
1 23

Linguistics and Philosophy

ISSN 0165-0157
Volume 35
Number 6

Linguist and Philos (2012) 35:491-513
DOI 10.1007/s10988-013-9126-4

Formal semantics in modern type theories
with coercive subtyping

Zhaohui Luo

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

Linguist and Philos (2012) 35:491–513
DOI 10.1007/s10988-013-9126-4

RESEARCH ARTICLE

Formal semantics in modern type theories with coercive
subtyping

Zhaohui Luo

Published online: 27 February 2013
© Springer Science+Business Media Dordrecht 2013

Abstract In the formal semantics based on modern type theories, common nouns
are interpreted as types, rather than as predicates of entities as in Montague’s seman-
tics. This brings about important advantages in linguistic interpretations but also leads
to a limitation of expressive power because there are fewer operations on types as com-
pared with those on predicates. The theory of coercive subtyping adequately extends
the modern type theories and, as shown in this paper, plays a very useful role in making
type theories more expressive for formal semantics. It not only gives a satisfactory
solution to the basic problem of ‘multiple categorisation’ caused by interpreting com-
mon nouns as types, but provides a powerful formal framework to model interesting
linguistic phenomena such as copredication, whose formal treatment has been found
difficult in a Montagovian setting. In particular, we show how to formally introduce
dot-types in a type theory with coercive subtyping and study some type-theoretic con-
structs that provide useful representational tools for reference transfers and multiple
word meanings in formal lexical semantics.

Keywords Formal semantics · Type theory · Coercive subtyping · Lexical semantics

1 Introduction

Church’s simple type theory (Church 1940), as employed in Montague’s semantics
(Montague 1974), has traditionally served as a logical language for formal semantics.
Powerful alternatives, arguably more advantageous ones, may be offered by the mod-
ern type theories (MTTs) such as Martin-Löf’s type theory (Nordström et al. 1990;

Z. Luo (B)
Department of Computer Science, Royal Holloway, University of London, Egham, Surrey
TW20 0EX, UK
e-mail: zhaohui.luo@hotmail.co.uk

123

Author's personal copy

492 Z. Luo

Martin-Löf 1984) and the Unifying Theory of dependent Types (UTT) (Luo 1994). The
theory of coercive subtyping (Luo 1997, 1999) adequately extends the modern type
theories with a notion of subtyping and, as shown in this paper, plays a very useful role
in making modern type theories suitable and more expressive for formal semantics.1

First, coercive subtyping gives a satisfactory solution to the basic problem of ‘mul-
tiple categorisation’, as discussed by Ranta (1994), and hence provides an important
basic representational mechanism for the formal semantics based on modern type the-
ories. In such a semantics, common nouns (CNs) are interpreted as types, rather than
as predicates as in Montague’s semantics.2 Such a way to interpret CNs is natural
since a modern type theory is ‘many-sorted’ in the sense that there are many types,
as compared with the ‘single-sorted’ simple type theory in Montague’s semantics,
where there is only one type of entities. However, this has led to some problems as
well as important advantages (see below for the latter). A basic problem, the prob-
lem of ‘multiple categorisation’, is that, interpreting CNs as types, a verb can now
have many different types. For example, ‘walk’ may be interpreted as a predicate
that can range over both the types that interpret ‘man’ and ‘handsome man’ ([[man]]
and [[handsome man]], respectively) because, for instance, we need to interpret ‘John
walks’ when ‘John’ is either a ‘man’ or a ‘handsome man’. A natural way to deal with
this is to introduce some notion of subtyping: for [[walk]] that ranges over [[man]], if
[[handsome man]] is a subtype of [[man]], then [[walk]]([[John]]) is well-typed even
when ‘John’ is a ‘handsome man’. Coercive subtyping, as studied in Luo (1997, 1999)
and other papers, provides us with such a subtyping framework. It adequately extends
modern type theories with a suitable notion of subtyping and provides a solution to
the above problem.

Secondly, the formal semantics based on MTTs with coercive subtyping provides
us with more advantageous treatments of many interesting linguistic phenomena that
involve subtyping relations. In linguistic semantics, there have been a lot of interesting
developments including, for example, the Generative Lexicon Theory developed by
Pustejovsky (1995) and some advanced studies in lexical semantics such as that by
Asher (2011). Many case studies and their analyses are based on subtypes of entities.
For example, in a Montagovian setting, people may consider the types Phy/Info of
physical/informational entities, which are subtypes of the type e of all entities, and
interpret the adjective ‘heavy’ and CN ‘book’ as follows:

[[heavy]] : (Phy → t) → (Phy → t)

[[book]] : Phy • Info → t

where the dot-type Phy• Info (Pustejovsky 1995) is a type of entities with both phys-
ical and informational aspects (and a book has both). However, this has a problem:

1 The idea of using coercive subtyping in linguistic semantics was considered in Luo and Callaghan (1998).
Parts of Luo (2010) and the current paper may be seen as a further development of those initial ideas.
2 The idea of interpreting CNs as types is further investigated in Luo (2012) where, in particular, Geach’s
observation (Geach 1962) that CNs have criteria of identity is studied to justify this idea and, furthermore,
it is pointed out that proof irrelevance should be adopted in a modern type theory in order for CNs to be
interpreted as types adequately. See Sect. 2.1 for more on this.

123

Author's personal copy

Formal semantics in modern type theories with coercive subtyping 493

the way that CNs are interpreted as predicates seems to be incompatible with the sub-
typing mechanism. For instance, in such a setting, it even becomes rather difficult to
interpret the modified CN ‘heavy book’: in order to apply [[heavy]] to [[book]], we
would need the following subtyping relation:

Phy • Info → t ≤ Phy → t,

i.e., we would need (by contravariance)

Phy ≤ Phy • Info.

But, both intuitively and formally, this is not the case! Actually, in our formal treat-
ment of dot-types in Sect. 4, the opposite is true: Phy • Info ≤ Phy. As shown in
this paper, because CNs are interpreted as types in the formal semantics based on
modern type theories, the interpretation of ‘heavy book’ becomes straightforward as
expected. We show that modern type theories, together with the theory of coercive
subtyping, may offer a powerful language in which interesting lexical phenomena
such as copredication (Pustejovsky 1995; Asher 2011) can be properly interpreted.

This paper also studies how the dot-types (or sometimes called dot-objects), as
proposed by Pustejovsky (1995) in studying logical polysemy and co-composition in
lexical semantics, can be formally introduced in a type theory with coercive subtyp-
ing. Informally, a dot-type A • B is a type of pairs with the following two important
requirements:

– A • B is only well-formed if A and B do not share common components, and
– both projections, one from A• B to A and the other from A• B to B, are coercions

in the coercive subtyping framework.

We claim that this formal treatment of the dot-type operator captures its essence and,
hence, can be used in a formal semantics to model copredication and other phenomena
in a satisfactory way.

Modern type theories with coercive subtyping also provide us with various mech-
anisms very useful in describing linguistic phenomena in formal semantics. These
include, for example, how to introduce formal notions of coercion contexts and local
coercions in order to represent linguistic phenomena such as reference transfers in
particular contexts and multiple contextual word meanings. Such mechanisms further
strengthen the claim that MTTs with coercive subtyping provide powerful languages
for formal semantics.

In Sect. 2, we give brief introductions to formal semantics based on modern type
theories and to the theory of coercive subtyping, discussing several relevant issues
of the background and introducing notational conventions. Two basic applications
of coercive subtyping in the formal semantics based on MTTs, as briefly introduced
above, are further discussed in Sect. 3: (1) the multiple categorisation problem and
its solution; and (2) the subtyping problem in copredication and its treatment with
coercive subtyping. This is followed by a formal treatment of dot-types in type theory
with coercive subtyping in Sect. 4. Type-theoretical mechanisms of coercion contexts
and local coercions are discussed in Sect. 5.

123

Author's personal copy

494 Z. Luo

2 Modern type theories and coercive subtyping

2.1 Modern type theories and formal semantics

Modern type theories may be classified into the predicative type theories such as
Martin-Löf’s type theory (Nordström et al. 1990; Martin-Löf 1984) and the impre-
dicative type theories such as the calculus of constructions (CC) (Coquand and Huet
1988) and the unifying theory of dependent types (UTT) (Luo 1994). In computer
science, modern type theories have been implemented in the proof assistants such as
Agda (2008) and Coq (2007) and used in applications to formalisation of mathematics
and verification of programs.

A formal semantics of natural languages based on modern type theories is in the
tradition of the Montague semantics (Montague 1974) but the powerful type struc-
tures in a modern type theory provide new useful mechanisms for formal semantics
of various linguistic features, some of which have been found difficult to describe in
the Montagovian setting.

2.1.1 Basics of formal semantics based on MTTs

The Montague semantics is based on Church’s simple type theory (Church 1940),
which is a single-sorted logic. In Montague’s semantics, there is a universal type e of
entities: a common noun or a verb is interpreted as a function of type e → t and an
adjective as a function of type (e → t) → (e → t), where t is the type of truth values.

In contrast, a modern type theory can be considered as a many-sorted logical sys-
tem, where there are many sorts called types that may be used to stand for the domains
to be represented. These types include:

– the propositional types (or logical propositions),
– the inductive types such as the type of natural numbers and �-types of dependent

pairs, and
– other more advanced type constructions such as type universes.

Each of these is further explained below in this subsection.
Because of this many-sortedness, it is natural to interpret the noun phrases as types.

Here are several basic interpretation principles one may adopt in a formal semantics
based on MTTs3:

– Common nouns are interpreted as types. For instance, the CNs ‘man’ and ‘human’
can be interpreted as types [[man]] and [[human]], respectively.

– An adjective is interpreted as a predicate over the type that interprets the domain
of the adjective. For instance, ‘handsome’ may be interpreted as a predicate
[[handsome]] : [[man]] → Prop, where Prop is the type of logical proposi-
tions (see below for more on Prop).

3 Many basic ideas of developing formal semantics in Martin-Löf’s type theory have been studied in Ranta
(1994). Ranta himself may not regard his work as studying logical semantics (see, for example, the preface
of Ranta 1994). However, if one looks at it from a technical (and non-philosophical) point of view, the work
has studied the basics of formal semantics in a modern type theory and made many valuable proposals.

123

Author's personal copy

Formal semantics in modern type theories with coercive subtyping 495

– When the modifying adjectives are subsective, modified CNs are interpreted as
�-types such as �([[man]], [[handsome]]), a type of handsome men. (See below
for more details on �-types and Footnote 8 for comments on non-subsective adjec-
tives).

As observed by Geach (1962), a component of meaning of CNs is the criteria of iden-
tity and, as discussed in Luo (2012), it may be argued that this offers a justification
for CNs to be interpreted as types in an MTT.

Furthermore, the framework of coercive subtyping (Luo 1999) provides us with
additional richer means for formal semantics, as discussed in Luo (2010, 2011b) and
the current paper.

2.1.2 Embedded logic

A modern type theory has an embedded logic (or internal logic) based on the prop-
ositions-as-types principle (Curry and Feys 1958; Howard 1980). For example, in
Martin-Löf’s predicative type theory, the logical proposition A & B corresponds to
the product type A × B (a special case of �-type—see below) and a pair of a proof of
A and a proof of B corresponds to an object of the product type. Similarly, this corre-
spondence extends to other logical operators: the logical implication (⊃) corresponds
to the function types (→), the universal quantifier (∀) to the dependent �-types, etc.

For Martin-Löf’s type theory, the embedded logic is first-order and, for impredica-
tive type theories such as ECC/UTT (Luo 1994), the embedded logics are second-order
or higher-order, where there is a type Prop of logical propositions. Formally, Prop
is a totality and one can quantify over it to form other propositions (and this pro-
cess is regarded as ‘circular’ by predicativists (Feferman 2005) or ‘impredicative’, in
the technical jargon).4 As pointed out in Luo (2012), proof irrelevance in an MTT
is crucially important for types to be used to interpret CNs adequately (for example,
when �-types are used to interpret modified CNs). By proof irrelevance, we mean
that, informally, any two proofs of the same logical proposition are the same. It is
worth remarking that, while proof irrelevance can be formulated straightforwardly for
MTTs such as UTT where there is a clear distinction between logical propositions and
data types, it is unclear how it should or can be done for those MTTs without such a
distinction (eg, Martin-Löf’s type theory).

In this paper, we shall use Prop in linguistic interpretations. In a type theory with
type Prop of propositions, an assertive sentence is interpreted as a proposition of
type Prop and a verb or an adjective as a predicate of type A → Prop, where A is
the domain whose objects the verb or adjective can be meaningfully applied to. For
instance, consider the following sentence:

(1) John is handsome.

With [[John]] : [[man]] and [[handsome]] : [[man]] → Prop, the above sentence (1)
is interpreted as proposition [[handsome]]([[John]]) of type Prop.

4 Intuitively, Prop is very much like the type t in the simple type theory. A main difference is that, in
modern type theories, we have explicit proof terms of logical propositions.

123

Author's personal copy

496 Z. Luo

2.1.3 Types in modern type theories

We assume that the reader be familiar with the simple type theory (Church 1940)
(or Montague’s semantics, Montague 1974), compared with which modern type the-
ories have several distinctive features that are briefly described below.
Dependent types Modern type theories contain dependent types, examples of which
include �-types and �-types. The so-called �-types are types of dependent pairs.
If A is a type and B is an A-indexed family of types, then �(A, B) is a type, con-
sisting of pairs (a, b) such that a is of type A and b is of type B(a). For instance,
�([[man]], [[handsome]]) is a type of handsome men (or more precisely, of those men
together with proofs that they are handsome). When B(x) is a constant type (i.e.,
always the same type no matter what x is), a �-type degenerates into a product type of
non-dependent pairs. For �-types (and product types), there are associated projection
operations π1 and π2 so that π1(a, b) = a and π2(a, b) = b, for every (a, b) of type
�(A, B).

There are other dependent types such as the �-type �(A, B) of dependent func-
tions which, in the non-dependent case, degenerates to the function type A → B. The
objects of �(A, B) are λ-functions f which can be applied to any object a of type A
to form f (a) of type B(a) (or just B in the non-dependent case).

Inductive types and canonical objects In a modern type theory, most of the types are
inductively-defined, examples of which include the types of natural numbers, trees,
ordinals, etc. The above �-type is another example.

An important feature of a modern type theory is that its meaning theory, as advo-
cated by Martin-Löf (1996) and others (such as Dummett (1975, 1991) and Prawitz
(1974) in the wider context of proof-theoretic semantics), is based on the notion of
canonical object. An inductively-defined type consists of its canonical objects. For
example, the type of natural numbers consists of the canonical numbers 0, 1, 2, . . . ,

and the other natural numbers all compute to canonical numbers.5 For instance, 3 + 4
is a natural number because it computes to the canonical number 7.

The notion of canonical object is so important that modern type theories may also
be called type theories with canonical objects. Based on it, every inductive type is
equipped with an induction principle (so-called elimination rule) expressing that, in
order to prove a property for all objects of the inductive type, one only has to prove it
for all of its canonical objects. The modern type theories have the following important
property:

– Canonicity: Any closed object of an inductive type is definitionally equal to a
canonical object of that type.

Universes Other more advanced features in a modern type theory are useful in devel-
oping formal semantics. For example, one may collect (the names of) some types into
a type called a universe (Martin-Löf 1984). Introducing universes can be considered as
a reflection principle: such a universe reflects those types whose names are its objects.

5 The notion of computation is also in the centre of the meaning theory of modern type theories. Intuitively,
in a modern type theory, every process of computation starting from a well-typed term terminates and it
computes to a (unique) ‘normal form’.

123

Author's personal copy

Formal semantics in modern type theories with coercive subtyping 497

In formal semantics, universes can be employed to help semantic interpretations.
For instance, one may consider the universe cn : T ype of all common noun interpre-
tations and, for each type A that interprets a common noun, there is a name A in cn.
For example,

[[man]] : cn and Tcn([[man]]) = [[man]] .

In practice, we do not distinguish a type in cn and its name by omitting the overlines
and the operator Tcn by simply writing, for instance, [[man]] : cn.

As another example, the universe cn can be used to give semantic interpretations
to adverbs. An adverb modifies a verb (an adjective) to result in a verb (adjective)
phrase.6 Since in MTTs verbs and adjectives are interpreted as predicates over a vari-
ety of domains (rather than over a single domain as in the Montagovian setting),
adverbs such as ‘loudly’ in ‘John talked loudly’ and ‘simply’ in ‘That idea is simply
ridiculous’ would be interpreted as of type

�A : cn. (A → Prop) → (A → Prop).

For instance, for [[talk]] : [[human]] → Prop, the following phrase (2) can be inter-
preted as (3), which is of type [[human]] → Prop:

(2) talk loudly

(3) [[loudly]]([[human]], [[talk]])

2.2 Coercive subtyping

Coercive subtyping (Luo 1997, 1999; Luo et al. 2012) is a general theory of sub-
typing for modern type theories. In computer science, coercive subtyping has been
studied and implemented in many proof assistants such as Coq (Coq Development
Team 2007; Saïbi 1997), Lego (Luo and Pollack 1992; Bailey 1999), Matita (Matita
proof assistant 2008) and Plastic (Callaghan and Luo 2001), and used effectively in
interactive theorem proving. In this paper, coercive subtyping is applied to linguistic
semantics.

We shall now introduce informally the basics of coercive subtyping and explain
why the extension is adequate for modern type theories.

2.2.1 Basics of coercive subtyping

The basic idea of coercive subtyping is to consider subtyping as an abbreviation mech-
anism: A is a (proper) subtype of B (A < B) if there is a unique implicit coercion c
from type A to type B and, if so, an object a of type A can be used in any context CB[_]

6 There are other adverbs. For example, an adverb may modify sentences to result in new sentences and,
as in Montague grammar (Montague 1974), such adverbs are interpreted as functions from Prop to Prop.

123

Author's personal copy

498 Z. Luo

Fig. 1 Pictorial explanation of A <c B

that expects an object of type B: CB[a] is legal (well-typed) and equal to CB[c(a)].
(See Fig. 1 for a pictorial explanation.)

For instance, one may consider the type of men to be a subtype of the type of human
beings by declaring a coercion between them:

[[man]] <m [[human]] .

If we assume that ‘shout’ and ‘John’ be interpreted as

[[shout]] : [[human]] → Prop

[[John]] : [[man]]

then the interpretation (5) of the following sentence (4) is well-typed:

(4) John shouts.

(5) [[shout]]([[John]])

The reason that (5) is well-typed is that [[man]] is now a subtype of [[human]]. In
general, this is reflected by the following coercive definition rule:

� � f : (B)C � � a : A � � A <c B : T ype

� � f (a) = f (c(a)) : C

expressing that an appropriate coercion can be inserted to fill up the gap in a term.
(See Luo (1999) and Luo et al. (2012) for a formal presentation with complete rules.)

123

Author's personal copy

Formal semantics in modern type theories with coercive subtyping 499

Notation We shall adopt the following notational abbreviations, writing

– A < B for ‘A <c B : T ype for some c’, and
– A ≤ B for ‘A = B : T ype or A < B’. ��

2.2.2 Subsumptive subtyping versus coercive subtyping

In set theory, one has the subset relation between sets. Similarly, in a type theory, one
can consider a notion of subtyping between types. To mimic the subset relation, the
subtyping relation is traditionally captured by subsumptive subtyping characterised by
means of the following subsumption rule:

a : A A is a subtype of B
a : B

(∗)

which says that, if A is a subtype of B, every object of type A is also of type B.
Unfortunately, subsumptive subtyping is incompatible with canonicity and cannot

be employed in a modern type theory. This is because the induction principles (the
elimination rules) do not take into account the objects introduced by subsumptive
subtyping relations and, as a consequence, the subsumptive rule (∗) would introduce
inconsistency in a modern type theory.7

Coercive subtyping, on the other hand, is a suitable subtyping framework for mod-
ern type theories. As compared with subsumptive subtyping, coercive subtyping does
not introduce new objects into a type. In the framework of coercive subtyping, A < B
means that there is a (unique) coercion that maps any object of A to an object of B.
This is consistent with the idea of canonical object – if B is an inductive type, we do
not need to change its elimination rule, since B will still have the same objects even if
A < B. Furthermore, the extension with coercive subtyping is adequate, as explained
below.

2.2.3 Conservativity: adequacy of the coercive subtyping extension

When using a type theory for formal semantics, a basic requirement is that the type
system has a consistent embedded logic. For example, the higher-order logic embed-
ded in the simple type theory is consistent and this is the basis for it to be employed in
the Montague semantics. When one wants to extend a type theory in order to represent
certain linguistic phenomena, one of the first things one has to make sure is that the
extension does not in any way jeopardise the consistency of the embedded logic.

Such a requirement applies to the extension of modern type theories with coercive
subtyping and, fortunately, it meets the requirement. In fact, the coercive subtyping
extension is not only consistent but conservative as long as the employed coercions are
coherent (Soloviev and Luo 2002; Luo et al. 2012). Informally, coherence means that

7 It is not difficult to see this if one is familiar with how the induction principles of inductive types are
formulated in a modern type theory. As it requires some formal technical details, we omit it here. See Sect. 4
of Luo et al. (2012) for more on this.

123

Author's personal copy

500 Z. Luo

any two coercions between the same two types must be the same (see Luo 1999 for a
formal definition.) As coercions may be declared by the users, they must be coherent
to be employed correctly (and to guarantee conservativity). For a type theory with
nice meta-theoretic properties such as Strong Normalisation (and hence logical con-
sistency), its extension with coercive subtyping has those properties, too. Intuitively,
this says that the coercive subtyping extension is adequate and can safely be used in
various applications, including linguistic semantics.

3 Coercive subtyping in MTT-based formal semantics

As explained above, the most important difference between the Montague semantics
and the formal semantics based on modern type theories is that common nouns are
interpreted as predicates in the former, but as types in the latter. Interpreting common
nouns as types brings about important advantages in linguistic interpretations (see, for
example, later in this section on copredication) but has some unwelcome consequences
because there are fewer operations on types as compared with those on predicates.

For example, one can easily define a subset relation between the functional subsets
represented by predicates of entities: for s and s′ of type e → t , s ⊆ s′ if and only
if ∀x : e. s(x) ⊃ s′(x). This notion of subset has been used substantially in various
semantic investigations based on the Montague semantics. However, such a notion
between types is not that straightforward. As we have discussed in Sect. 2.2, the tra-
ditional notion of subtyping, subsumptive subtyping, is incompatible with the notion
of canonical object in modern type theories. Instead, the theory of coercive subtyping
(Luo 1999; Luo et al. 2012) adequately extends the modern type theories which, as
we show in this section, can be employed to play a very useful role in, for exam-
ple, giving a satisfactory treatment of the type-theoretic interpretations of modified
common nouns and allowing straightforward interpretations of interesting linguistic
phenomena such as copredication, whose interpretations have been found difficult in
the Montagovian setting.

3.1 Common nouns as types

In an MTT, the interpretations of CNs like ‘man’, ‘human’ and ‘book’ are types:

[[man]], [[human]], [[book]] : T ype,

and verbs and adjectives are interpreted as predicates: for example, we have

[[heavy]] : [[book]] → Prop

[[read]] : [[human]] → [[book]] → Prop

123

Author's personal copy

Formal semantics in modern type theories with coercive subtyping 501

When the modifying adjectives are subsective,8 the modified common noun phrases
are interpreted by means of �-types of dependent pairs: for instance,

[[heavy book]] = �([[book]], [[heavy]]).

To interpret common nouns as types has its advantage in that it effectively distin-
guishes meaningless and false expressions. For example, consider the verb ‘talk’:

(6) In the Montague semantics: [[talk]]M : e → t

(7) In the formal semantics based on MTTs: [[talk]]T : [[human]] → Prop

Now consider the following sentence (8), which is given interpretation (9) in Monta-
gue’s semantics and (10) in the formal semantics based on MTTs:

(8) A table talks.

(9) ∃x : e. [[table]]M (x) & [[talk]]M (x)

(10) ∃t : [[table]]T . [[talk]]T (t)

where [[table]]M : e → t is a predicate while [[table]]T is a type. Now, the term (9) is
well-typed (and false), while the term (10) is simply not well-typed, i.e., meaningless.
We contend that, in this respect, the formal semantics based on MTTs captures the
meanings in a better way: the sentence (8) is usually regarded as meaningless (unless
in some fictional world) as in formal semantics based on MTTs.

3.2 Coercive subtyping: basic applications

A basic problem in formal semantics based on MTTs has been the so-called problem
of ‘multiple categorisation’ of verbs (Ranta 1994, p. 60). Because CNs are interpreted
as types and, in particular, modified CNs as �-types, a verb may need to have many
different types. Consider, for instance,

[[John]] : [[man]]
[[W &P]] : [[heavy book]] = �([[book]], [[heavy]])

where W&P abbreviates the book ‘War and Peace’. Now, how do we interpret the
following sentences?

8 There are non-subsective adjectives. For example, adjectives may be privative; examples include fake and
counterfeit. Partee (2010) has argued that the so-called privative adjectives should actually be analysed as
subsective adjectives whose treatment calls for the employment of some special kind of coercions. In fact,
this can be formalised in an MTT by means of the disjoint union types with the associated injection operators
as coercions. For instance, let G R and G F be the type of (real) guns and that of fake guns, respectively.
Then, G = G R +G F is the type of all guns and we can declare G R <inl G and G F <inr G, where inl and
inr are the two injection operators for the disjoint union type G. More details can be found in Luo (2011a).

123

Author's personal copy

502 Z. Luo

(11) John reads a book.

(12) Somebody reads ‘War and Peace’.

(13) John reads ‘War and Peace’.

Note that the type of [[read]] is [[human]] → [[book]] → Prop. To interpret the above
sentences directly would require the following three terms to be well-typed:

(14) ∃b : [[book]] . [[read]]([[John]], b).

(15) ∃h : [[human]] . [[read]](h, [[W &P]]).
(16) [[read]]([[John]], [[W &P]]).

But none of the above terms is well-typed. [[read]] requires its first argument to be
of type [[human]] and its second of type [[book]], but [[John]] is of type [[man]] and
[[W &P]] is of type [[heavy book]]. Or, put in another way, how could we reflect the
following facts:

– A man is a human.
– A heavy book is a book.

Such phenomena are captured by means of coercive subtyping. For the first case,
we declare that [[man]] is a subtype of [[human]]9:

[[man]] < [[human]] .

For the second case, we have

[[heavy book]] < [[book]],

and, in fact, we declare in general that the first projection π1 of a �-type is always a
coercion, for any type A and any A-indexed family of types B:

�(A, B) <π1 A.

Furthermore, the subtyping relations propagate through the type constructors such as
� and � (and, in the non-dependent cases, → and ×). For instance, they propagate
through the function types, contravariantly: if A′ ≤ A and B ≤ B ′, then A → B ≤
A′ → B ′. For example,

[[human]] → [[book]] → Prop < [[man]] → [[heavy book]] → Prop.

With these subtyping relations, the terms in (14–16) are well-typed and they inter-
pret the sentences in (11–13), respectively.

9 There is another possibility: that is when [[man]] is defined to be the �-type �([[human]], [[male]]). In
such a case, [[man]] is a subtype of [[human]] by means of the first projection being a coercion.

123

Author's personal copy

Formal semantics in modern type theories with coercive subtyping 503

Remark The above problem has been a fundamentally troublesome one for a formal
semantics based on MTTs. It seems that what we need is an appropriate notion of
subtyping and, with this provided by coercive subtyping, the MTT-based semantics,
as initially studied in Ranta (1994), seems to provide us with a very promising alter-
native to the Montague semantics. ��

As another example, let’s consider the dot-types as studied in Pustejovsky (1995).10

Let Phy and Info be the types of physical objects and informational objects, respec-
tively. One may consider the dot-type Phy • Info as the type of the objects with both
physical and informational aspects. Intuitively, a dot-type is a subtype of its constitu-
ent types: Phy • Info < Phy and Phy • Info < Info. A book may be considered as
having both physical and informational aspects, reflected as: [[book]] < Phy • Info.
By contravariance,

Phy → Prop < Phy • Info → Prop < [[book]] → Prop

Info → Prop < Phy • Info → Prop < [[book]] → Prop

Therefore, for example, for [[burn]] : Phy → Prop and [[boring]] : Info → Prop,
the following phrase (17) can be interpreted by term (18), as intended:

(17) burn a boring book

(18) ∃b : �([[book]], [[boring]]). [[burn]](b)

Remark In Montague’s semantics (and its extensions), common nouns are interpreted
as predicates of type e0 → t , where e0 is a subtype of the type e of entities. For
instance, [[book]] : Phy • Info → t and [[heavy]] : (Phy → t) → (Phy → t). In
such a situation, in order to interpret, e.g., ‘a heavy book’, one would have to apply
[[heavy]] to [[book]] by requiring, for example, Phy • Info → t to be a subtype of
Phy → t , which is not the case—type clashes would happen, leading to unnatural
and complicated treatments (Asher 2008). ��

3.3 Copredication

Another example to illustrate the use of coercive subtyping is the interpretation of
copredication. Copredication has been studied by Asher (2011) among others, where
the following example is considered:

(19) John picked up and mastered the book.

The idea is that the interpretations of the phrases ‘pick up’ and ‘master’ should be of
the same type so that the use of ‘and’ in the above sentence can be interpreted in a
straightforward way. Now, when we consider the types Phy and Info as above, it is
natural that these phrases have the following types:

10 Dot-types will formally be studied in Sect. 4. Here, we study the example informally.

123

Author's personal copy

504 Z. Luo

[[pick up]] : [[human]] → Phy → Prop

[[master]] : [[human]] → Info → Prop

By coercive subtyping (and contravariance for function types), we have

[[pick up]] : [[human]] → Phy → Prop

< [[human]] → Phy • Info → Prop

< [[human]] → [[book]] → Prop

[[master]] : [[human]] → Info → Prop

< [[human]] → Phy • Info → Prop

< [[human]] → [[book]] → Prop

In other words, [[pick up]] and [[master]] can both be used in contexts where terms
of type [[human]] → [[book]] → Prop are required and, therefore, the interpretation
of the sentence (19) can proceed straightforwardly as intended.

Remark In a Montagovian setting, the interpretations of such sentences with copre-
dication can become rather sophisticated (see, for example, Asher and Pustejovsky
2005). This is because, in Montague’s semantics, common nouns are interpreted as
predicates. Such an interpretation seems incompatible with the subtyping relationships
involving Phy and Info. In a formal semantics based on MTTs with coercive sub-
typing, where common nouns are interpreted as types, the interpretation of sentences
with copredication is quite straightforward. ��

4 Dot-types in type theory with coercive subtyping

Dot-types, sometimes called dot objects or complex types, are proposed by Pustejov-
sky in his Generative Lexicon Theory (Pustejovsky 1995). Although the meaning of
a dot-type is intuitively clear, its proper formal account seems surprisingly difficult
and tricky.11 Researchers have made several proposals to model dot-types including,
for example, Asher and Pustejovsky (2005) and Cooper (2007, 2011). There are argu-
ments about whether these do capture and therefore give successful formal accounts
of dot-types and the author contends that the issue has not been settled.

In the following, we present a type-theoretic treatment of dot-types with the help of
coercive subtyping12 which, we believe, gives an adequate formal account of dot-types
and can hence be used in an MTT-based formal semantics to interpret, for instance,
copredication (as in Sect. 3) and logical polysemy as studied in Pustejovsky (1995).

11 See, for example, Asher (2008) for an interesting discussion on various choices of representation, where
you can also find a semantic account of the meaning of dot-types in category theory.
12 The idea of using coercive subtyping to model dot-types was considered in Luo and Callaghan (1998)
where, however, the product types and the associated projection coercions were proposed; this is known to
be incoherent from Y. Luo’s PhD thesis (Luo 2005).

123

Author's personal copy

Formal semantics in modern type theories with coercive subtyping 505

In Sect. 3, we have already introduced the dot-types Phy • Info informally with
examples. An important feature is that, to form a dot-type A • B, its constituent types
A and B should not share common parts. This is consistent with Pustejovsky’s idea
as expressed in the following paragraph:

Dot objects have a property that I will refer to as inherent polysemy. This is the
ability to appear in selectional contexts that are contradictory in type specifica-
tion. (Pustejovsky 2005)

In the same spirit, a dot-type A • B can only be formed if the types A and B do not
share any components. For instance,

– Phy•Phy should not be a dot-type because its constituent types are the same type
Phy.

– Phy• (Phy• Info) should not be a dot-type because its constituent types Phy and
Phy • Info share the component Phy.

The notion of component is formally defined as follows.

Definition 1 (components) Let T : T ype be a type in the empty context. Then, C(T),
the set of components of T , is defined as:

C(T) =df

{
Sup(T) if the normal form of T is not of the form X • Y

C(T1) ∪ C(T2) if the normal form of T is T1 • T2

where Sup(T) = {T ′ | T ≤ T ′}. ��
The rules for the dot-types are given in Fig. 2.13 Note that, in the formation rule, 〈〉

is the empty context and we require that the constituent types do not share common
components: C(A)∩C(B) = ∅. Once well-formed, a dot-type behaves somehow like a
product type: intuitively, its objects are pairs and the projections p1 and p2 correspond
to the projection operations π1 and π2, respectively. However, there are two important
differences between dot-types and product types:

– The constituent types of a dot-type do not share components, while those of a
product type can.

– The projections p1 and p2 for dot types are both coercions; this is OK (see Prop-
osition 1 below). For product types, however, only one of them can be coercions
for, otherwise, coherence would fail (Luo 2005).

According to the rules in Fig. 2, A • B is a subtype of A and a subtype of B. In other
words, an object of the dot-type A • B can be regarded as an object of type A, in a
context requiring an object of A, and similarly for B. This is crucial for, for exam-
ple, the well-typedness of terms in the examples in Sect. 3 that involve the dot-type
Phy • Info. Finally, the subtyping relations are propagated through the dot-types, by
means of the coercions d1, d2 and d as specified in the last three rules in Fig. 2.

13 The general forms of the derivation rules in type theory are � � J , where � is a context (see Sect. 5 for
more explanations of contexts) and J is a judgement of the forms such as t : T or A <c B.

123

Author's personal copy

506 Z. Luo

Fig. 2 The rules for dot-types

Since the constituent types of a well-formed dot-type do not share components, it
is straightforward to prove the following coherence property. (Recall that, informally,
coherence means that there is at most one coercion between any two types.)

Proposition 1 (coherence) The coercions p1, p2, d1, d2 and d are coherent together.
��

Note that coherence is important as it guarantees the correctness of employing the
projections p1 and p2 and the propagation operators d1, d2 and d as coercions, and
hence the subtyping relationships A • B < A and A • B < B.

123

Author's personal copy

Formal semantics in modern type theories with coercive subtyping 507

Remark If the constituent types of a dot-type shared a common component, coher-
ence would fail. For instance, Phy and Phy • Info share the component Phy. If
Phy • (Phy • Info) were a dot-type, there would be the following two coercions p1
and p1 ◦ p2:

Phy • (Phy • Info) <p1 Phy

Phy • (Phy • Info) <p1◦p2 Phy

which are between the same types but not equal—coherence would then fail. ��
Dot-types have been implemented (Xue and Luo 2012). They are implemented as

special types in the proof assistant Plastic (Callaghan and Luo 2001), which imple-
ments UTT. One can use a proof assistant based on an MTT to implement the
MTT-based formal semantics and then use the implemented dot-types to conduct
experiments. (See, for example, Luo 2011b and Xue and Luo 2012 for further details.)

5 Coercion contexts and local coercions

As claimed in the introduction, modern type theories are powerful languages for for-
mal semantics. In this section, we shall study how to introduce useful mechanisms,
called coercion contexts and local coercions, to represent contextual meanings in the
framework of coercive subtyping. In particular, such mechanisms provide us with flex-
ible representational mechanisms that are needed in formal semantics when coercive
subtyping is employed.

5.1 Coercion contexts in type theory

In some circumstances, the contexts describe either a special situation or a specific
background. Many usages are only meaningful in such special situations or local
contexts in which, for instance, the meanings of some words change.

Example 3 (reference transfer) Consider the following utterance (cf., Nunberg 1995):

(20) The ham sandwich shouts.

Assuming that the act of shouting requires that the argument be human (ie, [[shout]] :
[[human]] → Prop), it is obvious that sentence (20) is not well-formed, unless it is
uttered by somebody in some special extralinguistic context (e.g., by a waiter in a café
to refer to a person who has ordered a ham sandwich). ��

In an MTT, such local contexts can be described by means of the formal notion of
context. Traditionally, a context in type theory is of the form

x1 : A1, . . . , xn : An

123

Author's personal copy

508 Z. Luo

where Ai is either a data type, in which case xi is assumed to be an object of that type,
or a logical proposition, in which case the proposition Ai is assumed to be true and xi

a proof of Ai . For example, one may have the following context:

m : [[man]], hproof : [[handsome]](m)

which assumes, in layman’s terms, that ‘m is a man’ and ‘m is handsome’ (with
‘hproof’ being a proof).

The formal notion of context can be extended by coercion declarations or subtyping
assumptions, as proposed in Luo (2010). A coercion context is a context whose entries
may be of the form A <c B as well as the usual form x : A. For instance, the following
context may be used to describe the special circumstances in a café:

(21) . . . , [[ham sandwich]] < [[human]], . . .

where the subtyping assumption says that a ham sandwich can be coerced into a person
(i.e., the person who has ordered a ham sandwich). In a context such as (21), the above
sentence (20) can be interpreted satisfactorily as intended.14

Formally, coercion contexts obey the following rules, besides those usual formation
rules for valid contexts:

� � A : T ype � � B : T ype � � c : (A)B

�, A <c B valid

�, A <c B, �′ valid

�, A <c B, �′ � A <c B : T ype

where (A)B is the functional kind from A to B in the logical framework (see Chap.
9 of Luo 1994 for formal details.) In other words, coercions can now be introduced
in contexts and they are only valid ‘locally’ in the context where they are introduced.
For example, sentence (20) can be reasonably interpreted in a context which contains
the subtyping as shown in (21) and, otherwise, it may not.

Remark (coherent context) Note that validity of a context is not enough anymore for
it to be legal. One needs to make sure that the context is coherent, in the sense that
the declared coercions in the context do not lead to more than one coercion between
two types. Since it requires some formal backgrounds to be treated more concisely,
its details are omitted here. ��
Example 4 Consider the following example (adapted from Marlet 2007):

(23) Every linguist drinks a glass.

14 It may be worth noting that, here, it is still the verbs such as ‘shout’ that drive the coercion process: for
example, it is [[shout]] that requires its argument to be of type [[human]], which then triggers the coercion
to be inserted. Consider another sentence (thanks to the anonymous referee for this example):

(22) The ham sandwich tastes awfully.

Here it is the verb ‘taste’ that triggers a coercion to be inserted: since [[taste]] : [[f ood]] → Prop, apply-
ing [[taste]] to a ham sandwich s to form [[taste]](s) would need a coercion for the subtyping relation
[[ham sandwich]] < [[f ood]].

123

Author's personal copy

Formal semantics in modern type theories with coercive subtyping 509

Let’s assume that ‘drink’ be interpreted as:

[[drink]] : [[animated]] → [[liquid]] → Prop.

Now, since not every container contains drinks, there should be a special context in
which the above sentence (23) can be interpreted. The coercion context should contain
the following subtyping relations:

[[glass]] < [[beverage]], [[beverage]] < [[liquid]], [[linguist]] < [[animated]]

Then, in a coercion context with the above, (23) can be interpreted as:

(24) ∀l : [[linguist]] . ∃g : [[glass]] . [[drink]](l, g).

In the coercion context, (24) is well-typed. ��

5.2 Local coercions in terms

As is well-known, word meanings are context sensitive. In some circumstances, a
word appears in two places in a text (or even in the same sentence) and may need two
different meaning explanations.

In the simple case of homonymy whose multiple meanings have unrelated types,
the framework of coercive subtyping provides us with a useful overloading mech-
anism that can be used to represent the so-called sense enumeration model (SEM)
(Pustejovsky 1995): when a word w has n different meanings [[w]]i with unrelated
types Ai ,15 its meanings in the SEM can be represented by the coercions ci : 1w → Ai

defined as

ci (w) = [[w]]i : Ai ,

where 1w is the unit type with w as its only object (see Appendix A of Luo (2011b) for
the formal details of unit types). This does not only represent the multiple meanings
of a homonymy but provide the selection mechanism that will automatedly choose
the correct meaning appropriately. (See Sect. 3 of Luo (2011b) and Luo (2011c) for
further details of the proposal.)

Note that it is crucial that, in the above cases, the sematic types are unrelated: this
allows us to employ the coercions ci (i = 1, . . . , n) together in the same context with-
out destroying the coherence requirement. However, in some circumstances, one may
need to employ different coercions between the same types at the same time. Here
are two examples for explanation. For the first example, let us consider the follow-
ing sentence (25),16 whose interpretation (26) involves two different coercions that,

15 Formally, here ‘unrelated’ means that, if Ai and A j are the types of two different meanings of the
homonymous word, then there is no A such that Ai ≤ A and A j ≤ A.
16 This example is due to Nicholas Asher in a private communication.

123

Author's personal copy

510 Z. Luo

informally, insert ‘writing’ and ‘reading’, respectively.

(25) John finished a book last year and now everybody is enjoying it.

(26) John finished (writing) a book last year and now everybody is enjoying (reading)
it.

These two coercions are both of type Book → Event , ie, they are both functions
from the type of books to the type of events. If such coercions are employed together,
it is incoherent—there are more than one coercion between the same types.

As another example, consider the following phrases that use the homonym ‘bank’:

(27) the bank of the river

(28) the richest bank in the city

The anonymous word ‘bank’ cannot be disambiguated by the typing of its semantic
interpretations: both interpretations, [[bank]]1 for (27) and [[bank]]2 for (28), are types
that interpret the common noun ‘bank’, i.e., they are of the same type cn, the universe
of common noun interpretations (see the end of Sect. 2.1). Therefore, if we consider
two coercions:

c1 : 1bank → cn

c1(bank) = [[bank]]1

c2 : 1bank → cn

c2(bank) = [[bank]]2

Both coercions are of the same type and cannot be used together as they are incoherent.
Such a problem can be solved by introducing local coercions—coercions that are

only effective locally for some terms (expressions in type theory). For instance, the
following two terms give the semantics of (27) and (28), respectively, and can be used
together with no problem:

(29) coercion 1bank <c1 cn in [[(27)]]
(30) coercion 1bank <c2 cn in [[(28)]]

The coercions c1 and c2 are declared locally and, therefore, the phrases in (27) and
(28) are given semantics (29) and (30), respectively.

Formally, local coercions may be introduced by the following rule:

�, A <c B � J
� � coercion A <c B in J

where J is any of the following four forms of judgement:

k : K , k = k′ : K , K kind, and K = K ′.

123

Author's personal copy

Formal semantics in modern type theories with coercive subtyping 511

For instance, with J ≡ k : K , we have

�, A <c B � k : K
� � coercion A <c B in k : K

Intuitively, the coercions declared locally are only effective in the expressions in the
scope of the keyword in. For instance, the coercion c1 in (29) only takes its effects in
[[(27)]] and, similarly, c2 only in [[(28)]], as intended.

The key word coercion distributes through the components of J . For example, the
following two judgements (31) and (32) are identified:

(31) coercion A <c B in (k : K)

(32) (coercion A <c B in k) : (coercion A <c B in K)

The introduction of local coercions broadens the scope of interpretation and pro-
vides a very useful tool for appropriate meaning explanations in formal semantics.

6 Conclusion

Studying the application of modern type theories to formal semantics, we have made
three-fold contributions in this paper. First, we have demonstrated the crucial role
that the theory of coercive subtyping plays in enriching MTTs to become suitable
languages for formal semantics. Secondly, dot-types are studied and given a type-the-
oretic formal formulation that we claim to be adequate. Thirdly, we have studied some
important type-theoretic mechanisms such as coercion contexts and local coercions so
that MTTs, when equipped with them, become more powerful in practical applications
to formal semantics.

In linguistic semantics, various notions of coercion have been proposed and studied
(see, for example, Moens and Steedman 1988). Obvious future work includes that to
study to what extent the theory of coercive subtyping covers the linguistic notions of
type-shifting and type coercion (see, for example, Partee and Rooth 1983; Partee 1986;
Pustejovsky 2011). Some of the well-known type-shifting principles can be captured
by means of coercive subtyping in a straightforward way. For example, consider the
type-shifting law for NPs that lifts the e-type of an NP to its GQ-type (e → t) → t . In
an MTT-based semantics where CNs are interpreted as types, this can be captured as
a parameterised coercion c[A]: for any A of type cn (ie, A being a type that interprets
a common noun),

A <c[A] (A → Prop) → Prop,

where c[A] is defined as c[A](x) = λP : A → Prop. P(x). It is not difficult to verify
that these coercions commute with the subtyping relations as expected: for example,
for Man = [[man]] <mh [[human]] = Human, we can define

g = λ f λQ. f (Q) : [(Man → Prop) → Prop] → [Human → Prop] → Prop,

123

Author's personal copy

512 Z. Luo

and, furthermore,

g ◦ c[Man] = c[Human] ◦ mh.

Further research is needed to see how much this formal theory can reflect the linguistic
notions of coercion.

It is one of our goals to implement a computer system for linguistic reasoning based
on the formal semantics based on MTTs and the existing type theory based proof tech-
nology. We did some initial experiments in the Coq proof assistant (Luo 2011b). Much
more work is needed in this respect to achieve its practical goals.

Acknowledgments Thanks to the anonymous referees for very useful comments and to the members of
the Type Theory and Applications research group at RHUL for helpful discussions. This work is partially
supported by the research grant F/07-537/AJ of the Leverhulme Trust in UK.

References

Agda proof assistant (version 2). (2008). Available from the web page: http://appserv.cs.chalmers.se/
users/ulfn/wiki/agda.php.

Asher, N. (2008). A type driven theory of predication with complex types. Fundamenta Informati-
cae, 84(2), 151–183.

Asher, N. (2011). Lexical meaning in context: A web of words. Cambridge: Cambridge University Press.
Asher, N., & Pustejovsky, J. (2005). Word meaning and commonsense metaphysics.
Bailey, A. (1999). The machine-checked literate formalisation of algebra in type theory. PhD thesis,

University of Manchester.
Callaghan, P., & Luo, Z. (2001). An implementation of LF with coercive subtyping and universes. Journal

of Automated Reasoning, 27(1), 3–27.
Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic, 5(1), 56–68.
Cooper, R. (2007). Copredication, dynamic generalized quantification and lexical innovation by coercion.

In Proceedings of GL2007, the fourth international workshop on generative approaches to the
lexicon.

Cooper, R. (2011). Copredication, quantification and frames. In Logical aspects of computational
linguistics (LACL’2011). LNAI 6736.

Coq Development Team. (2007). The Coq proof assistant reference manual (Version 8.1). Orsay: INRIA.
Coquand, T., & Huet, G. (1988). The calculus of constructions. Information and Computation, 76(2–3),

95–120.
Curry, H. B., & Feys, R. (1958). Combinatory logic (Vol. 1). Amsterdam: North Holland.
Dummett, M. (1975). The philosophical basis of intuitionistic logic. In H. Rose & J. Shepherdson

(Eds.), Proceedings of the logic colloquium, 1973. Amsterdam: North Holland. (Reprinted in
P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics: Selected readings. Cambridge:
Cambridge University Press.)

Dummett, M. (1991). The logical basis of metaphysics. London: Duckworth.
Feferman, S. (2005). Predicativity. In S. Shapiro (Ed.), The Oxford handbook of philosophy of mathematics

and logic. Oxford: Oxford University Press.
Geach, P. (1962). Reference and generality. Ithaca, NY: Cornell University Press.
Howard, W. A. (1980). The formulae-as-types notion of construction. In J. Hindley & J. Seldin (Eds.),

To H. B. Curry: Essays on combinatory logic. New York: Academic Press.
Luo, Y. (2005). Coherence and transitivity in coercive subtyping. PhD thesis, University of Durham.
Luo, Z. (1994). Computation and reasoning: A type theory for computer science. Oxford: Oxford

University Press.
Luo, Z. (1997). Coercive subtyping in type theory. In Computer science logic 1996. Lecture notes in

computer science 1258. New York: Springer.
Luo, Z. (1999). Coercive subtyping. Journal of Logic and Computation, 9(1), 105–130.

123

Author's personal copy

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php

Formal semantics in modern type theories with coercive subtyping 513

Luo, Z. (2010). Type-theoretical semantics with coercive subtyping. In Semantics and linguistic theory
20 (SALT20), Vancouver.

Luo, Z. (2011a). Adjectives and adverbs in type-theoretical semantics. Notes.
Luo, Z. (2011b). Contextual analysis of word meanings in type-theoretical semantics. In Logical aspects

of computational linguistics (LACL’2011). LNAI 6736.
Luo, Z. (2011c). Type-theoretical semantics with coercive subtyping. Lecture notes at ESSLLI 2011

(for the course on Lexical Semantics, taught together with Nicholas Asher), Ljubljana, Slovenia.
Luo, Z. (2012). Common nouns as types. In Logical aspects of computational linguistics (LACL’2012).

LNAI 7351.
Luo, Z., & Callaghan, P. (1998). Coercive subtyping and lexical semantics (extended abstract). In

Logical aspects of computational linguistics (LACL’98).
Luo, Z., & Pollack, R. (1992). LEGO proof development system: User’s manual. LFCS report ECS-

LFCS-92-211, Department of Computer Science, University of Edinburgh.
Luo, Z., Soloviev, S., & Xue, T. (2012). Coercive subtyping: Theory and implementation. Information

and Computation, 223(2013), 18–42.
Marlet, R. (2007). When the generative lexicon meets computational semantics. In Proceedings of the

4th international workshop on generative approaches to the lexicon (GL 2007).
Martin-Löf, P. (1984). Intuitionistic type theory. Napoli: Bibliopolis.
Martin-Löf, P. (1996). On the meanings of the logical constants and the justifications of the logical

laws. Nordic Journal of Philosophical Logic, 1(1), 11–60.
Matita proof assistant. (2008). http://matita.cs.unibo.it/.
Moens, M., & Steedman, M. (1988). Temporal ontology and temporal reference. Computational

Linguistics, 14, 15–28.
Montague, R. (1974). Formal philosophy. New Haven, CT: Yale University Press. (Collection edited

by R. Thomason).
Nordström, B., Petersson, K., & Smith, J. (1990). Programming in Martin-Löf’s type theory. Oxford:

Oxford University Press.
Nunberg, G. (1995). Transfers of meaning. Journal of Semantics, 12(2), 109–132.
Partee, B. (1986). Noun phrase interpretations and type-shifting principles. In J. Groenendijk, D. de

Jongh, & M. Stokhof (Eds.), Studies in discourse representation theory and the theory of generalised
quantifiers. Dordrecht: Foris.

Partee, B. (2010). Privative adjectives: Subsective plus coercion. In R. Bauerle, U. Reyle, & T. Zimmer-
mann (Eds.), Presuppositions and discourse: Essays offered to Hans Kamp, volume 21 of Current
research in semantics/pragmatics interface. Cambridge, MA: Emerald Group Publishing.

Partee, B., & Rooth, M. (1983). Generalised conjunction and type ambiguity. In R. Bauerle, C. Schwarze,
& A. von Stechow (Eds.), Meaning, use, and interpretation of language. Berlin: De Gruyter.

Prawitz, D. (1974). On the idea of a general proof theory. Synthese, 27, 63–77.
Pustejovsky, J. (1995). The generative lexicon. Cambridge, MA: MIT Press.
Pustejovsky, J. (2005). A survey of dot objects. Manuscript.
Pustejovsky, J. (2011). Mechanisms of coercion in a general theory of selection.
Ranta, A. (1994). Type-theoretical grammar. Oxford: Oxford University Press.
Saïbi, A. (1997). Typing algorithm in type theory with inheritance. In Proceedings of principles of

programming languages 1997.
Soloviev, S., & Luo, Z. (2002). Coercion completion and conservativity in coercive subtyping. Annals

of Pure and Applied Logic, 113(1–3), 297–322.
Xue, T., & Luo, Z. (2012). Dot-types and their implementation. In Logical aspects of computational

linguistics (LACL’2012). LNAI 7351.

123

Author's personal copy

http://matita.cs.unibo.it/

	Formal semantics in modern type theories with coercive subtyping
	Abstract
	1 Introduction
	2 Modern type theories and coercive subtyping
	2.1 Modern type theories and formal semantics
	2.1.1 Basics of formal semantics based on MTTs
	2.1.2 Embedded logic
	2.1.3 Types in modern type theories

	2.2 Coercive subtyping
	2.2.1 Basics of coercive subtyping
	2.2.2 Subsumptive subtyping versus coercive subtyping
	2.2.3 Conservativity: adequacy of the coercive subtyping extension

	3 Coercive subtyping in MTT-based formal semantics
	3.1 Common nouns as types
	3.2 Coercive subtyping: basic applications
	3.3 Copredication

	4 Dot-types in type theory with coercive subtyping
	5 Coercion contexts and local coercions
	5.1 Coercion contexts in type theory
	5.2 Local coercions in terms

	6 Conclusion
	Acknowledgments
	References

