
ECC, an Extended Calculus of Constructions

Zhaohui Luo

�

Department of Computer Science

University of Edinburgh

King's Buildings

Edinburgh EH9 3JZ, U.K.

Abstract

We present a higher-order calculus ECC which can

be seen as an extension of the calculus of construc-

tions [CH88] by adding strong sum types and a fully

cumulative type hierarchy. ECC turns out to be

rather expressive so that mathematical theories can be

abstractly described and abstract mathematics may

be adequately formalized. It is shown that ECC

is strongly normalizing and has other nice proof-

theoretic properties. An !�Set (realizability) model

is described to show how the essential properties of

the calculus can be captured set-theoretically.

1 Introduction

The calculus of constructions [CH88][Coq85] is a typed

higher-order functional calculus which provides a nice

formalism for constructive proofs in natural deduction

style and can also be seen as a high-level functional

programming language.

In this paper, we present an Extended Calculus of

Constructions, ECC, which can be seen as an exten-

sion of the calculus of constructions with

� �-types (or, strong sum types), and

� a fully cumulative type hierarchy.

�-types in ECC, together with the type hierarchy,

provides a powerful abstraction mechanism so that

mathematical theories can be abstractly described and

structured, leading to a comprehensive structuring of

mathematical texts in interactive proof development

and program speci�cations. The cumulative type hi-

erarchy also increases the expressiveness in another as-

pect so that, for example, abstract mathematics (e.g.,

�

Supported by a studentship of the University of Edinburgh

and the ORS award.

abstract algebras, categories) may be adequately for-

malized. Furthermore, as the type hierarchy provides

a rather strong and exible form of polymorphism,

ECC provides a potential higher-order module mech-

anism which supports structure sharing by parameter-

ization in the style of programming language Pebble

[BLam84][LB88][Bur84] where the type of all types ex-

ists and plays an important role.

The in�nite type hierarchy in ECC is similar to

that of Martin-L�of's type theory but is fully cumula-

tive in the following sense. First, the lowest level Prop

is impredicative, and the propositions at this level are

lifted as higher-level types. This lifting is essential for

�-types in ECC to play their role as an abstraction

mechanism, and it solves the technical di�culty that

adding (type-indexed) strong sum to the impredicative

proposition level of Constructions results in an incon-

sistent system in which Girard's paradox can be de-

rived [Coq86a]. Secondly, type inclusions between the

type universes are coherently expanded to the other

types so that a strong form of type unicity is achieved;

this yields a simple notion of principal type and a sim-

ple algorithm for type inference.

ECC has good proof-theoretic properties. Particu-

larly, it is strongly normalizing, which shows the proof-

theoretic consistency of ECC (and in general, Con-

structions with an in�nite type hierarchy) and estab-

lishes the theoretical basis of an implementation (e.g.,

decidability of convertibility and type checking).

We give an (intuitionistic) set-theoretic semantics

of ECC in the framework of !-sets [Mog85][LM88]

[Hyl87], which captures the intuitive meanings of the

constructs in the calculus and reects its essential

properties. In addition to its importance in getting

better understanding of the calculus, such a model-

theoretic semantics seems also useful when consider-

ing pragmatics of the calculus, e.g., how to formalize

mathematical problems adequately in Constructions.

We discuss how to structure mathematical texts

1

and express abstract theories in ECC. Sharing by

parametrization is explained by an example. Weak

existential types are also discussed.

2 ECC

ECC consists of an underlying term calculus and a

set of inference rules of judgements. The basic expres-

sions of the term calculus, called terms, are inductively

de�ned by the following clauses:

� The constants Prop and Type

i

(i 2 !), called

kinds, are terms;

� Variables (x,y,...) are terms;

� If A, B, M and N are terms, so are �x:A:B,

�x:A:M , MN , �x:A:B, pair

�x:A:B

(M;N),

�

1

(M) and �

2

(M).

Free and bound occurrences of variables and substitu-

tion [N=x]M are de�ned as usual. Terms which are

the same up to changes of bound variables are identi-

�ed (we will use � for identity). Reduction (�) and

conversion (') are de�ned as usual with respect to the

following one-step �� contraction schemes:

(�x:A:M)N �

1

[N=x]M

�

j

(pair

�x:A:B

(M

1

;M

2

)) �

1

M

j

(j = 1; 2)

Remark Church-Rosser property holds for this term

calculus, i.e., M

1

' M

2

) 9M: M

1

� M ^M

2

�

M . For the term calculus, the inclusion of either �-

reduction or the rule for surjective pairing will make

Church-Rosser fail [vD80][Klo80]. It is worth remark-

ing that, with either of them, Church-Rosser for well-

typed terms of ECC also fails because of the existence

of type inclusions induced by universes. 2

The kinds, also called type universes, and the type

inclusions between them induce the type cumulativ-

ity that is syntactically characterized by the following

partial order.

De�nition 2.1 (type cumulativity) De�ne � as

the smallest partial order over terms w.r.t. conversion

'

1

such that

1. Prop � Type

0

� Type

1

� :::;

2. if A ' A

0

and B � B

0

, then �x:A:B � �x:A

0

:B

0

;

3. if A � A

0

and B � B

0

, then �x:A:B � �x:A

0

:B

0

.

1

That is, ' is the identity referred to in reexivity and anti-

symmetry of �.

A � B if, and only if, A � B and A 6' B. 2

Contexts are �nite sequences of expressions of the

form x:M , where x is a variable and M is a term. The

empty context is denoted by hi. Judgements are of

the form � is valid or � ` M :A, where � is a con-

text and M and A are terms. The sets of free vari-

ables in a context x

1

:A

1

; :::; x

n

:A

n

and a judgement

� ` M :A are de�ned as

S

1�i�n

fx

i

g [FV (A

i

) and

FV (�) [FV (M) [FV (A), respectively.

The following are the inference rules of ECC, where

i 2 !:

(C1)

hi is valid

(C2)

� ` A:Type

i

�; x:A is valid

(x 62 FV (�))

(var)

�; x:A;�

0

is valid

�; x:A;�

0

` x:A

(K1)

� is valid

� ` Prop:Type

0

(K2)

� is valid

� ` Type

i

:Type

i+1

(�1)

�; x:A ` P :Prop

� ` �x:A:P :Prop

(�2)

� ` A:Type

i

�; x:A ` B:Type

i

� ` �x:A:B:Type

i

(�)

�; x:A ` M :B

� ` �x:A:M :�x:A:B

(app)

� ` M :�x:A:B � ` N :A

� `MN :[N=x]B

(�)

� ` A:Type

i

�; x:A ` B:Type

i

� ` �x:A:B:Type

i

(pair)

� ` M :A � ` N :[M=x]B �; x:A ` B:Type

i

� ` pair

�x:A:B

(M;N):�x:A:B

(�1)

� `M :�x:A:B

� ` �

1

(M):A

(�2)

� `M :�x:A:B

� ` �

2

(M):[�

1

(M)=x]B

(conv)

� `M :A � ` A

0

:Type

i

� ` M :A

0

(A ' A

0

)

(cum)

� `M :A � ` A

0

:Type

i

� ` M :A

0

(A � A

0

)

A derivation of a judgement J is a �nite sequence

of judgements J

1

; :::; J

n

with J

n

� J such that, for all

1 � i � n, J

i

is the conclusion of some instance of

an inference rule whose premises are in f J

j

j j < i g.

A judgement J is derivable if there is a derivation of

J . A term M is well-typed (under �) if � ` M :A is

derivable for some A. We shall write � ` M :A for

`� ` M :A is derivable', and � ` M ' N (� ` M � N)

for `M and N are well-typed under � and M ' N

(M � N)', respectively.

This completes our formal presentation of ECC.

ECC extends the calculus of constructions [CH88]

[Coq85] by adding �-types and a cumulative type hi-

erarchy. It can also be seen as an extension of the core

of Martin-L�of's type theory (with in�nite type uni-

verses) [ML84] by adding a lowest impredicative level

of propositions (the types of type Prop).

The propositions, which stand for the logical formu-

las by Curry-Howard correspondence, constitute the

impredicative level Prop of the type hierarchy. View-

ing intuitively types as sets, we have

Prop 2 Type

0

2 Type

1

2 :::

P rop � Type

0

� Type

1

� :::

Particularly, every proposition is lifted as a higher-

level type. In appearance, it seems that this would

propagate the impredicativity at the level of proposi-

tions to the higher levels. For instance, we can derive

` �x:Type

i

�B:Type

i

! Prop:Bx:Type

0

However, the type hierarchy except the lowest level

Prop is still strati�ed (predicative) in the sense that

the types can be ranked in such a way that the exis-

tence of a proper type (a type that is not convertible

to any proposition) is only dependent on those with

lower ranks (see section 3). This strati�cation of type

hierarchy is essential for the logical consistency of the

calculus.

The idea of lifting propositions as types is essential

for �-types in ECC to be useful as an abstraction tool

to express abstract mathematical theories (section 5).

The reason is that adding (type-indexed) �-types to

the impredicative level of constructions would get an

inconsistent system in which Girard's paradox can be

derived [Coq86a]. Note that, in ECC, �x:A:P is not a

proposition even when P is. However, as propositions

are lifted as types, we can derive

(*)

� ` A:Type

i

�; x:A ` P :Prop

� ` �x:A:P :Type

i

This �x:A:P intuitively represents the set of pairs of

an element a of A and a proof of the proposition P (a),

i.e., the intuitionistic subset type (c.f.[ML84]). It is

this property that enables propositions to be used to

express abstract axioms of a mathematical theory ex-

pressed as a �-type.

2

The type hierarchy is fully cumulative. The infer-

ence rule (cum) is a design decision which achieves

a strong form of type unicity so that there is a sim-

ple notion of principal type (theorem 3.2) and a very

straightforward algorithm for type inference (theo-

rem 3.4). The type hierarchy presented in [Coq86a]

does not have this property; and therefore, although

every well-typed term has a minimum type, it is not

the most general one [Luo88b].

The pairs are heavily typed to avoid the undesirable

type ambiguity which would make type inference and

type-checking di�cult (perhaps impossible) [Luo88a].

But note that, thanks to the full cumulativity of types,

we still have as expected, say,

` pair

Type

0

�Type

0

(Prop; Prop):Type

3

� Type

3

Finally, it seems necessary to remark that the par-

tial order � de�ned in de�nition 2.1 is not com-

pletely contravariant: in the second clause of the def-

inition, A is required to be convertible to A

0

instead

of A

0

� A. One might take the later decision and the

proof-theoretic properties in the next section would

still hold. Even the algorithm for type inference would

remain the same. The only di�erence from the proof-

theoretic point of view is that some terms get more

types. For example, �x:Type

1

:x will not only have

types Type

1

! Type

j

, but have Prop ! Type

j

and

Type

0

! Type

j

(j � 1) as its types as well. However,

semantically, the type inclusions thus de�ned would

be reected by coercions instead of by set inclusions

as we explain in section 4.

3 Proof-theoretic Properties

In this section, we show that ECC has nice proof-

theoretic properties. Particularly, we prove that ECC

is strongly normalizing and that there is a straightfor-

ward algorithmwhich computes the principal type of a

well-typed term. As a consequence, ECC is decidable.

First, some basic properties are stated as the follow-

ing theorem.

Theorem 3.1 In ECC, we have

1. Any derivation of �; x:A;�

0

` M :B has a sub-

derivation of � ` A:K for some kind K.

2

We remark that, rather than including propositions as types

as we do in this paper, one may instead directly use rules like

(�) above to gain similar e�ects.

2. Any derivation of �;�

0

` M :A has a sub-

derivation of `� is valid'.

3. If � ` M :A and �

0

is a valid context which con-

tains every component of �, then �

0

` M :A.

4. If �; x:A;�

0

` N :B and � ` M :A, then

�; [M=x]�

0

` [M=x]N :[M=x]B.

5. If � `M :A, then � ` A:K for some kind K.

6. (subject reduction) If � ` M :A and M � N , then

� ` N :A.

7. (strengthening) If �; y:Y;�

0

` M :A and y 62

FV (M :A) [FV (�

0

), then �;�

0

` M :A;

8. (characterizing �) If A and B are both well-typed

under �, then, A � B if, and only if, �; x:A `

x:B, where x 62 FV (�). 2

Because of the type inclusions induced by type uni-

verses, type uniqueness (upto conversion) fails. How-

ever, we have a simple characterization of the set of

types of a well-typed term.

De�nition 3.1 (principal type) A is called a prin-

cipal type of M (under �) if � ` M :A and, for all A

0

such that � ` M :A

0

, A � A

0

. 2

In other words, a principal type of a well-typed term is

its minimum type with respect to the partial order �;

and, if exists, it is obviously unique (upto conversion).

We have

Theorem 3.2 (existence of principal types)

Every well-typed term M (under a context �) has a

principal type.

Proof Sketch The theorem follows the following dia-

mond property of �:

� `M :A;� ` M :B) 9C � A;B:� ` M :C

which is proved by induction on derivations. 2

The existence of the principal type is not only a

good proof-theoretic property but very important to

implementation of an interactive proof development

system. We denote as T

M

the principal type of M

(under �). T

M

is indeed the most general type of M

in the following sense.

Fact 3.1 � ` M :A if, and only if, T

M

� A and � `

A:K for some kind K. 2

Now, we come to the most important result in this

section.

Theorem 3.3 (strong normalization)

ECC is strongly normalizing, i.e., if � ` M :A, then

M is strongly normalizable. 2

The proof of this theorem is rather di�cult. The key

di�culty is that, unlike Constructions without type hi-

erarchy, in ECC not only propositions but also proper

types can be of the form MN or �

j

(M). This makes

it very di�cult to de�ne a rank assignment for types

like the complexity measure � in [Coq86b] which is

essential for proving (strong) normalization theorems

of constructions-like calculi according to the insight of

Coquand.

To solve this problem, we �rst prove a quasi-

normalization result which says that every well-typed

term can be reduced to a term which does not contain

any �-redex or �-redex R

1

R

2

such that R

1

has a type

which is a proper type.

3

This further implies that ev-

ery well-typed proper type can be reduced to one of

the following (head normal) forms:

K;�

i

1

:::�

i

j

(xA

1

:::A

m

)B

1

:::B

m

0

;�x:A:B;�x:A:B

where K is a kind, x is a variable, j;m;m

0

� 0 and

i

k

2 f1; 2g. With this result, we can then de�ne a

two-dimensional complexity measure of types which

enables us to prove the above theorem following a sim-

ilar pattern of the proof of SN theorem for construc-

tions in [Coq86b].

Remark The above result shows the proof-theoretic

consistency of Constructions with an in�nite type hi-

erarchy; it also applies to the Generalized Calculus of

Constructions presented in [Coq86a] (See [Luo88b]).

2

Corollary 3.1 (consistency) ECC is logically con-

sistent. Particularly, we have, for any term M , 6`

M :�x:Prop:x. 2

Corollary 3.2 (decidability of convertibility) It

is decidable whether M ' N for arbitrary well-typed

terms M and N . 2

As convertibility for well-typed terms is decidable,

so is �. Hence, we have

Theorem 3.4 (type inference) There is a simple

algorithm T such that, when given a context � and

3

We succeed in proving this by extending the way of us-

ing a measure adopted by G.Pottinger and J.Seldin in their at-

tempt to prove the SN theorem for the calculus of constructions

[Pot87][PS86]; it is essentially in the same spirit as that used in

[Pra65] for higher-order logic, but more complex.

a term M , T checks whether M is well-types under �,

and if so, T (�;M) = T

M

, where T

M

is the principal

type of M under �.

Proof Sketch The algorithm is just a straightforward

extension of that for the calculus of constructions de-

scribed in [Coq86b] which follows [ML71]. We only

consider several cases here.

� M � M

1

M

2

: check whether T (�;M

1

) � �x:A:B

and T (�;M

2

) � A; and, if so, T (�;M

1

M

2

) =

[M

2

=x]B.

� M � �x:M

1

:M

2

: check whether T (�;M

1

) �

K 2 fProp; Type

i

g and T (�; x:M

1

;M

2

) � K

0

2

fProp; Type

i

g; and, if so, T (�; �x:M

1

:M

2

) =

max

�

fK;K

0

; T ype

0

g.

� M � pair

�x:A:B

(M

1

;M

2

): check whether

T (�; �x:A:B) � K 2 fProp; Type

i

g, T (�;M

1

) �

A and T (�;M

2

) � [M

1

=x]B; and, if so,

T (�;pair

�x:A:B

(M

1

;M

2

)) = �x:A:B.

The soundness and completeness of the algorithm can

be proved as usual. 2

Remark Note that convertible terms may have

un-convertible principal types. For example,

(�x:Type

3

:x)Prop and Prop have Type

3

and Prop as

their principal types, respectively. 2

By fact 3.1, the existence of the type inference algo-

rithm implies the decidability of type-checking.

Corollary 3.3 (decidability of type-checking)

ECC is decidable, i.e., it is decidable whether � `

M :A for arbitrary �, M and A. 2

4 An !�Set Model of ECC

In this section, we sketch a realizability model of ECC

which gives an (intuitionistic) set-theoretic semantics

of the calculus.

4

Such a model captures the intuitive

meanings of the constructs in the calculus and reects

its essential properties such as logical consistency and

type cumulativity.

The main question in interpreting ECC is how to

interpret the type universes and the type formation

operators � and � so that, intuitively, we have

4

We do not mean that what we describe is the model of the

calculus. There are other reasonable models. For example, we

can give a truth-value model of ECC where propositions are

interpreted as 0 or 1. However, it seems that some basic points

can not be missed to interpret the constructs properly; we hope

to make them explicit here.

1. Prop 2 Type

0

2 Type

1

2 :::;

2. Prop � Type

0

� Type

1

� :::;

3. Type

i

is closed under � and �;

4. Prop is closed under �.

These requirements prevent us from giving a naive

non-trivial classical set-theoretic model of ECC. (See

[Rey84][RP88][LM88][Pit87] for more discussions for

the second-order �-calculus [Gir86][Rey74].)

Fortunately, the idea of interpreting types as par-

tial equivalence relations [Gir72][Tro73][Mog85] pro-

vides us a nice framework of !-sets and modest sets

[Mog85][LM88][Hyl87] in which there is an interpreta-

tion of ECC satisfying the above requirements.

Let !�Set be the category of !-sets andM the cat-

egory of modest sets. (See [LM88] for these notions.

We use jAj and k�

A

to denote the carrier set and the

realizability relation of an !-set A.) The interpreta-

tion of ECC, de�ned by induction on derivations of

judgements, gives every derivable judgement a unique

denotation such that

� If � is a valid context, then [[�]] 2 Obj(!�Set);

� If � ` M :A, then [[� ` M :A]] : [[�]]!

FPP

[[�; x:A]],

that is, intuitively, M is interpreted as a �-

indexed element of A; (see below)

� If � ` A � A

0

, then there is an inclusion mor-

phism inc

A;A

0

: [[�; x:A]] ,! [[�; x:A

0

]], and further-

more, if � ` M :A, then [[� ` M :A

0

]] = inc

A;A

0

�

[[� ` M :A]];

� If � ` M :A and � ` N :A

0

, M ' N and A ' A

0

,

then [[� ` M :A]] = [[� ` N :A

0

]].

In fact, we only have to indicate how to interpret

� ` M :T

M

, where T

M

is the principal type of M un-

der �. Di�erent from traditional simpler cases, types

and objects in constructions-like calculi are mixed up.

So, a type in fact has a `double identity' in the model.

In this paper, we do not give the details of the inter-

pretation (see [Luo88a] for how details can be �lled

in), but only emphasize on how to interpret �, � and

the type universes.

Before explaining the model, we �rst introduce three

!-set constructors �, �

�

and �

�

.

Suppose � 2 Obj(!�Set) and A:j�j ! !�Set.

Then, de�ne �(�; A) to be the following !-set:

j�(�; A)j =

df

f (; a) j 2 j�j; a 2 jA()j g

hm;nik�

�(�;A)

(; a)

df

, mk�

�

 ^ nk�

A()

a

� is used to interpret valid contexts. The empty con-

text is interpreted as the terminal object of !�Set

and [[�; x:A]] =

df

�([[�]]; [[� ` A:T

A

]]). The notation

f : [[�]] !

FPP

[[�; x:A]] used above means f satis�es

the following �rst projection property:

8 2 [[�]] :�rst(f()) =

Now, suppose B:j�(�; A)j ! !�Set. Then,

�

�

(A;B) and �

�

(A;B) are functions from j�j to !�Set

de�ned as, for all 2 j�j,

j�

�

(A;B)()j =

df

f (a; b) j a 2 jA()j; b 2 jB(; a)j g

hm;nik�

�

�

(A;B)()

(a; b)

df

, mk�

A()

a ^ nk�

B(;a)

b

and, j�

�

(A;B)()j is de�ned as

f f 2 �a 2 jA()j:jB(; a)j j 9n 2 !:nk�

�

�

(A;B)()

f g

where � denotes set product, and nk�

�

�

(A;B)()

f if,

and only if,

8a 2 jA()j8p 2 !:(pk�

A()

a) npk�

B(;a)

f(a))

1. Interpretation of Type

i

and �/�-types. To inter-

pret Type

i

, we consider large set universes. A basic

insight is that the notions of !-sets and modest sets

have nothing to do with sizes of the sets under con-

sideration. Consider ZFC set theory with in�nite in-

accessible cardinals

5

(�

0

< �

1

< :::) and let V

�

be the

cumulative hierarchy of sets. We de�ne !�Set(i) to be

the full subcategory of !�Set whose objects are those

!-sets whose carriers are in V

�

i

. Then, roughly speak-

ing, Type

i

is interpreted as !�Set(i). There are two

points here. First, as V

�

i

is a `model' of ZFC, we have

Lemma 4.1 Both �

�

and �

�

are closed for !�Set(i),

i.e., if A:j�j ! !�Set(i) and B:�(�; A) ! !�Set(i),

then �

�

(A;B); �

�

(A;B):j�j ! !�Set(i). 2

The interpretations of a �-type and a �-type whose

principal type is Type

i

, [[� ` �x:A:B:Type

i

]] and

[[� ` �x:A:B:Type

i

]], are de�ned as

�

[[�]]

([[� ` A:Type

i

]]; [[�; x:A ` B:Type

i

]])

�

[[�]]

([[� ` A:Type

i

]]; [[�; x:A ` B:Type

i

]])

respectively. The closedness requirement 3 is satis�ed

by the above lemma.

Secondly, as V

�

i

� V

�

i+1

, !�Set(i) is a full subcate-

gory of !�Set(i + 1). This justi�es the requirement 2

5

A cardinal � is (strongly) inaccessible if it is uncountable

and regular, and, for all � < �, 2

�

< �.

for Type

i

. But, how about the requirement 1? Note

that !�Set(i)'s are all small categories. Therefore,

they can be naturally made as !-sets in the following

special way:

�

i

=

df

(Obj(!�Set(i)); ! � Obj(!�Set(i)))

As V

�

i

2 V

�

i+1

, we have �

i

2 Obj(!�Set(i + 1)).

6

2. Interpretation of Prop and propositions. The cat-

egory of !-sets has a small full subcategory PROP

whose objects are those of the form (Q(R);2),

where Q(R) is the quotient set of a partial equiv-

alence relation R (over !).

7

Prop, roughly speak-

ing, is interpreted as PROP. Similarly, PROP is a

full subcategory of !�Set(0) and (Obj(PROP); ! �

Obj(PROP)) 2 Obj(!�Set(0)).

We have the following lemmas.

Lemma 4.2 ([LM88]) �

�

is closed for the modest

sets, that is, for all A:j�j ! !�Set, B:j�(�; A)j !M,

we have �

�

(A;B):j�j !M. 2

Lemma 4.3 There is an equivalence of categories

back:M ! PROP such that, for P 2 Obj(PROP),

back(P) = P . (The inverse of back is the inclusion

functor.) 2

[[� ` �x:A:B:Prop]], the interpretation of a �-

proposition, is de�ned as

back � �

[[�]]

([[� ` A:T

A

]]; [[�; x:A ` B:Prop]])

The closedness requirement 4 is satis�ed by the above

two lemmas.

Remark The existence of the category equivalence

back is important to interpret Prop and propositions

properly, as � is closed for M but not for PROP.

Note that it is not correct to interpret Prop in the

constructions-like calculi asM (as in [Ehr88]), because

M is not a small category. 2

This completes our sketch of the realizability model

of ECC. It is necessary to remark that the logical con-

sistency stated in corollary 3.1 also follows the above

model construction. In fact, �x:Prop:x is interpreted

as the empty !-set (;; ;).

6

This explains what we mean by `double identity' before.

Note that Set(jAj; jBj) = !�Set(A;B) when B is of the form

(jBj; ! � jBj).

7

PROP is isomorphic to the category of partial equivalence

relations. It is easy to verify that PROP is also a full subcate-

gory ofM.

The above model gives more information than just

the consistency. First, it captures the intuitive mean-

ings of the constructs in the calculus. For example,

M :A means `M 2 A' and the syntactic type inclusions

(A � A

0

) are reected semantically by set inclusions

(inc

A;A

0

). As pointed out at the end of section 2, if the

type inclusion were completely contravariant, it could

then only be possibly reected by a sort of coercion

instead of the set inclusion.

Secondly, maybe more important, it seems that such

a semantics also shows how one can adequately formal-

ize mathematical problems. For example, it seems to

be not adequate to formalize a theory of groups by as-

suming the carrier of a group as X:Prop as we know

that X, as a proposition, can not be viewed as an ar-

bitrary set. But, it seems that assuming X:Type

0

is

then more adequate as, in the model above, we can

view Type

0

as containing almost all sets. More re-

search is needed in this aspect.

5 Theory Abstraction in ECC

We briey discuss in this section one of the pragmatic

aspects of ECC | expressing and structuring math-

ematical theories.

5.1 �-types and theory abstraction

�-types in ECC, together with the type hierarchy,

can be used to express abstract mathematical theories

to gain a comprehensive structuring of mathematical

texts. For example, instead of postulating a theory for

rings as a context of the form

X:Type

0

;+:X ! X ! X; 0:X; :::; ass:P

ASS

+

; id:P

0

; :::

where the P 's are the propositions for ring axioms,

we may express the abstract theory for rings as the

following �-type:

Ring � �s:Sig

Ring

:Ax

Ring

(s)

where

Sig

Ring

� �X:Type

0

:(X ! X ! X) �X � :::

Ax

Ring

� �s:Sig

Ring

:P

ASS

+

^ P

0

^ :::

In general, (an abstract presentation of) a mathe-

matical theory T (say, Ring) consists of

� a signature presentation Sig

T

, which is in general

a �-type, and

� the abstract axioms over the signature, which can

be expressed as a predicate function Ax

T

of type

Sig

A

! Prop.

Then a theory T is the following �-type:

T � �s:Sig

T

:Ax

T

(s)

The proved (abstract) theorems of T can then be

expressed as a function Thm

T

of type Sig

T

!

Prop; their proofs constitute a function Prf

T

of type

�t:T:Thm

T

(�

1

(t)). These theorems and their proofs

can be `instantiated' as the corresponding theorems

and proofs for particular algebraic structure by �-

application. For example, one may instantiate the ab-

stract theorems and their proofs of the abstract theory

for rings to those concrete ones for integers.

Functions between abstract theories can also be de-

�ned which may capture the idea of lifting proofs from

an abstract theory to an extended theory [TL88]. The

type hierarchy even allows the above approach of the-

ory abstraction to be internally expressed (an idea due

to Coquand and Pollack); for this the fourth level of

the type hierarchy (Type

2

) is used.

5.2 Sharing by parameterization

The type hierarchy of ECC provides a reasonably

strong form of polymorphism and hence a potential fa-

cility of de�ning higher-order modules. With this, one

can de�ne functions between abstracted modules and

express sharing by parameterization [Bur84][LB88].

We show this by a simple example.

ExampleWe de�ne a function ringGen which results

in a ring structure when given as arguments a monoid

and an abelian group with the same carrier and a proof

of the extra axiom for the distributed laws. Suppose

the theories of monoids and abelian groups are de�ned

as follows:

Mon � �m:�X:Type

0

:Mwrt(X):Ax

Mon

(m)

AGrp � �g:�X:Type

0

:AGwrt(X):Ax

AGrp

(g)

where Mwrt; AGwrt : Type

0

! Type

0

and, when

given X:Type

0

as carrier, they give as results the

�-types for the operations for monoids and abelian

groups with respect to X, respectively, and Ax

Mon

(m)

and Ax

AGrp

(g) are the propositions expressing the ax-

ioms of theories for monoids and abelian groups.

ringGen can then be de�ned as follows (we omit the

associated typings for pairs for readability):

ringGen � �X:Type

0

�(�; 1):Mwrt(X)

�p

M

:Ax

Mon

(X; �; 1)

�(+; 0;�1):AGwrt(X)

�p

AG

:Ax

AGrp

(X;+; 0;�1)

�d:P

DISTR

((X;+; 0;�1; �; 1); and(p

M

; p

AG

; d))

which is of type

�X:Type

0

�m:Mwrt(X)�g:AGwrt(X)�d:P

DISTR

: Ring

This example shows how the sharing style of Pebble

described by Lampson and Burstall in [Bur84][LB88] is

supported in ECC and used in particular to guarantee

that the carriers of the two arguments are required to

be the same. Note that Mwrt and AGwrt are a sort

of `parameterized modules'. This sort of facility of

supporting higher-order modules is very useful. 2

5.3 Existential types

Existential types, also called weak sums, which are

used to describe abstract data types [MP85] can be de-

�ned in ECC. Besides the existential quanti�er at the

proposition level [MP85][Rey83][Pra65], we can also

de�ne existential types at the type levels. For example,

we can de�ne the ith level existential-type constructor

as follows:

9

i

� �A:Type

i

�B:A! Type

i

:

�R:Type

i

(�x:A:(B(x)! R))! R

which is of type �A:Type

i

((A ! Type

i

) !

Type

i+1

). Then, introduction and elimination opera-

tors rep

9

i

x:A:B

and abstype

i

similar to those described

in [MP85][Rey83] can be de�ned for each level which

satisfy the desired properties such as

abstype

i

x with y:B is rep

9

i

x:A:B

(a; b) in N

�

�

[b=y][a=x]N

Note that, di�erent from the existential quanti�er at

the proposition level, these `weak sums' are de�ned at

the predicative levels. This seems to show that, for

expressing abstract data types, the impredicativity is

not important. Of course, we do not have these data

types as values in the strong sense of [MP85]; e.g.,

9

0

x:A:B is of type Type

1

but not of type Type

0

.

However, the weak sums are not satisfactory tools

to express mathematical theories in proof development

as its elimination operator is too weak. Particularly,

there is no way to prove that the �rst component of a

`weak pair' of type 9

i

x:A:B satis�es the property B.

A comparison of strong and weak sums in the context

of modular programming can be found in [Mac86].

6 Related work

The calculus of constructions (CC for short) was stud-

ied in [Coq85][CH88][CH85] etc., whose meta theory

was studied in [Coq85][Coq86b] and [Pot87]. The idea

of extending constructions by an in�nite type hierar-

chy appeared in [Coq86a], where the Generalized Cal-

culus of Constructions (GCC for short) is presented.

The strong normalization result in this paper is the

�rst attempt to prove SN of a system which extends

CC by an in�nite type hierarchy, which also applies to

GCC [Luo88b].

The type-checking problem for GCC is considered

in [HaP88]; because GCC does not have the property

of type unicity, the resulted algorithm is rather com-

plicated.

In [HyP87] a general approach to categorical seman-

tics of constructions-like calculi is described, where an

extension of constructions with �-types and unit type

is presented with a motivation for discussing seman-

tics. [Ehr88] also gives a rather general framework of

categorical semantics for dependent types, in which a

sketch of how to interpret the calculus of constructions

in the !�Set framework is given. A full description of

an !�Set model for constructions (with �-types) can

be found in [Luo88a,c].

�-types are well-known in Martin-L�of's type theory

[ML73,84]. A similar idea of using �-types to express

modular structures occurs in researches of program-

ming languages (e.g., [BLam84] and [Mac86]). For

programming language research, one does not need to

consider logical consistency problem as we do.

7 Conclusion and Further Re-

search

The Extended Calculus of Constructions ECC is

presented and studied, which we believe is a very

strong and promising calculus to formalize mathemat-

ical problems and to be a basis of structured proof

development. We discuss briey several related topics

for further researches besides those already mentioned

above.

By Curry-Howard principle of formulas-as-types,

there is an embedded logic in ECC. We conjecture

that this logic is a conservative extension of the intu-

itionistic higher-order logic HOL (c.f., [Chu40][Tak75])

with respect to some reasonable interpretation. This is

also relevant to the problem of adequate formalization

of abstract mathematics discussed at the end of sec-

tion 4. The connection is concerned with the following

question: what is a proper way of interpreting the ob-

ject set Obj in HOL? Our guess is that it should be

a proper type instead of a proposition; otherwise, we

conjecture, the interpretation would not be conserva-

tive (even unsound?) with the intuition that too much

computational power is provided at the impredicative

level.

The proof-theoretic power of the calculus is un-

known. The model construction given in this paper

uses large set universes to interpret the type hierar-

chy. But it seems that it may be possible to give a

small model of ECC.

The approach to theory abstraction adopted in this

paper (section 5) may be called `theories as types',

particularly, as �-types. Another approach to theory

structuring in proof development [SB83][BLuo88] bor-

rows the idea from researches in algebraic speci�cation

languages like Clear [BG80]. This later approach may

be called `theories as values', as there are theory oper-

ations to `put theories together' in structured theory

development. Although the type hierarchy in ECC

enables us to view �-types (hence, theories) as a sort

of values, it seems not exible enough to have internal

powerful theory operations to structure large theories

from smaller ones. This seems to be a general unavoid-

able weakness of type systems which are necessary to

be restrictive to be logically consistent. However, it

might be interesting to combine the ideas of the above

two approaches in such a way that the idea of `theories

as values' can be implemented at the meta level of a

proof development system based on type theories.

R.Pollack in Edinburgh has developed an interac-

tive proof development system LEGO for Construc-

tions and extended it to incorporate �-types and type

hierarchy. Further experience with the system should

lead to a powerful proof development environment.

Acknowledgements I am grateful to S.Hayashi

who kindly helped me check a draft of the SN proof

and pointed out that the notion of inaccessible car-

dinal can be used to interpret type hierarchy in our

joint e�ort to consider models of hierarchy. Thanks to

E.Moggi and Th.Coquand for their insights and sug-

gesting that I consider set universes to interpret the hi-

erarchy. Thanks to R.Harper, G.Huet, R.Pollack and

P.Taylor for many helpful discussions. Finally, special

thanks to my supervisor R.Burstall, whose ideas on

structured theories and sharing originate my motiva-

tions, for his very helpful and continuous guidance in

the work.

References

[BG80] R.Burstall and J.Goguen, `The Seman-

tics of CLEAR, a Speci�cation Language',

LNCS 86.

[BLam84] R.Burstall and B.Lampson, `Pebble, a Ker-

nel Language for Modules and Abstract

Data Types', LNCS 173.

[BLuo88] R.Burstall and Zhaohui Luo, `A Set-

theoretic Setting for Structuring Theories

in Proof Development', Circulated notes.

Apr. 1988.

[Bur84] R.Burstall, `Programming with Modules as

Typed Functional Programming', Proc. In-

ter. Conf. on Fifth Generation Computer

Systems, Tokyo.

[CH85] Th.Coquand and G.Huet, `Constructions:a

Higher Order Proof System for Mechaniz-

ing Mathematics', EUROCAL 85.

[CH88] Th.Coquand and G.Huet, `The Calculus of

Constructions', Information and Computa-

tion, 2/3, vol. 76.

[Chu40] A. Church, `A Formulation of the Simple

Theory of Types', J. Symbolic Logic 5 (1).

[Coq85] Th.Coquand, `Une Theorie des Construc-

tions', PhD thesis, University of Paris VII.

[Coq86a] Th.Coquand, `An Analysis of Girard's

Paradox', LICS'86.

[Coq86b] Th.Coquand, `A Calculus of Construc-

tions'. Nov. 1986.

[Ehr88] T. Ehrhard, `A Categorical Semantics of

Constructions', LICS'88.

[Gir72] J.-Y.Girard, Interpretation fonctionelle et

elimination des coupures de l'arithmetique

d'ordre superieur, These, Universite Paris

VII.

[Gir86] J.-Y.Girard, `The System F of Variable

Types, Fifteen Years Later', Theoretical

Computer Science 45.

[HaP88] R. Harper and R. Pollack, `Type Checking,

Universe Polymorphism, and Typical Am-

biguity in the Calculus of Constructions',

Draft. Sept. 1988.

[Hyl87] M.Hyland, `A Small Complete Category',

Ann. Pure Appl. Logic. to appear.

[HyP87] M.Hyland and A.Pitts, `The Theory of

Constructions: Categorical Semantics and

Topos-theoretic Models', Categories in

Computer Science and Logic, Boulder.

[Klo80] J.W.Klop, Combinatory Reduction Sys-

tems, Mathematical Center Tracts 127.

[LB88] B.Lampson and R.Burstall, `Pebble, a Ker-

nel Language for Modules and Abstract

Data Types', Information and Computa-

tion, 2/3, vol. 76.

[LM88] G.Longo and E.Moggi, Constructive Nat-

ural Deduction and Its `Modest' Interpre-

tation, Report CMU-CS-88-131, Computer

Science Dept., Carnegie Mellon Univ.

[Luo88a] Zhaohui Luo, A Higher-order Calculus and

Theory Abstraction, LFCS report ECS-

LFCS-88-57, Dept. of Computer Science,

Univ. of Edinburgh.

[Luo88b] Zhaohui Luo, CC

1

�

and Its Meta Theory,

LFCS report ECS-LFCS-88-58, Dept. of

Computer Science, Univ. of Edinburgh.

[Luo88c] Zhaohui Luo, `A Higher-order Calculus and

Its !�Set Model', circulated notes. Jan.

1988.

[Mac86] D.MacQueen, `Using Dependent Types to

Express Modular Structure', 13th POPL.

[ML71] Per Martin-L�of, A Theory of Types, Report

71-3, Dept. of Math., Univ. of Stockholm.

[ML73] Per Martin-L�of, `An Intuitionistic The-

ory of Types: Predicative Part', in

Logic Colloquium'73, (eds.) H.Rose and

J.C.Shepherdson.

[ML84] Per Martin-L�of, Intuitionistic Type Theory,

Bibliopolis.

[MP85] J.Mitchell and G.Plotkin, `Abstract Types

Have Existential Type', 12th POPL.

[Mog85] E.Moggi, `The PER-model as Internal Cat-

egory with All Small Products',manuscript.

[Pit87] A.Pitts, `Polymorphism is Set Theoretic,

Constructively', Summer Conf. on Cate-

gory Theory and Computer Science, Edin-

burgh.

[Pot87] G.Pottinger, Strong Normalization for

Terms of the Theory of Constructions, TR

11-7, Odyssey Research Associates.

[Pra65] D. Prawitz, Natural Deduction, a Proof-

Theoretic Study, Almqvist & Wiksell.

[PS86] G.Pottinger and J.Seldin, `Normalization

for the Theory of Constructions (Extended

Abstract)', Dec. 1986.

[Rey74] J.C.Reynolds, `Towards a Theory of Type

Structure', LNCS 19.

[Rey83] J.C.Reynolds, `Types, Abstraction and Pa-

rameter Polymorphism', Information Pro-

cessing 83.

[Rey84] J.C.Reynolds, `Polymorphism is Not Set-

theoretic', LNCS 173.

[RP88] J.C.Reynolds and G.D.Plotkin, On Func-

tors Expressible in the Polymorphic Typed

Lambda Calculus, LFCS report, ECS-

LFCS-88-53, Dept. of Computer Science,

Univ. of Edinburgh.

[SB83] D.Sannella and R.Burstall, `Structured

Theories in LCF', 8th Colloquium on Trees

in Algebra and Programming.

[Tak75] G. Takeuti, Proof Theory, Stud. Logic 81.

[TL88] P.Taylor and Zhaohui Luo, `Theories,

Mathematical Structures and Strong Sums',

Preliminary notes. Dec. 1988.

[Tro73] A.S.Troelstra, Metamathematical Investi-

gation of Intuitionistic Arithmetic and

Analysis, Lecture Notes in Mathematics,

344.

[vD80] D.T. van Daalen, The Language Theory

of Automath, PhD Thesis. Technological

Univ., Eindhoven.

