Natural Language Inference in Coq

Stergios Chatzikyriakidis & Zhaohui Luo

Journal of Logic, Language and

Information Volume 23,No. 4, Auturnn 2014~ ISSN 0925-8531
ISSN 0925-8531 Journal of

.
Nomber 4 Logic, Language
Jof Log Lang and Inf (2014) 23:441-480 Ond

DOI 10.1007/510849-014-9208-x

Information

managing editor:
Marcus Kracht

@ Springer

@ Springer

Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication

and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

J Log Lang Inf (2014) 23:441-480
DOI 10.1007/s10849-014-9208-x

Natural Language Inference in Coq

Stergios Chatzikyriakidis - Zhaohui Luo

Published online: 4 October 2014
© Springer Science+Business Media Dordrecht 2014

Abstract In this paper we propose a way to deal with natural language inference (NLI)
by implementing Modern Type Theoretical Semantics in the proof assistant Coq. The
paper is a first attempt to deal with NLI and natural language reasoning in general by
using the proof assistant technology. Valid NLIs are treated as theorems and as such
the adequacy of our account is tested by trying to prove them. We use Luo’s Modern
Type Theory (MTT) with coercive subtyping as the formal language into which we
translate natural language semantics, and we further implement these semantics in the
Coq proof assistant. It is shown that the use of a MTT with an adequate subtyping
mechanism can give us a number of promising results as regards NLI. Specifically,
it is shown that a number of inference cases, i.e. quantifiers, adjectives, conjoined
noun phrases and temporal reference among other things can be successfully dealt
with. It is then shown, that even though Coq is an interactive and not an automated
theorem prover, automation of all of the test examples is possible by introducing user-
defined automated tactics. Lastly, the paper offers a number of innovative approaches to
NL phenomena like adjectives, collective predication, comparatives and factive verbs
among other things, contributing in this respect to the theoretical study of formal
semantics using MTTs.

S. Chatzikyriakidis (&) - Z. Luo

Department of Computer Science,

Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
e-mail: stergios.chatzikyriakidis @cs.rhul.ac.uk

Z.Luo
e-mail: zhaohui.luo@hotmail.co.uk

S. Chatzikyriakidis
Open University of Cyprus, Nicosia, Cyprus

@ Springer

442 S. Chatzikyriakidis, Z. Luo

Keywords Type theory - Coercive subtyping - Natural language inference - Formal
semantics - Coq - FraCas test suite

1 Introduction

Natural language inference (NLI), i.e. the task of determining whether an NL hypoth-
esis can be inferred from an NL premise, has been an active research theme in compu-
tational semantics in which various approaches have been proposed [see, for example
MacCartney (2009) and some of the references therein]. In this paper, we study NLI
based on formal semantics in modern type theories with coercive subtyping (Luo 2012)
and its implementation in the proof assistant Coq (The Coq Development Team 2007).

A Modern Type Theory (MTT) is a dependent type theory consisting of an internal
logic, which follows the propositions-as-types principle. This latter feature along
with the availability of powerful type structures make MTTs very useful for formal
semantics. Research on MTTs has been extremely fruitful in analyzing NL semantics
and a number of problematic phenomena in NL semantics have been managed to
be tackled. Earlier work by Sundholm (1986) and Ranta (1994), among others, have
managed to deal in a rather adequate way with a number of semantic phenomena
like e.g quantifiers, anaphora and donkey sentences among other things. The second
author of the current paper has further developed MTT-based semantics via employing
the impredicative type theory UTT (Luo 1994) enriched by an adequate subtyping
mechanism, i.e. coercive subtyping (Luo 1999; Luo et al. 2012). MTT semantics has
now gradually become a serious alternative to Montague (1974) semantics as regards
formal semantics.

A proof assistant is a computer system that assists the users to develop proofs of
mathematical theorems. A number of proof assistants implement MTTs. For instance,
the proof assistant Coq (2007) implements pCIC, the predicative Calculus of Inductive
Constructions,' and supports some very useful tactics that can be used to help the users
to automate (parts of) their proofs. Proof assistants have been used in various appli-
cations in computer science (e.g., program verification) and formalised mathematics
(e.g., formalisation of the proof of the 4-colour theorem in Coq).

The above two developments, the use of the MTT semantics on the one hand
and the implementation of MTTs in proof assistants on the other, has opened a new
research avenue: the use of existing proof assistants in dealing with NLI. In this
paper, we present our work as regards NLI by implementing MTT semantics for NL
in Coq. The purpose is to show how an interactive proof assistant such as Coq can
help deal with NLI. In particular, we implement MTT semantics in Coq and then
use Coq to reason about these semantics by dealing with various examples from the
FraCas test suite (Cooper et al. 1996). What we would like to show is that a large
class of NLI cases can be straightforwardly dealt with under this approach, which
basically treats NLIs as valid theorems in Coq. Also, we believe that in many cases

1 pCIC is a type theory that is rather similar to Luo’s UTT, especially after its universe Set became
predicative since Coq 8.0. A main difference is that UTT does not have co-inductive types. The interested
reader is directed to Goguen’s Ph.D. thesis (1994) as regards the meta-theory of UTT.

@ Springer

Natural Language Inference in Coq 443

we have given satisfactory and innovative semantic treatments of various semantic
phenomena like e.g. the generalization of X' types not only to adjectives but to VP
adverbs, comparatives and factive verbs, which we believe are useful in themselves.?
Furthermore, it is shown that many NLI cases, in fact all of the NLI cases we have dealt
with, can be automatedly performed by an automated combination of Coq’s in-built
proof tactics.

The paper is structured as follows: in Sect. 2 we present an introduction to formal
semantics based on MTTs. Specifically, we concentrate on how to use type theory, in
particular the Unified Theory of dependent Types (UTT) with the addition of coercive
subtyping, to represent NL formal semantics. In Sect. 3, we present a very short
introduction to the way the Coq proof assistant works. In Sect. 4, we discuss the
implementation of MTT semantics in Coq, in order to deal with various examples
from the FraCas test suite. Lastly, the issue of doing automated theorem proving
in interactive theorem provers is discussed in the final section, together with some
informal comparison with other relevant work as well as some directions for future
work.

2 Formal Semantics in Modern Type Theories

In this section, we give a brief introduction to the formal semantics based on Modern
Type Theories (MTTs) (Ranta 1994; Luo 2010, 2012). A MTT is a variant of a class
of type theories in the tradition initiated by the work of Martin-Lof (1975, 1984),
which have dependent types and inductive types, among other things. We choose to
call them Modern Type Theories in order to distinguish them from Church’s (1940)
simple type theory that is commonly employed within the Montagovian tradition in
formal semantics.

Among the variants of MTTs, we are going to employ the Unified Theory of depen-
dent Types (UTT) Luo (1994) with the addition of the coercive subtyping mechanism
[see, for example, Luo (1999), Luo et al. (2012) and below]. UTT is an impredicative
type theory in which a type Prop of all logical propositions exists.> This stands as
part of the study of linguistic semantics using MTTs rather than simply typed ones,
including the early studies such as Sundholm (1986) and Ranta (1994) inter alia.

2.1 Formal Semantics Based on MTTs: The Basics

In semantics based on MTTs, the basic ways to interpret various linguistic categories
are as follows, with basic examples shown in Table 1, where we also compare them
to those in Montague semantics:

e A sentence (S) is interpreted as a proposition of type Prop.
e A common noun (CN) can be interpreted as a type.

2 See next section for the definition of X types.

3 This is similar to simple type theory where a type ¢ of truth values exists.

@ Springer

444 S. Chatzikyriakidis, Z. Luo

Table 1 Examples in formal semantics

Example Montague semantics MTT-based semantics
CN Man, human [man]l, [human]l: e — ¢ [man]l, [human]: Type
v Talk Mtalkll: e — ¢ [talk]: Thuman] — Prop
ADJ Handsome [handsome]l: (e — t) — (e — t) [handsome]l: [[man]] — Prop
MCN Handsome man [[handsome]|([[man])) Ym: [man].[handsome]|(m): Type
S A man talks dm: e.[man]|(m)&([talk](m) Im: [man].[talk](m): Prop

e A verb (IV) can be interpreted as a predicate over the type D that interprets the
domain of the verb (i.e., a function of type D — Prop).

e An adjective (ADJ) can be interpreted as a predicate over the type that interprets
the domain of the adjective (i.e., a function of type D — Prop).

e Modified common nouns (MCNs) can be interpreted by means of X-types (see
below).

In what follows, we shall give further explanations of various aspects of MTT-
based semantics, explicating along the way the basic features of MTTs and coercive
subtyping. We try to bring out the linguistic relevance of the system used rather than
being meticulous as regards the formal details in each case.

2.2 Common Nouns as Types and Many-Sortedness of MTTs

A key difference between formal semantics based on MTTs and Montague semantics
lies in the interpretation of common nouns (CNs) which is in turn based on the fact
that MTTs are essentially ‘many-sorted” logical systems.

In Montague (1974) semantics, the underlying logic [Church’s simple type theory
(Church 1940)] can be seen as ‘single-sorted’ in the sense that there is only one type e
of all entities. The other types such as ¢ of truth values and the function types generated
from e and ¢ do not stand for types of entities. In this respect, there are no fine-grained
distinctions between the elements of type e and as such all individuals are interpreted
using the same type. For example, John and Mary have the same type in simple type
theories, the type e of individuals. An MTT, on the other hand, can be regarded as a
‘many-sorted’ logical system in that it contains many types and as such one can make
fine-grained distinctions between individuals and further use those different types to
interpret subclasses of individuals. For example, one can have John: [man] and
Mary: [woman]], where [man]] and [woman] are different types.4

An important trait of MTT-based semantics is the interpretation of common nouns
(CNs) as types (Ranta 1994) rather than sets or predicates (i.e., objects of type e — t)

4 Of course, the need for type fine-grainedness is not an uncontroversial claim. As one of the reviewers
notes, there is considerable literature claiming that this type of ‘sortal’ incorrectness is due to pragmatic
factors. However, there is a huge literature claiming to the contrary. This paper takes the stance that type
fine-grainedness is indeed needed, following in this respect researchers like Pustejovsky (1995), Asher
(2011), Ranta (1994), Fox and Lappin (1990), Bassac et al. (2010) among many others.

@ Springer

Natural Language Inference in Coq 445

as it is the case within the Montagovian tradition. The CNs man, human, table and
book are interpreted as types [man]|, [human], [table] and [[book]|, respectively.
Then, individuals are interpreted as being of one of the types used to interpret CNs.
Modified common nouns (MCNs in Table 1) can be interpreted by means of X'-types,
types of dependent pairs.> For instance, ‘handsome man’ can be interpreted as the
type Xm: [[man]]. [handsome]|(m), the type of pairs of a man and a proof that the
man is handsome.

This many-sortedness (i.e., the fact that there are many types in an MTT) has the
welcoming result that a number of semantically infelicitous sentences like the ham
sandwich walks, which are however syntactically well-formed, can be explained easily
given that a verb like walk will be specified as being of type animal — Prop while the
type for the ham sandwich will be [food] or [sandwich]], which is not compatible
with the typing for walk:

(1) the ham sandwich: [food]|
(2) walk: [[animal]] — Prop

The idea of common nouns being interpreted as types rather than predicates has
been argued in Luo (2012) on philosophical grounds as well. There, the second
author argues that Geach’s observation that common nouns in contrast to other cat-
egories have criteria of identity that enable common nouns to be compared, counted
or quantified, has an interesting link with the constructive notion of set/type: in
constructive mathematics, sets (types) are not constructed only by specifying their
objects but they additionally involve an equality relation. The argument is then that
the interpretation of CNs as types in MTTs is explained and justified to a certain
extent.®

Interpreting CNs as types rather than predicates has also a significant methodologi-
cal implication: the various subtyping relations one may consider in formal semantics
become compatible. For instance, in representing NL semantics, one may introduce
various subtyping relations by postulating a collection of subtypes (physical objects,
informational objects, eventualities, etc.) of the type of entities (Asher 2011). It is
clear that, if CNs are interpreted as predicates as in the traditional Montagovian set-
ting, introducing such subtyping relations would cause major problems: even some
basic semantic interpretations would go wrong and it is very difficult to deal with
some linguistic phenomena like e.g. copredication satisfactorily. Instead, if CNs are
interpreted as types, as in Type Theoretical semantics based on MTTs, copredication
can be given a straightforward and satisfactory treatment (Luo 2010).

Remark I An anonymous reviewer notes (correctly) that there are cases where
the ham sandwich: [food]] might be interpreted as referring to an animate entity,
e.g. in the case where ham sandwich is interpreted as the man who ordered the ham
sandwich. In this instance local coercions can be introduced, an issue discussed in

5 See the discussion in Sect. 2.4 for details w.r.t X types.
6 See Luo (2012) for more details on this.

@ Springer

446 S. Chatzikyriakidis, Z. Luo

Luo (2010). Other cases like John thinks a ham sandwich can walk are not difficult to
treat either. Assuming that John’s belief context (in the constructive sense) might have
different type declarations than the default context (roughly the current world), one
can get a straightforward solution to these cases as well. In effect, John’s belief con-
text might involve different type declarations e.g. the ham sandwich: [[human] or
walk: [[object] — Prop.” The reviewer further asks how cases like ham sand-
wiches do not walk will be treated in such a framework. There are a number of
ways to do that. The first one is to assume a generic operator (widely used in Mon-
tagovian frameworks), that besides turning the predicate into a generic predicate,
will further introduce the most general type possible to the predicate, i.e. its typ-
ing will be: Gen : ITA : CN,(A — Prop) — ([object] — Prop). In case
one considers other negative sentences like the ham sandwich does not walk or a
ham sandwich does not walk to be semantically meaningful, s/he can even define VP
negation to be not of type [TA : CN, (A — Prop) — (A — Prop) but of type
ITA : CN,(A — Prop) — ([object] — Prop). This will solve the problem.
Thus, a number of solutions to this problem exist within MTTs.8

2.3 Subtyping in Formal Semantics

As briefly explained above, because of many-sortedness of MTTs, CNs can be inter-
preted as types. For instance, in a Montagovian setting, all of the verbs below are given
the same type e — t, but in an MTT, we can have

(3) drive: [human]] — Prop
4) eat: [lanimal]l — Prop
(5) disappear: [[object]] — Prop

which have different domain types. This has the advantage of disallowing interpreta-
tions of some infelicitous examples like the ham sandwich walks.

However, interpreting CNs by means of different types could lead to serious under-
generalizations without a subtyping mechanism. For instance, consider the interpreta-
tion of the sentence ‘A man talks’ in Table 1: for m of type [[man]] and [talk] of type
[human]] — Prop, the function application [talk](m) is only well-typed because
we have that [[man] is a subtype of [human]].

7 For the notion of belief using MTT semantics, see Ranta (1994) and Chatzikyriakidis and Luo (2013)
among others.

8 Another anonymous reviewer asks what we do in cases of words like work, where an indication of two
different senses exists, i.e. work : [human]] — Prop and work : [method]] — Prop. Even though we
have not looked at the problem at its full scale, the second author has proposed the use of overloading with
Unit types for these cases, encoding the different senses of the same verb (Luo 2011). Furthermore, on the
level of CNs there is considerable work by the authors and colleagues on dot.types. The interested reader
should consult (Luo 2011; Chatzikyriakidis and Luo 2012; Xue and Luo 2012; Asher and Luo 2012) for
more details.

@ Springer

Natural Language Inference in Coq 447

Coercive subtyping Luo (1999), Luo et al. (2012) provides an adequate framework
to be employed for MTT-based formal semantics (Luo 2010, 2012).” It can be seen as
an abbreviation mechanism: A is a (proper) subtype of B (A < B) if there is a unique
implicit coercion ¢ from type A to type B and, if so, an object a of type A can be used
in any context €p[_] that expects an object of type B: €g[a] is legal (well-typed) and
equal to €p[c(a)].

As an example, in the case that both [man]] and [human] are base types, one may
introduce the following as a basic subtyping relation:

6) [man] < [human]

In case that [man] is defined as a composite X'-type (see Sect. 2.4 below for details),
where male: [human]] — Prop:

(7) [man]l = Xh: [human]). male(h)

we have that (6) is the case because the above X-type is a subtype of [human] via
the first projection my:

8) (Xh: [[human]l. male(h)) <z, [humanl]|

Equipped with this coercive subtyping mechanism, the undergeneration problems
can be straightforwardly solved while still retaining the ability to rule out semantically
infelicitous cases like the ham sandwich walks. In effect, many-sortedness in MTTs
turns out to be superior to single sortedness in the simple type theories, at least in this
respect. Furthermore, many inferences involving monotonicity on the first argument
in generalized quantifiers can be directly captured using the subtyping mechanism.
An inference of the sort exemplified in example (13) below, can be captured given that
[man] < [humanl]:

(9) Some man runs = Some human runs

Thus, an x : [[man] can be used as an x: [human]], and as such the inference goes
through for “free’ in a way.'? Another case where the subtyping along with type many-
sortedness has welcoming results concerns dot-types, i.e. complex types for common
nouns encoding more than one semantic aspect. A classic example is book, which
has been assumed to have both an informational and a physical aspect. Consider the
following sentence:

(10) John picked up and mastered the book.

9 Itis worth mentioning that subsumptive subtyping, i.e. the traditional notion of subtyping that adopts the
subsumption rule (if A < B, then every object of type A is also of type B), is inadequate for MTTs in the
sense that it would destroy some important metatheoretical properties of MTTs [see, for example, §4 of
Luo et al. (2012) for details].

10 This kind of inferences can be straightforwardly proven in Coq by using a standard analysis for quantifier
some plus the subtyping relation [man]| < [human]].

@ Springer

448 S. Chatzikyriakidis, Z. Luo

In the first conjunct, the physical aspect is used, while in the second the informa-
tional aspect. We assume the following types for pick up and master:

[pick upll : Thuman]] — PHY — Prop
[master] : [human]] - INFO — Prop

Given the subtyping relationship (x) as well as contravariance of subtyping for the
function types, we get, both of the conjuncts can be interpreted satisfactorily.'!

2.4 Some Type Constructions in MTTs

In this subsection, we shall discuss several type constructors as well as some more
advanced features of MTTs (like for example universes) focusing on the way these
can be used in formal semantics.

Dependent X -Types One of the basic features of MTTs is the use of Dependent Types.
A dependent type is a family of types depending on some values. Here we explain two
basic constructors for dependent types, X and I, both highly relevant for the study
of linguistic semantics.

The constructor/operator X' is a generalization of the Cartesian product of two sets
that allows the second set to depend on values of the first. For instance, if [human]|
is a type and male: [[human]] — Prop, then the X -type X'h: [human]l. male(h)
is intuitively the type of humans who are male.

More formally, if A is a type and B is an A-indexed family of types, then X' (A, B),
or sometimes written as X'x : A.B(x), is a type, consisting of pairs (a, b) such that
a is of type A and b is of type B(a). When B(x) is a constant type (i.e., always the
same type no matter what x is), the X-type degenerates into product type A x B of
non-dependent pairs. X'-types (and product types) are associated projection operations
1 and my so that Ty (a, b) = a and m>(a, b) = b, for every (a, b) of type X' (A, B) or
A x B.

The linguistic relevance of X'-types can be directly appreciated once we understand
that in its dependent case, X-types can be used to interpret linguistic phenomena
of central importance, like for example adjectival modification (Ranta 1994).12 For
example, handsome man is interpreted as a X'-type (85), the type of handsome men
(or more precisely, of those men together with proofs that they are handsome):

(11) Xm: [man]. [handsome](m)

where [handsome]|(m) is a family of propositions/types that depends on the man m.
Adjectival modification is however notoriously difficult to deal with, given that
besides examples of adjectives like carnivorous or handsome, there exists a number

1" See Luo (2011) for more details on this proposal as well as Xue and Luo (2012) for an implementation
of dot-types in the proof assistant Plastic.

12 X-types can also provide the tools for the proper semantic interpretation of the so-called ‘Donkey-
sentences’ (Sundholm 1986).

@ Springer

Natural Language Inference in Coq 449

of other more difficult categories, i.e. privative adjectives like fake or non-committal
adjectives like alleged. Within the Montagovian tradition, these different adjectival
categories have been dealt with by using a number of meaning postulates in each case.
The authors Chatzikyriakidis and Luo (2013) have proposed a way of dealing with all
adjectival categories using the framework presented in this paper. In particular, it was
shown that meaning postulates were not needed for most of the cases, the exception
being cases of non-committal adjectives. The idea in this paper is to use typing alone
to capture what in the Montagovian tradition is done via meaning postulates. We
consider capturing inference via typing alone rather via the use of meaning postulates
an advantage of MTTs compared to simple typed ones. Also, X' types have been
successfully used in order to provide an adequate account of anaphora, (Ranta 1994).
Such a proposal is based on the expresiveness of dependent typing and cannot be
maintained in a system where dependent typing is not an option (e.g. in a Montagovian
setting).!?

Dependent I1-Types The other basic constructor for dependent types is 1. I1-types
can be seen as a generalization of the normal function space where the second type is a
family of types that might be dependent on the values of the first. A IT-type degenerates
to the function type A — B in the non-dependent case. In more detail, when A is a
type and P is a predicate over A, ITx : A.P(x) is the dependent function type that,
in the embedded logic, stands for the universally quantified proposition Vx : A.P (x).
For example, the following sentence (12) is interpreted as (13):

(12) Every man walks.
(13) Ix: [[man].[walk](x)

IT-types are very useful in formulating the typings for a number of linguistic cat-
egories like VP adverbs or quantifiers. The idea is that adverbs and quantifiers range
over the universe of (the interpretations of) CNs and as such we need a way to repre-
sent this fact. For this reason, I7-types can be used, universally quantifying over the
universe CN. (14) the type for VP adverbs'* while (15) is the type for quantifiers:

(14) ITA:CN. (A — Prop) - (A — Prop)
(15) ITA:cCN. (A — Prop) — Prop

Further explanations of the above types will be given after we have introduced the
concept of type universe below.

Note that the above types are polymorphic in nature. In general, MTTs support
polymorphism, a mechanism which has been argued by researchers like Fox and Lap-
pin (1990) and Lappin (to appear) to be needed for NL semantics. Type polymorphism
is not available in simple type theories.

13 For a recent approach to anaphora using dependent typing see Grudzinska and Zawadowski (2014).

14 This was proposed for the first time in Luo (2011).

@ Springer

450 S. Chatzikyriakidis, Z. Luo

Type Universes Anadvanced feature of MTTs, which will be shown to be very relevant
in interpreting NL semantics, is that of universes. Informally, a universe is a collection
of (the names of) types put into a type (Martin-Lof 1984).!> For example, one may
want to collect all the names of the types that interpret common nouns into a universe
CN: Type. The idea is that for each type A that interprets a common noun, there is a
name A in cN. For example,

[man]: cN and Tex([man]l) = [[man].

In practice, we do not distinguish a type in CN and its name by omitting the overlines
and the operator Ty by simply writing, for instance, [man]: CN. Thus, the universe
includes the collection of the names that interpret common nouns. For example, in CN,
we shall find the following types:

(16) [man]l, [woman], [book], ...
(17) Xm: [man].[Thandsome]|(m)
(18) Gr+Gr

where the X-type in (17 is the proposed interpretation of ‘handsome man’ and the
disjoint sum type in (18) is that of ‘gun’ (the sum of real guns and fake guns—see
above).

Having introduced the universe CN, it is now possible to explain (14) and (15).
The type in (15) says that for all elements A of type CN, one gets the function type
(A — Prop) — Prop. The idea is that the element A becomes the type used. To
illustrate how this works let us imagine the case of quantifier some which has the
typing in (15). The first argument needed, has to be of type CN. Thus some human
is of type ([human]] — Prop) — Prop given that the A here is [human]]: CN
(A becomes the type [human] in ([human]] — Prop) — Prop). Then given
a predicate like walk: [[human]] — Prop, we can apply some human to get
[some human]|(Jwalk]l): Prop.

The idea of universes has been proved useful in giving an account of NL coordina-
tion in an MTT. Specifically, in Chatzikyriakidis and Luo (2012), we have introduced
a universe of Linguistic Types, LT ype to capture the flexibility associated with NL
coordination. 1©

15 There is quite a long discussion on how these universes should be like. In particular, the debate is largely
concentrated on whether a universe should be predicative or impredicative. A strongly impredicative universe
U of all types (with U: U and I1-types) is shown to be paradoxical (Girard 1971) and as such logically
inconsistent. The theory UTT we use here has only one impredicative universe Prop (representing the
world of logical formulas) together with infinitely many predicative universes which as such avoids Girard’s
paradox [see Luo (1994) for more details].

16 Ap anonymous reviewer was questioning the use of MTTs, and their advantages against other systems
for formal semantics, i.e. Montague Grammar, DRT and Davidsonian semantics. In this paper, we argue
for rich type theories instead of simply typed ones. DRT, Davidsonian semantics as well as other systems
for formal semantics are not typed systems. However, fusions of DRT with simple type theory have been
attempted successfully (Muskens 2005). In principle, fusions of MTTs with DRT are possible. A discussion
on whether MTTs consistute a better alternative than any preceding formal semantics system is, we are
afraid, out of the scope of this paper.

@ Springer

Natural Language Inference in Coq 451

3 NL Semantics and Inference in Coq: An Introduction

Coq is a dependently typed interactive theorem prover, implementing the calculus of
Inductive Constructions [pCiC, see The Coq Development Team (2007)]. Coq, and
in general proof assistants, provide assistance in the development of formal proofs.
Specifically, the use of Coq has been extremely fruitful and a number of exciting
results have been produced via its use, notably the proof of the four-colour theorem
(see Gonthier 2005) and CompCert, a formally verifiable compiler for C (see Blazy
et al. 2006) among others. The idea is simple: you use Coq in order to see whether
statements as regards anything that has been either pre-defined or user-defined (def-
initions, parameters, variables) can be proven or not. In order to see how this works,
imagine the following three variables . One may want to check whether the following
statement involving these variables is a theorem:

19 (P—- Q) — (00— R)— (P —>R)

First, we define P Q and R to be of type Prop. Then we “inform” Coq that we want
to prove this as a theorem. The command T heorem is used for this reason:

(20) Theorem Propositional : (P — Q) - (Q - R) - (P — R)

The above will put Coq into proof-mode, where the user is asked to interactively guide
the assistant to the proof. In order to do this, the user has a number of proof-tactics that
s/he can use. More complicated tactics can be further defined and a number of libraries
with complementary tactics exist. For the case interested, using the intro tactic three
times will result in the introduction of (P — Q), (O — R) and P as assumptions.
We can now use these assumptions to see whether we can construct a proof for the
conclusion. The result will be:

1 subgoal

Now, the tactic apply can be used. This tactic takes an argument which can be
decomposed into a premise and a conclusion (e.g. Q — R), with the conclusion
matching the goal to be proven (R), and creates a new goal for the premise. Thus,
apply HO will create the new goal Q:

1 subgoal
H P -> 0
HO Q0 -> R
H1 P
Q

@ Springer

452 S. Chatzikyriakidis, Z. Luo

We can do the same with H, thus apply H0O will P as the goal:
1 subgoal

At this point, the command assumption can be used, which matches the conclusion
with an identical premise, i.e. H1. With this, Coq notifies us that a proof has been
found:

1 subgoal

Propositional < assumption.
Proof completed.

But how can such an assistant be used in order to reason about NL semantics? As
already said, Coq implements an MTT (pCiC). For this reason it is highly suitable to
implement our MTT semantics, given that this is quite close to UTT with coercive
subtyping, i.e. the MTT used in this paper. Indeed, this has been already noted by
Luo et al. and some first attempts at implementing MTT semantics in Coq have been
made (Luo 2010, 2011; Chatzikyriakidis and Luo 2012). However, this is not all
that Coq has to offer. Given that Coq is a powerful theorem prover, it can further
reason about the implemented semantics. In fact, one may very well use Coq’s proving
ability to prove valid NL inferences, in the same sense it is used for proving valid
mathematical or logical theorems. Given that semantic entailment corresponds to an
implication relation between two different semantic structures, entailment relations
can be translated into constructed theorems that need to be proven. In such a context, a
valid semantic entailment will very simply mean the implication relation between the
two semantic structures is a valid theorem. A very simple case of semantic entailment,
that of example (21), will therefore be formulated as the following theorem (named
ex) in Coq (22):

(21) John walks = some man walks

(22) Theorem ex: John walks — some man walks
Then depending on the semantics of the individual lexical items one may or may not

prove the theorem that needs to be proven in each case. Inferences like the one shown
in (22) are easy cases in Coq. Assuming the semantics of some which specify that

@ Springer

Natural Language Inference in Coq 453

given any A of type CN and a predicate of type A — Prop, there exists an x: A such
that P(x): Prop, such cases are straightforwardly proven.

A few notes about the lexical entries. We use Coq’s Prop type, corresponding
roughly to the type of truth-values (#) in Montague Semantics. We define CN to be
Coq’s Set Universe and interpret CNs like man, human as being of type CN (thus
we have for example man, human: CN).'7 Verbs are defined as predicates requiring
arguments of type A : CN. The exact type of this A argument depends on the verb
itself. For example, walk is defined as being of type Animal — Prop. Subtyping
relations are supported by Coq’s coercion mechanism and thus all the relevant sub-
typing relations can be declared.'® Adjectives are defined as predicates, and adjectival
modification as X' types (see the discussion in Sect. 2). Quantifiers and VP adverbs are
defined as types ranging over the universe CN [see (14) and (15)]. For the example at
hand, the following are declared:

CN:=Set.

Parameter Man Human Animal: CN.

Parameter John: Man.

Axiom mh: Man->Human. Coercion mh: Man>->Human.

Axiom ha: Human->Animal. Coercion mh:Human>->Animal.
Definition some:= fun A:CN, fun P:A->Prop=> exists xX:A, P(x).
Definition walk: Animal->Prop

We have introduced CN as being Coq’s Set type, declared Man, Human and
Animal to be of type CN, further introduced the relevant subtyping relations and
lastly introduced walk. With walk as being of type [human]] — Prop and John as
being of type [man] with [[man]] < [human]], we can prove the theorem in (22) quite
easily. We first use the proof tactic intro to move the implicans to the hypotheses.
Then, we apply unfold to some (unfold some). Unfold does what it says: it unfolds
the definition associated with a lexical entry (if there is a definition).:

ex < unfold some.
1 subgoal

walk John -> exists x : Man, walk x

We use intro to move the antecedent as a premise. Then, we can existentially instan-
tiate x : Man with John : Man:

ex < intro.
1 subgoal
H : walk John

exists x : Man, walk x
ex < exists John.

17 In Luo’s MTT, cN is the universe containing the names that interpret CNs. Since the possiblity of
introducing new universes is not an option we approximate this idea by having CN being of type set.

18 Note that ambi guous paths are not allowed and as such given two types A and B (with A, B: CN), there
is no possiblity of defining both A < B and B < A.

@ Springer

454 S. Chatzikyriakidis, Z. Luo

1 subgoal
H : walk John

walk John

The tactic assumption finishes the proof. This example as well as all of the examples
discussed in this paper can also be proven automatically by using Coq’s predefined
automation tactics or via using user-defined automation tactics.

4 NL Inference with FraCas Examples in Coq

The FraCas Test Suite (Cooper et al. 1996) arose out of the FraCas Consortium, a huge
collaboration with the aim to develop a range of resources related to computational
semantics. The FraCas test suite is specifically designed to reflect what an adequate
theory of NL inference should be able to capture. It comprises NLI examples formu-
lated in the form of a premise (or premises) followed by a question and an answer. For
instance,

(23) Smith, Jones and Anderson signed the contract.
Did Jones sign the contract? [Yes]

(24) No delegate finished the report.
Did any delegate finished the report on time? [No]

The examples are quite simple in format but are designed to cover a very wide spectrum
of semantic phenomena, e.g. generalized quantifiers, conjoined plurals, tense and
aspect related phenomena, adjectives and ellipsis, among others.

In this section, we use a number of these examples in FraCas (except the last Sect.
4.8 on collective predicates) to exemplify the way MTT-semantics implemented in
Coq can effectively deal with a number of NLI cases. The formulation we are going
to follow will transform the question in each example of the FraCas test suite into a
declarative hypothesis that needs to be proven.?? All of these examples are formalised
in Coq;?! the Coq code and proof for the first example, as described in Sect. 4.1 below,
can be found in Appendix “An Example from the FraCas Test Suite”. In the last part
of the section, the results of an evaluation against a subset of the FraCas test suite is
shown, highlighting the most important cases.

Remark 2 The current paper deals with quite a lot of semantic phenomena that each
of them deserve a discussion and thorough analysis on their own right. Thus, the
paper deals with a number of diverse semantic issues ranging from adjectives and

19 See the discussion on automation in Sect. 5.

20 The same modification can be also found in MacCartney (2009). In general, if one uses a theorem prover
to deal with NL inference [e.g. analyses in the style of Blackburn and Bos (2005), Bos and Markert (2005,
2006)] such modifications are necessary.

21 The source codes can be obtained by sending an email request to the first author: ster-
gios.chatzikyriakidis @cs.rhul.ac.uk.

@ Springer

Natural Language Inference in Coq 455

quantifiers to adverbs, factive complements and reasoning with tense and aspect. The
reader should have in mind that all these issues are far from solved in the formal
semantics literature. For the needs of this paper, we cannot go into a thorough analysis
for each and every issue separately. As such, some of the proposals might not be
able to cover the whole range of phenomena associated with these constructions. For
example, the account we have presented here for adverbs is restricted to what we call
veridical adverbs, given these type of adverbs are the ones involved in the FraCas test
suite. There is a vast number of complexities associated with the semantics of adverbs
and the non-homogeneity of the specific class is notorious (Maienborn and Schafer
2011).2% The reader is advised to have these remarks in mind in reading the main core
of the paper.

4.1 Quantifiers and Monotonicity

A great deal of the FraCas examples are cases of inference that result from the
monotone properties of quantifiers. Examples concerning monotonicity on the first
argument are very easily treated in a system encoding an MTT with coercive subtyp-
ing, by employing the subtyping relations between CNs (c.f., Sect. 2.3).

To put this claim in context, let us look at the following example (3.55) from the
FraCas test suite:

(25) Some Irish delegates finished the survey on time.
Did any delegate finish the report on time [Yes]

In an MTT-based semantics, the sentences in the above example become:

(26) ds : [Irishdelegate]l, [on_timel[finish](s, (thereport))
Let Q =3s : [delegate]l, [onsimelll finish](s, (thereport)) . Is Q true?

where [finish]l: [object] — [human] — Prop, [on_time]l: forallA
CN,(A — Prop) - (A — Prop),24 [Irishdelegate]] < [delegate]] <
[human]] and [report]] < [object]l. Some notes of explanation on the subtyping
relation [/rishdelegate]] < [[delegate]l: we follow the second author’s implemen-
tation of X-types as the Coq record types (Luo 2011), and we interpret the modified
CN Irish delegate as the following record type:

(27) Record Irishdelegate : CN := mklrishdelegate [d :> delegate; _ : Irish d |

22 See however Chatzikyriakidis (2014) for a more thorough look at adverbs from an MTT perspective.

23 For this first example, we shall detail its formal semantics in a type theory. You can also find the Coq
implementation of this in Appendix “An Example from the FraCas Test Suite”. For the examples later on,
we shall omit such details.

24 This is the type for VP adverbs used in Luo (2011). We will see later on that a slightly modified type will
be used for VP adverbs. For the moment, we keep this type given that it does not play any role whatsoever
in proving the inference.

@ Springer

456 S. Chatzikyriakidis, Z. Luo

It is a well-known fact that dependent record types are equivalent to X' types, so
without having to get into details on the specific Coq syntax, this is just equivalent
to Xd: [[delegate]l.[Irish](d). Given the subtyping relation between Irish delegate
and delegate (reflected by means of the syntactical notation :> in Coq), (25) is correctly
captured.

It is straightforward to prove the above formula Q, using pretty much the same
tactics as these are discussed in Sect. 3, namely intro, apply and exists. The exact
way this is done, is shown in the Appendix “An Example from the FraCas Test Suite”.

Similar considerations apply to the examples like the one shown below (FraCas
example 3.49):

(28) A Swede won a Nobel Prize.
Every Swede is a Scandinavian.
Did a Scandinavian win a Nobel Prize? [Yes]

Given the subtyping relation Swede < Scandinavian < human the above
inference is correctly predicted. Note that the second premise is expressed via
means of the subtyping relation Swede < Scandinavian. Specifically, we have
[win]: [object]] — [human]] — Prop. and prize < object. The subtyping rela-
tion [Nobel_Prize]l < [prize]l is true because [Nobel _Prize] may be defined as
Xp : [[prizell. Nobel(p) which is a subtype of [[prize]] via the first projection (c.f.,
Sect. 2.3).

Adverbial Modifications: A Digression 'We now move to cases involving monotonicity

on the second rather than the first argument. Such an example with upwards monotonic-
ity is shown below:

(29) Some delegates finished the survey on time.
Did any delegate finish the survey? [Yes]

Monotonicity on the second argument can be treated in a similar way as above. How-
ever, the above example (29) is a little bit trickier since an adjunct, i.e. the PP on
time, is involved. As mentioned in Sect. 2.4, VP adverbs such as on time are given the
following type (to repeat (14) here):

(30) ITA:CN. (A — Prop) — (A — Prop)

In order to consider such adverbial phrases in inference, we make use of an auxiliary
object ADV:

(31) ADV:ITA:CNIIv: A — Prop. Xp: A — PropNx:A.p(x) D v(x)

For any common noun A and any predicate v over A, ADV (A, v) is a pair (p, m)
such that for any x: A, p(x) implies v(x). Taking the sentence (29) as an example,

@ Springer

Natural Language Inference in Coq 457

for the CN delegate and predicate [[finish]],>> we define

(32) ontime =AA: CN.Av: A — Prop. 11(ADV (A, v))

which is of type (30). As a consequence, for instance, any delegate who finished the
survey on time did finish the survey.

Note that the X'-type in (31) might be considered as a general form of conjunction
and, thinking in this way, it is not difficult to see that the above analysis is intuitively
compatible with a Davidsonian analysis of VP adverbs where the adverb modifies an
event argument (Davidson 1967).

A similar example involving downward monotonicity on the second argument is
shown below:

(33) No delegate finished the report.
Did any delegate finish the report on time [No]

In the above case, the only thing we need to do is turn the hypothesis into its negation
and then try to prove it, as we did in Coq.

4.2 Conjoined Noun Phrases

In the section of the FraCas test suite involving inferences with conjoined NPs, one
can find the following example:

(34) Smith, Jones and Anderson signed the contract.
Did Jones sign the contract? [Yes]

In Chatzikyriakidis and Luo (2012), we have proposed a polymorphic type for
binary coordinators that extends over the constructed universe LT ype, the universe
of linguistic types. This can be extended to n-ary coordinators. For example, the
coordinator and may take three arguments, as in the premise of (34). In such cases,
the type of the coordinator, denoted as andz in semantics, is:

(35) andy: [TA: LType. A > A —> A — A.

Intuitively, we may write this type as [TA: LType. A3 — A. For instance, the
semantics of (34) is (36), where c is ‘the contract’:

(36) [signl(ands(s, j,a),c)

In order to consider such coordinators in reasoning, we consider the following auxiliary
object (similarly as in the last subsection when we consider adverbial phrases) and

25 Note that [finish]l: [human]l — Prop < [[delegate]l — Prop.

@ Springer

458 S. Chatzikyriakidis, Z. Luo

define ands as follows:

(37) AND3: ITA : LType. I1x,y,z : A. ¥Xa : A.¥p : A — Prop. p(a) D
px) A p(y) A p(2).
(38) and3 =AA : LType.dx,y,z: A.m1(AND3(A,x,y,2))

Having defined the coordinators such as and in such a way, we shall have the desired
inference as expected. For example, from the semantics (36), we can infer that ‘Jones
signed the contract’, the hypothesis in (34).2

Coordinators such as or can be defined in a similar way. More complex examples
like the one shown below can be also proven:

(39) Either Smith, Jones or Anderson signed the contract.
If Smith and Anderson did not sign the contract, did Jones sign the contract?
[Yes]

Remark 3 1It’s worth remarking that a general definition of a logical conjunction And
for arbitrary n-ary arguments is possible. We start with the typing:

(40) And: IIn : Nat.ITA : LType.Ilv : (Vec(A,n +2)) — Prop.
We can define And by induction on Nat:

41) And((2, A)[a,b]) =a nb
And(n + 1, concy(a, v)) = a A (And (n v))

Based on the above, a general auxiliary AN D can be defined as follows:

(42) AND: IIn : Nat.IIA : LType.Illv : (Vec(A,n+2)).YXa : A.Vp : A —
Prop. p(a) D (And (n +2)A (mapyv))
where mapy : (n : Nat)(A,B : Type)(f : A — B)Vect(A,n) —
Vect(B, n) is defined as follows:
mapy (0, A, B, f,nily) = nilp
mapy(n+ 1, A, B, f, consy(a, v)) = consy(f(a), mapy (n, A, B, f,v))

4.3 Adjectives

Inferences involving adjectives pose a number of difficulties given the semantic asym-
metries associated with different classes of adjectives. The semantics of adjectives is
a notoriously difficult issue in theoretical semantics and a number of approaches have
been put forth, particularly in a classical Montagovian setting [see, for example, Mon-
tague (1973), Kamp (1975) and Partee (2007, 2010)]. In Modern Type Theories,

26 A note about Coq is in order here: building new universes is not an option in Coq (or, put in another
way, Coq does not support us to build a new universe). Instead, we shall use an existing universe in Coq in
conducting our examples for coordination.

@ Springer

Natural Language Inference in Coq 459

X -types have been proposed for intersective adjectives Ranta (1994) and, recently,
the current authors have studied adjectives more systematically using the framework
used in this paper (Chatzikyriakidis and Luo 2013).

The FraCas test suite uses different terminology than those usually found in the
literature on the formal semantics of adjectives. The basic classification is between
affirmative and non-affirmative adjectives:

(43) Affirmative: Adj(N) = (N)
(44) Non-affirmative: Adj(N) = (N)

We shall follow this latter terminology in this paper.
4.3.1 Affirmative and Non-affirmative Adjectives

Cases of affirmative adjectives are handled well with the existing record mechanism
already used for adjectives. The following inference as well as similar inferences are
correctly captured, given that a CN modified by an intersective adjective is interpreted
as a X -type which is a subtype of the CN via means of the first projection:

(45) John has a genuine diamond = John has a diamond.

Non-affirmative adjectives involve cases like former. The problem with these types
of adjectives is that they do not give rise to categorical intuitions as regards inference.

Thus, the following inference is valid for some but non-valid for some others:27

(46) John is a former president = John is not a president

The same goes for adjectives like fake.?® We leave the discussion concerning adjectives
like former until temporal inference is going to be discussed. We will then propose an
account, assuming that former is indeed non-affirmative.

4.3.2 No Comparison Class Adjectives

Adjectives like four-legged do not need reference to a comparison class (FraCas
3.202):

(47) Every mammal is an animal.
Is every four-legged mammal a four-legged animal? [Yes]

Assuming that four_legged is of type Animal — Prop and given that Mammal <
Animal, the above inference is correctly predicted.

27 This is something that has been noted in the literature, see Partee (2007). Note that in the FraCas test
suite, the inference in (46) is valid.

28 In the case of fake, Partee (2010) tried to provide an account where fake is treated as a subsective
adjective, i.e. affirmative in the classification given in the FraCas test suite, via using the disjoint union type.

@ Springer

460 S. Chatzikyriakidis, Z. Luo

4.3.3 Opposites

This section deals with adjectives of the same comparison class which are opposites
of one another like e.g. large and small. For these adjectives, the following inferences
hold:

(48) Small(N) = — Large(N).

(49) Large(N) = — Small(N)

(50) — Small(N) = Large(N).

(51) — Large(N) # Small(N)

What is the most difficult part here is the avoidance of the inferences (50) and (51).
Something which is not small might not be large, given that sizes do not come in the
form of a binary opposition. Thus, a way to treat this is to introduce another size,
let us say normalsized, and have small hold in case the negation of both large and
normalsized hold:?°. We introduce the following:

(52) Definition Small:= fun A:CN,fun x: A=> ~Large x A ~Normalsized x.
This approach is successful in getting the inferences as regards opposites right.3°
4.3.4 Extensional Comparison Classes

Adjectives like large and small are only relevant for the comparison class they refer
to. Thus, inferences like the following are found:

(53) All mice are small animals.
Mickey is a large mouse.
Is Mickey a large animal? [No]

In order to deal with these cases, we introduce a polymorphic type for adjectives
like these ranging over the universe CN.3! The type for large is shown in (54), which
is (55) in Coq’s notation:

(54) large: ITA :CN. A — Prop
(55) Parameter large : forall A:CN, A— Prop

Using the above type, we have many instances of large depending on the choice of
A.If A = Man then we get large(Man): Man — Prop; if A = Animal, we

29 Of course, depending on context more fine grained distinctions might be needed but the idea is applicable
to these cases as well.

30 Small is defined after Large has been declared. The opposite is also possible, i.e. defining Large
after Small has been declared first. This might seem strange from a theoretical point of view, but for
implementation purposes it is not.

31 This is based on the authors’ analysis of subsective adjectives (Chatzikyriakidis and Luo 2013).

@ Springer

Natural Language Inference in Coq 461

get large(Animal) : Animal — Prop, and so on. In this respect, we get different
‘larges’ as such for different As. With this, one can capture the meaning of subsective
adjectives, i.e. that if something is A (where A an adjective), it is only large for its
class denoted by the CN (a large mouse is thus only large as a mouse, but not as an
elephant). This way of treating subsective adjectives will correctly account for the
inferences like that in (53).32

4.3.5 A Note on Intersective Adjectives

Intersective adjectives comprise a class of adjectives in the theoretical literature on
adjectives which can be characterized by the following inferential schema:

(56) Affirmative: Adj(N)(x) = Adj(x) A N(x)

Thus, carnivorous man means something that is carnivorous and a man. With inter-
sective adjectives, one should be able to get inferences like the following:

(57) Adjinter man = Adjinrer human

A concrete example would be carnivorous man implying carnivorous human. Given
that coercions according to Luo’s MTT propagate via the various type constructors,
we have: X ([manl|, carnivorous < X ([human], carnivorous).>

4.4 Comparatives

Comparatives such as shorter than can be given semantics either directly or by means
of an explicit measure. We shall consider both alternatives.

Comparatives without Measures. We shall consider shorter than as a typical exam-
ple. Intuitively, shorter than should be of type Human — Human — Prop as in
the following example:

(58) Mary is shorter than John.

We assume that there be a predicate short: Human — Prop, expressing that a
human is short. Intuitively, if Mary is shorter than John and John is short, then so
is Mary. Furthermore, one should be able to take care of the transitive properties of
comparatives. Thus, if A is COMP than B and B is COMP than C, then A is also
COMP than C. All these can be captured by considering SHORTER_THAN of the

32 Theinterested readeris directed to Chatzikyriakidis and Luo (2013) for more information on the treatment
of subsective as well as the other types of adjectives in MTT with coercive subtyping.

3B In Coq, we cannot have the first projection as a general coercion. Instead, we have to declare it for
the instances we need. This is a weakness of Coq that does not allow us to implement the more general
treatment. Such a general coercion is possible to get declared in Plastic, an interactive theorem prover that
implements Luo’s UTT and coercive subtyping (Callaghan and Luo 2001).

@ Springer

462 S. Chatzikyriakidis, Z. Luo

following X -type and define shorter than to be its first projection:

(59) SHORTER_THAN: Xp: Human — Human — Prop. Yhy, hj, h3
Human. p(hy, ho) A p(ha, h3) D p(hy, h3) AVhy, hy : Human.p(hy, hy) D
short(hy) D short(hy).

(60) [[shorter than]l = m1(SHORTER_THAN)

With the above, we can easily show that the inferences like (61) can be obtained as
expected.

(61) John is shorter than George.
George is shorter than Stergios.
Is John shorter than Stergios? [Yes]

Comparatives with Measures. In giving an analysis of compratives, one may consider
measures, taking into consideration different degrees of the measure used in each case,
e.g height in the case of comparatives like short, weight in the case of adjectives like
heavy or speed in the case of adjectives like fast. For example, we can analyze shorter
than as a relation between nouns that do come with implicit measures, in which the
first noun has less height than the second.

Such measures can be taken care of explicitly by extending the above treatment by
dependent typing over measures. Let’s consider shorter than as an example, taking
heights to be measured by the type Height of numbers such as 1.70.3* We are then
led to consider the family of types Human: Height — Type indexed by heights:
Human(n) is the type of humans of height n. Then, shorter than is defined as fol-

lows:33:36

(62) SHORTER_THAN: ITi, j: Height. Xp: Human(i) — Human(j) —
Prop.Vhy : Human(i)Vhy : Human(j). p(hy, hy) <1 < j.

(63) [shorter than]l(i,j) = m(SHORTER_THANC(, j)): Human(i) —
Human(j) — Prop

We can now take care of the inferences like (64) as expected:
(64) John is shorter than George.

George is 1.70.
Is John less than 1.70 tall? [Yes]

34 Here we do not spell out the type Height. One might take Height to be the type of natural numbers
and use 170 to stand for 1.70, etc.

35 The transitive properties of comparatives are not encoded in this example for reasons of simplicity. One
may very well do so having as a guide the previous entry without measures.

36 This is a bi-implcation, given that if the height of human x is less than the height of another human y,
then it is also the case that x is shorter than y. The definition also works as an implication.

@ Springer

Natural Language Inference in Coq 463

To see the details, the semantics of the above sentences are given in (67), where J and
G are the semantics of John and George, involving height parameters:

65) J,G:Xx :height. HUMAN (x)

We can further define j and g as the second projection of J and G respectively:
(66) j,g:m(J,G)

With these at hand, (64) can be formulated as follows:

(67) [shorter than](J, G).
g = 1.70.
Is Q true, where Q = j < 1.70?

It is easy to show that the above inference (67) can be proven in Coq.

It may be worth remarking that superlatives can be defined once comparatives are:
for example, for any x : Human, shortest (x) if and only if x is shorter than or equal to
any y: Human. A similar treatment can account for the rest of the examples involving
comparatives in the FraCas test suite.

Remark 4 1t is of course highly desirable to generalize the account of comparatives to
other similar adjectives. This is not difficult. For example, in the case with measures
one can define a general auxiliary object C O M P that will, besides height, deal with
other quantities expressed as natural numbers as well, e.g. weight, speed etc. Similarly
to the type Height, we can accordingly define the types of Weight, Speed to be the
type of natural numbers. Then, a general COMP auxiliary will be possible:

(68) COMP: IIi, j: nat. Xp: Human(i) — Human(j) — Prop. Yhi
Human(i)Vhy : Human(j). p(h1,hy) <> i < j.

Then comparatives like smaller_ than, thinner_ than, slower_ than can all of them
be defined as:

(69) [compll(i, j) = 71 (COMP(, j)): Human(i) - Human(j) — Prop

4.5 Temporal Reference

A way to deal with temporal reference without employing a temporal logic of some
sort, is to introduce a type T'ime of times to deal with the extra parameter of 7ime [see
e.g. Ranta (1994) for such a view].

With such a type Time, one provides a very simple model of tense and, over
Time, we have a precedence relation < and a specific object now: Time, standing
for ‘the current time’ or ‘the default time’. Simple tenses like the simple present or
the simple past can then be easily captured.’” Also, in this model, verbs are assumed

37 One may even employ this model to capture composite tenses like the past perfect, but we do not discuss
this here. See Ranta (1994) for an idea of how this can be done within such a framework.

@ Springer

464 S. Chatzikyriakidis, Z. Luo

to involve a Time argument as well.>® Thus a verb like walk is not simply of type
[human]] — Prop anymore, but rather of [human]] — Time — Prop.
The type Time can be specified as an inductive type in an MTT, where one may

consider the following as one of its constructors:°

(70) date: DATE — Time

where DAT E consists of the triples (y, m, d) where y ranges over integers to represent
years, m over J an to Dec to represent months, and d over the days 1, 2, . . . to represent
days.4° For example, date(1970, Oct, 5) stands for the time ‘Oct 5, 1970°.

Now, consider the inferences like the following example:

(71) Last year John signed the contact.
Today is June 18, 2013.
Did John sign the contract in 20127 [Yes]

With the above, the above sentences in (71) are interpreted as those in (72), where
¢ = [[the contract]:

(72) 3t: Time,Im : month,3d : day.date(year(now) —1,m,d) Am < 12 nd
30 Asign(j,c,t).
now = date(2013, June, 18).
Is Q true, where 3¢t: Time,Im : month,3d : day.date(2012,m,d) A m
12Ad <30 Asign(j,c,t)?

IA

IA

This can now be shown to be valid inference in Coq. Cases involving temporal adverbs
like yesterday, today or PPs like next month, next year can be treated accordingly.

Similarly examples like the following can be accounted for, assuming that currently
identifies the time of the proposition to be equal with the default time. The Time
argument of the proposition has already been identified as being the default time via
means of the present tense verb and as such, examples like the one below are very
easily proven to be valid inferences:

(73) ITEL has a factory in Birmingham.
Does ITEL currently have a factory in Birmingham? [Yes]

The sections in the FraCas test suite that deal with in and for adverbials need a
solid account of lexical aspect as well as a fuller account of tense which at the present

38 The assumption that verbs involve an event/situation argument goes back at least to Davidson (1967).
See Davidson (1967) and reference therein, for a history of events/situations in linguistic theory.

39 An inductive type is specified by a number of constructors whose types must be strictly positive [see, for
example, Chapter 9 of Luo (1994) for formal details]. 7ime as an inductive type may have other constructors
but we only detail date here.

40 Note that,in detail, the range of days depends on the year and month. This can be represented by means
of dependent types: the type Day(y, m) depends on y: Year and m: Month: for example, because there
are only 28 days in Feb of 1970, Day(1970, Feb) = {1, 2, ..., 28}, the enumeration type consisting of 1,
2, ..., 28 only. Formally, DAT E can be defined as X'y: Year.Xm: Month. Day(y, m).

@ Springer

Natural Language Inference in Coq 465

we do not have to offer. We leave these sections unresolved until such an account is
provided. However, some of the inferences can be effectively dealt with in pretty much
the same way as the monotone on the second argument examples. One such example
is shown below:

(74) Smith lived in Birmingham for two years.
Did Smith live in Birmingham? [Yes]

Defining for two years in the same sense as a veridical VP adverb like on time, can
provide us with a correct prediction for the above example. Again, we should stress
that a full account of for and in adverbials needs a solid account of aspect that we at
the moment do not have, so we leave this as an issue for future research.

4.5.1 The Case of Former

Adjectives such as former or past may be treated in the temporal model we have
considered.*! We assume that some CNs are indexed by the time parameter. For
example, instead of being interpreted just as a type, a CN like president is interpreted
as a family of types indexed by 7: T'ime:

(75) president(t): CN.

For example, as now: Time stands for the ‘current time’, president(now) is the
president at the current time.

With the above mechanisms available, we can now interpret CNs modified by former
as follows:,*?

(76) [former president] = —president(now) A 3t: Time. t < now A
president (t).

In general, we have [former]: (Time — CN) — CN,*} obtained by abstracting
president in the above definition: for any p: Time — CN,

(77 [formerl(p) = ~pmow) A3t: Time.t < now A p(t).

With president: Time — CN, we have [former president]] = [formerl]
([president]).

This kind of analysis will predict that former president entails a past president but
not a current president.

41 Another approach to dealing with such adjectives is to follow Partee (2007) and assume that former
behaves similarly to privative adjectives like fake or imaginary. If so, one may follow the proposed MTT-
interpretation by the authors to use the disjoint union type to interpret former. See Chatzikyriakidis and Luo
(2013) for details.

42 For understandability of the readers who are unfamiliar with MTTs, we abuse the notation here, using
—A to stand for A — @, A for x and 3 for X'. One may ignore these formal details.

3 In Coq this is translated as (T'ime — CN) — Prop given that definitions always end in Prop.

@ Springer

466 S. Chatzikyriakidis, Z. Luo

4.6 Epistemic, Intensional and Reportive Attitudes

This section involves verbs taking a sentential argument. The difference is between
verbs that presuppose the truth of their complements and verbs that do not:

(78) Smith knew that Itel had won the contract 1991.
Did Itel win the contract in 19917 [Yes]

(79) Smith believed that Itel had won the contract 1991.
Did Itel win the contract in 1991? [Don’t know]

Again, we will not dwell on a discussion on how suitable semantics for attitude verbs
should be given. There are so many issues to take into consideration in this respect,
starting with questions as general as *what is belief’, that such a discussion cannot
be carried out here. However, we can provide an account of these types of inferences
without necessarily solving the issues associated with the semantics of Attitude verbs.

What we need is to encode that some epistemic verbs presuppose their argument’s
truth while others do not. For instance, know belongs to the former class and its
semantics is given as follows:

80 KNOW = Xp : Human — Prop — Prop. Vh : HumanVP
Prop. p(h, P) D P

81) [know] = 1 (KNOW)

With this, the inference (78) can be obtained as expected. Intensional verbs like believe
on the other hand do not imply their arguments and inferences like (79) cannot be shown
to be valid inferences.

In the FraCas test suite there are also examples concerning ‘veridicality’; this is
basically the property that verbs like know show—‘know P> = P, so we do not need
to discuss these cases again.

4.7 Substitution and Existential Instantiation

Substitution refers to the ability of substituting two equivalent terms and retaining the
meaning after substitution, as (82) shows:

(82) Smith saw Jones sign the contract.
Jones is the chairman of ITEL
Did Smith see the chairman of ITEL sign the contract?[Yes]

Substitutions like those in the second premise above can be easily done in Coq via the
replace tactic. Thus, cases like these are easy to capture.

@ Springer

Natural Language Inference in Coq 467

There are also examples where existential quantifiers and their instantiations are
involved. For example,

(83) Smith knows that Jones signed the contract.
Jones is a person.
There is a person such that Smith knows he signed the contractn [Yes]

Existential quantification is introduced to the semantics because of the second sen-
tence; this becomes clear if we spell out the semantic interpretations of the sentences
in (83) as those in (84) below, where ¢ = [[the contract]]:

(84) [know]l(s, sign(j,c)).
dx : Person. j = x.
dx : Person. [know](s, sign(x, c)).

It is easy to see that the first two imply the third.

4.8 Collective Predication

We want to be able to get the following inferences (note that these cases are not part
of the FraCas test suite):

(85) Stergios and Zhaohui met = Stergios met Zhaohui and Zhaohui met Stergios

(86) Stergios and Zhaohui hit each other = Stergios hit Zhaohui and Zhaohui hit
Stergios

(87) Stergios and Zhaohui are Greek and Chinese respectively = Stergios is Greek

For such collective predicates, we use the Vector-analysis proposed by the authors in
Chatzikyriakidis and Luo (2012). Verbs like meet in their collective guise take a vector
argument with at least two elements (i.e., an object of type Vec(Human, n + 2)), as
given in (88).* Thus, reciprocal predicates like meet take one vector argument (with
n at least 2).*> This account can also give us a natural treatment of reflexives like
each other. The idea is that each other in English turns a transitive predicate into an
intransitive one whose sole argument is a vector whose length is at least 2, as in (89).
Thus, the two arguments of a transitive verb like kill, say John and Mary in John
killed Mary, are put together into a single vector argument, with the verb turning into
an intransitive verb. Lastly, respectively can be seen as a big functor which takes two
vector arguments and returns a proposition, as in (90).

(88) [meet]l: [In: Nat. Vec([human]l,n + 2) — Prop

44 Vec(A, n) can be seen as a collection of elements of type A with an explicit nat argument counting the
elements.

45 Note that reciprocal predicates can be seen as cases after the functor each_other has been applied. In
a sense, the semantics of reciprocals are similar to regular transitive predicates after each_other has been
applied. See the following discussion on each_other.

@ Springer

468 S. Chatzikyriakidis, Z. Luo

(89) [leach other]: [TA: CN, IIn: Nat. (A - A — Prop) — Vec(A,n+2) —
Prop

(90) [[respectively]]: [TA: CN.IIn: Nat. Vec(A,n + 2) — Vec((A —
Prop),n+2) — Prop

With the above typings, in order to get expected inferences, we need to assume more
information concerning these words. For example, for each other, we assume that the
following be true: forany A: CN,n: nat,P: A —- A — Propandv: Vec(A, n+2),

1) [each other]|(A,n, P,v) DVi,j:nat.i <n+1Aj<n+2Ai#jD
P(U,’,Uj)/\P(Uj,vl'),

where if v = (a1, ..., ay42) then v; = ¢; and v; = v;.

The above says that givenan A: CN, ann: nat,a P: A — A — Prop, the type
Vec((A — Prop),n + 2) — Prop is returned and for any two nat arguments i, j
that are smaller than or equal to n + 2, we get both P (v;, vj) A P(vj, v;). With this,
it is straightforward to get the expected inference in (86). Similar lexical entries can
be given for meet and respectively, covering inferences (85) and (87) as well.*6

Remark 5 A promising aspect of using vector types is that they can potentially be used
for the proper semantic treatment of some of the non-classical quantifiers including,
for example, exactly three or most.*” We do not know how far one can go with vector
types as regards a general way of dealing with plurals. We have not yet explored the
possibilities as well as the consequences of this proposal with respect to a general
theory of plurals. This is a topic which we will pursue in future work. However, one
can already see a way to treat cases of negated plurals like the ones shown below:

(92) Just one accountant attended the meeting
Did no accountant(s) attend the meeting? [No]

(93) Just one accountant attended the meeting
Did any accountant(s) attend the meeting? [Yes]

We can assume that plural CNs are in the plural part of CN, CN,;, with CN,; < CN.
Now, we can consider typings of quantifiers with vectors for plural CNs, something
along the line of the following type:

(94) IMn: Nat.ITA: CNp;.(Vec([human]l, n) — Prop) — Prop

The above typing works as follows: first it takes two arguments, one of type nat and
one of type C N ;. Then, this is followed by a predicate of type (Vec(A, n) — Prop).

46 On the assumption that meet and respectively are also assumed to involve extra information in the same
vein with each other.

47 Also, this does not mean that the Vector-treatments are superior as compared to some existing constructive
semantic accounts of these quantifiers [see, for example, Sundholm (1989)].

@ Springer

Natural Language Inference in Coq 469

This would presumably be the typing for a plural predicate, like e.g. walk.*® For
example, a quantifier like three can have the following type:

(95) [three]l: UTA : CNp.(Vec(A,3) — Prop) — Prop)

Three men will be defined as:

(96) [[three men]: (Vec(Man,3) — Prop) — Prop)

Then, given the explicit nat argument one can deal with cases like exactly three by
further specifying that only vectors with n = 3 will make the proposition true, and all
other vectors of n < 3 or n > 3 will make the proposition false. This will for example
be needed for cases like the following:

(97) Exactly two people came #- three people came

Again more work is needed in order to see how using vector types can develop
into a viable alternative on dealing with quantifiers. We leave the issue open for the
moment.*’

4.9 Evaluating Against a Subset of the FraCas Test Examples

In this section we have evaluated our approach against a subset of examples from the
FraCas test suite. For the needs of this paper, we have used examples from these 4
sections: quantifiers, adjectives, comparatives and conjoined NPs. Overall, the system
was evaluated against 77 examples from 4 sections. 72/77 examples were correctly
captured (approx. 93.5 %). What is more important, all of the examples were managed
to be proven automatically (see the discussion in the next section).

4.9.1 Quantifier Section

For this section, we evaluate against 35 examples, 7 from each §3.1 in the FraCas
test suite. We follow the following tactic in choosing the examples: we either take
the first 7 examples from each subsection, or if a number of consecutive examples
are similar in terms of the way they are proven, some of these are skipped to the
next one.’” We used the modified GF parser as this was designed to deal with the
FraCas examples in Ljunglof and Siverbo (2011). For the moment we do not have
an automatic translation between a well-formed grammatical input and the syntax of

48 There are a number of details as to how the regular entry for something like walk (Animal — Prop)
and its plural version (ITn : nat, vector Animaln — Prop) are related but this is something that we cannot
discuss here. See however the discussion in Chatzikyriakidis and Luo (2012).

49 However, look at a first way this can be used in order to deal with inferences involving this kind of
quantifiers in Sect. 4.9.1.

50 For example we have skipped examples 3.68 and 3.69 in the FraCas test suite given the similarity with
3.67.

@ Springer

470 S. Chatzikyriakidis, Z. Luo

the proof assistant, so this process cannot be done automatically at the moment. After
parsing, we formulate the FraCas examples as theorems. We get the correct results in all
examples in this case (35/35). Some notes are at hand as regards the actual translation
to the logical language. In some instances, we introduced non-compositional entries,
e.g. right_to_live_in_FEurope : CN as a simple token. We did that for reasons of
brevity and only in cases these did not affect the outcome of the proof in any way.
With this note, let us see some representative examples, starting with the first section:

(98) An Italian became the world’s greatest tenor.
Was there an Italian that became the world’s greatest tenor [Yes]

Here we define world’'s_greatest_tenor non-compositionally as CN, but only for
reasons of brevity.>! The example is easily proven, given that the existential require-
ment of the hypothesis is given by the quantifier an in the premise. A further example
from the second subsection (3.17 in the FraCas test suite):

(99) An Irishman won the Nobel prize for literature.
Did an Irishman win a Nobel prize [Yes]

In this example, for_literature is treated in the same sense as on_time. In par-
ticular, it has an identical lexical entry, i.e. it is defined as the first projection of the
auxiliary object ADV. This suffices to prove the example. One last example from the
same section (3.69 in the FraCas test suite):

(100) Every resident of the North American continent can travel freely within Europe
Every Canadian is a resident of a North American continent
Can every Canadian travel freely within Europe [Yes]

In the above example, we treat resident_of _the_North_American_continent
non-compositionally. The second premise is encoded as a subtype relation between
Canadianresident andresident_of _the_North_American_continent. This suf-
fices to prove the example.

4.9.2 Section on Adjectives

For the adjectival section, we have tested our account against 16 examples spanning
across four subsections: §3.5.2—§3.5.5 in the FraCas test suite. In this section, correct
results were obtained for 14/16 examples. Two of the examples were predicted to
produce yes as an answer where the desired result was do not know. One of these is
shown below:>2
(101) All legal authorities are law lecturers

All law lecturers are legal authorities

Are all competent legal authorities competent law lecturers? [Don’t know]

51 It can be defined compositionally as a X' type.

52 This is in fact the only case of those tested where the prover finds a proof where it should not have.

@ Springer

Natural Language Inference in Coq 471

The prover finds a proof for the above, given the two premises. Note that in the
cases which are called extensional comparison classes in the FraCas test suite, the
account makes the correct predictions, e.g. cases like the following:

(102) All legal authorities are law lecturers
All law lecturers are legal authorities
Are all fat legal authorities fat law lecturers? [Yes]

Other interesting cases involve examples like the following (3.208 in the FraCas
test suite):

(103) Mickey is a small animal
Dumbo is a large animal
Is Micky smaller than Dumbo? [Yes]

In order to deal with this example, one has to relate small with its comparative. In
effect, what we did is introduce a condition which says that for all elements that are
of a bigger size than small (e.g. normalsize or large), the smaller than relation holds
between these elements and the small element. This suffices to prove such examples.
Similar considerations apply to other comparatives.

All the other examples in the relevant sections can be straightforwardly proven.

4.9.3 Section on Conjoined NPs and Bare Plurals

We evaluate the system against §3.2.1 (conjoined NPs and conjoined N bars) and
§3.2.3 (bare plurals), 15 examples in total. The first five examples are similar to (34),
and are thus proven in a similar way. More advanced examples include the following:

(104) Exactly three lawyers and three accountants signed the contract
Did six lawyers signed the contract?

In order to prove examples like these, we use vector types to define quantifiers.
Exactly three involves a vector of n = 3 and any other vector withn > 3 orn < 3
will make the proposition false. Thus, [finish]l(the contract)(Vec(Lawyer,3) #
[finish](the contract)(Vec(Lawyer, 6).

The system gives a correct answer to 12/15 examples (80 %). Problematic cases
include examples like the ones shown below:

(105) Every representative or client was at the meeting
Was every representative and client at the meeting?

The semantics provided for coordinators are not able to capture this case and should
be revisited. Lastly, we treated bare plurals as involving an existential reading, so

@ Springer

472 S. Chatzikyriakidis, Z. Luo

examples with universal readings like the one shown below, were not captured:

(106) Clients at the demonstration were impressed by the system’s performance.
Smith was a client at the demonstration
Was Smith impressed by the system’s performance? [Yes]

4.9.4 Section on Attitudes

The system was evaluated against §3.9 of the FraCas test suite, a total of 11 examples.
All of the examples were correctly dealt with. §3.9.1 involves different kind of attitude
verbs, some of them presupposing the truth of their complement (know) and some of
them not (e.g. believe). The analysis as proposed in Sect. 4.6 suffices. Also, examples
like the one shown below are correctly captured (no proof can be found):

(107) Smith saw Jones sign the contract
If Smith signed the contract, his heart was beating
Did Smith see Jones’ heart beating? [Do not know]

Lastly, existential instantiation and substitution cases like examples (3.343) and
(3.344) in the FraCas test suite are also correctly captured. E.g. in the example below,
introducing an equality relation between Jones: Man and the chairman_of _Itel:
Human, will suffice:

(108) Smith saw Jones sign the contract
John is the chairman of ITEL
Did Smith see the chairman of ITEL sign the contract? [Yes]

5 NLI: Discussion on Different Approaches and Automation
5.1 Informal Comparison with Other Relevant Approaches

The most obvious difference between the system presented here and deep approaches
to NLI that use first-order logic as their translation language like e.g. Bos and Markert
(2005, 2006), is the use of a many-sorted typed system rather than an untyped one.
This, in conjunction with the coercive subtyping mechanism, takes care of a num-
ber of inferences via typing only (e.g. monotone on the first argument or adjectival
inferences). In systems translating to first-order logic, this information must be added
separately as axioms.>? Furthermore, dependent typing offers a number of welcome
results. One such result was developed in this paper and concerns the employment of
X types not only in dealing with existential®* or adjectival modification but to interpret

53 For example, the Montagovian meaning postulates for the different kinds of adjectives have to be defined
as axioms [see e.g. Pulman (2013)]. In our case, and at least for intersective and subsective adjectives, their
inferential properties are derived via typing only [see Chatzikyriakidis and Luo (2013) for more information].

54 Even though we do not use X' types to represent existential quantification.

@ Springer

Natural Language Inference in Coq 473

adverbial modification as well as the semantics of factive verbs. Again, the advantage
in this case is the ability of using dependent types in order to take care of the desired
inferences without resorting to meaning postulates. Abstracting away from the details
of each line of approach, like for example the phenomena that are treated in one of
the approaches but not in the other,? the basic difference seems to boil down to the
use of two rather different logical languages in interpreting NL semantics, first-order
logic on the one hand and an MTT on the other.

However, and as already mentioned, the system presented in this paper is not yet
a full-blown system, given that only the part of the inferential process is shown and
not any of the other components of a successful NLI system, namely a wide-coverage
parser recognizing grammatical strings of text as well as various components that per-
form some kind of pre-processing of the goal before the latter is handed to the prover.
For example, in Bos and Markert (2006) a wide coverage CCG parser is used, while
Background Knowledge is encoded via translating any relations found in WordNet
(e.g. hyponymy relations) to first-order logic. The same is done for generic knowledge
(e.g. passives, spatial information). Furthermore, deep approaches usually involve a
shallow approach component as it is the case for example in Bos and Markert (2005)
where some form of relation between the premise and the hypothesis are derived.
This is done via searching for word overlaps between the premise and hypothesis by
taking into consideration WordNet relations. This process results in the assignment
of a similarity measure between the premise and hypothesis.>® Such hybrid approach
will be interesting to use once a more complete version of the system presented here
is ready. Another idea we would like to use is that that of entailment approximation
discussed in Bos and Markert (2005). The intuition behind it is simple and is based on
the informal observation that when the prover has almost found a proof, the relation
is usually an entailment. Of course, this is very difficult to formalize in practice for
obvious reasons. In Bos and Markert (2005), a model builder is used for this reason.
Again the idea is simple: in case we are dealing with an entailment, the entities of the
model are the same in both the premise and hypothesis. In case we are not dealing
with an entailment, the domain size is different. Domain size is then used to approxi-
mate entailment: larger distances in the domain size point to non-entailment, smaller
distances to entailment. Thus, a possible future direction is to try and see how can the
concept of entailment approximation be translated within our system. Obviously, we
will not be using any kind of model builder but however, one can measure the domain
size via the number of entities or relations between the entities that are needed in the
local context of the proof in order for the premise or the hypothesis to be true. Then
the same idea used in Bos and Markert (2005), based on the distance in the domain
size of the entities plus relations between the premise and hypothesis, can be used.

5 E.g. treatment of anaphora that is lacking in our account or the treatment of collective predication
temporal reference lacking in deep approaches like Bos and Markert (2005, 2006), Pulman (2013).

56 The account proposed in MacCartney (2009), as already mentioned, is a kind of hybrid approach with
both a shallow and a deep component. It is out of the scope of this paper to look at the state-of-the-art
shallow approaches to NLI. However, the interested reader is directed to MacCartney (2009) and references
therein for more information on this type of approaches.

@ Springer

474 S. Chatzikyriakidis, Z. Luo

It is clear from the above that the next step for us will have to be the development
of a full-blown NLI system. This will ideally involve the development of a parser
using Ranta’s Grammatical Framework (GF, Ranta 2011), its purpose being twofold:
(a) parse grammatical Engish sentences and (b) linearize this parsed input into the
syntax of Coq. In effect, Coq syntax is treated like an ordinary language. The system
will involve an abstract syntax but two concrete syntaxes, one for English and one
for the Coq language.’’ Additional information like BK or generic knowledge can
be expressed via means of axioms or even typing (e.g. hyponymy relations) drawn
from WordNet or similar sources (VerbNet, ConceptNet) . The same holds for generic
knowledge. These all remain part of our future work and are in our opinion feasible.

Furthermore, and even though we have covered a number of issues in this paper,
there are sections in the FraCas test suite that we have not tried yet. For example the
section (or subsections) discussing issues relevant to the aspectual system have not yet
been properly tried out. It is our intention to attempt a proper formalization as well as
implementation of aspect in Coq and extend the preliminary implementation of tense as
shown in this paper as well. Similar considerations apply to other sections of the FraCas
test suite like e.g. the section dealing with inference in elliptical environments.>® Lastly,
if such a system is to have broader practical applications one needs to test against real
text and not examples constructed ad hoc for the sake of testing various categories of
inference as the FraCas test suite is basically doing. The next step will thus be to test
the proposed account against the RTE challenge suites (Dagan et al. 2006). This, along
with what we have mentioned already, consists the basis of what our future work is
directed towards.

5.2 Interaction and Automation

Coq is an interactive theorem prover. As such, theorems, in our case NLIs, are proven
interactively and not automatically. One may argue, that such a system is not really
helpful for NLI, since what we want is a way to prove these inferences automatically.
This is a valid point and of course we do agree. However, the idea of using an interactive
theorem prover has a number of advantages. One of them is that by using an interactive
theorem prover one is able to see the reason a given theorem cannot be proven. This last
fact alone can be quite helpful in designing automated tactics for NLI. Furthermore,
Coq itself has a number of built-in tactics that are designed to automate trivial parts
of proofs. For example, some of our examples can be solved with intuition or jauto
once the cbv delta tactic has been executed. Cbv delta replaces the occurrences of a
defined notion by the definition itself in the current goal (or in any of the hypotheses)
while intuition just looks for first-order intuitionistic logic tautologies. We can thus
define a new tactic which first calls cbv delta, followed by intuition and jauto in order

57 This is one of the core ideas of GF parsers, i.e defining one abstract syntax that corresponds to multiple
concrete ones.

58 Dealing with ellipsis successfully is of course largely dependent on the adequacy of the parser, given
that if the parser succeeds in parsing elliptical constructions it will then linearize these structures into the
Coq language where the elided information will be present. From this stage on, inferences are easy to be
proven. However, this issue is left for future work.

@ Springer

Natural Language Inference in Coq 475

to automate a number of example cases.”® We have introduced such a tactic (AUTO
in the source code) and indeed a number of example cases can be automatically be
proven by using this tactic (e.g. 25, 103, 45). For more advanced cases, one can use
more elaborate proof-techniques in order to achieve automation. For example in cases
where a X type analysis is used, like e.g. in the case of VP adverbs, one needs to
use destruct specifically for the auxiliary objects (e.g. ADV for ontime). One can
thus devise an automatic tactic which is however context dependent, depending on the
example. In the same case one might need to instruct Coq to apply a specific premise.
One tactic that does both the aforementioned is shown below:

(109) Ltac AUTOI1 a b:= cbv; destruct a; eapply b; AUTO.

The above tactic can take care of the X' type cases (note the use of AUTO within
AUTOL1). A similar more advanced automated tactic has been defined for cases of
collective predication. These three tactics are then all we need to automate all our proof-
examples. In order to achieve full automation, we can further use one composite tactic
which tries one of the three tactics and succeeds in case one of them does. Assuming
we have three tactics a, b and ¢, one can define the following tactic, say d:

(110) Ltac d:= solve[a|b|c].

Using this technique, one can actually automate all the examples discussed in
this paper. Most of the cases can receive total automation while some of them, even
though automatically proven, will need some extra guidance to the prover, for example
instructing the prover to apply part of the automated tactic to specific elements. For
example in the case of auxiliary objects, one has to instruct the prover to destruct these
objects. Thus instead of just typing AUTO, one will have to type something like AUTO
d, where d is the specific item we want to unfold. Currently, we are looking for ways
to eliminate this as well, so automation does not need this kind of user aid in all cases.
It will be very interesting to see how far one can go with automation, in particular
whether automation is still possible when the examples are comprised of bigger texts,
like e.g. some examples from the RTE challenges. In fact, proof-automation in Coq is
an on-going research topic within the community and a number of researchers have
provided interesting results like for example work by Wilson et al. (2010) on inductive
proof-automation. Further work is needed on the feasibility of automation as regards
NLI but the first results seem promising. We hope that this paper will be the start of
a new research direction, in which MTT semantics (or in general formal semantics)
and proof assistant technology work on a par in order to deal with NL reasoning.

6 Conclusion

In this paper we have presented the first attempt to use proof assistant technology
in order to deal with NLI. Furthermore, this paper proposed the use of MTTs as the
logical language for dealing with NLI. We provided an account of a number of cases

59 Jauto is part of the LibTactics library, containing extra tactics beyond the standard ones.

@ Springer

476 S. Chatzikyriakidis, Z. Luo

from the FraCas test suite using Luo’s TT with coercive subtyping. It was shown that
using a considerably richer language than first-order logic, can give us a number of
welcome results as regards NLI. In particular, the coercive subtyping mechanism as
well as the use of dependent typing have been shown to be very helpful in dealing
with various NLI cases. The account was then tested in Coq where the FraCas test
suite examples were encoded as Coq theorems. Lastly, it was shown that one cannot
only use Coq in order to reason about NL semantics, but to further automate the proof
process by developing used-defined tactics.

Acknowledgments This work is supported by the Grant F/07-537/AJ of the Leverhulme Trust in U.K.
Two anonymous reviewers are also thanked for providing detailed and insightful comments and suggestions
on an earlier draft of this paper.

Appendix: Coq Code of Examples

All of the examples in this paper have been tried in the Coq proof assis-
tant. The source codes can be obtained by sending an email request to ster-
gios.chatzikyriakidis @cs.rhul.ac.uk. Here, we shall give an example with Coq tactics
(Appendix “A More Advanced Example: Proving Peirce’s Law”) and some examples
in linguistic semantics (Appendix “An Example from the FraCas Test Suite”).

A More Advanced Example: Proving Peirce’s Law

We want to prove that if the law of the excluded middle holds then so does Peirce’s
law.

Definition lem:= A \/ ~ A.

Definition Peirce:= ((A->B)->A)->A.

Theorem lemP: lem -> Peirce.

unfold Peirce. unfold LEM.unfold Peirce. intros. elim H.intros.
assumption.intros.apply HO.intros.absurd A.assumption. assumption.

We unfold the definitions, apply intros and elim H:

lemP < elim H.

2 subgoals

H: A\ 7 A

HO : (A -> B) -> A

A -> A
subgoal 2 is:
~ A -> A

Then, intro, assumption and intro again:

lemP < intros.
1 subgoal

@ Springer

Natural Language Inference in Coq 477

We use apply HO and now we have to prove A — B. We apply intro:

lemP < intro.

1 subgoal

H: A\ 7 A

HO : (A -> B) -> A

We use absurd A and now we need to prove A and A, which can be done via two
applications of assumption.

The above can be proved automatically as well, using automated user-defined tac-
tics. For this case, we can define a tactic which unfolds all the definitions and then
applies tauto, which tries intuitionistic propositional tautologies:

Ltac AUTO:= cbv delta;tauto

This suffices to prove our example automatically.

An Example from the FraCas Test Suite

FraCas example 3.55

(111) Some Irish delegates finished the report on time.
Did any delegate finish the report on time [Yes]

Parameter delegate report: CN

Record Irishdelegate : CN := mkIrishdelegate { c :> delegate; _ : Irish c }.
Parameter on_time: forall A:CN, (A -> Prop) -> (A->Prop).

Parameter finish: Object -> Human -> Prop.

Axiom so:survey->0bject. Coercion so: survey>->Object. *subtyping*

Axiom dh:delegate->Human. Coercion dh: delegate>->Human. *subtyping*

Theorem IRISH: (some Irishdelegate) (On_time(finish(the report)))->(some delegate)
(On_time (finish(the report))).

We unfold the definitions for a and move the premise to the assumptions via intro
and we apply the elimination tactic elim:

IRISH < elim H.
1 subgoal

H : exists x : Irishdelegate, On_time (finish (the report)) x

forall x : Irishdelegate,
On_time (finish (the report)) x ->
exists x0 : delegate, On_time (finish (the report)) x0

@ Springer

478 S. Chatzikyriakidis, Z. Luo

We apply intros:

IRISH < intro.

1 subgoal

H : exists x : Irishdelegate, On_time (finish (the report)) x
x : Irishdelegate

HO : On_time (finish (the report)) x

exists x0 : delegate, On_time (finish (the report)) =x0

With x: Irishdelegate as an assumption, we can now substitute x in the conclu-
sion with x thanks to the subtyping mechanism:

IRISH < exists x.

1 subgoal

H : exists x : Irishdelegate, On_time (finish (the report)) x
x : Irishdelegate

HO : On_time (finish (the report)) x

On_time (finish (the report)) x

We apply assumption and the proof is over. The above can be proved using auto-
mated tactics as well. For the purposes of this paper the following tactic has been
defined:

Ltac AUTO:= cbv delta;intuition;try repeat congruence; Jjauto;intuition.

The above unfolds all definitions, then tries all intuitionistic first-order tautologies
(intuition). Then, congruence deals with any equalities (for the example in question
there are no equalities). Then jauto is applied, which is basically Coq’s predefined auto
tactic along with some pre-processing of the goal. Then again intuition is applied. This
automated tactic can prove what we want (and much more).

References

Asher, N. (2011). Lexical meaning in context: A web of words. Cambridge: Cambridge University Press.

Asher, N., & Luo, Z. (2012). Formalisation of coercions in lexical semantics. Sinn und Bedeutung 17, Paris
223.

Bassac, C., Mery, M., & Retoré, C. (2010). Towards a type-theoretical account of lexical semantics. Journal
of Logic Language and Information, 19, 229-245.

Blackburn, P., & Bos, J. (2005). Representation and inference for natural language. Stanford: CSLI Publi-
cations.

Blazy, S., Dargaye, Z., & Leroy, X. (2006) Formal verification of a C compiler front-end. In FM 2006:
International symposium on formal methods. Lecture Notes in Computer Science (Vol. 4085, pp.
460-475). Berlin: Springer. http://gallium.inria.fr/~xleroy/publi/cfront.pdf.

Bos, J., & Markert, K. (2005). Recognising textual entailment with logical inference. In Proceedings of the
2005 conference on empirical methods in natural language processing (EMNLP) (pp. 98-103).

Bos, J., & Markert, K. (2006). When logical inference helps determining textual entailment (and when it
doesn’t). In Proceedings of the 2nd PASCAL challenges workshop on recognising textual entailment.

Callaghan, P., & Luo, Z. (2001). An implementation of LF with coercive subtyping and universes. Journal
of Automated Reasoning, 27(1), 3-27.

Chatzikyriakidis, S. (2014). Adverbs in amodern type theory. In N. Asherl & S. Soloviev (Eds.), Proceedings
of LACL2014. LNCS 8535 (pp. 44-56).

@ Springer

http://gallium.inria.fr/~xleroy/publi/cfront.pdf

Natural Language Inference in Coq 479

Chatzikyriakidis, S., & Luo, Z. (2012). An account of natural language coordination in type theory with
coercive subtyping. In Y. Parmentier & D. Duchier (Eds.), Proceedings of constraint solving and
language processing (CSLP12) (pp. 31-51). LNCS 8114, Orleans.

Chatzikyriakidis, S., & Luo, Z. (2013). Adjectives in a modern type-theoretical setting. In G. Morrill & J.
Nederhof (Eds.), Proceedings of formal grammar 2013 (pp. 159-174). LNCS 8036.

Church, A. (1940). A formulation of the simple theory of types. The Journal of Symbolic Logic, 5(1), 56—68.

Cooper, R., Crouch, D., van Eijck, J., Fox, C., van Genabith, J., Jaspars, J., Kamp, H., Milward, D., Pinkal,
M., Poesio, M., & Pulman, S. (1996). Using the framework. Technical Report LRE 62-051r. http://
www.cogsci.ed.ac.uk/~fracas/.

Dagan, 1., Glickman, D., & Magnini, B. (2006). The PASCAL recognising textual entailment challenge.
In J. Quionero-Candela, I. Dagan, B. Magnini & F. d’Alch-Buc (Eds.), Machine learning challenges
(pp. 177-190). LNCS 3944.

Davidson, D. (1967). Compositionality and coercion in semantics: The semantics of adjective meaning. In
N. Rescher (Ed.), The logical form of action sentences (pp. 81-95). Pittsburgh: University of Pittsburgh
Press.

Davidson, D. (1967). The logical form of action sentences. In N. Rescher (Ed.), The logic of decision and
action. Pittsburgh: University of Pittsburgh Press.

Fox, C., & Lappin, S. (1990). Foundations of intensional semantics. Oxford: Oxford University Press.

Girard, J. Y. (1971). Une extension de I’interpretation fonctionelle de Godel a I’analyse et son application
a I’élimination des coupures dans et la théorie des types’. In Proceedings of 2nd Scandinavian logic
symposium, North-Holland.

Goguen, H. (1994). A typed operational semantics for type theory. Ph.D. thesis, University of Edinburgh.

Gonthier, G. (2005). A computer-checked proof of the four colour theorem. http://research.microsoft.com/
~gonthier/4colproof.pdf.

Grudzinska, J., & Zawadowski, M. (2014). System with generalized quantifiers on dependent types for
anaphora. In Proceedings of EACL 2014.

Kamp, H. (1975). Formal semantics of natural language. In E. Keenan (Ed.), Two theories about adjectives
(pp- 123-155). Cambridge: Cambridge University Press.

Lappin, S. (To appear). Curry typing, polymorphism, and fine-grained intensionality. In S. Lappin & C. Fox
(Eds.), Handbook of contemporary semantic theory. Oxford: Blackwell.

Ljunglof, P., & Siverbo, M. (2011). A bilingual treebank for the FraCas test suite. Clt project report,
University of Gothenburg.

Luo, Z. (1994). Computation and reasoning: A type theory for computer science. Oxford: Oxford University
Press.

Luo, Z. (1999). Coercive subtyping. Journal of Logic and Computation, 9(1), 105-130.

Luo, Z. (2010). Type-theoretical semantics with coercive subtyping. Semantics and Linguistic Theory 20
(SALT20), Vancouver, 84(2), 28-56.

Luo, Z. (2011). Contextual analysis of word meanings in type-theoretical semantics. In Logical aspects of
computational linguistics (LACL2011) (pp. 159-174). LNAI 6736.

Luo, Z. (2012). Common nouns as types. In D. Bechet & A. Dikovsky (Eds.), Logical aspects of computa-
tional linguistics (LACL2012) (pp. 173-185). LNCS 7351.

Luo, Z. (2012). Formal semantics in modern type theories with coercive subtyping. Linguistics and Philos-
ophy, 35(6), 491-513.

Luo, Z., Soloviev, S., & Xue, T. (2012). Coercive subtyping: Theory and implementation. Information and
Computation, 223, 18-42.

MacCartney, B. (2009). Natural language inference. Ph.D. thesis, Stanford Universisty.

Maienborn, C., & Schafer, M. (2011). Adverbs and adverbials. In C. Maienborn, K. von Heusinger, & P.
Portner (Eds.), Semantics: An international handbook of natural language meaning (pp. 1390-1420).
Mouton: De Gruyter.

Martin-Lof, P. (1975). An intuitionistic theory of types: predicative part. In H. Rose & J. C. Shepherdson
(Eds.), Logic Colloquium’73.

Martin-Lof, P. (1984). Intuitionistic type theory. Naples: Bibliopolis.

Montague, R. (1973). The proper treatment of quantification in ordinary English. In J. Hintikka, J. Moravcsik
& P. Suppes (Eds.), Approaches to natural languages (pp. 221-242).

Montague, R. (1974). Formal philosophy. New Haven: Yale University Press.

Muskens, R. (2005). Sense and the computation of reference. Linguistics and Philosophy, 28(4), 473-504.

@ Springer

http://www.cogsci.ed.ac.uk/~fracas/
http://www.cogsci.ed.ac.uk/~fracas/
http://research.microsoft.com/~gonthier/4colproof.pdf
http://research.microsoft.com/~gonthier/4colproof.pdf

480 S. Chatzikyriakidis, Z. Luo

Partee, B. (2007). Compositionality and coercion in semantics: The semantics of adjective meaning. In G.
Bouma, I. Kriamer & J. Zwarts (Eds.), Cognitive foundations of interpretation (pp. 145-161). Royal
Netherlands Academy of Arts and Sciences.

Partee, B. (2010). Privative adjectives: Subsective plus coercion. In R. Bauerle & U. Reyle (Eds.), Pre-
suppositions and discourse: Essays offered to Hans Kamp (pp. 123-155). Bingley: Emerald Group
Publishing.

Pulman, S. (2013). Second order inference in NL semantics. Talk given at the KCL Language and Cognition
seminar, London.

Pustejovsky, J. (1995). The generative lexicon. Cambridge: MIT.

Ranta, A. (1994). Type-theoretical grammar. Oxford: Oxford University Press.

Ranta, A. (2011). Grammatical framework: Programming with multilingual grammar. Stanford: CSLI
Publications.

Sundholm, G. (1986). Proof theory and meaning. In D. Gabbay & F. Guenthner (Eds.), Handbook of
philosophical logic III: Alternatives to classical logic (pp. 471-506). Reidel.

Sundholm, G. (1989). Constructive generalized quantifiers. Synthese, 79(1), 1-12.

The Coq Development Team. (2007). The Coq Proof Assistant Reference Manual (Version 8.1), INRIA.

Wilson, S., Fleuriot, A., & Smaill, A. (2010). Inductive proof automation for coq. In Proceedings of the
2nd Coq Workshop. EPTCS.

Xue, T., & Luo, Z. (2012). Dot-types and their implementation. In Logical aspects of computational lin-
guistics (LACL 2012). LNCS 7351.

@ Springer

	Natural Language Inference in Coq
	Abstract
	1 Introduction
	2 Formal Semantics in Modern Type Theories
	2.1 Formal Semantics Based on MTTs: The Basics
	2.2 Common Nouns as Types and Many-Sortedness of MTTs
	2.3 Subtyping in Formal Semantics
	2.4 Some Type Constructions in MTTs

	3 NL Semantics and Inference in Coq: An Introduction
	4 NL Inference with FraCas Examples in Coq
	4.1 Quantifiers and Monotonicity
	4.2 Conjoined Noun Phrases
	4.3 Adjectives
	4.3.1 Affirmative and Non-affirmative Adjectives
	4.3.2 No Comparison Class Adjectives
	4.3.3 Opposites
	4.3.4 Extensional Comparison Classes
	4.3.5 A Note on Intersective Adjectives

	4.4 Comparatives
	4.5 Temporal Reference
	4.5.1 The Case of Former

	4.6 Epistemic, Intensional and Reportive Attitudes
	4.7 Substitution and Existential Instantiation
	4.8 Collective Predication
	4.9 Evaluating Against a Subset of the FraCas Test Examples
	4.9.1 Quantifier Section
	4.9.2 Section on Adjectives
	4.9.3 Section on Conjoined NPs and Bare Plurals
	4.9.4 Section on Attitudes

	5 NLI: Discussion on Different Approaches and Automation
	5.1 Informal Comparison with Other Relevant Approaches
	5.2 Interaction and Automation

	6 Conclusion
	Acknowledgments

	Appendix: Coq Code of Examples
	A More Advanced Example: Proving Peirce's Law
	An Example from the FraCas Test Suite
	References

