Coherence and transitivity in coercive subtyping

Yong Luo and Zhaohui Luo*

Department of Computer Science,
University of Durham,
South Road, Durham, DH1 3LE , U.K.
E-mail: {Yong.Luo, Zhaohui.Luo}@durham.ac.uk

Abstract Coercive subtyping is a general approach to subtyping, inher-
itance and abbreviation in dependent type theories. A vital requirement
for coercive subtyping is that of coherence — computational uniqueness
of coercions between any two types. In this paper, we develop techniques
useful in proving coherence and its related result on admissibility of tran-
sitivity and substitution. In particular, we consider suitable subtyping
rules for IT-types and Y-types and prove its coherence and the admis-
sibility of substitution and transitivity rules at the type level in the
coercive subtyping framework.

1 Introduction

Coercive subtyping, as studied in [Luo97,Luo99,SL01], represents a novel general
approach to subtyping and inheritance in type theory. In particular, it provides a
framework in which subtyping, inheritance, and abbreviation can be understood
in dependent type theories where types are understood as consisting of canonical
objects.

In this paper, we consider the issue of coherence in the framework of coercive
subtyping; in particular, we develop techniques useful for proving coherence in
coercive subtyping. The coherence conditions are the most basic requirement
for the subtyping rules. In essence, it says that any two coercions between two
types must be the same, which ensures the uniqueness of coercions (if any).
Among other things, coherence is the basis for the whole coercive subtyping
framework to be consistent and for it to be implemented in a correct way. A
related important issue is that of admissibility of transitivity and substitution,
which apart from its relationship with coherence, is essential for implementation
of the theory.

We shall develop methods to prove coherence and the admissibility results. In
particular, we consider suitable subtyping rules for IT and Y-types as examples
to demonstrate these proof techniques. Although some important meta-theoretic
results such as the conservativity result have been obtained for coercive subtyp-
ing, the current paper is the first attempt to prove coherence and admissibility

* The first author thanks the support of the ORS Award and the Durham University
studentship. This work by the second author is partly supported by the UK EPSRC
grant GR/M75518 and the EU grant on the TYPES project.

results at the type level in the framework. The techniques developed here have
wider and further applications.

In Section 2, we give an overview of coercive subtyping, presenting the formal
framework and giving informal explanations of the coherence problem. In Sec-
tion 3, a general strategy for proving coherence and the admissibility results is
considered, and a formal definition of the so-called well-defined coercions is given
as the basis for the proof techniques to be considered in the following sections.
In Sections 4 and 5, we prove coherence and the admissibility of substitution and
transitivity rules, respectively. Discussions are given in the concluding section
(Section 6), where we discuss issues such as decidability and weak transitivity,
the latter of which is important for the coercive subtyping framework and its
applications.

2 Coercive subtyping and the coherence problem

In this section, we give a brief introduction to coercive subtyping, explain the
notion of coherence and its importance, and lay down the necessary formal details
to be used in the following sections.

2.1 Coercive subtyping

The basic idea of coercive subtyping, as studied in e.g., [Luo99], is that A is
a subtype of B if there is a (unique) coercion ¢ from A to B, and therefore,
any object of type A may be regarded as object of type B via ¢, where ¢ is a
functional operation from A to B in the type theory.

A coercion plays the role of abbreviation. More precisely, if ¢ is a coercion
from Ky to K, then a functional operation f with domain K can be applied to
any object ko of Ko and the application f(kg) is definitionally equal to f(c(ko)).
Intuitively, we can view f as a context which requires an object of K; then
the argument kg in the context f stands for its image of the coercion, c(kg).
Therefore, one can use f(ko) as an abbreviation of f(c(ko))-

The above simple idea, when formulated in the logical framework, becomes
very powerful. The second author and his colleagues have developed the frame-
work of coercive subtyping that covers variety of subtyping relations including
those represented by parameterised coercions and coercions between parame-
terised inductive types. See [Lu0o99,Bai99,CL01,L.C98,CLP01] for details of some
of these development and applications of coercive subtyping.

Some important meta-theoretic aspects of coercive subtyping have been stud-
ied. In particular, the results on conservativity and on transitivity elimination
for subkinding have been proved in [JLS98,SL01]. The conservativity result says,
intuitively, that every judgement that is derivable in the theory with coercive
subtyping and that does not contain coercive applications is derivable in the
original type theory. Furthermore, for every derivation in the theory with coer-
cive subtyping, one can always insert coercions correctly to obtain a derivation

in the original type theory. The main result of [SLO1] is essentially that coher-
ence of basic subtyping rules does imply conservativity. These results not only
justify the adequacy of the theory from the proof-theoretic consideration, but
also provide the proof-theoretic basis for implementation of coercive subtyping.
(However, how to prove coherence and admissibility of transitivity at the type
level has not been studied; this is the subject of this paper.)

Coercion mechanisms with certain restrictions have been implemented both
in the proof development system Lego [LP92] and Coq [B*00], by Bailey [Bai99]
and Saibi [Sai97], respectively. Callaghan of the Computer Assisted Reasoning
Group at Durham has implemented Plastic [CLO1], a proof assistant that sup-
ports logical framework and coercive subtyping with a mixture of simple coer-
cions, parameterised coercions, coercion rules for parameterised inductive types,
and dependent coercions [LS99].

A formal presentation Here, before discussing further the problems of co-
herence and transitivity, we first give a formal presentation of the framework of
coercive cubtyping, which is also the basis for our development in latter sections.
We shall be brief in this paper (for details and more explanations, see [Luo99]).

Coercive subtyping is formally formulated as an extension of (type theories
specified in) the logical framework LF [Luo94], whose rules are given in Appendix
A. In LF, Type represents the conceptual universe of types and (z : K)K' rep-
resents the dependent product with functional operations f as objects (e.g.,
abstraction [z : K]k) which can be applied to objects of kind K to form appli-
cation f(k). LF can be used to specify type theories, such as Martin-Lof’s type
theory [NPS90] and UTT [Luo94].

For example, II-types, types of dependent functions, can be specified by in-
troducing the constants for (1) formation: IT(A, B) is a type for any type A and
any family of types B, (2) introduction: A(A, B, f) is a function of type IT(A, B)
if f is a functional operation of kind (z : A)B(z), and (3) elimination, from which
we can define the application operator app(A, B, F,a). Similarly, we can intro-
duce Y-types Y (A, B) with introduction operator to form pair(A, B,a,b) and
an elimination operator from which the projections 71 (A, B,p) and m2(A, B, p)
can be defined.

Notation We shall use the following notations:

e We shall often omit the El-operator in LF to write A for El(A) when no
confusion may occur and may write (K)K' for (z : K)K' when x does not
occur free in K.

e We sometimes use M[z] to indicate that variable may occur free in M and
subsequently write M[N] for [N/z]M, when no confusion may occur.

e Functional composition: for f: (K;)K> and g: (y : K2)K3[y], define gof =4¢ [z :
Kilg(f(x)): (x : K1)Ks3[f(z)], where x does not occur free in f or g.

e Context equality: for I' =z : Ky, ...,xp : Ky and I =21 : K, ..., 2y : K],

we shall write F I' = I'"" for the sequence of judgements - K; = KJ, ...,

I - Kl, ey Ip—1 - Kn—l F Kn = K;L

A system with coercive subtyping, T[R], is an extension of any type theory
T specified in LF by a set of basic subtyping rules R. It can be presented in two
stages: first we formulate the intermediate system T[R]o with subtyping judge-
ments of the form I' F A <. B:Type, and then add the subkinding judgements
of the form I' F K <. K' and rules concerning coercions between kinds.

T[R]o is an extension of T (only) with the subtyping judgement form I" F
A <. B:Type and the following rules:

e A set R of basic subtyping rules whose conclusions are subtyping judgements
of the form I' - A <. B: T'ype.
e The following congruence rule for subtyping judgements

I'A<.B:Type
I'rA=A"Type '-B=B"Type I'-c=c:(A)B

(Cong) TFA <, B:Type

In the presentation of coercive subtyping in [Luo99], T[R]o also has the fol-
lowing substitution and transitivity rules:

Iz:K,I"'FA<.B:Type T'+k:K
I[k/x)" F [k/x]A <[k/a]e [k/x])B: Type

(Subst)

I'A<.B:Type I' - B <. C:Type

(Trans) I'F A<y C:Type

Since we consider in this paper how to prove that the substitution and transi-
tivity rules are admissible, we do not include them as basic rules.

Remark 1. We have the following remarks.

e T[R]o is obviously a conservative extension of the original type theory T,
since the subtyping judgements do not contribute to any derivation of a
judgement of any other form.

e The set of basic coercion rules is supposed to be coherent; we shall give
definition and discussions of this in the next subsection.

The system T[R], the extension of T with coercive subtyping with respect to
R, is the system obtained from T[R], by adding the new subkinding judgement
form I' F K <, K' and the rules in Appendix B. Note that the substitution
rule and the transitivity rule for kinds (the last two rules in Appendix B) can
be eliminated under the assumption that the set of basic subtyping rules R is
coherent [SLO1].

Notation Since we are not much concerned with the subkinding judgements
and are mainly concerned with the subtyping judgements, we shall simply write
I'H A<, BforI' H A <. B:Type, when there is no confusion may occur.
Sometimes, we shall also write ' A = B for I' - A = B: Type.

2.2 Coherence of the basic subtyping rules

The basic subtyping rules are the basis for the coercive subtyping system. Ex-
amples of such rules include

e simple coercion declarations such as those between basic inductive types:
Even is a subtype of Nat;

e parameterised coercions representing (point-wise) subtyping (or subfamily
relation) between two families of types indexed by objects of the same type;
for example, each vector type Vec(A,n) can be taken as a subtype of that of
lists List(A), parameterised by the index n, where the coercion would map
the vector < ay, ..., a, > to the list [aq, ..., an].

e coercions between parameterised inductive type: e.g., X'(A, B) is a subtype
of Y(A',B') if A is a subtype of A’ and B is a subfamily of B’.

The most basic requirement for such basic subtyping rules is that of coher-
ence, given in the following definition, which essentially says that basic coercions
between any two types must be unique.

Definition 1 (coherence condition). We say that the basic subtyping rules
are coherent if T[R]o has the following coherence properties:

1. If 't A <. B:Type, then I' - A:Type, I' - B: Type, and T'+ ¢: (A)B.
2. 'Y A<, A:Type for any ', A and c.
3. If 't A<.B:Type and I' = A <. B:Type, then I' ¢ =¢":(A)B.

Remark 2. This is a weaker notion of coherence as compared with that given in
[Luo99], since there the rules (Subst)(Trans) are included in T[R]o. In general,
when parameterised coercions and substitutions are present, coherence is unde-
cidable. This is one of the reasons one needs to consider proofs of coherence in
general.

Examples of basic coercion rules include those mentioned above, among which
one can find the lifting operators between type universes, overloading coercions,
etc. Also, for example, for parameterised IT-types and Y-types, we can have
their subtyping rules as given in Figure 1 and Figure 2. Note that these rules
are suitable ones for which we can show that transitivity is admissible. If one
chose inductively defined coercions, strong transitivity would not be admissible
(see Section 6.2 for discussions.)

3 Well-defined coercions

As mentioned above, unless the coercions can be represented as a finite graph,
coherence is in general undecidable, especially when we have parameterised co-
ercions. So we need to consider how to prove coherence and the related admis-
sibility results.

A general strategy we adopt is to consider such proofs in a stepwise way.
That is, if we know that some existing coercions (possibly generated by some

Domain rule

'tA <. ATt B:(A)Type
T F II(A, B) <4, II(A", Boc)

where di = [f : IT(A, B)]A(A’, Boc,app(A, B, f) o c).
Codomain rule

I'tB:(A)Type I't B' : (A)Type Iz : A+ B(z) <.[,] B'(z)
T+ II(A, B) <4, II(A, B")

where d = [f : TI(A, BYA(4, B', 1 : Ale[x](app(4, B, f, 7).
Domain-Codomain rule

I''tA <. AT +B:(A)Type '+ B : (A)Type
Iz : A"+ B(c(z)) <z B'(z)
TFII(A, B) <q, (A, B')

where ds = [f : IT(A, B)]\(A', B, [z : A'le[z](app(4, B, f,c(x)))).

Figurel. Basic subtyping rules for I7-types.

First Component rule

'A< A I'B: (A)Type
TF 54 Boc) <a, 5(A, B)

where di = [z : ¥(4, Boc)pair(A’, B,c(mi(A,Boc,z)),m(A,Boc,t)).
Second Component rule

I'tB:(A)Type I't B' : (A)Type Iz : A+ B(z) <.[,] B'(z)
TF2(A,B) <4, 2(A,B")

where d> = [z : X (A, B)]pair(A, B', 71 (A, B, x),e[mi (A, B, z)](m= (A4, B, x))).
First-Second Component rule

'A< A T+FB:(A)Type - B : (A)Type
Iz:Av B(z) <c.) B'(c(z))
T'F (4, B) <4, Z(A', B)

where ds = [z : (A, B)]pair(4', B',c(mi (A, B, x)),e[m (4, B,z)|(72(A, B, z))).

Figure2. Basic subtyping rules for Y-types.

existing rules) are coherent and have good admissibility properties, and we add
some more subtyping rules, can we show that the newly extended system is still
coherent and has good admissibility properties? This has led us to define the
following concept of well-defined coercions. We shall then use subtyping rules
for IT and X-types to demonstrate how coherence etc can be proved.

Definition 2 (Well-defined coercions). IfC is a set of subtyping judgements
of the form I' = M <4 M': Type which satisfies the following conditions, we say
that C is a well-defined set of judgements for coercions, or briefly called well-
defined coercions (WDC):

1. (Coherence)
(a) 'FA<.Be€C impliesI'A:Type, '+ B :Type and I' - c: (A)B.
(b)) TFA<. A¢C forany ' , A, and c.
(¢c) TFA<, BeCandI'+ A<, BeCimply'tci =ca:(A)B.

2. (Congruence) ' - A<, BeC, I'FA=A, Tt B=B and 'k c=
c:(A)B imply ' A' <. B' € C.

3. (Transitivity) ' F A<, BECand ' B<,, A" € Cimply '+ A <., A’
€ C for some c3 such that '+ c3 =coo0cy: (A)A".

4. (Substitution) Iz : K,I'" - A <. B € C implies for any k such that I' + k :
K, I'[k/z]" & [k/2x]A <o [k/z]B € C for some ¢ such that I',[k/z]["
c = [k/z]e: ([k/x])A)[k/x)B.

5. (Weakening) ' - A<. B € C, ' CI" and I'" is valid imply "+ A <. B
eC.

Remark 3. A WDC can be thought of as a set of coercions generated from some
basic coercions, some basic subtyping rules, and the rules (Cong)(Subst)(Trans)
and that of weakening.

We have the following properties of WDCs.

Lemma 1.

1. IfT+A<., BeC,I'+B <, A €Cand'-B=DB'thenI' A< A
€ C for some c3 and I'Fc3 =caocy: (A)A.

2 Iflz: K, I"+FA<.,Be(C, K=K, thenT',x : K',I"+-A<.B €C(.

3. IfT'tA<.BeC,-I'=TI",thenI"FA<.B €C(.

4. If 'A<, BeC, I"'tA <o B elC,bkTI'=I"TFA=A4 and
I'B=B,thenT'Fc=c":(A)B.

In the following sections, we shall consider the system of coercive subtyping
whose basic subtyping rules (R) consist of the following rule, where C is a WDC:

I'A<.B:Type € C

©) I' A<.B:Type

and the IT and Y-subtyping rules in Figures 1 and 2. Furthermore, we assume
that for any judgement I' - A <. B € C, neither A nor B is computationally

equal to a IT-type or a X-type. We denote the derivable subtyping judgements
of this system by Cxs. We also assume that the original type theory T has good
properties, in particular the Church-Rosser property and the property of context
replacement by equal kinds. In the following two sections, we shall show that
Cam is also a WDC.

Remark 4. The above system is equivalent to T[R]o where R consists of (C)
and the IT/X subtyping rules.

4 Coherence

In this section, we give a proof of coherence of basic subtyping rules of IT-types
and XY-types.

Lemma 2. If I'+ M; <4 My € Cpq, then one of the following holds:

e ' M, <4 Ms GC,‘
e Both My and M> are computationally equal to II-types; or
e Both My and M> are computationally equal to X -types.

Proof. By induction on derivations. If I' - M; <4 M, ¢ C, its derivation must
end with a IT-subtyping rule, a X-subtyping rule, or the congruence rule. If it is
one of the IT or ¥-subtyping rules, then we know both M; and M, are IT-types
or XY-types. If the last rule is the congruence rule (Cong),

' M{ <qg My:Type ' My = M : Type '+ M> = My : Type I'td' = d: (M;)M,
'+ M, <d M>

then by induction hypothesis, the lemma holds for I' - M| <z M;. If both M|
and M} are computationally equal to IT-types or Y-types, so are M; and M.
I I'E M <4 MieC,then I' - My <q M € C because C is a WDC, which is
closed under congruence. O

Lemma 3.

1. IfTFII(A,B) <qIT(A",B') € Cag then T A=A or '+ A' <, A € Cm

for some c.

2. IfT'-Y(A,B)<a Y(A,BYeCpmthenT'FA=A"orT'+FA<. A € Cp
for some c.

3. If ' - II(A,B) <q H(A",B") € Cpy and I' - A = A’ then Iz : A +
B(z) e[z]B(m

J.IfT F S(AB) <g (A", B') € Cpy and I' + A
B(z) <efa) B (z) € Caq for some e.

5. If'+II(A,B) <qII(A",B") € Cpy and I' - A" <, A € Cpq then Iz : A" F
B(c(z)) = B'(z) or I'w : A" B(c(z)) <efa] B'(z) € Caq for some e.

6. IfFI—E(A B) <, YA,BYeCpmand 'A<, A €CpthenT,x: Ak
B(z) = B'(c(x)) or I''w : A+ B(z) <.[s] B'(c(x)) € Ca for some e.

)

) € Caq for some e.
) A then Iz : A+
)

Proof. By induction on derivations. We only consider the first statement; the
proofs of the others are similar. For the first, a derivation of the judgement
I'+1I(A,B) <4 II(A', B") must be of the form

one of three II — subtyping rules
I'tII(A,By) <@ II(As, Bs)

...(Congruence rules)...

T'F1I(A, B) <4 II(A', B

where I' - IT(Ay,By) = II(A, B): Type, I' b I1(As, Bs) = IT(A', B"): Type, and
I'-d = d:(C)C" for some C and C' computationally equal to IT(A, B) and
II(A’, B"), respectively. Hence, by the Church-Rosser theorem of the original
type theory T and conservativity of T[R]o over T, '+ Ay = A, I' - B; = B,
I'Ay = A and I'F By = B'.SoI'- A=A o I'+ A" <. A by the
congruence rule. a

Lemma 4. If '+ My <. My € Cuq, then 't/ My = M.

Theorem 1 (Coherence). If ' My <4 My € Cpq, I'" F M| <g4 M} € Cy,
Fr=I"T'tM =M{, and '+ My = M} then ' - d = d': (M) M>.

Proof. By induction on derivations. By Lemma 2, we only have to consider the
following cases.

o '+ M; <4 Ms € C. Then, none of M; and M, is computationally equal
to a II-type or X-type. Therefore, nor is M/ or Mj. So, by Lemma 2, I''
M| <@ M} € C. Now, by Lemma 1(2), we have I' - d = d": (M) M>.

e Both M; and M> are computationally equal to IT-types. Then any derivation
of I' v My <4 M> contains a subderivation whose last rule is one of the II-
subtyping rules followed by congruence rules. We only consider the case the
IT-subtyping rule concerned is the third rule in Figure 1; i.e., the derivation
is of the form

Ik A2 <e A1 F,ZL” : A2 + Bl(C(ZE)) <e[m] Bg(l')
'+ II(Ay,By) <q4, IT(A2, Bs)

...(Congruence rules)...

I'- M, <q Ms

where I' + H(Al,Bl) = Ml, I + H(A2,B2) = Mg, and I' + d1 =
d: (Ml)M2

Now, it must be the case that any derivation of I'" + M| <4z M} must
contain a subderivation whose last rule is also the same IT-subtyping rule as
above, followed by applications of the congruence rule; i.e., it must be of the
form

I Ay <o Ay T' x: Ay - Bi(c'(x)) <e[a] Ba(x)
I'"=1I(AY, By) <ay 1I(A, By)

...(Congruence rules)...

I"F M| <4 M}

where I" v II(A},By) = M{, I" - II(A,,B}) = M}, and " + d' =
dy: (M{)M,;. To see this is the case, by Lemma 3, we only have to show
that

1. I A, = A, and

2. I x: AL ¥/ Bi(d'(z)) = Bj(x).

For the first case, since I' v M; = M| and ' = M, = M), we have
't II(A,By) = II(A],By) and I' + II(As, Bs) = II(A}, Bl). Hence, by
Church-Rosser theorem in T and conservativity of T[R]o over T, I' - 4; =
A, TEB =B, 'FAy=A,and ' By =B, . AsT'+ Ay <. A1, we
have by Lemma 4, I' tf Ay = Ay. So I'" i/ A}, = Al.

For the second case, a similar argument suffices, except that we use the fact
that, by the argument of the first case and induction hypothesis, I" F ¢ =
c' (Az)Al .

Since the derivations must be of the above forms, by induction hypothesis,
we have I' b ¢ = : (A2)A; and I,z : Ay F e[z] = €'[z]: (Bi(c(x)))Ba(x).
Hence I' - d = d': (M;) M.

e Both M; and Ms are computationally equal to X-types. The proof of this

case is similar to the above case. O

5 Admissibility of Substitution and Transitivity

In the presentation of coercive subtyping in [Luo99], substitution and transi-
tivity are two of the basic rules in the theoretical framework. However, in an
implementation of coercive subtyping, these rules are ignored simply because
that they cannot be directly implemented. For this reason among others, prov-
ing admissibility of such rules (or their elimination) is always an important task
for any subtyping systems.

In this paper, we do not take substitution and transitivity as basic rules, but
we prove that they are both admissible when we extend a WDC by the IT and
Y-subtyping rules. In order to prove admissibility of transitivity, we also need
to prove the theorem about weakening.

10

Theorem 2 (Substitution and weakening).

1. (Substitution) If I'x : K, I" - My <q My € Cypq and I' = k ¢ K, then
L [k/z)I" & [k/z]My <g [k/x]Ms € Caq for some d' such that I',[k/x]"
d' = [k/z]|d: ([k/z]M1)[k]z]M>.

2. (Weakening) If ' = My <q My € Cnpq , I' C I and I is valid then I'" +
My <q Ms € Cpq.

Proof. By induction on derivations and using Lemma, 2. O

To prove the admissibility of transitivity, the usual measures (e.g., the size
of types concerned) do not seem to work (or even to be definable), since types
essentially involve computations. We use a measure developed by Chen in his
PhD thesis [Che98], which only considers subtyping judgements in a derivation,
defined as follows.

Definition 3 (depth). Let D be a derivation of a subtyping judgement of the
form I'- A <. B:Type. Then

1. If the last rule of D is

I'A<.B:TypeeC
I'H A<.B:Type

then depth(D) = 1.
2. If the last rule of D is

S1, «; Sny, D1, ..., Dy
I'H A<, B:Type

where S1, ..., S, are derivations of subtyping judgements of the form I'" F
A" <o B":Type and D, ..., Dy, are derivations of other forms of judge-
ments, then depth(D) = maz{depth(St), ..., depth(S,)} + 1.

The following lemma shows that, from a derivation D of a subtyping judge-
ment .J one can always get a derivation D' of the judgement obtained from .J
by context replacement such that D and D’ have the same depth.

Lemma 5.

1. If- T =I"T1F M, <q My:Type € Cprq, and D is a derivation of '
My <q Ms:Type, then
(a) I'"'F My <4 My:Type € Crq, and
(b) there is a derivation D' of I'" b My <4 Ms:Type such that depth(D) =
depth(D'").
2. If Iz : EI(A), "+ My <., Ms:Type € Cpq, '+ A’ <., A: Type € Cp,
and D is a derivation of I'yx : EI(A), I = My <., My:Type, then
(a) Ty : BUAY [() /21T F [e2(0)/21My <en [e2(y)/)Mo: Type € Cas
for some c3 such that 'y : EI(A"), [ca(y)/z]T" F c3 = [ea(y)/x]eq:
([e2(y) /@] M1)[e2(y) /x| Mo, and

11

(b) there is a derivation D' of I'iy : El(A"),[ca(y) /]I F [ea(y)/z] My <.,
[ca(y)/x])Ma: Type such that depth(D) = depth(D').

Proof. By induction on derivations. The key point is that, in the proofs briefly
described below, the size of a derivation may change, but the depth of a deriva-
tion, which only counts the subtyping judgements, does not.

1. For (1), in the base case, we use Lemma 1(3), and in the step cases, the
theorem of context replacement by equal kinds in T and conservativity of
T[R]o over T.

2. For (2), in the base case, we use the fact that, if I,z : El(A), " + My <.,
Ms:Type € C,then I'yy : ElI(A"),[ca(y)/x] " F [e2(y) /z] My <4 [e2(y)/x] Mo:
Type € C for some c3 such that Iy : ElI(A"), [c2(y) /2] " F ez = [c2(y) /x]e:
([e2(y) /2] M7)[ea(y)/x] M2. In the step cases, use of induction hypothesis suf-
fices. O

Now, we can prove the admissibility of transitivity.

Theorem 3 (Transitivity). If I' - M; <4y My € Cpq, I' B M3, <4, M3 €
Cm and IT' = My = M), then I' b My <4y M3 € Cpq for some ds such that
Ik d3 = dg Od12 (Ml)Mg

Proof. By induction on depth(D) + depth(D'), where D and D' are derivations
of I' My <4, My and I' = M} <4, Ms, respectively. In the base case, we
have that the judgements I' - M; <4, My and I' v M} <4, Ms are both
in C. By Lemma 1(1), we have I' v M; <4, M3 € C for some d3 such that
Ik d3 = dg o d12 (Ml)Mg

In the step case, if I' - My <q, My and I' = M} <4, M3 are both in C,
then a similar argument as the base case suffices. Otherwise, we have that either
't My <4, Myor I' F M} <4, M3 is not in C. Therefore, by Lemma 2 and the
assumption that I' - My = Mj, all of My, M, M} and M5 are computationally
equal to IT-types or XY-types. We only consider the case that they are equal
to IT-types. Suppose that the derivation D and D' be of the following forms
(we only consider the only more difficult example among the combinations of
IT-subtyping rules):

D1 D2

I'F A, <e Ay Iz: As - Bl(cl(a:)) <e1[z] BQ(:U)
I'F1I(Ay, Br) <q, II(As, B>)

...(Congruence rules)...

' M, <4 Ms

12

where I' F H(Al,Bl) = Ml, Ik H(AQ,BQ) = MQ, Ik dll = dll(Ml)MQ and
= [f : (A1, B1)IX(As, By, [= Aslea[z](app(Ar, Bu, f, ¢1(2)))), and
D} Dy

I'FAs <., Ay Tx: Az b By(ea(x)) <eorn) Bs(®)
' I1(Ay, By) <a, 11(As, Bs)

...(Congruence rules)...

T'F M} <4, Ms

where I' - IT(AY, B})) = M}, I' - I1(A3,Bs) = M3, I' b dy = do : (M})M3 and

=[f: (AL, BY)\(As, Bs, [z : Aslea[z](app(A4Yy, BY, f,c2(x)))). We obviously
have depth(D1) < depth(D), depth(Ds) < depth(D), depth(D}) < depth(D'),
and depth(D5) < depth(D').

Now, since I' v My = M}, we have by Church-Rosser theorem of T and
conservativity of T[R]p over T, I' - Ay = A} and I' b By = Bi: (A2)Type. From
the former, I' - A3 <., A> by the congruence rule. By Lemma 5(2), I,z : A3 -
Bi(ci(c2(w))) <eyla) Ba(ca(x)) for some ez such that I'z : Az F es[z] = eq[c2(z)]
and there is a derivation D3 of the judgement Iz : A3 F Bi(ci(c2(x))) <egfa
Bs(ea(z)) and depth(D3) = depth(Ds) < depth(D).

Now, we have

depth(Dy) + depth(D}) < depth(D) + depth(D")

depth(D3) + depth(D5}) < depth(D) + depth(D'")

By induction hypothesis, there is ¢z such that I' F A3 <., A1 € Cx¢ and
I't ez =cpo0ea:(A3)A;r. And because I'yz : A3 F Ba(ca(x)) = Bh(ca(z)) (as we
have I' - Bs = B}: (Ay)Type), by induction hypothesis, there is e4 such that

F,l‘ : A3 F 31(01(02(1'))) <e4[x] Bg(f) € CM

Iz : As b eqlz] = es[z] 0 e3]z]: (Bi(c1(e2(2))))Bs ().

Hence Iz : Az b eqfz] = es[z] o eq]ca(x)]: (Bl(cl(2(2))))Bs(z). So by the
Domain-Codomain rule (the third rule in Figure 1), I' - IT (A1, By) <4, I1(As, B3)
€ Ca, where

d3 =af [f : II(Ay1, B1)|A(A3, B, [x : Asles[z](app(Ay, By, f, c3(2))))

and we have d3 = ds o d;. Finally, by the congruence rule, we have I' - M; <4,
Ms € Cp. a

Corollary 1. Cxq is a WDC.

Proof. By Lemma 4 and Theorems 1, 2, and 3. O

13

6 Discussions

In this section, we briefly discuss several issues of interest such as those concern-
ing decidability and transitivity, and related work.

6.1 Decidability

Once we have proven coherence and admissibility of substitution and transitivity
(as we have done for IT and Y-subtyping rules), we can be sure that coercion
searching is decidable for Ca, if it is decidable for C; in other words, it is decidable
whether I" - A <. B:Type is derivable. One can give a sound and complete
algorithm to do this. We omit the details here. This is of course important in
implementations.

6.2 Weak transitivity

The transitivity rule (T'rans) states that ¢’ o ¢ is a coercion from A to C if ¢
and ¢’ are coercions from A to B and from B to C, respectively. In fact, this
transitivity rule is very strong. For instance, if we introduce subtyping rule for

lists:
I'A<.B:Type

I't List(A) <4 List(B) : Type
where d is defined inductively such that d(nil(A)) = nil(B) and d(cons(4, a,l)) =

cons(B, c¢(a),d(l)), then the rule (Trans) fails to be admissible.
A weaker version is

I''rA<B I'FB<C
I'FA<C

(WTrans)

where the judgement I' F A < B means that ‘I" H A <. B for some ¢’. In
fact, this weaker version of transitivity seems to be better suited to the wider
applications. Furthermore, if the type theory T has a propositional equality =4
(e.g., Leibniz’s equality or Martin-Lof’s equality type), we can prove that

e If'+A<.B, I'+B<,C,and I' F A <, C, then e is extensionally equal
to d o ¢ in the sense that the proposition Vz : A.e(z) =¢ d(c(z)) is provable
in the type theory.

The admissibility of weak transitivity and the above extensional justification will
be discussed in a forthcoming paper [LLS01]. And the admissibility of (Trans)
rule and (WTrans) rule in extensional type theory needs futhur study.

6.3 Related work

Besides those mentioned above, the related work includes previous meta-theoretic
studies about coercive subtyping. One of the future tasks to be done is to con-
sider how the conservativity result and related work at the kind level [SLO1] can

14

be related to the current development and hence to obtain an overall better un-
derstanding of the framework. We should mention again Chen’s work [Che98], in
particular his development of the depth measure, which seems to be very useful
in proving admissibility of transitivity.

Acknowledgements We would like to thank Jianming Pang and Sergei Soloviev
for their helpful comments and corrections on an earlier draft of this paper,
and the members of the Computer-Assisted Reasoning Group at Durham for
discussions of the issues concerned. Thanks also go to the LPAR’01 referees who
made helpful comments on the paper.

References

[B*00] B. Barras et al. The Coq Proof Assistant Reference Manual (Version 6.3.1).
INRIA-Rocquencourt, 2000.

[Bai99] A. Bailey. The Machine-checked Literate Formalisation of Algebra in Type
Theory. PhD thesis, University of Manchester, 1999.

[Che98] G. Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD
thesis, University of Paris VII, 1998.

[CLO1] P. Callaghan and Z. Luo. An implementation of LF with coercive subtyping
and universes. Journal of Automated Reasoning, 27(1):3-27, 2001.

[CLP0O1] P. C. Callaghan, Z. Luo, and J. Pang. Object languages in a type-theoretic
meta-framework. Workshop of Proof Transformation and Presentation and
Proof Complezities (PTP’01), 2001.

[JLS98] A. Jones, Z. Luo, and S. Soloviev. Some proof-theoretic and algorithmic as-
pects of coercive subtyping. Types for proofs and programs (eds, E. Gimenez
and C. Paulin-Mohring), Proc. of the Inter. Conf. TYPES’96, LNCS 1512,
1998.

[LC98] Z. Luo and P. Callaghan. Coercive subtyping and lexical semantics (extended
abstract). LACL’98, 1998.

[LLS01] Y. Luo, Z. Luo, and S. Soloviev. Weak transitivity in coercive subtyping. In
preparation, 2001.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User’s Manual.
LFCS Report ECS-LF(CS-92-211, Department of Computer Science, Univer-
sity of Edinburgh, 1992.

[LS99] Z.Luo and S. Soloviev. Dependent coercions. The 8th Inter. Conf. on Category
Theory and Computer Science (CTCS’99), Edinburgh, Scotland. Electronic
Notes in Theoretical Computer Science, 29, 1999.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, 1994.

[Luo97] Z. Luo. Coercive subtyping in type theory. Proc. of CSL’96, the 1996 Annual
Conference of the European Association for Computer Science Logic, Utrecht.
LNCS 1258, 1997.

[Luo99] Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105-130,
1999.

[NPS90] B. Nordstrém, K. Petersson, and J. Smith. Programming in Martin-Ldf’s
Type Theory: An Introduction. Oxford University Press, 1990.

[Sai97] A. Saibi. Typing algorithm in type theory with inheritance. Proc of POPL’97,
1997.

15

[SLO1] S. Soloviev and Z. Luo. Coercion completion and conservativity in coercive
subtyping. To be published in Annals of Pure and Applied Logic, 2001.

Appendix A

The following gives the rules of the logical framework LF.

Contexts and assumptions

I'-Kkind ¢ FV(I') T,x:K,I'" valid
() valid Iz : K valid Iz:K,I"+z: K

Equality rules
I'-Kkind TFK=K TI'+FK=K TI'K =K"

I''rK=K TI'+FK =K r-K=K"
I'-k K 'rk=K:K T+k=K:K 'k =K"K
I''rk=kK TFK=kK I'rk=k"K
I'-kK THFK=K TFk=k:K T-HK=K'
'k K’ I'-k=k:K'

Substitution rules

a:K T valid Tk K
I, [k/z]I"" valid

INz:K,I'+-K kind T-kK TIz:KITI'FK kind T-Fk=k:K
I [k/z]" & [k/z]K' kind I [k/z][" & [k/2]K' = [k /2] K’
z:K,I'+tK:K' Ttk K INz:KI'+E:K 'tk =k K
I [k/x)[" & [k/z)k :[k/z]K' T[ki/z][" & [ki/z]k' = [k2/z]k': [k /2] K’
e:K,I'+-K'=K' I'+tk:K Tz:KI'+E=kK'K kK
I[k/z2][" & [k/z]K' = [k/z2]K" T,[k/z][" & [k/z]k' = [k/z]k": [k/2]K'

The kind Type

I valid '+ A:Type '+ A= B:Type
I' + Type kind '+ El(A) kind I'+ EI(A) = El(B)

Dependent product kinds
I'-Kkind Iz:KF K kind I'-Ki=K, INz:K FK|=K)

TF (z: K)K' kind TF (z: K)K| = (z: K2)K}
Iz:KFEkK' I'rKi=Ky @INx:KitFk =kxK
I't[z:Klk: (z: K)K' I'tz: Kk =[z: Kalks: (z: K1)K
I'-f(zx:K)K' kK I'-f=f:(x:K)K' I'tki=k»K
I+ f(k): [k/x] K’ I+ f(ki) = f'(k2): [k /2] K
Nr:K+-E:K' T'HkK 'k fi(z: K)K' x & FV(f)
I't ([z: K)k')(k) = [k/z]k': [k/z]K' I'z: K|f(z)=f:(z: K)K'

16

Appendix B

The following are the inference rules for the coercive subkinding extension T[R]
(not including the rules for subtyping).

New rules for application

I'-fi(z:K)K' TrkeKy I'Ko<.K
T F f(ko): [c(ko) /2] K’

Frf=f:(x:K)K' Thrko=ki:Ko I'+Ko<.K
'k f(ko) = f'(kp): [c(ko) /2] K’

Coercive definition rule

I'fi(z:K)K' I'Fko:Ko 'FKo<.K
I't f(ko) = f(c(ko)): [c(ko)/z] K

Basic subkinding rule

'+ A <. B:Type
I'+ El(A) <. El(B)

Subkinding for dependent product kinds

I'-Ki=K, IN'e: K\ FKy<.Ky I''t : K1 F K> kind
'k (z: K1) K> <t maliwsi)le(f(0) (71 K7)KY

I'Ki <. K1 Iz: K{Fc(z)/z]K> = Ky TI'z: K1 b Ko kind
Ik (z: K1) K> <pp:x0)Kalle: K (e(e)) (1 K1)
I'FK{ <¢ Ki Iz : K{ F[ci(z)/7]K>2 <y Ky TNx: Ky K> kind
Ik (22 K0 K2 <gp.(p:x0) Kollz: K] les (f(er (2))) (T 0 K7 K

Congruence rule for subkinding

'K <.Ky TFE, =K} TFKy=Kj I'te=c:(K)K,
T'F K, <, K}

Transitivity and substitution rules for subkinding

''"K<.K' TFK' <, K' TILx:KI'FK <.Ky 'Fk:K
'K <gro0 K" L [k/z]T" & [k/z] K. <lk/z]c [k/z]) K>

17

