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Model-theoretic (traditional):  

 NL  set-theoretical models 

 E.g., Montague: NL  simple type theory  set theory 

Proof-theoretic:  

 NL  inferential roles 

 E.g., logical operators given meaning via inference rules 

MTT-semantics: 

 Semantics in style of Montague semantics 

 But, in Modern Type Theories  
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Claim:  

  Formal semantics in Modern Type Theories  

  is both model-theoretic and proof-theoretic. 

 NL  MTT (representational, model-theoretic) 
 MTT as meaning-carrying language with its types representing 

collections (or “sets”) and signatures representing situations 

 MTT  Meaning theory (inferential roles, proof-theoretic) 
 MTT-judgements, which are semantic representations, can be 

understood proof-theoretically by means of their inferential roles     
(c.f., Martin-Löf’s meaning theory) 
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This talk 

What is MTT-semantics?  

 Introduction and overview 

Model-theoretic characteristics of MTT-sem 

 Signatures – extended notion of contexts to 
represent situations 

Proof-theoretic characteristics of MTT-sem 

 Meaning theory of MTTs – inferential role 
semantics of MTT-judgements  
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I. Modern Type Theories & MTT-semantics 

Church’s simple type theory (Montague semantics) 

 Base types (“single-sorted”): e and t 

 Composite types: et, (et)t, … 

 Formulas in HOL (eg, membership of sets) 
 Eg, s : et is a set of entities (as iff s(a)) 

Modern type theories 

 Many types of entities – “many-sorted” 
 Table, Man, Human, Phy, … are all types (of certain entities). 

 Different MTTs have different embedded logics; e.g., 
 Martin-Löf’s type theory (1984): (non-standard) first-order logic 

 Impredicative UTT (Luo 1994): higher-order logic  
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Types v.s. Sets 

Types are “collections of objects”  
 May be thought of as “manageable sets” 

 Model-theoretic  

Modern type theories have meaning theories: 
 Proof-theoretic 

 Meanings given by means of inferential roles 

Some typical differences 
 Typing is decidable: “a:A” is decidable (in intensional TTs), 

while the set membership “aS” is not. 

 Type theories can have an embedded/consistent logic, by 
propositions-as-types principle, while set theory is only a 
theory in FOL. 
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MTTs (1) – Canonicity 

 

 
Examples: 

 A = N,     a = 3+4,   v = 7. 

 A = NN,    a = (x:N.x,x+1)(2), v = 2,3. 

Definition 

  Any closed object of an inductive type is 
 computationally equal to a canonical object of that type. 

This is a basis of MTTs. 



MTTs (2) – Types 

 Propositional types (“props-as-types”) 

 

 

 

 Inductive and dependent types  
 (A,B) (intuitively, { (a,b) | a : A & b : B(a) }) 

 [handsome man] = ([man], [handsome]) 

 x:A.B(x) (intuitively, { f : A
aA

B(a) | a : A & b : B(a) }) 

 A+B, AxB, Vect(A), …  

 Universes 
 A universe is a type of (some other) types. 

 Eg, CN – a universe of the types that interpret CNs 

 Other types: Phy, Table, AB, …  
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formula type example 

A  B A  B If …, then … 

x:A.B(x) x:A.B(x) Every man is handsome.          



MTTs (3): Coercive Subtyping 

Basic idea: subtyping as abbreviation 

 AB if there is a (unique) coercion c from A to B. 

   Eg. Man  Human; (Man, handsome)  Man; …  

Adequacy for MTTs (Luo, Soloviev & Xue 2012) 

 Coercive subtyping is adequate for MTTs 

 Note: traditional subsumptive subtyping is not. 

Subtyping essential for MTT-semantics 

 [walk] : HumanProp, [Paul] = p : [handsome man]  

 [Paul walks] = [walk](p)  :  Prop 

 because p : [handsome man] 
 
Man  Human 
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MTTs (4): Technology and Applications 

Proof technology based on type theories 

 Proof assistants – ALF/Agda, Coq, Lego, NuPRL, Plastic, …  

Applications of proof assistants 

 Math: formalisation of mathematics (eg, 4-colour Theorem 
in Coq) 

 CS: program verification and advanced programming 

 Computational Linguistics 
 E.g., MTT-sem based NL reasoning in Coq (Chatzikyriakidis & Luo 2014) 



MTT-semantics 

 Formal semantics in modern TTs 

 Formal semantics in the Montagovian style 

 But, in modern type theories (not in simple TT) 

 Key differences from the Montague semantics: 

 CNs interpreted as types (not predicates of type et) 

 Rich type structure provides fruitful mechanisms for various 
linguistic features (CNs, Adj/Adv modifications, coordination, 
copredication, linguistic coercions, …)  

 Some work on MTT-semantics 

 Ranta (1994): basics of MTT-semantics 

 A lot of recent developments … …  
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MTT-semantics: examples 

 Sentences as propositions: [A man walks] : Prop 

 Common nouns as types: [man], [human], [table] : Type 

 Verbs as predicates: [shout] : [human]Prop 
 [A man shouts] = m:[man]. [shout](m) : Prop 

 Only well-typed because [man]  [human] – subtyping is crucial. 

 Adjectives as predicates: [handsome] :  [man]Prop 

 Modified CNs as -types: [handsome man] = ([man], [handsome]) 

 Coercive subtyping is crucial: [handsome man]  [man] 

 Other classes of adjectives (Chatzikyriakidis & Luo 2013) 

 Adverbs as polymorphic functions:  
 [quickly] : A:CN. (AProp)(AProp), where CN is universe of CNs 

 Cf, [Chatzikyriakidis 2014] 
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MTT-sem: Some Advanced Linguistic Features 

 Anaphora analysis 

 MTTs provide alternative mechanisms for proper treatments via   
-types [Sundholm 1989] (cf, DRTs, dynamic logic, …)  

 Linguistic coercions 

 Coercive subtyping provides a promising mechanism (Asher & Luo 
2012) 

 Copredication 

 Cf, [Pustejovsky 1995, Asher 2011, Retoré et al 2010] 

 Dot-types [Luo 2009, Xue & Luo 2012] 

 Generalised quantifiers [Sundholm 1989, Lungu & Luo 2014] 

 [every] :  A:CN. (AProp)Prop 

 [Every man walks] = [every]([man], [walk]) 
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II. MTT-sem: Model-theoretic Characteristics 

 In MTT-semantics, MTT is a representational 
language. 

MTT-semantics is model-theoretic 

 Types represent collections (c.f., sets in set theory) – see 
earlier slides on using rich types in MTTs to give semantics. 

 Signatures represent situations (or incomplete possible 
worlds). 
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 Types and signatures/contexts are embodied in judgements: 

   ├ a : A 

 where A is a type,  is a context and  is a signature.   

 Contexts are of the form   x1 : A1, …, xn : An 

 Signatures, similar to contexts, are finite sequences of entries, 
but 
 their entries are introducing constants (not variables; i.e., cannot be 

abstracted – c.f, Edinburgh LF (Harper, Honsell & Plotkin 1993)), and  

 besides membership entries, allows more advanced ones such as manifest 
entries and subtyping entries (see later). 

 

LACL 2014 15 



Situations represented as signatures 

Beatles’ rehearsal: simple example 

 Domain:  

 

 Assignment: 

 

 Signature representing the situation of Beatles’ rehearsal: 

 

 We have, for example,  

 

 “John played guitar” and “Bob was not a Beatle”. 
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Manifest entries 

More sophisticated situations 

 E.g., infinite domains 

 Traditional contexts with only membership entries are not 
enough 

 In signatures, we can have a manifest entry: 

    x  a : A 

 where a : A.   

 Informally, it assumes x that behaves the same as a. 
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Manifest entries: formal treatment 

Manifest entries are just abbreviations of special 
membership entries:  

 x  a : A abbreviates x : 1A(a) where 1A(a) is the unit type 
with only object *A(a). 

 with the following coercion: 

 

 

 where       (z) = a for every z : 1A(a). 

So, in any hole that requires an object of type A, we 
can use x which, under the above coercion, will be 
coerced into a, as intended.   
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Manifest entries: examples 

 

 
 

 

 

where 

 
 

 

 with aD being a finite type and aB and aG inductively defined. 

 (Note: Formally, “Type” should be a type universe.) 
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Infinity: 

 Infinite domain D represented by infinite type Inf 

   D  Inf : Type  

 Infinite predicate with domain D: 

   f  f-defn : D  Prop 

  with f-defn being inductively defined. 

 “Animals in a snake exhibition”: 

   Animal1  Snake : CN 
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Subtyping entries in signatures 

Subtyping entries in a signature: 

   c : A < B 

 where c is a functional operation from A to B. 

Eg, we may have 

  D  { John, … } : Type, c : D < Human 

Note that, formally, for signatures,  

 we only need “coercion contexts” but do not need “local 
coercions” [Luo 2009, Luo & Part 2013];  

 this is meta-theoretically much simpler. 
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Remarks 

 Using contexts to represent situations: historical notes 

 Ranta 1994 (even earlier?) 

 Further references [Bodini 2000, Cooper 2009, Dapoigny/Barlatier 2010] 

 We introduce “signatures” with new forms of entries: 
manifest/subtyping entries 

 Manifest/subtyping entries in signatures are simpler than manifest 
fields (Luo 2009) and local coercions (Luo & Part 2013). 

 Preserving TT’s meta-theoretic properties is important!   
 Ranta, Bodini, Dapoigny & Barlatier just use the traditional notion of 

contexts; so OK.   

 Our signatures with membership/manifest/subtyping entries are OK as well. 

 Other extensions/changes need be careful: e.g., one may ask: are we  
preserving logical consistency under propositions-as-types? 
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III. MTT-sem: Proof-theoretic Characteristics 

Proof-theoretic semantics 

 Meaning is use (cf, Wittgenstein, Dummett, Brandom) 
 Conceptual role semantics; inferential semantics 

 Inference over reference/representation 

 Two aspects of use 
 Verification (how to assert a judgement correctly) 

 Consequential application (how to derive consequences from a correct 
judgement) 
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 Proof-theoretic semantics in logics 

 Two aspects of use via introduction/elimination rules, respectively. 

 Gentzen (1930s) and studied by Prawitz, Dummett, … (1970s) 

 Meaning theory for Martin-Löf’s type theory (Martin-Löf 1984) 

 Proof-theoretic semantics for NLs 

 Not much work so far 
 cf, Francez’s work (eg, (Francez & Dyckhoff 2011)) 

 Traditional divide of MTS & PTS might have a misleading effect. 

 MTT-semantics opens up new possibility – a meta/representational 
language (MTT) has a nice proof-theoretic semantics itself. 
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Meaning Explanations in MTTs 

Two aspects of use of judgements  

 How to prove a judgement? 

 What consequences can be proved from a judgement? 

Type constructors 

 They are specified by rules including, introduction rules & 
elimination rule. 

 Eg, for -types  
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Verificationist meaning theory 

Verification (introduction rule) as central 

 In type theory, meaning explanation via canonicity 
(cf, Martin-Löf); recall the following picture: 

 

 

 

 

 cf, strong normalisation property. 
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Pragmatist meaning theory 

Consequential application (elimination rule) as central 

This is possible for some logical systems 

 For example, operator &. 

For dependent types, impossible. 

 One can only formulate the elimination rules based on the 
introduction operators! 
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Another view: both essential 

 Both aspects (verification & consequential application) are 
essential to determine meanings. 

 Dummett  
 Harmony & stability (Dummett 1991), for simple systems. 

 For MTTs, discussions on this in (Luo 1994).  

 For a type constructor in MTTs, both introduction and elimination 
rules together determine its meaning. 

 Argument for this view: 

 MTTs are much more complicated – a single aspect is insufficient.   

 Pragmatist view:  
 impossible for dependent types (see previous page) 

 Verificationist view:  
 Example of insufficiency – identity types 

LACL 2014 28 



 Identity type IdA(a,b) (eg, in Martin-Löf’s TT) 

 Its meaning cannot be completely determined by its 
introduction rule (Refl), for reflexivity, alone. 

 The derived elimination rule, so-called J-rule, is deficient in 
proving, eg, uniqueness of identity proofs, which can only be 
possible when we introduce the so-called K-rule [Streicher 
1993]. 

 So, the meaning of IdA is given by either one of the 
following:  
 (Refl) + (J)  

 (Refl) + (J) + (K) 

 ie, elimination rule(s) as well as the introduction rule. 
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Concluding Remarks 

Summary 

 NL  MTT (model-theoretic) 

 MTT  meaning theory (proof-theoretic) 

Future work 

 Proof-theoretic meaning theory  

E.g. impredicativity (c.f., Dybjer’s recent work in on “testing-
based meaning theory”) 

Meaning explanations of hypothetical judgements 

 General model theory for MTTs? But …  

Generalised algebraic theories [Cartmell 1978, Belo 2007] 

 Logic-enriched Type Theories (LTTs; c.f., Aczel, Palmgren, …)  
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