �

0

`M

1

<

d

M

2

:Type 2 C

M

, and

(b) there is a derivation D

0

of �

0

`M

1

<

d

M

2

:Type su
h that depth(D) =

depth(D

0

).

2. If �; x : El(A); �

0

` M

1

<




1

M

2

:Type 2 C

M

, � ` A

0

<




2

A : Type 2 C

M

,

and D is a derivation of �; x : El(A); �

0

`M

1

<




1

M

2

:Type, then

(a) �; y : El(A

0

); [


2

(y)=x℄�

0

` [


2

(y)=x℄M

1

<




3

[


2

(y)=x℄M

2

:Type 2 C

M

for some 


3

su
h that �; y : El(A

0

); [


2

(y)=x℄�

0

` 


3

= [


2

(y)=x℄


1

:

([


2

(y)=x℄M

1

)[


2

(y)=x℄M

2

, and

11



(b) there is a derivation D

0

of �; y : El(A

0

); [


2

(y)=x℄�

0

` [


2

(y)=x℄M

1

<




3

[


2

(y)=x℄M

2

:Type su
h that depth(D) = depth(D

0

).

Proof. By indu
tion on derivations. The key point is that, in the proofs brie
y

des
ribed below, the size of a derivation may 
hange, but the depth of a deriva-

tion, whi
h only 
ounts the subtyping judgements, does not.

1. For (1), in the base 
ase, we use Lemma 1(3), and in the step 
ases, the

theorem of 
ontext repla
ement by equal kinds in T and 
onservativity of

T[R℄

0

over T.

2. For (2), in the base 
ase, we use the fa
t that, if �; x : El(A); �

0

` M

1

<




1

M

2

:Type 2 C, then �; y : El(A

0

); [


2

(y)=x℄�

0

` [


2

(y)=x℄M

1

<




3

[


2

(y)=x℄M

2

:

Type 2 C for some 


3

su
h that �; y : El(A

0

); [


2

(y)=x℄�

0

` 


3

= [


2

(y)=x℄


1

:

([


2

(y)=x℄M

1

)[


2

(y)=x℄M

2

. In the step 
ases, use of indu
tion hypothesis suf-

�
es. ut

Now, we 
an prove the admissibility of transitivity.

Theorem 3 (Transitivity). If � ` M

1

<

d

1

M

2

2 C

M

, � ` M

0

2

<

d

2

M

3

2

C

M

and � ` M

2

= M

0

2

, then � ` M

1

<

d

3

M

3

2 C

M

for some d

3

su
h that

� ` d

3

= d

2

Æ d

1

: (M

1

)M

3

.

Proof. By indu
tion on depth(D) + depth(D

0

), where D and D

0

are derivations

of � ` M

1

<

d

1

M

2

and � ` M

0

2

<

d

2

M

3

, respe
tively. In the base 
ase, we

have that the judgements � ` M

1

<

d

1

M

2

and � ` M

0

2

<

d

2

M

3

are both

in C. By Lemma 1(1), we have � ` M

1

<

d

3

M

3

2 C for some d

3

su
h that

� ` d

3

= d

2

Æ d

1

: (M

1

)M

3

.

In the step 
ase, if � ` M

1

<

d

1

M

2

and � ` M

0

2

<

d

2

M

3

are both in C,

then a similar argument as the base 
ase suÆ
es. Otherwise, we have that either

� `M

1

<

d

1

M

2

or � `M

0

2

<

d

2

M

3

is not in C. Therefore, by Lemma 2 and the

assumption that � `M

2

=M

0

2

, all of M

1

, M

2

, M

0

2

and M

3

are 
omputationally

equal to �-types or �-types. We only 
onsider the 
ase that they are equal

to �-types. Suppose that the derivation D and D

0

be of the following forms

(we only 
onsider the only more diÆ
ult example among the 
ombinations of

�-subtyping rules):

:

D

1

:

� ` A

2

<




1

A

1

:

D

2

:

�; x : A

2

` B

1

(


1

(x)) <

e

1

[x℄

B

2

(x)

� ` �(A

1

; B

1

) <

d

0

1

�(A

2

; B

2

)

:

:::(Congruen
e rules):::

:

� `M

1

<

d

1

M

2

12



where � ` �(A

1

; B

1

) = M

1

, � ` �(A

2

; B

2

) = M

2

, � ` d

0

1

= d

1

: (M

1

)M

2

and

d

0

1

= [f : �(A

1

; B

1

)℄�(A

2

; B

2

; [x : A

2

℄e

1

[x℄(app(A

1

; B

1

; f; 


1

(x)))), and

:

D

0

1

:

� ` A

3

<




2

A

0

2

:

D

0

2

:

�; x : A

3

` B

0

2

(


2

(x)) <

e

2

[x℄

B

3

(x)

� ` �(A

0

2

; B

0

2

) <

d

0

2

�(A

3

; B

3

)

:

:::(Congruen
e rules):::

:

� `M

0

2

<

d

2

M

3

where � ` �(A

0

2

; B

0

2

) = M

0

2

, � ` �(A

3

; B

3

) = M

3

, � ` d

0

2

= d

2

: (M

0

2

)M

3

and

d

0

2

= [f : �(A

0

2

; B

0

2

)℄�(A

3

; B

3

; [x : A

3

℄e

2

[x℄(app(A

0

2

; B

0

2

; f; 


2

(x)))). We obviously

have depth(D

1

) < depth(D), depth(D

2

) < depth(D), depth(D

0

1

) < depth(D

0

),

and depth(D

0

2

) < depth(D

0

).

Now, sin
e � ` M

2

= M

0

2

, we have by Chur
h-Rosser theorem of T and


onservativity of T[R℄

0

over T, � ` A

2

= A

0

2

and � ` B

2

= B

0

2

: (A

2

)Type. From

the former, � ` A

3

<




2

A

2

by the 
ongruen
e rule. By Lemma 5(2), �; x : A

3

`

B

1

(


1

(


2

(x))) <

e

3

[x℄

B

2

(


2

(x)) for some e

3

su
h that �; x : A

3

` e

3

[x℄ = e

1

[


2

(x)℄

and there is a derivation D

3

of the judgement �; x : A

3

` B

1

(


1

(


2

(x))) <

e

3

[x℄

B

2

(


2

(x)) and depth(D

3

) = depth(D

2

) < depth(D).

Now, we have

depth(D

1

) + depth(D

0

1

) < depth(D) + depth(D

0

)

depth(D

3

) + depth(D

0

2

) < depth(D) + depth(D

0

)

By indu
tion hypothesis, there is 


3

su
h that � ` A

3

<




3

A

1

2 C

M

and

� ` 


3

= 


1

Æ 


2

: (A

3

)A

1

. And be
ause �; x : A

3

` B

2

(


2

(x)) = B

0

2

(


2

(x)) (as we

have � ` B

2

= B

0

2

: (A

2

)Type), by indu
tion hypothesis, there is e

4

su
h that

�; x : A

3

` B

1

(


1

(


2

(x))) <

e

4

[x℄

B

3

(x) 2 C

M

�; x : A

3

` e

4

[x℄ = e

2

[x℄ Æ e

3

[x℄: (B

1

(


1

(


2

(x))))B

3

(x):

Hen
e �; x : A

3

` e

4

[x℄ = e

2

[x℄ Æ e

1

[


2

(x)℄: (B

1

(


1

(


2

(x))))B

3

(x). So by the

Domain-Codomain rule (the third rule in Figure 1), � ` �(A

1

; B

1

) <

d

3

�(A

3

; B

3

)

2 C

M

, where

d

3

=

df

[f : �(A

1

; B

1

)℄�(A

3

; B

3

; [x : A

2

℄e

4

[x℄(app(A

1

; B

1

; f; 


3

(x))))

and we have d

3

= d

2

Æ d

1

. Finally, by the 
ongruen
e rule, we have � `M

1

<

d

3

M

3

2 C

M

. ut

Corollary 1. C

M

is a WDC.

Proof. By Lemma 4 and Theorems 1, 2, and 3. ut

13



6 Dis
ussions

In this se
tion, we brie
y dis
uss several issues of interest su
h as those 
on
ern-

ing de
idability and transitivity, and related work.

6.1 De
idability

On
e we have proven 
oheren
e and admissibility of substitution and transitivity

(as we have done for � and �-subtyping rules), we 
an be sure that 
oer
ion

sear
hing is de
idable for C

M

if it is de
idable for C; in other words, it is de
idable

whether � ` A <




B:Type is derivable. One 
an give a sound and 
omplete

algorithm to do this. We omit the details here. This is of 
ourse important in

implementations.

6.2 Weak transitivity

The transitivity rule (Trans) states that 


0

Æ 
 is a 
oer
ion from A to C if 


and 


0

are 
oer
ions from A to B and from B to C, respe
tively. In fa
t, this

transitivity rule is very strong. For instan
e, if we introdu
e subtyping rule for

lists:

� ` A <




B : Type

� ` List(A) <

d

List(B) : Type

where d is de�ned indu
tively su
h that d(nil(A)) = nil(B) and d(
ons(A; a; l)) =


ons(B; 
(a); d(l)), then the rule (Trans) fails to be admissible.

A weaker version is

(WTrans)

� ` A < B � ` B < C

� ` A < C

where the judgement � ` A < B means that `� ` A <




B for some 
'. In

fa
t, this weaker version of transitivity seems to be better suited to the wider

appli
ations. Furthermore, if the type theory T has a propositional equality =

A

(e.g., Leibniz's equality or Martin-L�of's equality type), we 
an prove that

� If � ` A <




B, � ` B <

d

C, and � ` A <

e

C, then e is extensionally equal

to d Æ 
 in the sense that the proposition 8x : A:e(x) =

C

d(
(x)) is provable

in the type theory.

The admissibility of weak transitivity and the above extensional justi�
ation will

be dis
ussed in a forth
oming paper [LLS01℄. And the admissibility of (Trans)

rule and (WTrans) rule in extensional type theory needs futhur study.

6.3 Related work

Besides those mentioned above, the related work in
ludes previous meta-theoreti


studies about 
oer
ive subtyping. One of the future tasks to be done is to 
on-

sider how the 
onservativity result and related work at the kind level [SL01℄ 
an

14



be related to the 
urrent development and hen
e to obtain an overall better un-

derstanding of the framework. We should mention again Chen's work [Che98℄, in

parti
ular his development of the depth measure, whi
h seems to be very useful

in proving admissibility of transitivity.

A
knowledgementsWe would like to thank Jianming Pang and Sergei Soloviev

for their helpful 
omments and 
orre
tions on an earlier draft of this paper,

and the members of the Computer-Assisted Reasoning Group at Durham for

dis
ussions of the issues 
on
erned. Thanks also go to the LPAR'01 referees who

made helpful 
omments on the paper.

Referen
es

[B

+

00℄ B. Barras et al. The Coq Proof Assistant Referen
e Manual (Version 6.3.1).

INRIA-Ro
quen
ourt, 2000.

[Bai99℄ A. Bailey. The Ma
hine-
he
ked Literate Formalisation of Algebra in Type

Theory. PhD thesis, University of Man
hester, 1999.

[Che98℄ G. Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD

thesis, University of Paris VII, 1998.

[CL01℄ P. Callaghan and Z. Luo. An implementation of LF with 
oer
ive subtyping

and universes. Journal of Automated Reasoning, 27(1):3{27, 2001.

[CLP01℄ P. C. Callaghan, Z. Luo, and J. Pang. Obje
t languages in a type-theoreti


meta-framework. Workshop of Proof Transformation and Presentation and

Proof Complexities (PTP'01), 2001.

[JLS98℄ A. Jones, Z. Luo, and S. Soloviev. Some proof-theoreti
 and algorithmi
 as-

pe
ts of 
oer
ive subtyping. Types for proofs and programs (eds, E. Gimenez

and C. Paulin-Mohring), Pro
. of the Inter. Conf. TYPES'96, LNCS 1512,

1998.

[LC98℄ Z. Luo and P. Callaghan. Coer
ive subtyping and lexi
al semanti
s (extended

abstra
t). LACL'98, 1998.

[LLS01℄ Y. Luo, Z. Luo, and S. Soloviev. Weak transitivity in 
oer
ive subtyping. In

preparation, 2001.

[LP92℄ Z. Luo and R. Polla
k. LEGO Proof Development System: User's Manual.

LFCS Report ECS-LFCS-92-211, Department of Computer S
ien
e, Univer-

sity of Edinburgh, 1992.

[LS99℄ Z. Luo and S. Soloviev. Dependent 
oer
ions. The 8th Inter. Conf. on Category

Theory and Computer S
ien
e (CTCS'99), Edinburgh, S
otland. Ele
troni


Notes in Theoreti
al Computer S
ien
e, 29, 1999.

[Luo94℄ Z. Luo. Computation and Reasoning: A Type Theory for Computer S
ien
e.

Oxford University Press, 1994.

[Luo97℄ Z. Luo. Coer
ive subtyping in type theory. Pro
. of CSL'96, the 1996 Annual

Conferen
e of the European Asso
iation for Computer S
ien
e Logi
, Utre
ht.

LNCS 1258, 1997.

[Luo99℄ Z. Luo. Coer
ive subtyping. Journal of Logi
 and Computation, 9(1):105{130,

1999.

[NPS90℄ B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's

Type Theory: An Introdu
tion. Oxford University Press, 1990.

[Sai97℄ A. Saibi. Typing algorithm in type theory with inheritan
e. Pro
 of POPL'97,

1997.

15



[SL01℄ S. Soloviev and Z. Luo. Coer
ion 
ompletion and 
onservativity in 
oer
ive

subtyping. To be published in Annals of Pure and Applied Logi
, 2001.

Appendix A

The following gives the rules of the logi
al framework LF.

Contexts and assumptions

hi valid

� ` K kind x 62 FV (� )

�; x : K valid

�; x : K; �

0

valid

�; x : K;�

0

` x:K

Equality rules

� ` K kind

� ` K = K

� ` K = K

0

� ` K

0

= K

� ` K = K

0

� ` K

0

= K

00

� ` K = K

00

� ` k:K

� ` k = k:K

� ` k = k

0

:K

� ` k

0

= k:K

� ` k = k

0

:K � ` k

0

= k

00

:K

� ` k = k

00

:K

� ` k:K � ` K = K

0

� ` k:K

0

� ` k = k

0

:K � ` K = K

0

� ` k = k

0

:K

0

Substitution rules

�; x : K;�

0

valid � ` k:K

�; [k=x℄�

0

valid

�; x : K; �

0

` K

0

kind � ` k:K

�; [k=x℄�

0

` [k=x℄K

0

kind

�; x : K;�

0

` K

0

kind � ` k = k

0

:K

�; [k=x℄�

0

` [k=x℄K

0

= [k

0

=x℄K

0

�; x : K;�

0

` k

0

:K

0

� ` k:K

�; [k=x℄�

0

` [k=x℄k

0

: [k=x℄K

0

�; x : K;�

0

` k

0

:K

0

� ` k

1

= k

2

:K

�; [k

1

=x℄�

0

` [k

1

=x℄k

0

= [k

2

=x℄k

0

: [k

1

=x℄K

0

�; x : K;�

0

` K

0

= K

00

� ` k:K

�; [k=x℄�

0

` [k=x℄K

0

= [k=x℄K

00

�; x : K;�

0

` k

0

= k

00

:K

0

� ` k:K

�; [k=x℄�

0

` [k=x℄k

0

= [k=x℄k

00

: [k=x℄K

0

The kind Type

� valid

� ` Type kind

� ` A:Type

� ` El(A) kind

� ` A = B:Type

� ` El(A) = El(B)

Dependent produ
t kinds

� ` K kind �; x : K ` K

0

kind

� ` (x : K)K

0

kind

� ` K

1

= K

2

�; x : K

1

` K

0

1

= K

0

2

� ` (x : K

1

)K

0

1

= (x : K

2

)K

0

2

�; x : K ` k:K

0

� ` [x : K℄k: (x : K)K

0

� ` K

1

= K

2

�; x : K

1

` k

1

= k

2

:K

� ` [x : K

1

℄k

1

= [x : K

2

℄k

2

: (x : K

1

)K

� ` f : (x : K)K

0

� ` k:K

� ` f(k): [k=x℄K

0

� ` f = f

0

: (x : K)K

0

� ` k

1

= k

2

:K

� ` f(k

1

) = f

0

(k

2

): [k

1

=x℄K

0

�; x : K ` k

0

:K

0

� ` k:K

� ` ([x : K℄k

0

)(k) = [k=x℄k

0

: [k=x℄K

0

� ` f : (x : K)K

0

x 62 FV (f)

� ` [x : K℄f(x) = f : (x : K)K

0

16



Appendix B

The following are the inferen
e rules for the 
oer
ive subkinding extension T[R℄

(not in
luding the rules for subtyping).

New rules for appli
ation

� ` f : (x : K)K

0

� ` k

0

:K

0

� ` K

0

<




K

� ` f(k

0

): [
(k

0

)=x℄K

0

� ` f = f

0

: (x : K)K

0

� ` k

0

= k

0

0

:K

0

� ` K

0

<




K

� ` f(k

0

) = f

0

(k

0

0

): [
(k

0

)=x℄K

0

Coer
ive de�nition rule

� ` f : (x : K)K

0

� ` k

0

:K

0

� ` K

0

<




K

� ` f(k

0

) = f(
(k

0

)): [
(k

0

)=x℄K

0

Basi
 subkinding rule

� ` A <




B:Type

� ` El(A) <




El(B)

Subkinding for dependent produ
t kinds

� ` K

0

1

= K

1

�; x : K

0

1

` K

2

<




K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x:K

0

1

℄
(f(x))

(x : K

0

1

)K

0

2

� ` K

0

1

<




K

1

�; x : K

0

1

` [
(x)=x℄K

2

= K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x:K

0

1

℄f(
(x))

(x : K

0

1

)K

0

2

� ` K

0

1

<




1

K

1

�; x : K

0

1

` [


1

(x)=x℄K

2

<




2

K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x:K

0

1

℄


2

(f(


1

(x)))

(x : K

0

1

)K

0

2

Congruen
e rule for subkinding

� ` K

1

<




K

2

� ` K

1

= K

0

1

� ` K

2

= K

0

2

� ` 
 = 


0

: (K

1

)K

2

� ` K

0

1

<




0

K

0

2

Transitivity and substitution rules for subkinding

� ` K <




K

0

� ` K

0

<




0

K

00

� ` K <




0

Æ


K

00

�; x : K; �

0

` K

1

<




K

2

� ` k:K

�; [k=x℄�

0

` [k=x℄K

1

<

[k=x℄


[k=x℄K

2

17


