
MTT-semantics is both

model-theoretic and proof-theoretic

Zhaohui Luo

Royal Holloway

University of London

Model-theoretic & Proof-theoretic Semantics

Model-theoretic (traditional):

 Denotations as central (cf, Tarski, …)

 Montague: NL simple type theory set theory

Proof-theoretic (logics):

 Inferential roles as central (Gentzen, Prawitz, Dummett,
Brendom, …)

 E.g., logical operators given meaning via inference rules

MTT-semantics:

 Semantics in style of Montague semantics

 But, in Modern Type Theories

Kent, June 2016 2

Example argument for traditional set-theoretic sem.

 Or, an argument against non-set-theoretic semantics

 “Meanings are out in the world”

 Portner’s 2005 book on “What is Meaning” – typical view

 Assumption that set theory represents (or even is) the world

 Comments:
 This is an illusion! Set theory is just a theory in FOL, not “the world”.

 A good/reasonable formal system can be as good as set theory.

Kent, June 2016 3

Claim:

 Formal semantics in Modern Type Theories (MTT-semantics)

 is both model-theoretic and proof-theoretic.

 NL MTT (representational, model-theoretic)
 MTT as meaning-carrying language with its types representing

collections (or “sets”) and signatures representing situations

 MTT meaning theory (inferential roles, proof-theoretic)
 MTT-judgements, which are semantic representations, can be

understood proof-theoretically by means of their inferential roles

Kent, June 2016 4

Traditional model-theoretic semantics:

 Logics/NL Set-theoretic representations

Traditional proof-theoretic semantics of logics:

 Logics Inferences

Formal semantics in Modern Type Theories:

 NL MTT-representations Inferences

Kent, June 2016 5

Why important for MTT-semantics?

 Model-theoretic – powerful semantic tools
 Much richer typing mechanisms for formal semantics

 Powerful contextual mechanism to model situations

 Proof-theoretic – practical reasoning on computers
 Existing proof technology: proof assistants (Coq, Agda, Lego, …)

 Applications of to NL reasoning

 Leading to both
 Wide-range modelling as in model-theoretic semantics

 Effective inference based on proof-theoretic semantics

Remark: new perspective & new possibility not available before!

Kent, June 2016 6

This talk is based on:

Collaborative work on MTTs and MTT-semantics with
many people including, in recent years, among
others:

 S. Chatzikyriakidis (MTT-semantics)

 S. Soloviev and T. Xue (coercive subtyping)

 G. Lungu (signatures)

 R. Adams, Callaghan, Pollack, … (MTTs)

Several papers including
 Z. Luo. Formal Semantics in Modern Type Theories: Is It Model-theoretic, Proof-

theoretic, or Both? Invited talk at Logical Aspects of Computational Linguistics 2014.

Kent, June 2016 7

This talk consists of three parts:

I. What is MTT-semantics?

 Introduction to MTTs and overview of MTT-semantics

II. Model-theoretic characteristics of MTT-semantics

 Signatures – extended notion of contexts to represent
situations

III. Proof-theoretic characteristics of MTT-sem

 Meaning theory of MTTs – inferential role semantics of MTT-
judgements

Kent, June 2016 8

I. Modern Type Theories & MTT-semantics

Type-theoretical semantics: general remarks

 Types v.s. sets

Modern Type Theories

 Basics and rich type structure

MTT-semantics

 Linguistic semantics: examples

Kent, June 2016 9

I.1. Type-theoretical semantics

 Montague Grammar (MG)

 Richard Montague (1930 – 1971)

 In early 1970s: Lewis, Cresswell, Parsons, ...

 Later developments: Dowty, Partee, …

 Other formal semantics

 “Dynamic semantics/logic” (cf, anaphora)

 Discourse Representation Theory (Kemp 1981, Heim 1982)

 Situation semantics (Barwise & Berry 1983)

 Formal semantics in modern type theories (MTTs)

 Ranta 1994 and recent development (this talk), making it a full-
scale alternative to MG, being better, more powerful & with
applications to NL reasoning based on proof technology (Coq, …).

 RHUL project http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html

Kent, June 2016 10

http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html

Simple v.s. modern type theories

Church’s simple type theory

 As in Montague semantics

 Base types (“single-sorted”): e and t

 Composite types: et, (et)t, …

 Formulas in HOL (eg, membership of sets)
 Eg, s : et is a set of entities (as iff s(a))

Modern type theories

 Many types of entities – “many-sorted”
 Table, Man, Human, Phy, … are types

 Different MTTs have different embedded logics:
 Martin-Löf’s type theory (1984): (non-standard) first-order logic

 Impredicative UTT (Luo 1994): higher-order logic

Kent, June 2016 11

Types v.s. Sets

Both types and sets represent “collections of objects”
 So, both may be used to represent collections in formal

semantics (“model-theoretic”).

 But, their similarity stops here.

 MTT-types are “manageable”.

 Some set-theoretical operations in set theory are

 destructive – they destroy salient MTT-properties.
 Eg, intersection/union operations, a resulting theory is

 usually undecidable (see below).

Kent, June 2016 12

I.2. MTTs (1) – Types

 Propositional types

 (Curry-Howard’s propositions-as-types principle)

 Inductive and dependent types
 (A,B) (intuitively, { (a,b) | a : A & b : B(a) })

 [handsome man] = ([man], [handsome])

 x:A.B(x) (intuitively, { f : A
aA

B(a) | a : A & b : B(a) })

 A+B, AxB, Vect(A), …

 Universes
 A universe is a type of (some other) types.

 Eg, CN – a universe of the types that interpret CNs

 Other types: Phy, Table, AB, …

Kent, June 2016 13

formula type example

A B A B If …, then …

x:A.B(x) x:A.B(x) Every man is handsome.

MTTs (2): Coercive Subtyping

 History: studied from two decades ago (Luo 1997) for proof
development in type theory based proof assistants

 Basic idea: subtyping as abbreviation

 AB if there is a (unique) coercion c from A to B.

 Eg. Man Human; (Man, handsome) Man; …

 Adequacy for MTTs (Luo, Soloviev & Xue 2012)

 Coercive subtyping is adequate for MTTs

 Note: traditional subsumptive subtyping is not.

 Subtyping essential for MTT-semantics

 [walk] : HumanProp, [Paul] = p : [handsome man]

 [Paul walks] = [walk](p) : Prop

 because p : [handsome man]

Man Human

Kent, June 2016 14

MTTs (3): examples

Predicative type theories

 Martin-Löf’s type theory

 Extensional and intensional equalities in TTs

 Impredicative type theories

 Prop
 Impredicative universe of logical propositions (cf, t in simple TT)

 Internal totality (a type, and can hence form types, eg TableProp,
Man Prop, X:Prop.X,

 F/F (Girard), CC (Coquand & Huet)

 ECC/UTT (Luo, implemented in Lego/Plastic)

 CICp (Coq-team, implemented in Coq/Matita)

Kent, June 2016 15

Kent, June 2016 16

MTTs (4): Technology and Applications

Proof technology based on type theories

 Proof assistants – ALF/Agda, Coq, Lego/Plastic, NuPRL, …

Applications of proof assistants

 Math: formalisation of mathematics (eg, 4-colour Theorem
in Coq)

 CS: program verification and advanced programming

 Computational Linguistics
 E.g., MTT-sem based NL reasoning in Coq (Chatzikyriakidis & Luo 2014)

I.3. MTT-semantics

 Formal semantics in modern TTs

 Formal semantics in the Montagovian style

 But, in modern type theories (not in simple TT)

 Key differences from the Montague semantics:

 CNs interpreted as types (not predicates of type et)

 Rich type structure provides fruitful mechanisms for various
linguistic features (CNs, Adj/Adv modifications, coordination,
copredication, linguistic coercions, events, …)

 Some work on MTT-semantics

 Ranta (1994): basics of MTT-semantics

 A lot of recent developments … …

Kent, June 2016 17

MTT-semantics

Category Semantic Type

S Prop

CNs (book, man, …) types (each CN is interpreted as a type: [book]. [man], …)

IV AProp (A is the “meaningful domain” of a verb)

Adj AProp (A is the “meaningful domain” of an adjective)

Kent, June 2016 18

MTT-semantics: examples

 Sentences as propositions: [A man walks] : Prop

 Common nouns as types: [man], [handsome man], [table] : Type

 Verbs as predicates: [shout] : [human]Prop

 [A man shouts] = m:[man]. [shout](m) : Prop

 Only well-typed because [man] [human] – subtyping is crucial.

 Adjectives as predicates: [handsome] : [man]Prop

 Modified CNs as -types: [handsome man] = ([man], [handsome])

 Subtyping is crucial: [handsome man] [man]

 Adverbs as polymorphic functions:
 [quickly] : A:CN. (AProp)(AProp), where CN is universe of CNs

Kent, June 2016 19

Modelling Adjectives: Case Study

 Intersective adjectives (eg, handsome)
 Adj(N) N & Adj(N) Adj

 [handsome man] = ([man], [handsome])

 Subsective, but non-intersective, adjectives (eg, large)
 Adj(N) N (but not the 2nd above)

 [large] : A:CN. (AProp)

 [large mouse] = ([mouse], [large]([mouse]))

 Privative adjectives (eg, fake)
 Adj(N) N

 G = GR+GF – type of all guns

 Declare inl and inr both as coercions: GR <inl G and GF <inr G

 Non-committal adjectives (eg, alleged)
 Adj(N) ?

 Employ “belief contexts” …

Kent, June 2016 20

MTT-sem: more examples of linguistic features

 Anaphora analysis
 MTTs provide alternative mechanisms for proper treatments via -types

[Sundholm 1989] (cf, DRTs, dynamic logic, …)

 Linguistic coercions
 Coercive subtyping provides a promising mechanism (Asher & Luo 2012)

 Copredication
 Cf, [Pustejovsky 1995, Asher 2011, Retoré et al 2010]

 Dot-types [Luo 2009, Xue & Luo 2012, Chatzikyriakidis & Luo 2015]

 Generalised quantifiers (Sundholm 1989, Lungu & Luo 2014)

 [every] : A:CN. (AProp)Prop

 [Every man walks] = [every]([man], [walk])

 Event semantics (Luo 2016)

 Event types as dependent types Evt(h) (rather than just Event)

Kent, June 2016 21

MTT-semantics: implementation and reasoning

MTT-based proof assistants (see earlier)

 Implementation of MTT-semantics in Coq

 UTT v.s. CICp,
 They are implemented in Lego/Plastic and Coq, respectively.

 They are essentially the same.

 Coq supports a helpful form of coercions

 Reasoning about NL examples (Chatzikyriakidis & Luo 2014)

 Experiments about new theories

Theory of predicational forms (Chatzikyriakidis & Luo 2016a)

 CNs with identity criteria (Chatzikyriakidis & Luo 2016b)

Kent, June 2016 22

II. MTT-sem: Model-theoretic Characteristics

 In MTT-semantics, MTT is a representational
language.

MTT-semantics is model-theoretic

 Types represent collections – see earlier slides on using rich
types in MTTs to give semantics.

 Signatures represent situations (or incomplete possible
worlds).

Kent, June 2016 23

 Types and signatures/contexts are embodied in judgements:

 ├ a : A

 where A is a type, is a context and is a signature.

 Contexts are of the form x1 : A1, …, xn : An

 Signatures, similar to contexts, are finite sequences of entries,
but
 their entries are introducing constants (not variables; i.e., cannot be

abstracted – c.f, Edinburgh LF (Harper, Honsell & Plotkin 1993)), and

 besides membership entries, allows more advanced ones such as manifest
entries and subtyping entries (see later).

Kent, June 2016 24

Situations represented as signatures

Beatles’ rehearsal: simple example

 Domain:

 Assignment:

 Signature representing the situation of Beatles’ rehearsal:

 We have, for example,

 “John played guitar” and “Bob was not a Beatle”.

Kent, June 2016 25

Subtyping Entries in Signatures

Subtyping entries in a signature, where : (A)B :

 A B

 Eg, Man Human (depends on how Man is defined.)

 Eg, Vect(A,m) (m) List(A), parameterised by m : Nat, where
(m) maps n1,…,nm to [n1,…,nm].

Note that, formally, for signatures with subtyping
entries:
 We do not need “local coercions” [Luo 2009] (no need to abstract

subtyping entries to the right!)

 This is meta-theoretically simpler (cf, [Luo & Part 2013])

Kent, June 2016 26

Remark on coherence

With subtyping entries, we don’t just need validity,
but should also consider coherence, of signatures.

 Intuitively, from a coherent signature, one cannot
derive two different coercions between the same
types, in an appropriate subsystem of TS, where the
following coercive definition rule is removed:

 f : (x:A)B a0 : A0 A0 A
 =====================================

 f(a0) = f((a0)) : [(a0)/x]B

(Formal definition omitted.)

27 Kent, June 2016

Manifest Entries in Signatures

More sophisticated situations

 E.g., infinite domains

 Traditional membership entries are not enough.

 In signatures, we can have a manifest entry:

 c a : A

 where a : A.

 Informally, it assumes constant c to behave the same
as a.

Kent, June 2016 28

Manifest entries: examples

where

 with aD being a finite type and aB and aG inductively defined.

 (Note: Formally, “Type” should be a type universe.)

Kent, June 2016 29

Representations of infinite situations:

 Infinite domain D represented by infinite type Inf

 D Inf : U

 Infinite predicate with domain D:

 f f-defn : D Prop

 with f-defn being inductively defined.

Kent, June 2016 30

Manifest Entries: Formal Treatment

A manifest entry abbreviates two special entries.

 c a : A abbreviates

 c : 1A(a), 1A(a) A

 1A(a) is the inductively defined unit type, parameterised by A
and a;

 (x) = a for x : 1A(a).

So, in any hole that requires an object of type A, we
can use “c” which, under the above coercion, will be
coerced into “a”, as intended.

 In short, c stands for a!

Kent, June 2016 31

Such manifest entries are intensional.

 Compare (weakly) extensional definitional entries: x=a : A

 Equivalent to

 x : SingletonA(a)

 where y=a : A if y:A (-equality).

 But, in signatures, c ~ a : A is intensional (no -equality).

Remarks:

 For contextual entries and manifest fields in /record-types:
see (Luo 2008).

 Here, we only consider manifest entries in signatures, as we
only have subtyping entries in signatures.

32 Kent, June 2016

Meta-theoretic Results

Theorem

 Let T be a type theory specified in LF and TS the extension of T

 with signatures (with subtyping/manifest entries in signatures).

 Then, TS preserves the meta-theoretic properties of T for

 coherent signatures.

Note: Meta-theoretic properties include Church-Rosser, strong
normalisation, consistency, etc. Eg, as a special case of the above:

If T satisfies SN (├

a : A a is SN), then for TS, if ├ a : A

for coherent a is SN.

33 Kent, June 2016

III. MTT-sem: Proof-theoretic Characteristics

Proof-theoretic semantics

 Meaning is use (cf, Wittgenstein, Dummett, Brandom)
 Conceptual role semantics; inferential semantics

 Inference over reference/representation

 Two aspects of use
 Verification (how to assert a judgement correctly)

 Consequential application (how to derive consequences from a correct
judgement)

Kent, June 2016 34

 Proof-theoretic semantics in logics

 Two aspects of use via introduction/elimination rules, respectively.

 Gentzen (1930s) and studied by Prawitz, Dummett, … (1970s)

 Meaning theory for Martin-Löf’s type theory (Martin-Löf 1984)

 Further developed by philosopher Brendon (1994, 2000)

 Proof-theoretic semantics for NLs

 Not much work so far
 cf, Francez’s work (Francez & Dyckhoff 2011) under the name, but different …

 Traditional divide of MTS & PTS might have a misleading effect.

 MTT-semantics opens up new possibility – a meta/representational
language (MTT) has a nice proof-theoretic semantics itself.

Kent, June 2016 35

Meaning Explanations in MTTs

Two aspects of use of judgements

 How to prove a judgement?

 What consequences can be proved from a judgement?

Type constructors

 They are specified by rules including, introduction rules &
elimination rule.

 Eg, for -types

Kent, June 2016 36

Verificationist meaning theory

Verification (introduction rule) as central

 In type theory, meaning explanation via canonicity
(cf, Martin-Löf); recall the following picture:

 cf, strong normalisation property.

Kent, June 2016 37

Pragmatist meaning theory

Consequential application (elimination rule) as central

This is possible for some logical systems

 For example, operator &.

For dependent types, impossible.

 One can only formulate the elimination rules based on the
introduction operators!

Kent, June 2016 38

Another view: both essential

 Both aspects (verification & consequential application) are
essential to determine meanings.

 Dummett
 Harmony & stability (Dummett 1991), for simple systems.

 For MTTs, discussions on this in (Luo 1994).

 For a type constructor in MTTs, both introduction and elimination
rules together determine its meaning.

 Argument for this view:

 MTTs are much more complicated – a single aspect is insufficient.

 Pragmatist view:
 impossible for dependent types (see previous page)

 Verificationist view:
 Example of insufficiency – identity types

Kent, June 2016 39

 Identity type IdA(a,b) (eg, in Martin-Löf’s TT)

 Its meaning cannot be completely determined by its
introduction rule (Refl), for reflexivity, alone.

 The derived elimination rule, so-called J-rule, is deficient in
proving, eg, uniqueness of identity proofs, which can only be
possible when we introduce the so-called K-rule [Streicher
1993].

 So, the meaning of IdA is given by either one of the
following:
 (Refl) + (J)

 (Refl) + (J) + (K)

 ie, elimination rule(s) as well as the introduction rule.

Kent, June 2016 40

Concluding Remarks

Summary

 NL MTT (model-theoretic)
 Hence wide coverage of linguistic features

 MTT meaning theory (proof-theoretic)
 Hence effective reasoning in NLs (eg, in Coq)

Future work
 Proof-theoretic meaning theory

 E.g. impredicativity (c.f., Dybjer’s recent work in on “testing-based
meaning theory”)

 Meaning explanations of hypothetical judgements

 General model theory for MTTs? But …

 Generalised algebraic theories [Cartmell 1978, Belo 2007]

 Logic-enriched Type Theories (LTTs; c.f., Aczel, Palmgren, …)

Kent, June 2016 41

Kent, June 2016 42

