
Formal Semantics in Modern Type Theories:
Is It Model-Theoretic, Proof-Theoretic or Both?

 Zhaohui Luo

 Dept of Computer Science

 Royal Holloway, Univ of London

Model-theoretic (traditional):

 NL  set-theoretical models

 E.g., Montague: NL  simple type theory  set theory

Proof-theoretic:

 NL  inferential roles

 E.g., logical operators given meaning via inference rules

MTT-semantics:

 Semantics in style of Montague semantics

 But, in Modern Type Theories

LACL 2014 2

Claim:

 Formal semantics in Modern Type Theories

 is both model-theoretic and proof-theoretic.

 NL  MTT (representational, model-theoretic)
 MTT as meaning-carrying language with its types representing

collections (or “sets”) and signatures representing situations

 MTT  Meaning theory (inferential roles, proof-theoretic)
 MTT-judgements, which are semantic representations, can be

understood proof-theoretically by means of their inferential roles
(c.f., Martin-Löf’s meaning theory)

LACL 2014 3

This talk

What is MTT-semantics?

 Introduction and overview

Model-theoretic characteristics of MTT-sem

 Signatures – extended notion of contexts to
represent situations

Proof-theoretic characteristics of MTT-sem

 Meaning theory of MTTs – inferential role
semantics of MTT-judgements

LACL 2014 4

I. Modern Type Theories & MTT-semantics

Church’s simple type theory (Montague semantics)

 Base types (“single-sorted”): e and t

 Composite types: et, (et)t, …

 Formulas in HOL (eg, membership of sets)
 Eg, s : et is a set of entities (as iff s(a))

Modern type theories

 Many types of entities – “many-sorted”
 Table, Man, Human, Phy, … are all types (of certain entities).

 Different MTTs have different embedded logics; e.g.,
 Martin-Löf’s type theory (1984): (non-standard) first-order logic

 Impredicative UTT (Luo 1994): higher-order logic

LACL 2014 5

Types v.s. Sets

Types are “collections of objects”
 May be thought of as “manageable sets”

 Model-theoretic

Modern type theories have meaning theories:
 Proof-theoretic

 Meanings given by means of inferential roles

Some typical differences
 Typing is decidable: “a:A” is decidable (in intensional TTs),

while the set membership “aS” is not.

 Type theories can have an embedded/consistent logic, by
propositions-as-types principle, while set theory is only a
theory in FOL.

LACL 2014 6

LACL 2014 7

MTTs (1) – Canonicity

Examples:

 A = N, a = 3+4, v = 7.

 A = NN, a = (x:N.x,x+1)(2), v = 2,3.

Definition

 Any closed object of an inductive type is
 computationally equal to a canonical object of that type.

This is a basis of MTTs.

MTTs (2) – Types

 Propositional types (“props-as-types”)

 Inductive and dependent types
 (A,B) (intuitively, { (a,b) | a : A & b : B(a) })

 [handsome man] = ([man], [handsome])

 x:A.B(x) (intuitively, { f : A
aA

B(a) | a : A & b : B(a) })

 A+B, AxB, Vect(A), …

 Universes
 A universe is a type of (some other) types.

 Eg, CN – a universe of the types that interpret CNs

 Other types: Phy, Table, AB, …

LACL 2014 8

formula type example

A  B A  B If …, then …

x:A.B(x) x:A.B(x) Every man is handsome.

MTTs (3): Coercive Subtyping

Basic idea: subtyping as abbreviation

 AB if there is a (unique) coercion c from A to B.

 Eg. Man  Human; (Man, handsome)  Man; …

Adequacy for MTTs (Luo, Soloviev & Xue 2012)

 Coercive subtyping is adequate for MTTs

 Note: traditional subsumptive subtyping is not.

Subtyping essential for MTT-semantics

 [walk] : HumanProp, [Paul] = p : [handsome man]

 [Paul walks] = [walk](p) : Prop

 because p : [handsome man] 

Man  Human

LACL 2014 9

LACL 2014 10

MTTs (4): Technology and Applications

Proof technology based on type theories

 Proof assistants – ALF/Agda, Coq, Lego, NuPRL, Plastic, …

Applications of proof assistants

 Math: formalisation of mathematics (eg, 4-colour Theorem
in Coq)

 CS: program verification and advanced programming

 Computational Linguistics
 E.g., MTT-sem based NL reasoning in Coq (Chatzikyriakidis & Luo 2014)

MTT-semantics

 Formal semantics in modern TTs

 Formal semantics in the Montagovian style

 But, in modern type theories (not in simple TT)

 Key differences from the Montague semantics:

 CNs interpreted as types (not predicates of type et)

 Rich type structure provides fruitful mechanisms for various
linguistic features (CNs, Adj/Adv modifications, coordination,
copredication, linguistic coercions, …)

 Some work on MTT-semantics

 Ranta (1994): basics of MTT-semantics

 A lot of recent developments … …

LACL 2014 11

MTT-semantics: examples

 Sentences as propositions: [A man walks] : Prop

 Common nouns as types: [man], [human], [table] : Type

 Verbs as predicates: [shout] : [human]Prop
 [A man shouts] = m:[man]. [shout](m) : Prop

 Only well-typed because [man]  [human] – subtyping is crucial.

 Adjectives as predicates: [handsome] : [man]Prop

 Modified CNs as -types: [handsome man] = ([man], [handsome])

 Coercive subtyping is crucial: [handsome man]  [man]

 Other classes of adjectives (Chatzikyriakidis & Luo 2013)

 Adverbs as polymorphic functions:
 [quickly] : A:CN. (AProp)(AProp), where CN is universe of CNs

 Cf, [Chatzikyriakidis 2014]

LACL 2014 12

MTT-sem: Some Advanced Linguistic Features

 Anaphora analysis

 MTTs provide alternative mechanisms for proper treatments via
-types [Sundholm 1989] (cf, DRTs, dynamic logic, …)

 Linguistic coercions

 Coercive subtyping provides a promising mechanism (Asher & Luo
2012)

 Copredication

 Cf, [Pustejovsky 1995, Asher 2011, Retoré et al 2010]

 Dot-types [Luo 2009, Xue & Luo 2012]

 Generalised quantifiers [Sundholm 1989, Lungu & Luo 2014]

 [every] :  A:CN. (AProp)Prop

 [Every man walks] = [every]([man], [walk])

LACL 2014 13

II. MTT-sem: Model-theoretic Characteristics

 In MTT-semantics, MTT is a representational
language.

MTT-semantics is model-theoretic

 Types represent collections (c.f., sets in set theory) – see
earlier slides on using rich types in MTTs to give semantics.

 Signatures represent situations (or incomplete possible
worlds).

LACL 2014 14

 Types and signatures/contexts are embodied in judgements:

 ├ a : A

 where A is a type,  is a context and  is a signature.

 Contexts are of the form   x1 : A1, …, xn : An

 Signatures, similar to contexts, are finite sequences of entries,
but
 their entries are introducing constants (not variables; i.e., cannot be

abstracted – c.f, Edinburgh LF (Harper, Honsell & Plotkin 1993)), and

 besides membership entries, allows more advanced ones such as manifest
entries and subtyping entries (see later).

LACL 2014 15

Situations represented as signatures

Beatles’ rehearsal: simple example

 Domain:

 Assignment:

 Signature representing the situation of Beatles’ rehearsal:

 We have, for example,

 “John played guitar” and “Bob was not a Beatle”.

LACL 2014 16

Manifest entries

More sophisticated situations

 E.g., infinite domains

 Traditional contexts with only membership entries are not
enough

 In signatures, we can have a manifest entry:

 x  a : A

 where a : A.

 Informally, it assumes x that behaves the same as a.

LACL 2014 17

Manifest entries: formal treatment

Manifest entries are just abbreviations of special
membership entries:

 x  a : A abbreviates x : 1A(a) where 1A(a) is the unit type
with only object *A(a).

 with the following coercion:

 where (z) = a for every z : 1A(a).

So, in any hole that requires an object of type A, we
can use x which, under the above coercion, will be
coerced into a, as intended.

LACL 2014 18

Manifest entries: examples



where

 with aD being a finite type and aB and aG inductively defined.

 (Note: Formally, “Type” should be a type universe.)

LACL 2014 19

Infinity:

 Infinite domain D represented by infinite type Inf

 D  Inf : Type

 Infinite predicate with domain D:

 f  f-defn : D  Prop

 with f-defn being inductively defined.

 “Animals in a snake exhibition”:

 Animal1  Snake : CN

LACL 2014 20

Subtyping entries in signatures

Subtyping entries in a signature:

 c : A < B

 where c is a functional operation from A to B.

Eg, we may have

 D  { John, … } : Type, c : D < Human

Note that, formally, for signatures,

 we only need “coercion contexts” but do not need “local
coercions” [Luo 2009, Luo & Part 2013];

 this is meta-theoretically much simpler.

LACL 2014 21

Remarks

 Using contexts to represent situations: historical notes

 Ranta 1994 (even earlier?)

 Further references [Bodini 2000, Cooper 2009, Dapoigny/Barlatier 2010]

 We introduce “signatures” with new forms of entries:
manifest/subtyping entries

 Manifest/subtyping entries in signatures are simpler than manifest
fields (Luo 2009) and local coercions (Luo & Part 2013).

 Preserving TT’s meta-theoretic properties is important!
 Ranta, Bodini, Dapoigny & Barlatier just use the traditional notion of

contexts; so OK.

 Our signatures with membership/manifest/subtyping entries are OK as well.

 Other extensions/changes need be careful: e.g., one may ask: are we
preserving logical consistency under propositions-as-types?

LACL 2014 22

III. MTT-sem: Proof-theoretic Characteristics

Proof-theoretic semantics

 Meaning is use (cf, Wittgenstein, Dummett, Brandom)
 Conceptual role semantics; inferential semantics

 Inference over reference/representation

 Two aspects of use
 Verification (how to assert a judgement correctly)

 Consequential application (how to derive consequences from a correct
judgement)

LACL 2014 23

 Proof-theoretic semantics in logics

 Two aspects of use via introduction/elimination rules, respectively.

 Gentzen (1930s) and studied by Prawitz, Dummett, … (1970s)

 Meaning theory for Martin-Löf’s type theory (Martin-Löf 1984)

 Proof-theoretic semantics for NLs

 Not much work so far
 cf, Francez’s work (eg, (Francez & Dyckhoff 2011))

 Traditional divide of MTS & PTS might have a misleading effect.

 MTT-semantics opens up new possibility – a meta/representational
language (MTT) has a nice proof-theoretic semantics itself.

LACL 2014 24

Meaning Explanations in MTTs

Two aspects of use of judgements

 How to prove a judgement?

 What consequences can be proved from a judgement?

Type constructors

 They are specified by rules including, introduction rules &
elimination rule.

 Eg, for -types

LACL 2014 25

Verificationist meaning theory

Verification (introduction rule) as central

 In type theory, meaning explanation via canonicity
(cf, Martin-Löf); recall the following picture:

 cf, strong normalisation property.

LACL 2014 26

Pragmatist meaning theory

Consequential application (elimination rule) as central

This is possible for some logical systems

 For example, operator &.

For dependent types, impossible.

 One can only formulate the elimination rules based on the
introduction operators!

LACL 2014 27

Another view: both essential

 Both aspects (verification & consequential application) are
essential to determine meanings.

 Dummett
 Harmony & stability (Dummett 1991), for simple systems.

 For MTTs, discussions on this in (Luo 1994).

 For a type constructor in MTTs, both introduction and elimination
rules together determine its meaning.

 Argument for this view:

 MTTs are much more complicated – a single aspect is insufficient.

 Pragmatist view:
 impossible for dependent types (see previous page)

 Verificationist view:
 Example of insufficiency – identity types

LACL 2014 28

 Identity type IdA(a,b) (eg, in Martin-Löf’s TT)

 Its meaning cannot be completely determined by its
introduction rule (Refl), for reflexivity, alone.

 The derived elimination rule, so-called J-rule, is deficient in
proving, eg, uniqueness of identity proofs, which can only be
possible when we introduce the so-called K-rule [Streicher
1993].

 So, the meaning of IdA is given by either one of the
following:
 (Refl) + (J)

 (Refl) + (J) + (K)

 ie, elimination rule(s) as well as the introduction rule.

LACL 2014 29

Concluding Remarks

Summary

 NL  MTT (model-theoretic)

 MTT  meaning theory (proof-theoretic)

Future work

 Proof-theoretic meaning theory

E.g. impredicativity (c.f., Dybjer’s recent work in on “testing-
based meaning theory”)

Meaning explanations of hypothetical judgements

 General model theory for MTTs? But …

Generalised algebraic theories [Cartmell 1978, Belo 2007]

 Logic-enriched Type Theories (LTTs; c.f., Aczel, Palmgren, …)

LACL 2014 30

References

 The cited references in the talk refer to either those in the published paper in LACL 2014

proceedings or those listed below.

 [Belo 2007] J. Belo. Dependently Sorted Logic. LNCS 4941.

 [Bodini 2000] P. Bodini. Formalizing Contexts in Intuitionistic Type Theory. Fundamenta Informaticae 4(2).

 [Cartmell 1978] Generalised algebraic theories and contextual categories, Ph.D. thesis, Oxford.

 [Chatzikyriakidis 2014] Adverbs in a Modern Type Theory. This volume.

 [Dapoigny/Barlatier 2010] Modelling Contexts with Dependent Types. Fundamenta Informaticae 104.

 [Lungu & Luo 2014] Monotonicity Reasoning in Formal Semantics Based on Modern Type Theories. This
volume.

 [Luo 2009] Type-theoretical semantics with coercive subtyping. SALT20.

 [Pustejovsky 1995] The Generative Lexicon. MIT.

 [Retoré et al 2010] Towards a Type-Theoretical Account of Lexical Semantics. JoLLI 19(2).

 [Streicher 1993] T. Streicher. Investigations into Intensional Type Theory. Habilitation Thesis, 1993.

 [Sundholm 1989] Constructive Generalized Quantifiers. Synthese 79(1).

 [Xue & Luo 2012] Dot-types and their implementation. LACL 2012, LNCS 7351.

LACL 2014 31

LACL 2014 32

