
A Higher-order Calculus and Theory Abstraction

Zhaohui Luo

�

Department of Computer Science

University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ, U.K.

Abstract

We present a higher-order calculus ECC which naturally combines Coquand-Huet's calculus

of constructions and Martin-L�of's type theory with universes. ECC is very expressive, both

for structured abstract reasoning and for program speci�cation and construction. In particu-

lar, the strong sum types together with the type universes provide a useful module mechanism

for abstract description of mathematical theories and adequate formalization of abstract math-

ematics. This allows comprehensive structuring of interactive development of speci�cations,

programs and proofs.

After a summary of the meta-theoretic properties of the calculus, an !�Set (realizability)

model of ECC is described to show how its essential properties can be captured set-theoretically.

The model construction entails the logical consistency of the calculus and gives some hints on

how to adequately formalize abstract mathematics. Theory abstraction in ECC is discussed as

a pragmatic application.

�

Supported by a studentship of the University of Edinburgh and the ORS award

1



1 Introduction

The issue of abstraction and modularization has been one of the central problems considered in the

design of programming and speci�cation languages. It is also important in proof engineering. In

recent years, the growing interests in the theory and methodology of computer-assisted reasoning

(c.f., [Bur86]) have led to the development of various proof development systems many of which

are based on type systems such as type theories of Martin-L�of and NuPRL [ML73,84][Con86],

the Edinburgh Logical Framework [HHP87] and the Calculus of Constructions [CH88]. To meet

the challenge of `proving in the large', one of the problems one faces is how to express abstract

structures and modularize proof development so that large theorem-proving tasks can be conquered

in a structured way. Practical experience shows that the lack of a module mechanism is a big

obstacle to large proof development in applications.

In this paper, we present and study an Extended Calculus of Constructions, ECC, which can be

seen as a natural combination of Coquand-Huet's calculus of constructions [CH88] and Martin-L�of's

type theory with universes [ML73]. It extends the calculus of constructions with

� �-types (or, strong sum types), and

� a fully cumulative type hierarchy.

There are two main motivations to make these extensions. One is to consider the extended calculus

as a programming logic for speci�cation and development of programs (in a style similar to that of

Martin-L�of's type theory, c.f., [NPS88][Bur89]). Another motivation, which we emphasize in this

paper, is theory abstraction. �-types in ECC, together with the type hierarchy, provide a powerful

abstraction mechanism so that abstract structures can be naturally expressed and mathematical

theories can be abstractly described and structured, leading to a comprehensive structuring of

mathematical texts in interactive proof development and program speci�cation. The cumulative

type hierarchy, inspired by the work of Martin-L�of [ML73,84] and Coquand [Coq86a], also increases

the expressiveness in another aspect so that, for example, abstract mathematics (e.g., abstract

algebras, categories) may be adequately formalized. Furthermore, as the type hierarchy provides

a strong and 
exible form of polymorphism, ECC provides a higher-order module mechanism

which supports structure sharing by parameterization in the style of programming language Pebble

[BLam84][LB88][Bur84].

The strong sum, �x:A:B, intuitively represents the set of (dependent) pairs of elements of A

and B (B may be dependent on elements of A):

f (a; b) j a 2 A; b 2 B(a) g

Elements of �x:A:B can be analyzed by using the two projections:

�

1

(a; b) = a and �

2

(a; b) = b

The basic idea of using strong sum to express abstract structures is best explained through an

example. In a type system like Constructions, one postulates a (concrete) theory by assuming

a context. For example, an arbitrary semigroup may be introduced by postulating the following

context:

X :Type

0

; �:X ! X ! X; p:P

ASS

where an arbitrary type X stands for the carrier, � for the binary operation over X , and p is an

assumed proof of the axiom of associativity P

ASS

� �x; y; z:X:(x � (y � z) = (x � y) � z). When

a large proof uses many theories, which may depend on one and another in various ways, some

notion of `modularization' is needed to control the complexity. This is analogous to the need for

modules in programming in the large.

The strong sum is a basic adequate mechanism to solve this problem, for it can be used to

express abstract structures. For example, if strong sum is available, we can express an abstract

theory of semigroups as consisting of two parts:

2



� an (abstract) signature presentation Sig SG � �X :Type

0

:X ! X ! X ;

� the (abstract) axiom which is a map Ax SG which, when given any structure s of type

Sig SG, returns the associativity axiom for s.

Furthermore, these two parts of the semigroup abstraction can be `packaged' together as

SG � �s:Sig SG:Ax SG(s)

Then, to postulate an arbitrary semigroup is just to assume a context sg:SG. The projection

operators can be used to extract the components of any semigroup (i.e., an object of type SG).

Such a facility of expressing abstract structures, combined with the power of the type hierarchy,

allows us to develop a nice approach to structured abstract reasoning (section 4).

However, there is a technical di�culty in extending the calculus of constructions by strong sums.

That is, adding type-indexed strong sums (i.e., �x:A:P with A being a type and P a proposition)

directly to the proposition level of the calculus of constructions results in a logically inconsistent

system in which Girard's paradox can be derived [Coq86a][HH86][MH88]. As propositions play

an essential role in expressing mathematical problems (e.g., Ax SG(s) in SG), this di�culty ap-

pears serious and prevents people from directly extending Constructions by strong sums to express

abstract structures. We solve it by lifting propositions as types (see the following explanations).

The in�nite type hierarchy in ECC is similar to that presented in [Coq86a] (and that of Martin-

L�of's type theory [ML73,84]) but is fully cumulative in the following sense. First, unlike the original

presentations of the calculi of constructions [CH88][Coq85][Coq86a], the propositions at the lowest

impredicative level are lifted as higher-level types (of their proofs). This lifting is essential for �-

types in ECC to play their role as an abstraction mechanism, and it solves the technical di�culty

mentioned above. Secondly, type inclusions between the type universes are coherently expanded

to the other types so that a strong form of type unicity is achieved; this yields a simple notion of

principal type and a simple algorithm for type inference.

ECC has good proof-theoretic properties. Particularly, it is strongly normalizing, which shows

the proof-theoretic consistency of ECC (and in general, Constructions with in�nite type universes)

and establishes the theoretical basis of an implementation (e.g., decidability of convertibility and

type checking).

We give in this paper an (intuitionistic) set-theoretic semantics of ECC in the framework of

!-sets [Mog85][LM88][Hyl87] which captures the intuitive meaning of the constructs in the calculus

and re
ects its essential properties. In addition to its importance in better understanding the

calculus, such a model-theoretic semantics seems useful when considering pragmatics of the calculus,

e.g., how to adequately formalize mathematical problems in the calculus.

In section 2, ECC is described and its main meta-theoretic properties are brie
y discussed.

Section 3 describes the !�Set model. One of the pragmatic aspects of ECC | theory abstraction

| is discussed in section 4. As a conclusion, section 5 and section 6 discuss some related work and

further research topics.

2 ECC

ECC consists of an underlying term calculus and a set of rules for inferring judgements.

2.1 The term calculus

The basic expressions of the term calculus, called terms, are inductively de�ned by the following

clauses:

� The constants Prop and Type

j

(j 2 !), called kinds, are terms;

� Variables (x,y,...) are terms;

3



� If M , N and A are terms, so are the following:

�x:M:N; �x:M:N; MN; �x:M:N; pair

A

(M;N); �

1

(M); �

2

(M)

In �x:M:N , �x:M:N and �x:M:N , the free occurrences of variable x in N (but not those in

M) are bound by the binding operators �x, �x and �x, respectively. Terms which are the same

up to changes of bound variables are identi�ed. (� is used for the syntactic identity between

expressions such as terms.) For a term M , FV (M) is the set of free variables occurring in M .

When x 62 FV (N), �x:M:N and �x:M:N can be abbreviated asM ! N and M �N , respectively.

Reduction (�) and conversion (') are de�ned as usual with respect to the following one-step

contraction schemes:

(�) (�x:A:M)N �

1

[N=x]M

(�) �

i

(pair

A

(M

1

;M

2

)) �

1

M

i

(i = 1; 2)

where [N=x]M , the substitution of term N for the free occurrences of variable x in M , is de�ned

as usual with possible changes of bound variables.

The kinds are also called type universes. Every kind is assigned a number as its level:

L(Prop) =

df

�1 and L(Type

j

) =

df

j (j 2 !)

The type inclusions between the universes induce the type cumulativity that is syntactically char-

acterized by the following relation.

De�nition 2.1 (cumulativity relation) Let �

i

(i 2 !) be the binary relations over terms

inductively de�ned as follows:

1. A �

0

B if and only if one of the following holds:

(a) A ' B; or

(b) A ' Prop and B ' Type

j

for some j 2 !; or

(c) A ' Type

j

and B ' Type

k

for some j < k.

2. A �

i+1

B if and only if one of the following holds:

(a) A �

i

B; or

(b) A ' �x:A

1

:A

2

and B ' �x:B

1

:B

2

for some A

1

' B

1

and A

2

�

i

B

2

; or

(c) A ' �x:A

1

:A

2

and B ' �x:B

1

:B

2

for some A

1

�

i

B

1

and A

2

�

i

B

2

.

De�ne the cumulativity relation � as

� =

df

[

i2!

�

i

Furthermore, A � B if and only if A � B and A 6' B. 2

Remark It can be proved, by using Church-Rosser theorem (theorem 2.2), that the cumulativity

relation � is the smallest binary relation over terms such that

1. � is a partial order with respect to conversion; that is, (1) if A ' B, then A � B, (2) if

A � B and B � A, then A ' B, and (3) if A � B and B � C, then A � C;

2. Prop � Type

0

� Type

1

� :::;

3. if A

1

' B

1

and A

2

� B

2

, then �x:A

1

:A

2

� �x:B

1

:B

2

;

4. if A

1

� B

1

and A

2

� B

2

, then �x:A

1

:A

2

� �x:B

1

:B

2

. 2

4



2.2 Judgements and inference rules

We now describe the judgement form and the inference rules of ECC.

Contexts are �nite sequences of expressions of the form x:M , where x is a variable and M

is a term. The empty context is denoted by hi. The set of free variables in a context � �

x

1

:A

1

; :::; x

n

:A

n

, is de�ned as FV (�) =

df

S

1�i�n

(fx

i

g [ FV (A

i

)).

Judgements are of the form

� `M : A

where � is a context, and M and A are terms. The intuitive meaning is that M has type A in

context �. We write `M : A for hi `M : A.

The inference rules of ECC are listed as follows, where K and K

0

stand for arbitrary kinds, i,

j and k for natural numbers and L(K) for the level of kind K:

(Ax)

` Prop : Type

0

(C)

� ` A : K

�; x:A ` Prop : Type

0

(x 62 FV (�))

(T )

� ` Prop : Type

0

� ` Type

j

: Type

j+1

(var)

�; x:A;�

0

` Prop : Type

0

�; x:A;�

0

` x : A

(�1)

�; x:A ` P : Prop

� ` �x:A:P : Prop

(�2)

� ` A : K �; x:A ` B : Type

j

� ` �x:A:B : Type

k

(k = maxfL(K); jg)

(�)

�; x:A `M : B �; x:A ` B : K

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

0

� `MN : [N=x]B

(A

0

� A)

(�)

� ` A : K �; x:A ` B : K

0

� ` �x:A:B : Type

k

(k = maxf0;L(K);L(K

0

)g)

(pair)

� `M : A

0

� ` N : B

0

�; x:A ` B : K

� ` pair

�x:A:B

(M;N) : �x:A:B

(A

0

� A;B

0

� [M=x]B)

(�1)

� `M : �x:A:B

� ` �

1

(M) : A

(�2)

� `M : �x:A:B

� ` �

2

(M) : [�

1

(M)=x]B

(conv)

� `M : A � ` A

0

: K

� `M : A

0

(A ' A

0

)

(cum)

� `M : A � ` A

0

: K

� `M : A

0

(A � A

0

)

5



A derivation of a judgement J is a �nite sequence of judgements J

1

; :::; J

n

with J

n

� J such

that, for all 1 � i � n, J

i

is the conclusion of some instance of an inference rule whose premises

are in f J

j

j j < i g. A judgement J is derivable if there is a derivation of J .

We shall write � ` M : A for `� ` M : A is derivable'. We also often abbreviate � ` Prop :

Type

0

as `� is valid'. In fact, besides asserting that Prop has type Type

0

, � ` Prop : Type

0

also

plays the role in the calculus of asserting that � is a valid context.

A term M is called a �-term (or well-typed term under �) if � `M : A for some A. A term A is

called a �-type if � ` A : K for some kind K. A �-type A is called a �-proposition if � ` A

0

: Prop

for some A

0

' A and called a proper �-type otherwise.

This completes our formal presentation of the calculus. The next section contains some informal

remarks on design decisions.

2.3 Remarks

ECC is a natural combination of Coquand-Huet's calculus of constructions [CH88] and Martin-

L�of's type theory with universes [ML73]. It extends the calculus of constructions by adding �-types

and a cumulative type hierarchy. It can also be seen as an extension of the core of Martin-L�of's

type theory with universes by adding a lowest impredicative level of propositions which stand for

logical formulas by the Curry-Howard principle of formulas-as-types [CF58][How69].

The type universes provide us very rich type structures and make it possible to formalize the

notion of arbitrary set by re
ection principle | a basis to formalize abstract mathematics (e.g.,

abstract algebras and categories). Viewing intuitively types as sets and `:' as the membership

relation, we have

Prop 2 Type

0

2 Type

1

2 ::: (by (Ax) and (T ))

Prop � Type

0

� Type

1

� ::: (by (cum))

In particular, unlike the original presentations of the calculi of constructions [CH88][Coq85][Coq86a],

propositions are lifted to higher-level types (Prop � Type

0

). It might appear that this would prop-

agate the impredicativity at the level of propositions to the higher levels. For instance, we can

derive ` �x:Type

j

�B:Type

j

! Prop:Bx : Type

j

. However, the type hierarchy, except the lowest

level Prop, is still strati�ed (predicative) in the sense that the types can be ranked in such a way

that the existence of any proper type depends only on the existence of types with lower ranks. This

strati�cation of the type hierarchy is essential for the logical consistency of the calculus. (A more

detailed analysis of this can be found in [Luo89b].)

The idea of lifting propositions to higher-level types is very important. (Philosophically, it is

natural to think of propositions as types but not vice versa.) It is essential for �-types in ECC to be

useful as an abstraction tool to express abstract mathematical theories and program speci�cations,

since adding (type-indexed) �-types to the impredicative level of Constructions would produce an

inconsistent system in which Girard's paradox can be derived [Coq86a][HH86][MH88]. Note that,

in ECC, �x:A:P is not a proposition even when P is. However, as propositions are lifted, we have

� ` A : Type

j

�; x:A ` P : Prop

� ` �x:A:P : Type

j

This �x:A:P intuitively represents the set of pairs of an element a ofA and a proof of the proposition

P (a), i.e., the intuitionistic subset type (c.f., [ML84]). It is this property that enables propositions

to be used to express abstract axioms and program properties in abstract mathematical theories

(see section 4) and program speci�cations expressed as �-types.

The type hierarchy is fully cumulative. The inference rule (cum) is a design decision which

achieves a strong form of type unicity so that there is a simple notion of principal type (theo-

rem 2.5) and a very straightforward algorithm for type inference (theorem 2.9) [Luo89a][Luo89b].

The other presentations in the literature of type universes with universe inclusions like those in

[ML84][Coq86a] do not have this property: although every well-typed term has a minimum type, it

6



is sometimes not the most general one [Luo88b]. For example, for the system presented on page 235

in [Coq86a], it is easy to show by induction on derivations that x:Type

0

! Type

0

6` x : Type

0

!

Type

1

.

The pairs are `heavily typed' to avoid undesirable type ambiguity which would make type

inference and type-checking di�cult (perhaps impossible) [Luo88a]. For example, if untyped pairs

were used, the untyped pair (Type

0

; Prop) would have both �x:Type

1

:x and Type

1

� Type

0

as its

types which are incompatible. But note that in ECC, thanks to the full cumulativity of types, we

still have as expected, say ` pair

Type

1

�Type

0

(Type

0

; Prop) : Type

2

� Type

2

.

The cumulativity relation � de�ned in de�nition 2.1 is not completely contravariant for �: for

�x:A

1

:A

2

to be less than or equal to �x:B

1

:B

2

, A

1

is required to be convertible to B

1

instead of

B

1

� A

1

. One may take the latter decision and the proof-theoretic properties will still hold. The

only di�erence from the proof-theoretic point of view is that some terms would get more types.

For example, �x:Type

1

:x would not only have types Type

1

! Type

j

, but have Prop! Type

j

and

Type

0

! Type

j

(j � 1) as its types as well. However, semantically, the type inclusions thus de�ned

would be re
ected by coercions instead of by set inclusions.

Finally, we note that the inference rules presented in this paper are slightly di�erent from those

in [Luo89a]. The presentation here enjoys the property that the use of rule (cum) can be postponed

(lemma 3.10) which helps to give a good de�nition of the model by induction on derivations, while

the presentation in [Luo89a] is simpler. However, the two presentations are derivably equivalent.

2.4 Main meta-theoretic properties

ECC has good meta-theoretic properties. Restricted by space, we only brie
y describe the main

properties.

First, the Church-Rosser property holds for the term calculus described in 2.1.

Theorem 2.2 (Church-Rosser theorem) If M

1

'M

2

, then there exists M such that M

1

�M

and M

2

�M .

Proof Similar to that in [ML72]. See [Luo89b]. 2

Remark The inclusion of either �-reduction or the rule for surjective pairing would make Church-

Rosser fail [vD80][Klo80] for the untyped term calculus. In fact, with either of these rules, Church-

Rosser even fails for well-typed terms of ECC because of the existence of type inclusions induced

by universes. 2

We now state some basic properties of the calculus whose proofs can be found in [Luo89b] (also

see [Luo88b]).

Theorem 2.3 In ECC, we have

1. Any derivation of �; x:A;�

0

`M : B has a sub-derivation of � ` A : K for some kind K.

2. (context validity) Any derivation of �;�

0

`M : A has a sub-derivation of � ` Prop : Type

0

.

3. (weakening) If � ` M : A and �

0

is a valid context which contains every component of �,

then �

0

`M : A.

4. (context replacement) If �; x:A;�

0

`M : C and B � A is a �-type, then �; x:B;�

0

`M : C.

5. (cut) If �; x:A;�

0

` N : B and � `M : A, then �; [M=x]�

0

` [M=x]N : [M=x]B.

6. If � `M : A, then A is a �-type.

7. (subject reduction) If � `M : A and M � N , then � ` N : A.

7



8. (strengthening) If �; y:Y;�

0

`M : A and y 62 FV (M)[FV (A)[FV (�

0

), then �;�

0

`M : A;

9. (type cumulativity) Let A and B be �-types. Then, A � B if and only if �; x:A ` x : B, where

x 62 FV (�). 2

Because of the type inclusions induced by type universes, type uniqueness (up to conversion)

fails. However, we have a simple notion of principal type which characterizes the set of types of a

well-typed term.

De�nition 2.4 (principal type) A is called a principal type of M (under �) if and only if

1. � `M : A, and

2. for any term A

0

, � `M : A

0

if and only if A � A

0

and A

0

is a �-type. 2

Theorem 2.5 (existence of principal type) Every �-term M has a principal type under �,

denoted as T

�

(M); T

�

(M) is the minimum type of M under � with respect to the cumulativity

relation �.

Proof The theorem follows from the properties 6 and 9 of theorem 2.3 and the `diamond property'

of the cumulativity relation: � `M : A and � `M : B implies � `M : C for some C � A;B. 2

Remark The principal type T

�

(M) is obviously unique (up to conversion). The existence of the

principal type is not only a good proof-theoretic property but allows simple implementation of the

type hierarchy for ECC. 2

Theorem 2.6 (strong normalization) ECC is strongly normalizing, i.e., if � ` M : A, then

M is strongly normalizable. 2

Remark This result shows the proof-theoretic consistency of Constructions with in�nite type

universes and establishes the theoretical foundation of an implementation. The proof is quite

di�cult. It uses Girard-Tait's reducibility method [Gir72][Tai75] and is based on the proofs of

strong normalization for the pure calculus of constructions by Coquand [Coq86b] and Pottinger

[Pot87]. One of the special key points of this proof is to �nd a suitable ranking of the types to make

explicit the predicativity of the type universes Type

j

. We do this by proving a quasi-normalization

theorem which enables us to de�ne a two-dimensional ranking measure. Details and analysis of

this will appear in a paper in preparation (also see [Luo89b][Luo88b]). 2

Corollary 2.7 (consistency) ECC is logically consistent. In particular, for any term M , 6`M :

�x:Prop:x. 2

Remark The consistency of the calculus also follows from our model construction (theorem 3.11)

or even a proof-irrelevant model-theoretic argument (c.f., [Coq89]) which are easier than proving

normalization. 2

Corollary 2.8 (decidability of conversion) It is decidable whether M ' N for arbitrary well-

typed terms M and N . 2

As the convertibility for well-typed terms is decidable, so is the cumulativity relation �. Hence,

we have

Theorem 2.9 (type inference) There is a simple algorithm such that, when given a context �

and a term M , it checks whether M is a �-term, and if so, returns the principal type of M under

�. 2

Corollary 2.10 (decidability of type-checking) ECC is decidable, i.e., it is decidable whether

� `M : A for arbitrary �, M and A. 2

8



3 An !�Set Model of ECC

In this section, we construct a realizability model of ECC which gives an (intuitionistic) set-

theoretic semantics of the calculus. The model captures the intuitive meanings of the constructs in

the calculus and re
ects its essential properties such as logical consistency. It also gives some hints

on how abstract mathematics may be adequately formalized.

3.1 Basic ideas and basic notions

The main question in interpreting ECC set-theoretically is how to interpret the type universes and

the type formation operators � and � so that, intuitively,

1. Prop 2 Type

0

2 Type

1

2 :::;

2. Prop � Type

0

� Type

1

� :::;

3. Type

j

is closed under � and �;

4. Prop is closed under �.

These requirements prevent us from giving a naive non-trivial classical set-theoretic model of ECC.

(See [Rey84][RP88][LM88][Pit87][CGW87][Mes88] for discussions for modeling the second-order �-

calculus [Gir86][Rey74] which is a sub-system of ECC.)

Fortunately, the idea of interpreting types as partial equivalence relations [Gir72][Tro73][Mog85]

provides us a nice framework of !-sets and modest sets [Mog85][LM88][Hyl87] in which there is an

interpretation of ECC satisfying the above requirements. In particular, proper types can be inter-

preted as !-sets and propositions as objects of a full subcategory PROP of the category of !-sets

which is isomorphic to the category of partial equivalence relations. The lowest impredicative uni-

verse (Prop) corresponds to the category PROP and the predicative universes (Type

j

) correspond

to large set universes. (This idea of interpreting Type

j

as large set universes is suggested to the

author by Hayashi, Moggi and Coquand.)

The rest of this subsection is devoted to the basic notions of !-sets and modest sets, and to the

basic ideas for interpreting ECC in order to satisfy the requirements mentioned above. In fact, the

basic framework is slightly extended in order to gain a good interpretation of the type hierarchy.

De�nition 3.1 (!-sets) An !-set A = (jAj; k�

A

) consists of a (carrier) set jAj and a binary

(realizability) relation k�

A

� ! � jAj such that

8a 2 jAj: 9n 2 !: nk�

A

a

A morphism f between two !-sets A and B is a function f : jAj ! jBj such that 9n 2 !: nk�

A;B

f ,

where (with nm denoting the result of Kleene application of n to m)

nk�

A;B

f if and only if 8a 2 jAj 8m 2 !: mk�

A

a) nmk�

B

f(a)

The !-sets and the morphisms between them form the category of !-sets, denoted as !�Set. 2

The category of !-sets, and the category of modest sets de�ned below, are concrete locally cartesian

closed categories [Mog85][LM88][Hyl87].

We now de�ne three !-set constructors �, �

�

and �

�

which will be used as basic operations to

interpret valid contexts, �-types and �-types in our model, respectively.

De�nition 3.2 (�, �

�

and �

�

) Suppose that � is an !-set and A : j�j ! !�Set.

9



(�) �(�; A) is de�ned to be the following !-set:

j�(�; A)j =

df

f (
; a) j 
 2 j�j; a 2 jA(
)j g

hm;nik�

�(�;A)

(
; a) if and only if mk�

�


 and nk�

A(
)

a

(�

�

) Let B : j�(�; A)j ! !�Set. �

�

(A;B) is the function from j�j to !�Set de�ned as, for 
 2 j�j,

j�

�

(A;B)(
)j =

df

f (a; b) j a 2 jA(
)j; b 2 jB(
; a)j g

hm;nik�

�

�

(A;B)(
)

(a; b) if and only if mk�

A(
)

a and nk�

B(
;a)

b

(�

�

) Let B : j�(�; A)j ! !�Set. �

�

(A;B) is the function from j�j to !�Set de�ned as, for 
 2 j�j,

j�

�

(A;B)(
)j is the set of the functions f : jA(
)j !

S

a2jA(
)j

jB(
; a)j such that

8a 2 jA(
)j: f(a) 2 jB(
; a)j and 9n 2 !: nk�

�

�

(A;B)(
)

f

and nk�

�

�

(A;B)(
)

f if and only if

8a 2 jA(
)j 8p 2 !: pk�

A(
)

a) npk�

B(
;a)

f(a)

2

Large set universes are used to interpret the predicative universes Type

j

so that the closedness

requirement 3 is satis�ed. A basic insight is that the notions of !-sets and modest sets have nothing

to do with sizes of the sets under consideration. Consider ZFC set theory with in�nite inaccessible

cardinals �

0

< �

1

< ::: (Recall that a cardinal � is (strongly) inaccessible if it is uncountable and

regular, and 2

�

< � for all � < �. See, e.g., [Lev79][Dev79].), and let V

�

be the cumulative hierarchy

of sets. Then Type

j

is interpreted to correspond to the following category !�Set(j).

De�nition 3.3 !�Set(j) is the full subcategory of !�Set whose objects are those !-sets whose

carrier sets are in V

�

j

. 2

As V

�

j

is a model of ZFC set theory, we have

Lemma 3.4 �

�

and �

�

are closed for !�Set(j), that is, if A : j�j ! !�Set(j) and B : j�(�; A)j !

!�Set(j), then �

�

(A;B); �

�

(A;B) : j�j ! !�Set(j). 2

Remark The above lemma meets the closedness requirement 3. As V

�

i

� V

�

i+1

, !�Set(j) is a

full subcategory of !�Set(j + 1), satisfying the inclusion requirement 2 between the Type

j

. Note

that !�Set(j) are small categories. Therefore, they can be naturally viewed as !-sets through the

embedding functor � from the category of sets Set to !�Set de�ned as �(X) =

df

(X;! �X) for

X 2 Obj(Set), and �(f) =

df

f for f : X ! Y in Set. As V

�

j

2 V

�

j+1

, we have �(Obj(!�Set(j))) 2

Obj(!�Set(j + 1)). This satis�es the membership requirement 1 between the Type

j

. 2

To interpret the propositions, the notion of modest set is essential, as the category of modest

sets M is closed for arbitrary products.

De�nition 3.5 (modest sets) A modest set is an !-set A such that

8n 2 ! 8a; b 2 jAj: nk�

A

a and nk�

A

b ) a = b

The category of modest sets, denoted as M, is the full subcategory of !�Set with the modest sets

as its objects. 2

10



Lemma 3.6 �

�

is closed for the modest sets in the sense that, for all A : j�j ! !�Set, B :

j�(�; A)j !M, we have �

�

(A;B) : j�j !M.

Proof See [LM88]. 2

Unlike the case of models (e.g., [LM88]) of the second-order lambda calculus, where the only

universe is itself not a type, althoughM is closed for arbitrary products as the above lemma shows it

can not be directly used to interpret the impredicative universe Prop in Constructions-like calculi.

The reason is that M itself is not a small category. If Prop were interpreted asM, there would be

no way to justify Prop 2 Type

0

. Fortunately, M is a small complete category in the sense that it

is equivalent to the following small category PROP, which is isomorphic to the category of partial

equivalence relations over !. (Recall that R is a partial equivalence relation if R is symmetric and

transitive.)

De�nition 3.7 (PROP) The category PROP is the full subcategory of M (hence, of !�Set)

with the following object set:

Obj(PROP) =

df

f (Q(R);2) j R � ! � ! is a partial equivalence relation g

where, Q(R) = f [n]

R

j (n; n) 2 R g is the quotient set with respect to R. 2

Lemma 3.8 There is an equivalence of categories back : M ! PROP such that back(A)

�

=

A

for A 2 Obj(M), and back(P ) = P for P 2 Obj(PROP).

Proof De�ne back :M! PROP as follows: for A 2 Obj(M),

back(A) =

df

(Q(R

A

);2)

where R

A

= f (n;m) j 9a 2 A: nk�

A

a and mk�

A

a g is the partial equivalence relation induced by

A, and, for any morphism f : A! B in M,

back(f)([p]

R

A

) =

df

[np]

R

B

where nk�

A;B

f

back is a category equivalence with the inclusion functor inc : PROP!M as its inverse. In fact,

we have the identity natural transformation id : id

PROP

! back�inc and a natural transformation

� : id

M

! inc � back

de�ned as follows: for A 2 Obj(M) and a 2 jAj, �

A

(a) =

df

[n]

R

A

, where nk�

A

a. Hence, for all

A 2 Obj(M), back(A) = inc � back(A)

�

=

A. Furthermore, for P = (Q(R);2) 2 Obj(PROP), it

is easy to show that R

P

= R, and so back(P ) = (Q(R

P

);2) = (Q(R);2) = P . 2

Remark Prop is interpreted to correspond to the categoryPROP. The existence of the equivalence

back is important to satisfy the closedness requirement 4 asM is closed under �

�

. The requirement

Prop � Type

0

is satis�ed by the fact that PROP is a full subcategory of !�Set(0) and, the

requirement Prop 2 Type

0

by the fact �(Obj(PROP)) 2 Obj(!�Set(0)). 2

3.2 Model construction

We give every valid context and every derivable judgement a unique denotation such that they sat-

isfy some desirable properties. A valid context is interpreted as an !-set and a derivable judgement

� `M : A as a `�-indexed element of A'.

Notation (FPP property) Let � 2 !�Set and A : j�j ! !�Set. A morphism f : � ! �(�; A) in

!�Set satis�es the �rst projection (FPP) property, written as

f : �!

FPP

�(�; A)

11



if and only if p(�; A) � f = id

�

, where p(�; A) : �(�; A) ! � is the morphism de�ned by

p(�; A)(
; a) =

df


. Intuitively, f : �!

FPP

�(�; A) is a `�-indexed element of A'. 2

Theorem 3.9 (Interpretation) There is an interpretation [[ ]] of the valid contexts and the deriv-

able judgements of ECC such that

1. if � ` Prop : Type

0

, then [[�]] 2 Obj(!�Set);

2. if � `M : A, then [[� `M : A]] : [[�]]!

FPP

[[�; x:A]];

3. if A � A

0

are �-types, then there is an inclusion morphism inc

�

(A;A

0

) : [[�; x:A]] ,! [[�; x:A

0

]]

such that, if � ` M : A, � ` N : A

0

and M ' N , then [[� ` N : A

0

]] = inc

�

(A;A

0

) �

[[� `M : A]]. 2

Before de�ning the interpretation, we discuss a notational convention and a notion of canonical

derivation. First, di�erent from the traditional simpler cases (c.f., [See84]), types and objects in

Constructions-like calculi are mixed up. Types are also objects with kinds as their types. There-

fore, a type has a `double identity' in the model, playing slightly di�erent roles when viewed as

a type or as an object. This is re
ected technically as a correspondence between functions and a

special kind of morphisms in !�Set.

Convention Suppose � 2 !�Set and K : j�j ! !�Set is a constant function such that, for

some set X , K(
) = �(X) = (X;! � X) for all 
 2 j�j. Then, there is a one-one correspon-

dence between the morphisms from � to �(�; K) which satisfy the �rst projection property and

the functions from j�j to X .

� Given f : �!

FPP

�(�; K), the corresponding function f

?

: j�j ! X is de�ned by f

?

(
) =

df

x, where 
 2 j�j and f(
) = (
; x);

� Given g : j�j ! X , the corresponding morphism g

�

: �!

FPP

�(�; K) is de�ned by g

�

(
) =

df

(
; x), where 
 2 j�j and g(
) = x.

We have, f

?�

= f and g

�?

= g. Based on this, we shall in the proof below of theorem 3.9 adopt the

convention that we omit ? and � for convenience. 2

Secondly, we introduce a notion of canonical derivation in order to give a good inductive de�ni-

tion of the interpretation. As pointed out by Coquand [Coq89], it is a nice meta-theoretic property

for a calculus that a judgement have at most one derivation (up to conversion). The work by

Streicher [Str88] shows that this property is very helpful, and sometimes necessary, to de�ne a

semantics by induction on derivations. When a calculus lacks such a property, a de�nition of se-

mantics may assign di�erent denotations to the same judgement. Streicher [Str88] gives a way of

solving this problem, �rst de�ning denotations by induction on the structure of pre-judgements

(instead of on derivations), and then proving that the de�nition gives a unique denotation to every

derivable judgement.

It is obvious that our presentation of ECC does not have the property that every judgement

has at most one derivation because the universe inclusions induce general inclusions between types

(rule (cum)). However, because of the existence of principal types, we can introduce a notion of

canonical derivation which exists for every derivable judgement. The essential idea is to postpone

all of the uses of the (cum) rule to the last step. The existence of canonical derivations enables us

to construct the model by induction on canonical derivations.

Lemma 3.10 (postponing (cum)) In ECC, every derivable judgement has a derivation in which

rule (cum) is not used except in the last step.

12



Proof By induction on derivations. 2

An immediate consequence of the above lemma is that every derivable judgement has a deriva-

tion J

1

; :::; J

n

such that J

1

; :::; J

n�1

are all of the form � ` M : T

�

(M) and J

n

is deduced by rule

(conv) or (cum). We call a derivation of this form a canonical derivation. Note that the canonical

derivations of a judgement are essentially the same (up to conversion). Furthermore, all judgements

in a canonical derivation of a judgement of the form �

0

` N : T

�

0

(N) have the form � `M : T

�

(M).

Now, we return to prove theorem 3.9 and de�ne the model.

Proof (of theorem 3.9) An interpretation satisfying the stated properties is de�ned by induction

on the length of the shortest canonical derivations of a judgement.

First, we interpret valid contexts. Recall that a context � is valid if and only if � ` Prop : Type

0

is derivable. By rule (Ax), the empty context is valid. It is interpreted as the terminal object of

!�Set:

[[hi]] =

df

1 = (1; !� 1)

A valid context �; x:A (by rule (C)) is interpreted as the !-set

[[�; x:A]] =

df

�([[�]]; [[� ` A : K]])

Note that the interpretation of a kind (see below) is an FPP -morphism corresponding to a constant

function. By the convention we discussed above, [[�; x:A]] is well-de�ned. (We will not detail such

correctness claims below but leave them to the reader.)

The derivable judgements are interpreted by considering the last rule used in canonical deriva-

tions.

(Ax)(C) � ` Prop : Type

0

is interpreted as

[[� ` Prop : Type

0

]](
) =

df

(
;�(Obj(PROP)))

where 
 2 j [[�]] j and � is the embedding functor from Set to !�Set.

(T) � ` Type

j

: Type

j+1

is interpreted as, for 
 2 j [[�]] j,

[[� ` Type

j

: Type

j+1

]](
) =

df

(
;�(Obj(!�Set(j))))

(var) De�ne [[�; x:A;�

0

` x : A]] to be the function with domain j [[�; x:A;�

0

]] j by

[[�; x:A;�

0

` x : A]](
; a; 


0

) =

df

((
; a; 


0

); a)

(�1) � ` �x:A:P : Prop is interpreted as

[[� ` �x:A:P : Prop]] =

df

back � �

[[�]]

([[� ` A : T

�

(A)]]; [[�; x:A ` P : Prop]])

where back is the category equivalence de�ned in the proof of lemma 3.8.

(�2) � ` �x:A:B : Type

k

is interpreted as

[[� ` �x:A:B : Type

k

]] =

df

�

[[�]]

([[� ` A : K]]; [[�; x:A ` B : Type

j

]])

(�) There are two cases to consider.

1. � 6` �x:A:B : Prop. Then, for 
 2 j [[�]] j,

[[� ` �x:A:M : �x:A:B]](
) =

df

(
; g




)

where, supposing P = �

[[�]]

([[� ` A : T

�

(A)]]; [[�; x:A ` B : T

�;x:A

(B)]]), g




2 jP (
)j is the

function such that, if [[�; x:A `M : B]](
; a) = ((
; a); b), then g




(a) = b.

13



2. � ` �x:A:B : Prop. Then, for 
 2 j [[�]] j,

[[� ` �x:A:M : �x:A:B]](
) =

df

(
; �

P (
)

(g




))

where P and g




are as in the above case and � is the natural transformation de�ned in

the proof of lemma 3.8.

(app) There are two cases to consider:

1. �; x:A 6` B : Prop. Then, for 
 2 j [[�]] j, if [[� `M : �x:A:B]](
) = (
; f) and [[� ` N : A

0

]](
) =

(
; a), then

[[� `MN : [N=x]B]](
) =

df

(
; f(a))

2. �; x:A ` B : Prop. Then, for 
 2 j [[�]] j, if [[� `M : �x:A:B]](
) = (
; [n]

R

[[�`�x:A:B:T

�

(�x:A:B)]](
)

),

[[� ` N : A

0

]](
) = (
; a) and pk�

[[�`A:T

�

(A)]](
)

a, then

[[� `MN : [N=x]B]](
) =

df

(
; [np]

R

[[�;x:A`B:T

�;x:A

(B)]](
;a)

)

where the R's are the partial equivalence relations as de�ned in the proof of lemma 3.8.

(�) � ` �x:A:B : Type

k

is interpreted as,

[[� ` �x:A:B : Type

k

]] =

df

�

[[�]]

([[� ` A : K]]; [[�; x:A ` B : K

0

]])

(pair) For 
 2 j [[�]] j, if [[� `M : A

0

]](
) = (
;m) and [[� ` N : B

0

]](
) = (
; n),

[[� ` pair

�x:A:B

(M;N) : �x:A:B]](
) =

df

(
; (m;n))

(�1)(�2) For 
 2 j [[�]] j, if [[� `M : �x:A:B]](
) = (
; (a; b)), then

[[� ` �

1

(M) : A]](
) =

df

(
; a)

[[� ` �

2

(M) : [N=x]B]](
) =

df

(
; b)

(conv) De�ne [[� `M : A

0

]] as [[� `M : A]].

(cum) � `M : A

0

is interpreted as, for 
 2 j [[�]] j,

[[� `M : A

0

]](
) =

df

[[� `M : A]](
)

It can be veri�ed that the interpretation satis�es the conditions stated in the theorem. Here, we

explain how substitution is understood semantically and verify that the interpretation preserves

conversion. Suppose that � ` N : A and �; x:A `M : B. The judgement � ` [N=x]M : [N=x]B is

interpreted as the `composition' of their interpretations, that is, for 
 2 j [[�]] j, if

[[�; x:A `M : B]]([[� ` N : A]](
)) = ((
; a); b)

then

[[� ` [N=x]M : [N=x]B]](
) = (
; b)

To verify the preserveness of the convertibility, by Church-Rosser theorem and subject reduction,

we only have to show that if � `M : A and M �

1

N , then [[� `M : A]] = [[� ` N : A]]. In other

words, we only have to show that

[[� ` (�x:A:M)N : [N=x]B]] = [[� ` [N=x]M : [N=x]B]]

14



and, let P � pair

�x:A:B

(M

1

;M

2

),

[[� ` �

1

(P ) : A]] = [[� `M

1

: A]]

[[� ` �

2

(P ) : [�

1

(P )=x]B]] = [[� `M

2

: [�

1

(P )=x]B]]

We only check the case for �-reduction when � ` N : A, �; x:A ` M : B and �; x:A ` B : Prop.

The other cases can be similarly veri�ed. For 
 2 j [[�]] j, by de�nition, suppose

[[� ` N : A]](
) = (
; a) and pk�

snd([[�`A:T

�

(A)]](
))

a

[[�; x:A `M : B]](
; a) = ((
; a); [m]

R

[[�;x:A`B:Prop]](
;a)

)

[[� ` �x:A:M : �x:A:B]](
) = (
; [n]

R

[[�`�x:A:B:Prop]](
)

)

then, by de�nition, np 2 [m]

R

[[�;x:A`B:Prop]](
;a)

. So, we have

[[� ` (�x:Prop:M)N : [N=x]B]](
) = (
; [np]

R

[[�;x:A`B:Prop]](
;a)

)

= (
; [m]

R

[[�;x:A`B:Prop]](
;a)

)

= [[� ` [N=x]M : [N=x]B]](
)

This completes the proof of the theorem. 2

3.3 Consistency and discussions

One of the most important features of the realizability model described above is that it entails the

logical consistency of ECC.

Theorem 3.11 (consistency) ECC is logically consistent in the sense that there is a proposition

which is not inhabited by any term. In particular, for any term M , 6`M : �x:Prop:x.

Proof In fact, [[` �x:Prop:x : Prop]] is the function from the singleton set f�g with (�; (;; ;)) as

its image. So, there is no morphism from [[hi]] = 1 to [[y:�x:Prop:x]] = �(1; [[`�x:Prop:x : Prop]]).

By theorem 3.9, we have 6`M : �x:Prop:x for any term M . 2

By this theorem, the higher-order intuitionistic logic embedded in ECC by the Curry-Howard

correspondence [CF58][How69] is consistent. This is the most basic requirement for ECC to be

suitable for theorem-proving and program speci�cation. This is one of the reasons that we view such

a model as appropriate. There are other reasonable models. For example, we can give a truth-value

model of ECC where propositions are interpreted as 0 or 1. Some other models (e.g., domain-

theoretic ones) do not capture the essential properties of the calculus like logical consistency.

Besides the consistency, the model described above gives an (intuitionistic) set-theoretic seman-

tics of the calculus. (!-sets and modest sets can be characterized in the framework of e�ective topos

(E�) [Hyl82][Hyl87], which is a topos-theoretic model of intuitionistic set theory.) The set-theoretic


avor of such a semantics makes possible a deeper understanding of the calculus, and the semantics

may be used as the basis of an informal but precise explanation for users doing theorem proving

and program speci�cation (e.g., [LPT89]). For example, the intuitions that a : A means that a

denotes an element of the set denoted by A, that P : Prop as a proposition and as a lifted type

P : Type

j

denotes the same set, and that the syntactic type inclusions (A � A

0

) are set inclusions

are all re
ected by the model.

Another insight one may gain from the model is about how to formalize mathematical problems

adequately. As we know, one of the basic motivations for introducing type universes is to allow

formalization of the notion of an arbitrary set by re
ection [ML73][Coq89]. Our model gives

semantical support to such an idea. For example, it seems to be not adequate to formalize an

arbitrary group by assuming its carrier by X :Prop, as we know that X , as a proposition, can

not be viewed as an arbitrary set. Assuming X :Type

0

is more adequate as we can view Type

0

as

containing almost all sets as shown by the above model. More research is needed on this aspect.

15



4 Theory Abstraction in ECC

In this section, we brie
y discuss a pragmatic aspect of ECC| expressing and structuring mathe-

matical theories in proof development. We show what facilities for abstraction and modularization

the calculus provides and how abstract reasoning and structured reasoning can be done in our set-

ting. The idea of structuring theories in proof development is originally introduced to the author

by Rod Burstall and the formulation in this paper also bene�ts from discussions with Coquand,

Taylor and Pollack (see [Coq89][Luo89a][TLP89]). One may �nd a further development of these

ideas in [TLP89].

4.1 A notion of (abstract) theory

What is a theory? Di�erent theory manipulation mechanisms give rather di�erent impressions of

what a theory might be. Here, we take a simple view that a theory in a proof development system

basically consists of a signature (a group of basic notions, say constants and function symbols), a

group of hypotheses (say axioms) and the proved theorems (possibly together with their proofs).

We also conceptually distinguish concrete theories and abstract theories. For example, a con-

crete theory of natural numbers would be expressed in ECC as a context �

Nat

of the following

form

nat:Type

0

; 0:nat; suc:nat! nat; +:nat ! nat! nat; :::

where `:::' contains the assumptions of the axioms for natural numbers. Proved theorems of such

a concrete theory are then the inhabited propositions proved under it (i.e., some P 's such that

�

Nat

` p : P for some p).

More interestingly, we can express a notion of abstract theory as well by using �-types and the

type hierarchy. For instance, as discussed in the introduction, we can express the abstract theory

of semigroups as the �-type:

SG � �s:Sig SG:Ax SG(s)

where Sig SG � �X :Type

0

:X ! X ! X and Ax SG(s) is the proposition for the associativity

axiom.

In general, a presentation of an (abstract) mathematical theory T in ECC consists of

� a signature presentation Sig T , which is in general a �-type, and

� the abstract axioms over the signature, which can be expressed as a propositional function

Ax T of type Sig T ! Prop.

Then the abstract theory T is expressed by the �-type:

T � �s:Sig T:Ax T (s)

The proved (abstract) theorems of T are expressed as a function

� Thm T of type Sig T ! Prop, which is generally of the form �s:Sig T: P

1

^ P

2

^ ::: ^ P

n

,

where ^ is the propositional AND operator de�ned in the calculus.

The proofs of these theorems constitute a function

� Prf T of type �t:T:Thm T (�

1

(t)) which, when given any T -structure satisfying the T -

axioms, results in the (concrete) proofs of the theorems for the structure.

Remark It is easy to see that, in this setting, any abstract universal algebra with �nitely many

sorts, operators and axioms can be formalized as an abstract theory. One can also formalize

categorical notions in a similar way. 2

16



4.2 Abstract reasoning

We use the phrase `abstract reasoning' here in the sense of Paulson [Pau87], where he points out

its desirability and the fact that the theory mechanism of Cambridge LCF, which is based on ideas

of [SB83], does not support it. The idea of abstract reasoning is that, instead of re-proving a

theorem for many concrete theories, we can prove an (abstract) theorem in an (abstract) theory,

then simply instantiate the abstract proofs as concrete ones for free. The notion of abstract theories

for computer-assisted reasoning is analogous to the notion of `parameterized modules' for modular

programming. It becomes more useful as the task of proof development becomes large.

How this idea of abstract reasoning by proof instantiation can be expressed in the notion of

theory we presented above is best explained by a simple example. Consider the abstract theory

SG of semigroups and suppose that we have proved some (abstract) theorems about it:

Thm SG � �s:Sig SG: P

1

^ :::^ P

n

Prf SG � �sg:SG: and intro(p

1

; :::; p

n

)

We can then, for instance, instantiate these theorems and proofs to the concrete ones about natural

numbers and + (or other similar concrete theories) whenever we have proved that the structure

consisting of nat and + satis�es the associativity axiom (say, with proof ass nat plus). The

instantiated proofs are then easily constructed as (from now on, we elide the explicitly typed

pair operator for notational convenience)

Prf Nat SG � Prf SG((nat;+); ass nat plus)

Remark The facility of abstract reasoning comes from the power of �-abstraction. However, the

type universes make it possible to formalize abstract mathematics (like the theory of semigroups)

adequately and �-types are important for `packaging' the formalization in a well-structured way.

2

4.3 Structured reasoning

In larger proof development activities, one hopes to conquer a big and complex task by dividing it

into smaller and simpler ones and then putting the results together in a structured way. We discuss

here two aspects of this idea.

4.3.1 proof inheritance

Proof inheritance between theories through theory morphisms [TLP89][Coq89] allows the theorems

and proofs of a smaller and weaker theory to be inherited as those of a bigger and stronger theory.

A morphism from an (abstract) theory T to another T

0

is a pair of functions (f; g) where

f : Sig T ! Sig T

0

g : �s:Sig T: Ax T (s)! Ax T

0

(f(s))

The existence of such a morphism means that T is stronger than T

0

. A typical example of such a

morphism is when T (say, theory of rings) is a theory which contains more sorts or operators and

stronger axioms than a theory T

0

(say, SG); there is a `forgetful' morphism whose �rst component,

f , forgets the extra sorts and operators and whose second component gives proofs of the axioms of

T

0

under the translation of f .

Given such a morphism, we can inherit the proofs of theorems in the weaker theory T

0

as

the proofs of the corresponding theorems in T in the following way. Suppose Prf T

0

is the (ab-

stract) proofs of the theorems proved for T

0

which is of type �t

0

:T

0

: Thm T

0

(�

1

(t

0

)). Then, the

corresponding (abstract) theorems in T

Thm(T; T

0

) � �s:Sig T: Thm T

0

(f(s))

17



are proved by the following proofs inherited from Prf T

0

:

Prf(T; T

0

) � �t:T: Prf T

0

(f(�

1

(t)); g(�

1

(t); �

2

(t)))

For example, the theorems about semigroups can be inherited as theorems about rings through a

forgetful morphism. (There are indeed two forgetful morphisms which concern the operators plus

and multiplication, respectively.) The idea of divide-and-conquer (and separation of concerns) is

embodied in proof inheritance. Simpler and more general theorems are dealt with in simpler and

weaker theories, and then inherited (or lifted) to more complex and stronger theories.

4.3.2 sharing by parameterization

Structure sharing is important for modular proof development just as it is for modular program-

ming. The type hierarchy of ECC provides a strong form of polymorphism and hence a facility

of de�ning higher-order modules. With this, one can de�ne functions between abstracted modules

and express sharing by parameterization to structure proof development in the style of Pebble

[Bur84][LB88], where the type of all types exists. We explain this by an example.

ExampleWe de�ne a function ringGen which results in a ring structure when given as arguments

a semigroup and an abelian group with the same carrier, and a proof of the extra axiom (the

distributive laws). Suppose the theories of semigroups and abelian groups are de�ned as follows:

SG � �s:�X :Type

0

:SGwrt(X): Ax SG(s)

AG � �g:�X :Type

0

:AGwrt(X): Ax AG(g)

where SGwrt; AGwrt : Type

0

! Type

0

and, when given X : Type

0

as carrier, give as results the

types of the operations for semigroups and abelian groups with respect to X , respectively, and

Ax SG(s) and Ax AG(g) are the propositions expressing the axioms of theories for semigroups

and abelian groups.

ringGen can then be de�ned as

ringGen � �X :Type

0

� � :SGwrt(X) �p:Ax SG(X; �)

�(+; 0;

0

):AGwrt(X) �q:Ax AG(X;+; 0;

0

)

�d:P

DISTR

: ((X;+; 0;

0

; �); and intro(p; q; d))

which is of type

�X :Type

0

� � :SGwrt(X) �p:Ax SG(X; �)

�g:AGwrt(X) �q:Ax AG(X; g)

�d:P

DISTR

: Ring

where P

DISTR

is the proposition for the distributive laws and Ring is the �-type for the abstract

theory of rings de�ned similarly to SG and AG. ringGen guarantees that its two arguments have

the same carrier. 2

Note that SGwrt and AGwrt are sort of `parameterized modules'. Supported by such a facil-

ity, the idea of divide-and-conquer can be successfully used for proof development. For example,

ringGen is useful to organize proof inheritance when a structure can be viewed as a ring in di�erent

ways. When some proofs of justifying the construction of a required structure (ring in this case)

are more complicated, this is desirably useful to make proof development structured.

18



Remark There are several di�erent ways to control structure sharing which appear in programming

and speci�cation languages ML [HMM86][Mac86], Pebble [LB88] and Clear [BG80] (see [Bur84]

for a simple explanation). Although propositional equality (e.g., Leibniz's equality) can be de�ned

in Constructions, it can not be used to express sharing constraints in the style of ML, as Thierry

Coquand pointed out to the author. 2

4.4 Discussion

We have shown above that the extensions of the calculus of constructions by �-types and type

universes provide expressive mechanisms to express a notion of (abstract) theory for doing abstract

and structured reasoning. These mechanisms can even be internally expressed in ECC (an idea

due to Pollack and Coquand) [TLP89]; for this the fourth level of the type hierarchy (types of type

Type

2

) is used.

As well-known, existential types (weak sums) [MP85][Rey83][Pra65] can be de�ned in the cal-

culus of constructions. (They can also be de�ned at the predicative levels of ECC [Luo89a].)

However, they are not useful to express mathematical theories or program speci�cations, because

the elimination operator for the weak sum is too weak and, in particular, there is no way to prove

that the �rst component of a `weak pair' of type 9x:A:B satis�es the property B. A comparison of

strong and weak sums in the context of modular programming can be found in [Mac86].

The approach to theory abstraction discussed above adopts a view of `theories as types'. More

precisely, abstract theories are expressed as �-types. There is another approach to theory structur-

ing [SB83][BLuo88][HST89] borrowing an idea from research in algebraic speci�cation languages

like Clear [BG80]. This latter approach may be called `theories as values', as there are theory

operations to `put theories together'. In the AUTOMATH project, ideas like telescope of orga-

nizing mathematical texts through manipulating contexts were informally studied [dB80][Zuc75].

(Thanks to a referee for referring the author to the paper [Zuc75].) Further research and experience

are needed to show what is necessary and whether it is possible to combine these ideas together.

5 Related Work

The calculus of constructions (CC for short) is studied in [Coq85][CH88][CH85] etc.. Its meta theory

is developed in [Coq85][Coq86b] and [Pot87]. There are several existing (independent) work on the

semantic aspects of Constructions including the following. Hyland and Pitts [HPit87] developed a

general approach to categorical semantics of Constructions-like calculi, where an extension of CC

with �-types and unit types is presented with the motivation of investigating semantics. Streicher

[Str88] studied semantics of CC based on the notion of contextual category [Car86] and raised the

question of well-de�nedness of interpretations of categorical semantics. Hyland [Hyl87] gives a clue

how a model of CC may be constructed in the framework of !-sets and Ehrhard [Ehr88] sketched

an !�Set model of CC. A full description of an !�Set model of CC (with �-types and lifting of

propositions as types) can be found in [Luo88a]. In this paper, we have extended the model in

[Luo88a] to the type hierarchy (using an idea of Hayashi) and simpli�ed it by using principal types

and canonical derivations.

Type universes are �rst introduced in Martin-L�of's type theory [ML73,84] and also appear in

NuPRL's type theory [Con86]. The idea of extending the calculus of constructions by in�nite

universes appeared in [Coq86a], where the Generalized Calculus of Constructions (GCC for short)

is presented. The strong normalization theorem for constructions with in�nite type universes was

proved in [Luo88b]. The type-checking problem for GCC is considered in [HPol89]; because GCC

does not have the property of type unicity, the resulted algorithm is rather complicated compared

with that for ECC [Luo89a][Luo89b][Pol89].

�-types are well-known in Martin-L�of's type theory [ML73,84]. A similar idea of using �-types

to express modular structures occurs in researches of programming languages (e.g., [BLam84] and

19



[Mac86]). For programming language research, one does not need to consider logical consistency

problem as we do. The idea of lifting propositions as types in Constructions in order to use �-types

to express abstract structures and mathematical theories was investigated in [Luo88a][Luo89a].

Coquand and Streicher considered more explicit lifting operators to lift propositions [Coq89][Str88],

and view the more implicit calculus as an abbreviation of the explicit one [Coq89].

6 Conclusion and Further Research Topics

In this paper, the Extended Calculus of Constructions (ECC) is presented and studied. It is

an expressive and promising calculus for formalizing mathematical problems in computer-assisted

reasoning and program speci�cation. In particular, an !�Set realizability model is given and the

pragmatic aspect of theory abstraction is discussed.

By the Curry-Howard principle of formulas-as-types [CF58][How69], there is an embedded logic

in ECC. We conjecture that this logic is a conservative extension (with respect to some reasonable

interpretation) of the (intensional intuitionistic) higher-order logic HOL (c.f., [Chu40][Tak75] for

classical ones). This is also relevant to the problem of adequate formalization of abstract mathe-

matics discussed at the end of section 3. The connection is concerned with the following question:

What is a proper way of interpreting the object set in HOL? We conjecture that it should be inter-

preted as a proper type instead of a proposition; in other words, if the object set of individuals is

interpreted as a proposition Obj:Prop, the interpretation will not give a conservative extension of

HOL (the intuition is that too much computational power is provided at the impredicative level),

and if the object set is interpreted as a proper type (say, Obj:Type

0

), it will give a conservativity

result of the embedded logic with respect to HOL. Further research is needed in this aspect. (We

also conjectured this in [Luo89a]. Recently, Geuvers [Geu89] and Berardi [Ber89] have indepen-

dently proved that interpreting the object set as a proposition in the pure calculus of constructions

does not yield conservativity, which shows that the �rst part of our conjecture is right, while the

second part is still open.)

The proof-theoretic power of the calculus is unknown. The realizability model given in this

paper uses large set universes to interpret the type universes Type

j

. But it may be possible to give

a small model of ECC.

Doing speci�cations in type theory has been studied by the G�oteborg group [NPS89] and the

NuPRL group [Con86] based on type theories of Martin-L�of and NuPRL. An idea called deliverables

is recently proposed by Burstall [Bur89] using ECC. We view ECC as a core of a programming

logic in whose impredicative level (Prop) the embedded logic resides and whose predicative levels

provide programming facilities (c.f., [Lei89]). Using ECC as a programming logic has certain

advantages compared with some other type theories. For example, unlike Martin-L�of's type theories

[ML73,84], we do not need to add a new propositional equality in our setting since Leibniz's

equality (over any type A, notation =

A

) is de�nable in our calculus and, more importantly, it

re
ects the computational equality (conversion) in the sense that a ' b whenever ` p : a =

A

b for

some p [Luo89b]. This property of equality re
ection gives a good justi�cation of the practice in

program speci�cations in ECC where Leibniz's equality is used to re
ect computational equality

(c.f., [Bur89]). However, it needs further investigations to see whether and how such a calculus can

be further developed and put into practice as a real speci�cation and programming language.

Further possible extensions of ECC are possible. Inductive types at the predicative levels (c.f.,

[CP89][Ore89])may be very useful for program speci�cation and construction. It may be possible to

give model-theoretic justi�cations of such extensions by further extending the framework of !-sets;

but it is still not clear how this can be done.

An interactive proof development system LEGO [Pol89][LPT89] has been implemented by Pol-

lack in Edinburgh. It supports several type theories, of which ECC is the strongest at the current

time. Further experience with the system should lead to a powerful environment for proof devel-

opment and program speci�cation.

20



Acknowledgements I am very grateful to Susumu Hayashi who kindly helped me check a draft

of the SN proof and pointed out that the notion of inaccessible cardinal can be used to interpret type

universes. Thanks to Eugenio Moggi and Thierry Coquand for their insights and many valuable

suggestions. Thanks to Gerard Huet, Randy Pollack, John Power and Paul Taylor for many helpful

discussions, and particularly to Pollack who kindly reads an earlier version of this paper and gives

many helpful suggestions. Thanks also to the referees for many good and helpful suggestions.

Finally and most gratefully, special thanks to my supervisor Rod Burstall, whose ideas on

structured theories and sharing originated my motivations, for his very helpful and continuous

guidance in the work.

References

[Ber89] S. Berardi, Non-conservativity of Coquand's Calculus with respect to Higher-order In-

tuitionistic Logic, Talk given in the 3rd Jumelage meeting on Typed Lambda Calculi,

Edinburgh, Sept. 1989.

[BG80] R. Burstall and J. Goguen, `The Semantics of CLEAR, a Speci�cation Language', Lec-

ture Notes in Computer Science 86.

[BLam84] R. Burstall and B. Lampson, `Pebble, a Kernel Language for Modules and Abstract Data

Types', Lecture Notes in Computer Science 173.

[BLuo88] R. Burstall and Zhaohui Luo, `A Set-theoretic Setting for Structuring Theories in Proof

Development', Circulated notes. Apr. 1988.

[Bur84] R. Burstall, `Programming with Modules as Typed Functional Programming', Proc. Inter.

Conf. on Fifth Generation Computer Systems, Tokyo.

[Bur86] R. Burstall, Research in Interactive Theorem Proving at Edinburgh University, Proc. of

20th IBM Computer Science Symposium, Shizuoka, Japan. Also, LFCS Report ECS-

LFCS-86-12, Dept. of Computer Science, Univ. of Edinburgh.

[Bur89] R. Burstall, An Approach to Program Speci�cation and Development in Constructions,

Talk given in Workshop on Programming Logic, Bastad, Sweden, May 1989.

[Car86] J. Cartmell, `Contextual Category and Generalized Algebraic Theories', Annals of Pure

and Applied Logic 32.

[CF58] H. B. Curry and R. Feys, Combinatory Logic, Vol. 1, North Holland Publishing Com-

pany.

[CGW87] Th. Coquand, C. Gunter and G. Winskel, Domain Theoretic Models of Polymorphism,

Tech. Report No. 116, Computer Laboratory, University of Cambridge.

[CH85] Th. Coquand and G. Huet, `Constructions:a Higher Order Proof System for Mechanizing

Mathematics', EUROCAL'85, Lecture Notes in Computer Science 203.

[CH88] Th. Coquand and G. Huet, `The Calculus of Constructions', Information and Compu-

tation 76(2/3).

[Chu40] A. Church, `A Formulation of the Simple Theory of Types', J. Symbolic Logic 5(1).

[Con86] R. L. Constable et al., Implementing Mathematics with the NuPRL Proof Development

System, Pretice-Hall.

[Coq85] Th. Coquand, `Une Theorie des Constructions', PhD thesis, University of Paris VII.

21



[Coq86a] Th. Coquand, `An Analysis of Girard's Paradox', Proc. 1st Ann. Symp. on Logic in

Computer Science.

[Coq86b] Th. Coquand, `A Calculus of Constructions'. manuscript, Nov. 1986.

[Coq89] Th. Coquand, `Metamathematical Investigations of a Calculus of Constructions',

manuscript.

[CP89] Th. Coquand and C. Paulin, `Inductively De�ned Types', draft.

[dB80] N. G. de Bruijn, `A Survey of the Project AUTOMATH', In To H. B. Curry: Essays on

Combinatory Logic, Lambda Calculus and Formalism, (eds., J. Hindley and J. Seldin),

Academic Press.

[Dev79] K. Devlin, Fundamentals of Contemporary Set Theory, Springer-Verlag.

[Ehr88] T. Ehrhard, `A Categorical Semantics of Constructions', Proc. 3rd Ann. Symp. on Logic

in Computer Science, Edinburgh.

[Geu89] H. Geuvers, A Modular Proof of Strong Normalization for the Calculus of Constructions,

Talk given in the 3rd Jumelage meeting on Typed Lambda Calculi, Edinburgh, Sept.

1989.

[Gir72] J.-Y. Girard, Interpretation fonctionelle et elimination des coupures de l'arithmetique

d'ordre superieur, These, Universite Paris VII.

[Gir86] J.-Y. Girard, `The System F of Variable Types, Fifteen Years Later', Theoretical Com-

puter Science 45.

[HH86] J. Hook and D. Howe, Impredicative Strong Existential Equivalent to Type:Type, Tech-

nical Report TR86-760, Cornell University.

[HHP87] R. Harper, F. Honsell and G. Plotkin, `A Framework for De�ning Logics', Proc. 2nd

Ann. Symp. on Logic in Computer Science.

[HMM86] R. Harper, D. MacQueen and R. Milner, Standard ML, LFCS Report ECS-LFCS-86-2,

Dept. of Computer Science, Univ. of Edinburgh.

[How69] W. A. Howard, `The Formulae-as-types Notion of Construction', In To H. B. Curry:

Essays on Combinatory Logic, Lambda Calculus and Formalism, (eds., J. Hindley and

J. Seldin), Academic Press, 1980.

[HPit87] M. Hyland and A. Pitts, `The Theory of Constructions: Categorical Semantics and

Topos-theoretic Models', Categories in Computer Science and Logic, Boulder.

[HPol89] R. Harper and R. Pollack, `Type Checking, Universe Polymorphism, and Typical Am-

biguity in the Calculus of Constructions', To appear in Theoretical Computer Science.

[Hyl82] M. Hyland, `The E�ective Topos', in The Brouwer Symposium, (eds., A.S.Troelstra and

Van Dalen) North-Holland.

[Hyl87] M. Hyland, `A Small Complete Category', To appear in Ann. Pure Appl. Logic.

[Klo80] J. W. Klop, Combinatory Reduction Systems, Mathematical Center Tracts 127.

[LB88] B. Lampson and R. Burstall, `Pebble, a Kernel Language for Modules and Abstract Data

Types', Information and Computation 76(2/3).

22



[Lei89] D. Leivant, `Strati�ed Polymorphism', Proc. of the Fourth Symp. on Logic in Computer

Science, Asilomar, California, U.S.A.

[Lev79] A. Levy, Basic Set Theory, Springer-Verlag.

[LM88] G. Longo and E. Moggi, Constructive Natural Deduction and Its `Modest' Interpretation,

Report CMU-CS-88-131, Computer Science Dept., Carnegie Mellon Univ.

[LPT89] Z. Luo, R. Pollack and P. Taylor, How to Use LEGO: a preliminary user's manual,

LFCS, Dept. of Computer Science, Edinburgh Univ., Apr. 1989.

[Luo88a] Zhaohui Luo, A Higher-order Calculus and Theory Abstraction, LFCS report ECS-

LFCS-88-57, Dept. of Computer Science, Univ. of Edinburgh.

[Luo88b] Zhaohui Luo, CC

1

�

and Its Meta Theory, LFCS report ECS-LFCS-88-58, Dept. of Com-

puter Science, Univ. of Edinburgh.

[Luo89a] Zhaohui Luo, `ECC, an Extended Calculus of Constructions', Proc. of the Fourth Ann.

Symp. on Logic in Computer Science, June 1989, Asilomar, California, U.S.A.

[Luo89b] Zhaohui Luo, An Extended Calculus of Constructions, thesis in preparation.

[Mac86] D. MacQueen, `Using Dependent Types to Express Modular Structure', Proc. 13th Prin-

ciples of Programming Languages.

[Mes88] J. Meseguer, Relating Models of Polymorphism, SRI-CSL-88-13, Computer Science Lab,

SRI International.

[MH88] J. Mitchell and R. Harper, `The Essence of ML', Proc. 15th Principles of Programming

Languages.

[ML72] Per Martin-L�of, An Intuitionistic Theory of Types, manuscript.

[ML73] Per Martin-L�of, `An Intuitionistic Theory of Types: Predicative Part', in Logic Collo-

quium'73, (eds.) H.Rose and J.C.Shepherdson.

[ML84] Per Martin-L�of, Intuitionistic Type Theory, Bibliopolis.

[MP85] J. Mitchell and G. Plotkin, `Abstract Types Have Existential Type', Proc. 12th Principles

of Programming Languages.

[Mog85] E. Moggi, `The PER-model as Internal Category with All Small Products', manuscript.

[NPS88] B. Nordstr�om, K. Petersson and J. Smith, Programming in Martin-L�of 's Type Theory:

an introduction, book to appear.

[Ore89] C-E. Ore, `Notes about the Extensions of ECC for Including Inductive (Recursive)

Types', draft.

[Pau87] L. Paulson, Theorem Proving in Cambridge LCF, Cambridge Press.

[Pit87] A. Pitts, `Polymorphism is Set Theoretic, Constructively', Summer Conf. on Category

Theory and Computer Science, Edinburgh.

[Pol89] R. Pollack, `The Theory of LEGO', manuscript.

[Pot87] G. Pottinger, Strong Normalization for Terms of the Theory of Constructions, TR 11-7,

Odyssey Research Associates.

[Pra65] D. Prawitz, Natural Deduction, a Proof-Theoretic Study, Almqvist & Wiksell.

23



[Rey74] J. C. Reynolds, `Towards a Theory of Type Structure', Lecture Notes in Computer

Science 19.

[Rey83] J. C. Reynolds, `Types, Abstraction and Parameter Polymorphism', Information Pro-

cessing'83.

[Rey84] J. C. Reynolds, `Polymorphism is Not Set-theoretic', Lecture Notes in Computer Science

173.

[RP88] J. C. Reynolds and G. D. Plotkin, On Functors Expressible in the Polymorphic Typed

Lambda Calculus, LFCS report, ECS-LFCS-88-53, Dept. of Computer Science, Univ. of

Edinburgh.

[SB83] D. Sannella and R. Burstall, `Structured Theories in LCF', 8th Colloquium on Trees in

Algebra and Programming.

[See84] R. A. G. Seely, `Locally Cartesian Closed Categories and Type Theory,' Math. Proc.

Camb. Phil. Soc. 95.

[Str88] T. Streicher, Correctness and Completeness of a Categorical Semantics of the Calculus

of Constructions, PhD Dissertation, Passau.

[Tai75] W. W. Tait, `A Realizability Interpretation of the Theory of Species', Logic Colloquium

(ed. R. Parikh), Lecture Notes in Computer Science 453.

[Tak75] G. Takeuti, Proof Theory, Stud. Logic 81.

[TLP89] P. Taylor, Z. Luo and R. Pollack, `Theories, Mathematical Structures and Strong Sums',

in preparation.

[Tro73] A. S. Troelstra, Metamathematical Investigation of Intuitionistic Arithmetic and Anal-

ysis, Lecture Notes in Mathematics 344.

[vD80] D. T. van Daalen, The Language Theory of Automath, PhD Thesis. Technologicval

Univ., Eindhoven.

[Zuc75] J. Zucker, `Formalization of Classical Mathematics in AUTOMATH', Colloque Interna-

tionaux du CNRS 249, Clermont-Ferrand.

24


