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Abstract. When modern type theories are employed for formal seman-
tics, common nouns (CNs) are interpreted as types, not as predicates.
Although this brings about some technical advantages, it is worthwhile
to ask: what is special about CNs that merits them to be interpreted as
types? We discuss the observation made by Geach that, unlike other lex-
ical categories, CNs have criteria of identity, a component of meaning
that makes it legitimate to compare, count and quantify. This is closely
related to the notion of set (type) in constructive mathematics, where a
set (type) is not given solely by specifying its objects, but together with
an equality between its objects, and explains and justifies to some extent
why types are used to interpret CNs in modern type theories. It is shown
that, in order to faithfully interpret modified CNs as Σ-types so that the
associated criteria of identity can be captured correctly, it is important
to assume proof irrelevance in type theory. We shall also briefly discuss a
proposal to interpret mass noun phrases as types in a uniform approach
to the semantics of CNs.

1 Introduction

It has been proposed that common nouns be interpreted as types, when modern
type theories (MTTs) are used to give formal semantics [25]. This is different
from the Montague semantics [21], where common nouns are interpreted as pred-
icates. For instance, consider the CN ‘book’: it is interpreted in the Montague
semantics as a predicate of type e → t, while in a modern type theory, it is inter-
preted as a type. It has been argued that, because CNs are interpreted as types
rather than predicates, many linguistic phenomena (eg, copredication), whose
formal semantic treatments involve subtyping and have been found difficult in
the Montagovian setting, can be dealt with satisfactorily in a straightforward
way in MTTs [16]. This has provided some justifications, among others, for
MTTs to be employed for formal semantics.

However, one may ask: why can CNs be interpreted as types, but not the
other lexical terms such as verbs or adjectives? In the Montagovian setting, CNs,
verbs and adjectives are all interpreted as predicates, but in a formal semantics
based on MTTs, CNs are interpreted as types and verbs and adjectives are still
interpreted as predicates, not as types. The above question may be put in another
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way: what is special about CNs that merits them to be interpreted as types? This
paper attempts to answer this question and discusses some of the related issues.

We revisit the observation made by Geach and others [11,12,2] that CNs have
a special feature that they have their own criteria of identity. It is based on this
identity criterion that one can decide whether two objects of a CN are the same
and it is also based on this that counting, measuring and quantification become
possible and meaningful. We argue that it is this special feature that makes it
adequate for CNs to be interpreted as types. In constructive mathematics, a
set (or a type) is not given solely by specifying its objects, but together with
an equality between its objects. In fact, every type in MTTs is associated with
such an equality. As illustrated in the paper, when a type is used to interpret a
CN, the associated equality corresponds closely to, and formally captures, the
criterion of identity of the CN.

In order to correctly capture the criteria of identity for modified CNs in a
type-theoretical semantics, where modified CNs are formally represented as Σ-
types, one should adopt the principle of proof irrelevance (see, for instance, [28]
for a recent study). This reflects the basic intuitive idea that, for instance, two
handsome men are the same if and only if they are the same man (and it does
not matter how one demonstrates that they are handsome). Proof irrelevance
identifies the proofs of the same logical proposition and, as a consequence of
adopting such a principle, the intended criteria of identity for modified CNs,
when formalised as Σ-types, are captured correctly.

Count nouns and mass nouns are both CNs. In formal semantics, one has
mostly considered count nouns as primary examples. For mass nouns, although
there have been many proposals for their semantic interpretations either as mere-
ological sums or as sets or predicates, no consensus has been reached. In this
paper, we take the view that mass noun phrases be interpreted as types and
consider a proposal that, when a mass noun is used with a classifier (or mea-
sure word), it may be interpreted as a type whose associated equality represents
the information given by the classifier. When a mass noun is used without any
explicit classifier associated, one may regard it as underspecified in that the
criteria of identity can only be determined when more contextual information
is available. In MTTs, such underspecification can be represented by means of
overloading, as supported by coercive subtyping [17]. As for count nouns, they
can be seen as special cases where the measures are obvious and known.1 This is
only a tentative proposal and, when further developed, it may lead to a uniform
approach to interpreting CNs, either count or mass, as types.

Introducing the background, §2 contains a brief account of the type-theoretical
semantics based on MTTs. In §3, we first introduce the notion of criterion of
identity for CNs and then discuss how this is reflected in the formal semantics
based on MTTs and how it is linked to the constructive notion of set (or type).
Proof irrelevance is discussed in §4, where we show how it can be used in the

1 This is consistent with the fact that, in the languages with classifiers such as Chinese,
a count noun is also used together with a classifier.



Common Nouns as Types 175

Example Montague semantics Semantics in MTTs

CN man, human [[man]], [[human]] : e → t [[man]], [[human]] : Type

IV talk [[talk]] : e → t [[talk]] : [[human]] → Prop

ADJ handsome [[handsome]] : (e → t) → (e → t) [[handsome]] : [[man]] → Prop

MCN handsome man [[handsome]]([[man]]) Σm : [[man]] . [[handsome]](m)

S A man talks ∃m : e. [[man]](m)& [[talk]](m) ∃m : [[man]] . [[talk]](m)

Fig. 1. Examples in formal semantics

formal semantics based on MTTs to obtain adequate descriptions of modified
CNs. Type-theoretical semantics of mass nouns phrases is discussed in §5.

2 CNs as Types in Formal Semantics

In this section, we give a brief introduction to the type-theoretical semantics
based on modern type theories (MTTs) [25,16].2 It is the formal semantics in
the style of the Montague semantics [21], but in type theories with dependent
types and inductive types, among others, rather than in Church’s simple type
theory [7] as employed in the Montague semantics. Examples of MTTs include
Martin-Löf’s predicative type theory [19,20] and the impredicative type theory
ECC/UTT [14]. In an impredicative type theory like UTT, there is a type Prop
of all logical propositions, as to be used in this paper. (This is similar to the
simple type theory where there is a type t of truth values.)

In Figure 1, we give some basic examples to illustrate how linguistic categories
are interpreted in MTTs and compare them to those in the Montague semantics.
A key difference between these two is the interpretation of CNs. In the Montague
semantics whose underlying logic can be regarded as ‘single-sorted’3, CNs are in-
terpreted as predicates of type e → t (and so are verbs and adjectives). In con-
trast,MTTscanbe regardedas ‘many-sorted’ logical systemswhere there aremany
types (eg, inductive types such as the finite types as introduced in Appendix B)
that may be used to stand for the domains to be represented; in particular, CNs
are interpreted as types [25]. Similarly, modified CNs (MCNs) are interpreted as
predicates in the Montague semantics, while they are interpreted by means of Σ-
types in MTTs. For instance, in MTTs, ‘handsome man’ can be interpreted as the
type Σm : [[man]] . [[handsome]](m). (For Σ-types and their notations, see Ap-
pendix A.) Because CNs are interpreted as types, verbs and adjectives are inter-
preted as predicates over the types (eg, [[human]]) that interpret the domains in
which they are meaningful: examples are given in Figure 1.

Note that subtyping is crucial for the formal semantics in MTTs. For instance,
consider theMTT semantics of the sentence ‘Aman talks’ in Figure 1: form of type
[[man]] and [[talk]] of type [[human]] → Prop, [[talk]](m) is only well-typed because

2 One may also consult the lecture notes [18], where some informal explanations of
MTTs with subtyping are given in the context of formal semantics.

3 By ‘single-sorted’ here, we mean that there is only one type e of all entities. Strictly
speaking, there is another ‘sort’/type t of truth values in Church’s simple type theory.
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we have that [[man]] is a subtype of [[human]]. For MTTs, coercive subtyping as
studied in [15] is an adequate framework to be employed for formal semantics [16].

To employ modern type theories, instead of the simple type theory, for for-
mal semantics has many implications, some of which are philosophical, some
methodological, and some technical. Technically, for example, the powerful type
structures in MTTs give us new useful mechanisms for formal semantics of var-
ious linguistic features, examples of which include the use of the dependent
Σ-types to interpret modified CNs [25] and the introduction of a type universe
cn of the interpretations of common nouns in many linguistic interpretations,
including that of adverbs [17].

One of the most notable methodological implications comes from the fact
that CNs are interpreted as types, not as predicates. For example, in modelling
some linguistic phenomena semantically, one may introduce various subtyping
relations by postulating a collection of subtypes (physical objects, informational
objects, eventualities, etc.) of the type of entities [1]. It has become clear that,
once such subtyping relations are introduced, it is very difficult to deal with
some linguistic phenomena such as copredication satisfactorily if CNs are inter-
preted as predicates as in the traditional Montagovian setting. Instead, if CNs
are interpreted as types, as in the type-theoretical semantics based on MTTs,
copredication can be given a straightforward and satisfactory treatment [16].

The above methodological advantage may go some way to justify that CNs
be interpreted as types (and the employment of MTTs for formal semantics).
However, why should CNs be interpreted as types in the first place? Why are
they different from the other lexical categories such as verbs and adjectives? After
all, in the Montague semantics, CNs, verbs, and adjectives are all interpreted as
predicates. Put in another way:

What is special about CNs that merits them to be interpreted as types?

The rest of this paper investigates the related issues and may be regarded as a
first step to answer the above question.

3 Criteria of Identity

3.1 An Informal Account

CNs are special, as observed by Geach [11] and others, in that they have the
associated criteria of identity. Intuitively, a CN determines a concept that does
not only have a criterion of application, to be employed to determine whether
the concept applies to an object, but a criterion of identity, to be employed to
determine whether two objects of the concept are the same. It has been argued
that CNs are distinctive in this as other lexical terms like verbs and adjectives
do not have such criteria of identity (cf, the arguments in [2]).

The origin of the notion of criteria of identity can be traced back to Frege [10]
when he considered abstract mathematical objects such as numbers or lines. For
instance, in geometry, the criterion of identity for directions is the parallelism of
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lines: the direction of line A is equal to that of line B if and only if A and B are
parallel. Geach has noticed that such criteria of identity exist for every common
noun and is the basis for counting. Gupta [12] has studied this systematically with
very interesting examples. For instance, consider the following two sentences:

(1) EasyJet has transported 1 million passengers in 2010.

(2) EasyJet has transported 1 million persons in 2010.

It is easy to see that the first sentence (1) does not imply the second (2), because
some people may have traveled more than once by EasyJet in 2010. It has been
argued that this is because that the CNs ‘passenger’ and ‘person’ have differ-
ent criteria of identity, which are the basis for counting and have led to such
phenomena [11,12,2].4

It may be worth noting that the notion of the criterion of identity is context
sensitive. In other words, what a CN means depends on the context in which
it is used. For instance, consider the word ‘student’. In the following sentences,
the associated criteria of identity can be different, because in (3) John may
have taught several classes and it may be reasonable to count a student in two
different classes twice, while this is not the case in (4) where one would say that
in that case ‘student’ seems to have the same criterion of identity with ‘person’.

(3) John taught 500 students last year.

(4) 1000 students have applied for campus cards last year.

Aclose linkbetween thenotionof criterionof identity and the constructivenotionof
set (type) can be established. In constructivemathematics, a set is a ‘preset’, which
gives its application criterion, together with an equality, which gives its criterion
of identity that determines whether two objects of the set are the same [5,4]. Mod-
ern type theories such as Martin-Löf’s type theory [19,20] were originally devel-
oped for formalisation of constructive mathematics, where each type is associated
with such an equality or criterion of identity. In the following, we shall first consider
the formalisations inMTTs of the above example of passengers to demonstrate how
the criteria of identity are reflected in such formal representations, and then discuss
the link to constructive mathematics in more details.

3.2 Formalisation of an Example

The above example about ‘passengers’ can be formalised in the MTTs. Let T
be the type of the journeys in concern (eg, the journeys that one may make
via EasyJet in 2010). We shall consider two different formal presentations of
Passenger[T ], the type of passengers in journeys of type T , one using finite
types and the other considering proof irrelevance.

4 There have been arguments against the idea of criteria of identity. For instance,
Gupta [12] mentioned that one might consider some ontological arguments and
Barker [3] has argued against it on the grounds that the linguistic phenomena could
better be explained by means of pragmatics. The author believes that the notion of
criteria of identity still offers the best explanations.
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Representation using finite types. The type Passenger[T ] can be defined as the
following Σ-type:5

Passenger[T ] = Σp : Person. Journey[T ](p),

where Person is the type of persons and Journey[T ](p) the finite type of jour-
neys in T that the person p has made. (See Appendix B for the formal defi-
nition of finite types.) In other words, a passenger is a person together with a
journey he/she made and, formally, this is represented as a pair (p, t) of type
Passenger[T ], where t is a journey that the person p has made. There are two
points to note about this definition:

1. If Journey[T ](p) is empty (the finite type with no object), p has not made
any journey in T and is hence not a passenger by definition (there is no
passenger (p, t) of type Passenger[T ] because there is no such a t of type
Journey[T ](p).)

2. Formally, (p, t) and (p′, t′) are equal passengers if, and only if, p = p′ and
t = t′.6 As passengers, ‘John at journey t’ and ‘John at journey t′’ are only
equal if t and t′ are the same journey.

This last note about equality between passengers is important. It is different from
that between persons: the same person making different journeys is regarded as
different passengers.

Representation assuming proof irrelevance. Another representation assumes proof
irrelevance:

Γ � P : Prop Γ � p : P Γ � q : P

Γ � p = q : P

which intuitively says that every two proofs of the same logical proposition are
equal. (See §4 for further discussions on proof irrelevance.) With proof irrele-
vance, the following Σ-type can be used to represent the type of passengers:

Passenger[T ] = Σp : Person.Σt : T. J(p, t),

where J : Person → T → Prop is the predicate such that the predicate J(p) of
type T → Prop represents the set of journeys that p has made. It is straight-
forward to show that two passengers are the same if and only if they are the
same person on the same journey. In symbols, (p, t, v) = (p′, t′, v′) if, and only
if, p = p′ and t = t′, because by proof irrelevance, we always have v = v′ when
the other two components are the same.

5 An alternative notation for the Σ-type Passenger[T ] is Σ(Person, Journey[T ]). See
Appendix A for a brief introduction of Σ-types.

6 Note that, for any p : Person, Journey[T ](p) is a type, not a logical proposition.
Therefore, this is the case even when we have proof irrelevance, as to be discussed
in §4.
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Remark 1. Both of the above representations give the correct criterion of iden-
tity. Intuitively, they give rise to the same criterion of identity between passengers
as intended. Other formalisations are also possible. However, it is easy to arrive
at some unintended formulations. For instance, it might be tempting to say that
‘a passenger is a person who has made one or more journeys’. This would lead
to the formalisation of the type of passengers as a Σ-type

Σp : Person. T ravelled[T ](p),

where Travelled[T ](p) is a logical proposition expressing that p has made some
journeys inT . Sucha formulationdoesnot capture the intendedcriterionof identity
between passengers, no matter whether we assume proof irrelevance or not. For
instance, if we do, we have that two objects of the above type (‘passengers’) are the
same if and only if they are the same person who has travelled, because the proofs
that the person has travelled are identified. Therefore, such a formal representation
would not have captured the intended criterion of identity correctly. ��

3.3 Constructive Notion of Set or Type: Further Remarks

In constructive mathematics, the notion of set is associated with an equality
(an equivalence relation) [5]. As Beeson [4] puts it, it is a ‘preset’ together with
an equality. A preset X is given by its criterion of application that determines
whether an object is in X , while the associated equality determines whether
two objects of the set are the same. Unlike classical mathematics, there is no
universal equality that can be applied to all objects; instead, different sets are
associated with different equalities. When CNs are interpreted as sets, this is
directly linked to the notion of criteria of identity in that different CNs may
have different criteria of identity.

In modern type theories, a type is a constructive set.7 For instance, in Martin-
Löf’s type theory, a type is specified by making clear the following simultaneously:

1. What are the canonical objects of the type?
2. Under what conditions are two canonical objects equal?

Please note that, for completely presented types, these two are enough to deter-
mine both criterion of application and criterion of identity.

In MTTs in general, every type is associated with its own equality. For in-
stance, the equality for Σx:A. B(x) is: for any of its two objects (a, b) and (a′, b′),
they are equal only when a = a′ in type A and b = b′ in type B(a) (please note
that B is dependent on the objects of A; in this case, it is a). According to

7 We are rather imprecise here. Types in MTTs are also restricted sets with further
properties. For example, a type can be inductively defined and, if so, it hasmany special
properties that are not shared by all types. Also, in Martin-Löf’s type theory, every
type is completely presented in the sense that, informally, its criterion of application can
be evidenced by computation. The author thinks that such a requirement for objects
to be completely presented should not be imposed on linguistic interpretations when
MTTs are used for formal semantics.
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this definition of equality for Σ-types, both of the above representations for
Passenger[T ] correctly capture the criterion of identity between passengers as
intended. Please note that, in the second representation above, we have to as-
sume proof irrelevance for, otherwise, the representation would not capture the
criterion of identity between passengers correctly: if we do not have proof irrel-
evance, the ‘passengers’ (p, t, v) and (p, t, v′) can be different because the proofs
v and v′ that p made the journey t are different, although they should be the
same passenger.

Remark 2. It seems that the close link between CNs with criteria of identity
and types with associated equalities is one of the instances where principles in
constructive mathematics can be successfully applied to linguistic semantics in
an interesting way. This is reflected above when constructive types are used to
represent the semantics of CNs. Further studies of the use of MTTs for formal
semantics may shed more light in this respect. ��

4 Proof Irrelevance and Identity for Modified CNs

For modified CNs, it is often the case that the criteria of identity are inherited
from those before modification. For example, two ‘handsome men’ are the same
if, and only if, they are the same man. In such situations, the adjective used to
modify the CN has no effect on the resulting criterion of identity for the modified
CN. This should be captured faithfully in a semantic framework.

In MTTs, it has been proposed that modified CNs be interpreted as Σ-types
[25].8 For instance, for [[man]] : Type and [[handsome]] : [[man]] → Prop, the
interpretation of ‘handsome man’ is the following Σ-type:

[[handsome man]] = Σm : [[man]] . [[handsome]](m).

However, in type theories (as those implemented in the proof assistants such as
Agda, Coq and Lego), the notion of equality between objects of such Σ-types
does not capture the intended criteria of identity. In the above example, for the
representations (m,h) and (m′, h′) of two handsome men to be equal, we require
not only that the two men m and m′ be equal, but that the proofs h and h′ be
equal as well. But this is usually not the case (there can be more than one way
to demonstrate that a man is handsome)!

In order for such Σ-type representations to be faithful in capturing the in-
tended criteria of identity, we should employ proof irrelevance, which intuitively
says that every two proofs of the same logical proposition are equal. In an im-
predicative type theory such as UTT, the formal rule for proof irrelevance is (as
repeated from §3.2):

Γ � P : Prop Γ � p : P Γ � q : P

Γ � p = q : P

8 Gupta [12] has suggested a special form of formulae (K,x)A, called restrictions, for
modified CNs. Linking formulae to types, we can easily see the close correspondence
between (K, x)A and Σx : K. A.
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Proof irrelevance has been studied for impredicative type theories. For instance,
a set-theoretic proof irrelevant model was given in [9] and one can find a recent
study on this in [28], where the author has employed the untyped notion of
conversion instead of a judgemental equality.

In the above example about handsome men, if m = m′, the two proofs h and
h′ prove the same logical proposition [[handsome]](m) and are hence equal. As
a consequence, under this representation, two handsome men are the same if,
and only if, they are the same man. In other words, under the assumption of
proof irrelevance, the proposed representations of modified CNs by Σ-types do
capture the intended criteria of identity.

It is also worth noting that, although proof irrelevance can be considered for
impredicative type theories directly as above, it is unclear how this can be done
for predicative type theories. For instance, in Martin-Löf’s type theory [19,20],
propositions are identified with types. Because of such an identification, one
cannot use the above rule to identify proofs, for it would identify the objects of
a type as well. Put in another way, proof irrelevance is incompatible with the
identification of propositions and types. In order to introduce proof irrelevance,
one has to distinguish logical propositions and types (see, for example, [14]).

Remark 3. Proof irrelevance is very interesting and has several important appli-
cations. Besides the above application in formal semantics, it is also employed in
several other fields, including dependently-typed programming (see, for example,
[28] for some relevant discussions). ��

5 Semantics for Mass Nouns with Classifiers

Common nouns include both count and mass nouns. It seems clear how to con-
sider the criteria of identity for count nouns, but less clear for mass nouns. As for
the semantics of mass nouns, scholars have rather different opinions and there
seems to be no consensus on this matter.9 The proposed semantic theories on
mass terms fall into two camps: those based on the idea that mass nouns denote
mereological sums, as advocated by Quine [24] and others, and those based on
ideas that they denote sets, as considered by people like Laycock [13] (see [6,29]
for some rather comprehensive analysis of early work on this).

Here, based on the idea that CNs denote sets/types with associated criteria
of identity, I offer a tentative proposal to suggest how some, if not all, of the uses
of mass noun phrases may be interpreted. Mass nouns are often used together
with measure words or classifiers, as in the following sentences about the mass
noun ‘water’:

(5) John drinks a glass of water.

(6) He has fetched two buckets of water from the river.

9 One may quote several references, among many, including Quine’s remarks on ‘di-
vided reference’ [24], Strawson’s on ‘individuals’ [26], Baker’s on measures [2], Bunt’s
work on ensemble theory [6] and Nicolas’ work on plural logic [22].
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The measure words such as ‘glass’ and ‘bucket’ provide information for the crite-
ria of identity in these mass noun phrases. It has been proposed [26,8] that mass
terms should be understood as elliptical for some phrases with classifiers. For
instance, ‘water’ would be elliptical for ‘drop of water’, ‘glass of water’, ‘bucket
of water’, ’body of water’, etc. These latter phrases with classifiers are seman-
tically easier to be interpreted as sets and, in particular, it is clearer what the
criteria of identity should be. In a type-theoretical semantics based on MTTs,
they can be interpreted as types. For example, the mass noun phrase ‘glass of
water’ can be interpreted as a type and the above sentence (5) can be given the
following semantics:

(7) ∃w : [[glass of water]] . [[drink]](j, w)

In such cases, the criteria of identity are provided by the measure words (see [2]
for relevant remarks).

In languages like English, count nouns are usually10 used without measure
words (we say ‘a table’ rather than ‘a classifier table’). A plausible explanation
for this is that the criterion of identity for a count noun, when it is used without
a measure word, is ‘obvious’ or already built in the noun itself. This suggests a
uniform way to approach the semantic interpretations of count and mass nouns:
they are all interpreted as types and, in the case of mass noun phrases, the
measure words in the phrase provide us the information for the criteria of identity
while, in the case of count nouns, the counting principle is usually obviously given
by the noun itself. Put in another way, this uniform approach is based on the
idea that the ‘obvious’ measures for count nouns are just special cases of the
numerals-measures-CN pattern for mass noun phrases such as ‘a glass of water’
in (5) and ‘two buckets of water’ in (6).

Such an approach is also informed by considering the languages with classifiers
such as Chinese, where every noun is usually used together with a classifier or
measure word, even for the count nouns in an English-like language. In Chinese,
instead of saying ‘a book’, one says ‘a classifier book’, where classifier is a
suitable measure word for ‘book’. Some people take the view that the Chinese
language does not have count nouns – every CN in Chinese is a mass noun
whose uses are often coupled with classifiers. This is consistent with the uniform
approach that both count and mass noun phrases are interpreted as types.

When a mass noun is not explicitly used together with a measure word, it be-
comes a context-dependent matter to determine which measure should be used.
There have been some criticisms on the proposal that mass nouns be interpreted
as sets (see, for example, [23]). One of the main criticisms is that, when a mass
noun is used without a measure word explicitly given, such context dependency
seems to amount to a difficulty in considering a ‘general translation procedure’
to give the semantics for any mass noun [23]. To deal with such potential dif-
ficulties, we consider one proposal: in many situations where a mass noun is
used without a measure word, it can be seen as underspecified and, according

10 Occasionally, measure words are also used for count nouns in, for example, ‘a deck
of cards’.



Common Nouns as Types 183

to further enrichments of the contexts, its meaning can then be determined. In
MTTs, such underspecified phrases may be given meanings by means of over-
loading, supported by coercive subtyping [17].

The proposal to interpret both count and mass CNs as types requires further
studies, both for its justification in general and for the possibility of using the
idea to implement reasoning systems that involve mass nouns on the computer.

6 Conclusion

This paper has investigated the idea that CNs have the meaning component
of criteria of identity and can be semantically represented by means of types
in MTTs. We have pointed out that, in order to interpret CNs adequately, es-
pecially to interpret modified CNs by means of Σ-types, the principle of proof
irrelevance should be adopted and, furthermore, this principle can only be prop-
erly formulated in a type theory where there is a clear distinction between logical
propositions and data types (eg, as in most of the impredicative type theories or
logic-enriched type theories), but not in those type theories such as Martin-Löf’s
type theory where there is no such a distinction.

One of the interesting issues is to study generalised quantifiers based on MTTs
(see [27] for an early investgation of this in Martin-Löf’s type theory.) In this set-
ting, the generalised quantifiers such as ‘every’ and ‘most’ have the following type:

ΠA : cn. (A → Prop) → Prop,

where cn is the type universe of the interpretations of common nouns. In other
words, a generalised quantifier takes as its arguments a type that interprets a
CN and a predicate over the type. This is rather different from the ‘symmetric’
notion of GQs in the Montagovian setting where GQs are concerned with two
predicates. This is obviously an interesting topic to study about the formal
semantics based on MTTs and requires future investigations.

Acknowledgements. Thanks to Robin Adams, Stergios Chatzikyriakidis and
members of the ‘Type Theory and Applications’ research group at RHUL for
helpful discussions.
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A Σ-Types

AΣ-type is an inductive typeofdependentpairs.Here are the informaldescriptions
of the basic laws governingΣ-types (see, for example, [20] for the formal rules).

– If A is a type and B is an A-indexed family of types, then Σ(A,B), or
sometimes written as Σx:A.B(x), is a type.

– Σ(A,B) consists of pairs (a, b) such that a is of type A and b is of type B(a).
– Σ-types are associated projection operations π1 and π2 so that π1(a, b) = a

and π2(a, b) = b, for every (a, b) of type Σ(A,B).

http://www.cs.rhul.ac.uk/home/zhaohui/ESSLLI11notes.pdf?
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When B(x) is a constant type (i.e., always the same type no matter what x is),
the Σ-type degenerates into the product type A×B of non-dependent pairs.

B Finite Types of Journeys

Finite types are inductive types which contain finitely many objects. They were
considered in [19,20] for natural numbers: intuitively, Nn contains the natural
numbers 0, 1, ..., n − 1. Here, we introduce them as containing finitely many
journeys.

Let T be the type of the journeys in concern. Then, for n ∈ ω and ti : T
(i = 1, ..., n), Fin[t1, ..., tn] is the finite type with the journeys ti as its objects.
For instance, Fin[t1, t2, t3] contains only three journeys t1, t2 and t3, while Fin[]
is an empty type that does not contain any object. Formally, these finite types
are specified by means of the rules in Figure 2.

Now, for any p : Person, Journey[T ](p) is the finite type of journeys in T
that p has made. For instance, intuitively, if Journey[T ](p) = Fin[t1, t2, t3], p
has made journeys ti (i = 1, 2, 3), while if Journey[T ](p) = Fin[], p has made
no journeys.11

Formation Rule

ti : T (i = 1, ..., n)

Fin[t1, ..., tn] : Type
(n ∈ ω)

Introduction Rule

Fin[t1, ..., tn] : Type

ti : Fin[t1, ..., tn]
(i = 1, ..., n)

Elimination Rule

c : Fin[t1, ..., tn] C : (Fin[t1, ..., tn])Type cj : C(tj) (j = 1, ..., n)

En(C, c1, ..., cn, c) : C(c)

Computation Rule

C : (Fin[t1, ..., tn])Type cj : C(tj) (j = 1, ..., n)

En(C, c1, ..., cn, ti) = ci : C(ti)
(i = 1, ..., n)

Fig. 2. Rules for finite types of journeys

11 The details of the formal definition of Journey[T ] is not given here: to do it properly,
we need to consider the type structure of Person (eg, its inductive structure) and
employs a type universe U that contains the finite types of journeys as objects and
to define Journey[T ] to be of type Person → U .
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