
Modern Type Theories for NL Semantics

Zhaohui Luo

Royal Holloway, Univ. of London

Natural Language Semantics

Semantics – study of meaning (communicate = convey

meaning)

Various kinds of theories of meaning

 Meaning is reference (“referential theory”)
 Word meanings are things (abstract/concrete) in the world.

 c.f., Plato, …

 Meaning is concept (“internalist theory”)
 Word meanings are ideas in the mind.

 c.f., Aristotle, …, Chomsky.

 Meaning is use (“use theory”)
 Word meanings are understood by their uses.

 c.f., Wittgenstein, …, Dummett, Brandom.

ESSLLI 2017 2

Formal semantics

Model-theoretic semantics

 Meaning is given by denotation.

 c.f., Tarski, …, Montague.

 e.g., Montague grammar (MG)
 NL simple type theory set theory

Proof-theoretic semantics

 In logics, meaning is inferential use

(proof/consequence).

 c.f., Gentzen, Prawitz, …, Martin-Löf.

 e.g., Martin-Löf’s meaning theory

ESSLLI 2017 3

Simple example for MTS and PTS

Model-theoretic semantics

 John is happy. happy(john)

 John is a member of the set of entities that are happy.

 Montague’s semantics is model-theoretic – it has a wide
coverage (powerful).

Proof-theoretic semantics

 How to understand a proposition like happy(john)?

 In logic, its meaning can be characterised by its uses –
two respects:
 How it can be arrived at (proved)?

 How it can be used to lead to other consequences?

(*)

ESSLLI 2017 4

Montague’s semantics and MTT-semantics

 Formal semantics (MG)
 Montague Grammar Church’s simple type theory (Montague, 1930–1971),

dominating in linguistic semantics since 1970s

 Other development of formal semantics in last decades (e.g., Discourse
Representation Theory & Situation Semantics)

 MTT-semantics: formal semantics in modern type theories
 Early use of dependent type theory in formal semantics (cf, Ranta 1994)

 Recent development (since 2009) – full-scale alternative to MG

 Advantages: both model/proof-theoretic, proof technological support, …

 Refs at http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html, including
 Z. Luo. Formal Semantics in MTTs with Coercive Subtyping. Ling & Phil, 35(6). 2012.

 Chatzikyriakidis and Luo (eds.) Modern Perspectives in Type Theoretical Semantics. Springer,
2017. (Collection on rich typing in NL semantics)

 Chatzikyriakidis and Luo. Formal Semantics in Modern Type Theories. ISTE/Wiley, to appear.
(Monograph on MTT-semantics)

ESSLLI 2017 5

http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html

TTs as foundational languages for NL semantics

What is a type theory?

 a : A
 a is an object of type A

 the most basic “judgement” to make in type theory

 The worlds of types – examples:
 Simply typed -calculus (with AB)

 Church’s simply type theory as in Montague’s semantics (AB with

HOL of formulas like PQ and x:A.P)

 Richer types (eg, in MTTs: dependent, inductive, …; see latter)

 Logical language (often part of type theory)
 In Church/Montague: formulas & provability/truth

 In modern type theories (MTTs): formulas-as-types & proofs-as-objects

E.g., x:Man. handsome(x) ugly(x) can be seen as a type (later)

ESSLLI 2017 6

What typing is not:

 “a : A” is not a logical formula.
 7 : Nat, j : Man, …

 Different from logical formulae nat(7)/man(j), where nat/man are
predicates. (Note: whether a formula is true is undecidable, while the :-
judgements are.)

 “a : A” is different from the set-theoretic membership
relation “aS” (the latter is a logical formula in FOL).

What typing is related to (some example notions):

 Meaningfulness (ill-typed meaningless)

 Semantic/category errors (eg, “A table talks.” – later)

 Type presuppositions (Asher 2011)

ESSLLI 2017 7

This course – MTTs in NL semantics

MTTs – Modern Type Theories

 Rich type structures
 much richer than simple type theory in MG

 Proof-theoretically specified by rules
 proof-theoretic meanings (e.g., Martin-Löf’s meaning theory)

 Embedded logic
 based on propositions-as-types principle

 Informally, MTTs, for NL semantics, offer

 “Real-world” modelling as in model-theoretic semantics

 Effective inference based on proof-theoretic semantics

Remark: New perspective & new possibility not available before!

ESSLLI 2017 8

ESSLLI 2017 9

An episode: MTT-based technology and applications

Proof technology based on type theories

 Proof assistants
 MTT-based: ALF/Agda, Coq, Lego, NuPRL, Plastic, …

 HOL-based: Isabelle, HOL, …

Applications of proof assistants

 Math: formalisation of mathematics – eg,
 4-colour theorem (on map colouring) in Coq

 Kepler conjecture (on sphere packing) in Isabelle/HOL

 Computer Science:
 program verification and advanced programming

 Computational Linguistics
 E.g., MTT-sem based NL reasoning in Coq

(Chatzikyriakidis & Luo 2014)

A focus of the course

However, this course

 is not one on MTT-semantics only;

 is one on MTTs with examples in MTT-semantics!

Reason for this focus:

 Learning MTTs is laborious, even for logic-oriented
semanticists

 New logical concepts: judgement, context, inductive &
dependent types, universe, subtyping, …

 Hope: making learning MTTs (hence MTT-semantics) easier!

Goal: learning MTTs as well as MTT-semantics

ESSLLI 2017 10

Overview of the Course

This lecture:

 Introduction to MTT-semantics (a first taste)

Each lecture from L2-5 will consist of two parts:

 Some key MTT concepts/mechanisms

 Introduction of some MTT types with several applications in
MTT-semantics.

 Example: Lecture 2 of “Judgements and -polymorphism”
introduces these in MTTs and then uses -polymorphism to
model coordination, predicate-modifying adverbs (quickly)
and subsective adjectives (large).

Goal: learn MTTs with examples in MTT-semantics

ESSLLI 2017 11

Material available on the web:

 Lecture slides

 Course proposal (good summary, but the organisation and
descriptions of lectures are)

 Papers/books on MTT-semantics available at

http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html

ESSLLI 2017 12

http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html

I. Type-theoretical semantics: introduction

 Introduction to MG and MTT-semantics, starting with
examples

Two basic semantic types in MG/MTT-semantics

ESSLLI 2017 13

Simple example

 John talks.

 Sentences are (interpreted as) logical propositions.

 Individuals are entities or objects in certain domains.

 Verbs are predicates over entities or certain domains.

ESSLLI 2017 14

Montague MTT-semantics

john e Human

talk et HumanProp

talk(john) t Prop

Three issues: a first taste

Selection restriction

 (*) The table talks.

 Is (*) meaningful?

 In MG, yes: (*) has a truth value
 talk(the table) is false in the intended model.

 In MTT-semantics, no: (*) is not meaningful
 since “the table” : Table and it is not of type Human and, hence,

talk(the table) is ill-typed as talk requires that its argument be of type
Human.

 So, in MTT-semantics, meaningfulness = well-typedness

ESSLLI 2017 15

Subtyping

 Necessary for a multi-type language such as MTTs

 Example: What if John is a man in “John talks”?
 john : Man

 talk : HumanProp

 talk(john)? (john is not of type Human …?)

 Problem solved if Man ≤ Human
 A ≤ B and a : A a : B

 Man ≤ Human and john : Man john : Human

 Hence, talk(john) : Prop

Later (Lecture 3): “coercive subtyping”, and we use it in modelling
various linguistic features such as sense selection & copredication.

ESSLLI 2017 16

Propositions as types in MTTs

 Formula A is provable/true if, and only if, there is a proof of
A, i.e., an object p of type A (p : A).

MTTs have a consistent logic based on the
propositions-as-types principle.

ESSLLI 2017 17

formula type example

A B A B If …, then …

x:A.B(x) x:A.B(x) Every man is handsome.

Two more basic MG/MTT-semantic types

ESSLLI 2017 18

Category MG’s Type MTT-semantic type

S t Prop

IV et AProp

CN (book, man) et types (Book, x:Man.handsome(x))

Adj (CN/CN) (et)(et) or et AProp (A: meaningful domain)

Adjective modifications of CNs

One of the possible/classical classifications:

ESSLLI 2017 19

classification property example

Intersective Adj(N) Adj & N handsome man

Subsectional Adj(N) N large mouse

Privative Adj(N) N fake gun

Non-committal Adj(N) ? alleged criminal

Intersective adjectives

Example: handsome man

 In general:

ESSLLI 2017 20

Montague MTT-semantics

man man : et Man : Type

handsome handsome : et ManProp

handsome man x. man(x) & handsome(x) (Man,handsome)

Montague MTT-semantics

CNs predicates types

Adjectives predicates predicates

CNs modified by
intersective adj

Predicate by conjunction -type

adjective : CNs CNs

 In MG, predicates to predicates.

 In MTT-semantics, types to types.

Proposals in MTT-sem (Chatzikyriakidis & Luo, FG13 & JoLLI17)

ESSLLI 2017 21

classification example types employed

Intersective handsome man -types (of pairs)

Subsectional large mouse -types (polymorphism)

Privative fake gun disjoint union types

Non-committal alleged criminal belief contexts

-types: a taste of dependent types

First, we start with “product types” of pairs:

 A x B of pairs (a,b) such that a:A and b:B

 Rules to specify these product types:
 Formation rule for A x B

 Introduction rule for pairs (a,b) : A x B

 Elimination rules for projections 1(p) and 2(p)

 Computation rule: 1(a,b)=a and 2(a,b)=b.

This generalises to -types of “dependent pairs”
(next page)

ESSLLI 2017 22

 “Family” of types

 Tyoe-valued function

 Dog(John) = {d}, Dog(Mary)={d1, d2}, …

 Dog : HumanType

-types of “dependent pairs”:

 (A,B) of dependent pairs (a,b) such that a:A and
b:B(a), where A:Type and B : AType.

 Rules for -types:
 Formation rule for (A,B) for B : AType

 Introduction rule for dependent pairs (a,b) : (A,B)

 Elimination rules for projections 1(p) : A and 2(p) : B(1(p))

 Computation rule: 1(a,b)=a and 2(a,b)=b.

ESSLLI 2017 23

 “handsome man” is interpreted as type

(Man,handsome)

So,

 A handsome man is an object of the above type

 It is a pair (m,p) such that m : Man and p : handsome(m),
i.e., m is a man and p is a proof that m is handsome.

ESSLLI 2017 24

II. Judgements and -polymorphism

II.1. Overview of Modern Type Theories

 Difference from simple type theory

 Example MTTs

 Judgements (basic “statements” in MTTs)

II.2. Dependent product types (-types)

 Basic constructions

 -types as special cases of -types (examples in semantics)

II.3. Universes – -polymorphism and examples like

 Coordination

 Quantifiers and Adverbs (predicate modifying)

 Subsective adjectives (e.g., large)

ESSLLI 2017 25

II.1. Modern Type Theories: overview

 Simple v.s. Modern Type Theories

 Church’s simple type theory (1940)

 As in Montague semantics

 Types (“single-sorted”): e, t, et, …

 HOL (e.g., membership of `sets’)

 Modern type theories

 Many types of entities – “many-sorted”
 Table, Man, Human, x:Man.handsome(x), PhyInfo, …

 Dependent types: “types segmented by indexes”

 List Vect(n) with n:Nat (lists of length n)

 Event Evt(h) with h:Human (events performed by h)

 Examples of MTTs:
 Martin-Löf’s TT (predicative; non-standard FOL; proof assistants Agda/NuPRL)

 CICp (Coq) & UTT (Luo 1994) (impredicative; HOL; Coq/Lego/Plastic/Matita)

ESSLLI 2017 26

Predicativity/impredicativity: technical jargon

This refers to a possibility of forming a logical
proposition “circularly”:

 X:Prop.X : Prop

 Quantifying over all propositions to form a new proposition.

 Is this OK? Martin-Löf thinks not, while Ramsey (1926)
thinks yes (it is circular, but it is not vicious.)

Allowing the above leads to impredicative type
theories, which have in particular, Prop:

 Impredicative universe of logical propositions (cf, t in MG)

 Internal totality (a type, and can hence form types, eg
TableProp, Man Prop, X:Prop.X, …)

ESSLLI 2017 27

Judgements: MTTs’ statements

 A statement in an MTT is a judgement, one of whose forms (the
most important form) is

(*) ├ a : A

which says that “a is of type A under context ”.

 Types represent collections (they are different from sets,
although they both represent collections) or propositions.

 x1 : A1, …, xn : An is a context, which is a sequence of
“membership entries” declaring that xi is a variable of type Ai.

 When is empty, (*) is non-hypothetical; (in this case, we may
just write a : A by omitting “├”.)

 When is non-empty, (*) is hypothetical.

ESSLLI 2017 28

Examples of judgements

 John is a man.

 john : Man, where Man is a type.

(non-hypothetical)

 If John is a student, he is happy.

 j : Student├ p : happy(j) (for some p)

(hypothetical)

Truth of a formula:

 “happy(j) true”

 The above is a shorthand for “p : happy(j) for some p”

ESSLLI 2017 29

Other forms of judgements (1)

 valid

 is a valid (“legal”) context

 When is x1 : A1, …, xn : An valid? (1) xi’s are different;
(2) Ai’s are types in the prefix on their left.

Question:

 Why is this necessary?

 In traditional logics, we do not need this – just consider a
set of formulas – this would seem enough …

 Answer: because we have dependent types – it is possible
that xi’s occur freely in the Aj’s after them!

 Eg, we can have a context

x:Man, …, y:handsome(x), …

ESSLLI 2017 30

Situations represented as contexts: an example

Beatles’ rehearsal

 Domain:

 Assignment:

 Context representing the situation of Beatles’ rehearsal:

 We have, for example,

├ G(John) true and ├ B(Bob) true

i.e., under , “John played guitar” & “Bob was not a Beatle”.

ESSLLI 2017 31

Other forms of judgements (2)

├ A type

 A is a type under .

 E.g. when is AxB or x:A.B a valid type?

├ A = B and ├ a=b : A (equality judgements)

 A and B are (computationally) the same types.

 a and b are (computationally) the same objects of type A.

 E.g., do we have 1(a,b)=a?

Now let’s illustrate by types of pairs.

ESSLLI 2017 32

-types: a taste of dependent types

First, we start with “product types” of pairs:

 A x B of pairs (a,b) such that a:A and b:B

 Rules to specify these product types:
 Formation rule for A x B

 Introduction rule for pairs (a,b) : A x B

 Elimination rules for projections 1(p) and 2(p)

 Computation rule: 1(a,b)=a and 2(a,b)=b.

This generalises to -types of “dependent pairs”
(next page)

ESSLLI 2017 33

 “Family” of types

 B[x] type – type “indexed” by x : A

 Dog[x] type for x : Human

 Dog[John] = {d}, Dog[Mary] = {d1, d2}, …
(Here, {…} are finite types.)

 -types of “dependent pairs”:

 x:A.B[x] of dependent pairs (a,b) such that a:A and b:B[a].

 Rules for -types:
 Formation rule for x:A.B

 Introduction rule for dependent pairs (a,b) : x:A.B[x]

 Elimination rules for projections 1(p) : A and 2(p) : B[1(p)]

 Computation rule: 1(a,b)=a and 2(a,b)=b.

ESSLLI 2017 34

 “handsome man” is interpreted as type

x:Man.handsome(x)

So,

 A handsome man is an object of the above type.

 It is a pair (m,p) such that m : Man and p : handsome(m),
i.e., m is a man and p is a proof that m is handsome.

ESSLLI 2017 35

Judgements v.s. Formulas/Types

First, judgements are not formulas/propositions.

 Propositions correspond to types (P in p : P).

 For example, “P is true” corresponds to “p : P for some p”.

You may think judgements as meta-level statements
that cannot be used “internally”.

 For example, unlike a formula, you cannot form, for
example, J for a judgement J.

 This is similar to subtyping judgements AB. Such
assumptions may be considered in “signatures” – see my
LACL14 invited talk/paper and work in Lungu’s thesis (2017).

We stop here: Further discussions are out of the scope here, but
relevant papers are available, if requested.

ESSLLI 2017 36

II.2. Dependent product types (-types)

 Informally (borrowing set-theoretical notations, formal rules
next slide),

x:A.B[x] = { f | for any a : A, f(a) : B[a] }

 Examples

 x:Nat.[1,…,x] : x:Nat.Vect(x)

 x:Student. work_hard(x)
 This is just another notation for x:Student. work_hard(x)

 x:Man. handsome(x) ugly(x)

 Notational conventions:

 AB stands for x:A.B(x) when xFV(B).

 PQ stands for x:A.B(x) when xFV(Q).

 In other words, AB/PQ are just special cases of -types.

ESSLLI 2017 37

-types/-propositions

T

for -types and
P

for universal quantification

38ESSLLI 2017 38

-polymorphism – a first informal look

 Use of -types for polymorphism – an example:

 How to model predicate-modifying adverbs (eg, quickly)?

 Informally, it can take a verb and return a verb.

 Montague:

quickly : (et)(et)

quickly(run) : et

 MTT-semantics, where Aq is the domain/type for quickly:

quickly : (AqProp)(AqProp)

What about other verbs? Atalk=Human, … Can we do it generically
with one type of all adverbs?

 -types for polymorphism come for a rescue:

quickly : A:CN. (AProp)(AProp)

 Question: What is CN?

Answer: CN is a universe of types – next slide.

ESSLLI 2017 39

II.3. Universes and -polymorphism

Universe of types

 Martin-Löf introduced the notion of universe (1973, 1984)

 A universe is a type of types (Note: the collection Type of all
types is not a type itself – logical paradox if one allowed -
quantification over Type.)

Examples

 Math: needing to define type-valued functions
 f(n) = N x … x N (n times)

 MTT-semantics: for example,
 CN is the universe of types that are (interpretations of) CNs. We have:

Human : CN, Book : CN, (Man,handsome) : CN, …

 We can then have: quickly : A:CN. (AProp)(AProp)

 Note: one cannot have A:Type..., since Type is not a type.

ESSLLI 2017 40

Modelling subsective adjectives

 Nature of such adjectives

 Their meanings are dependent on the nouns they modify.

 Eg, “a large mouse” is not a large animal

 This leads to our following proposal:

 large : A:CN. (AProp)

 CN – type universe of all (interpretations of) CNs

 is the type of dependent functions
 large(Mouse) : Mouse Prop

 [large mouse] = x:Mouse. large(Mouse)(x)

 skilful : A:CNH. (AProp)

 CNH – sub-universe of CN of subtypes of Human
 skilful(Doctor) : Doctor Prop

 Skilful doctor = x:Doctor. skilful(Doctor)(x)

 Excludes expressions like “skilful car”.

ESSLLI 2017 41

Another example – type of quantifiers

 Generalised quantifiers

 Examples: some, three, a/an, all, …

 In sentences like: “Some students work hard.”

 With -polymorphism, the type of binary quantifiers is:
A:CN. (AProp)Prop

For Q of the above type

N : CN, V : NProp Q(N,V) : Prop

E.g., Student : CN, work_hard : HumanProp

 Some(Student,work_hard) : Prop

Note: the above only works because Student Human – subtyping,
a topic to be studied in the next lecture.

ESSLLI 2017 42

Modelling NL coordination

Examples of conjoinable types

 John walks and Mary talks. (sentences)

 John walks and talks. (verbs)

 A friend and colleague came. (CNs)

 Every student and every professor came. (quantified NPs)

 Some but not all students got an A. (quantifiers)

 John and Mary went to Italy. (proper names)

 I watered the plant in my bedroom but it still died slowly
and agonizingly. (adverbs)

 … …

Question: can we consider coordination generically?

ESSLLI 2017 43

Consider a universe LType

 LType – the universe of “linguistic types”, with formal rules
in the next slide.

Example types in Ltype:

 Type CN of common nouns

 Type of predicate-modifying adverbs:

A:CN. (AProp)(AProp)

 Type of quantifiers:

A:CN. (AProp)Prop

 ...

ESSLLI 2017 44

ESSLLI 2017 45

Then, coordination can be considered generically:

 Every (binary) coordinator is of the following type:

A : LType. AAA

 For example,

and : A : LType. AAA

We can then type the coordination examples we have
considered.

Remark: of course, there are further considerations
such as collective readings verses distributive
readings – beyond our discussions here.

ESSLLI 2017 46

Plan of Lecture III

Brief recap of -types and polymorphism

 Illustrate the use of and universes by GQs/coordination

Subtyping in MTTs and applications

 Subsumptive v.s. coercive subtyping

 Uses of coercive subtyping in
 Sense selection

 Copredication

 … …

 Adequacy of coercive subtyping for MTTs

Let’s start with two slides seen yesterday.

ESSLLI 2017 47

II.2. Dependent product types (-types)

 Informally (borrowing set-theoretical notations, formal rules
next slide),

x:A.B[x] = { f | for any a : A, f(a) : B[a] }

 Examples

 x:Nat.[1,…,x] : x:Nat.Vect(x)

 x:Student. work_hard(x)
 This is just another notation for x:Student. work_hard(x)

 x:Man. handsome(x) ugly(x)

 Notational conventions:

 AB stands for x:A.B(x) when xFV(B).

 PQ stands for x:A.B(x) when xFV(Q).

 In other words, AB/PQ are just special cases of -types.

ESSLLI 2017 48

II.3. Universes and -polymorphism

Universe of types

 Martin-Löf introduced the notion of universe (1973, 1984)

 A universe is a type of types (Note: the collection Type of all
types is not a type itself – logical paradox if one allowed -
quantification over Type.)

Examples

 Math: needing to define type-valued functions
 f(n) = N x … x N (n times)

 MTT-semantics: for example,
 CN is the universe of types that are (interpretations of) CNs. We have:

Human : CN, Book : CN, (Man,handsome) : CN, …

 We can then have: quickly : A:CN. (AProp)(AProp)

 Note: one cannot have A:Type..., since Type is not a type.

ESSLLI 2017 49

Another example – type of quantifiers

 Generalised quantifiers

 Examples: some, three, a/an, all, …

 In sentences like: “Some students work hard.”

 With -polymorphism, the type of binary quantifiers is:

A:CN. (AProp)Prop

 For Q of the above type

N : CN, V : NProp

 Q(N,V) : Prop

 E.g., for Some of the above type

Student : CN, work_hard : HumanProp

 Some(Student,work_hard) : Prop

Note: This only works because Student Human – subtyping,

a topic to be studied later.

ESSLLI 2017 50

Modelling NL coordination

Examples of conjoinable types

 John walks and Mary talks. (sentences)

 John walks and talks. (verbs)

 A friend and colleague came. (CNs)

 Every student and every professor came. (quantified NPs)

 Some but not all students got an A. (quantifiers)

 John and Mary went to Italy. (proper names)

 I watered the plant in my bedroom but it still died slowly
and agonizingly. (adverbs)

 … …

Question: can we consider coordination generically?

ESSLLI 2017 51

Consider a universe LType

 LType – the universe of “linguistic types”, with formal rules
in the next slide.

Example types in LType:

 Prop of logical propositions (sentence coordination)

 Type of predicates (verb coordination)

 CN of common nouns (CN coordination)

 Type of predicate-modifying adverbs:

A:CN. (AProp)(AProp) (adverb coordination)

 Type of quantifiers:

A:CN. (AProp)Prop (quantifier coordination)

 ...

ESSLLI 2017 52

ESSLLI 2017 53

`

Then, coordination can be considered generically:

 Every (binary) coordinator is of the following type:

A : LType. AAA

 For example,

and : A : LType. AAA

With this typing for coordinators like and, we can
then type the coordination examples we have
considered.

Remark: Further considerations such as collective
verses distributive readings can be dealt with
similarly – beyond our discussions here.

ESSLLI 2017 54

III. Subtyping

Basics on subtyping

 Subsumptive v.s. coercive subtyping

 Adequacy for MTTs

 Importance and applications of subtyping in NL sem.

 Crucial for MTT-semantics

 Several uses, including
 Sense selection via overloading

 Dot-types for copredication

(Here, we shall illustrate applications first and, if time
allows, adequacy issue afterwards.)

ESSLLI 2017 55

Subsumptive subtyping: traditional notion

Subsumptive subtyping:
a : A A B

===========================

a : B

This is called the “subsumption rule”.

Fundamental principle of subtyping

If AB and, wherever a term of type B is required,
we can use a term of type A instead.

For example, the subsumption rule realises this.

ESSLLI 2017 56

Coercive subtyping: basic idea

AB if there is a coercion c from A to B:

Eg. Even Nat; Man Human; (Man, handsome) Man; …

Subtyping as abbreviations:

a : A c B

 “a” can be regarded as an object of type B

 CB[a] = CB[c(a)], ie, “a” stands for “c(a)”

This is more general than subsumptive subtyping and
adequate for MTTs as well.

ESSLLI 2017 57

Coercive subtyping: summary

 Inadequacy of subsumptive subtyping

 Canonical objects

 Canonicity: key for MTTs (TTs with canonical objects)

 Subsumptive subtyping violates canonicity.

Adequacy of coercive subtyping for MTTs

 Coercive subtyping preserves canonicity & other properties.

 Conservativity (Soloviev & Luo 2002, Luo, Soloviev & Xue 2012)

Historical development and applications in CS

 Formal presentation (Luo 1996/1999, Luo, Soloviev & Xue 2012)

 Implementations in proof assistants: Coq, Lego, Plastic, Matita

ESSLLI 2017 58

III.1. Modelling Advanced Linguistic Features

MTTs

 Very useful in modelling various linguistic features

Why? Partly because of
 Rich/powerful typing mechanisms

 Subtying

 … …

ESSLLI 2017 59

Remark on anaphora analysis

Various treatments of “dynamics”

 DRTs, dynamic logic, …

 MTTs provide a suitable (alternative) mechanism.

Donkey sentences

 Eg, “Every farmer who owns a donkey beats it.”

 Montague semantics

x. farmer(x) & [y. donkey(y) & own(x,y)]
 beat(x,?y)

 Modern TTs (for and for ; Sundholme):

x:Farmerz:[y:Donkey. own(x,y)] beat(x,1(z))

But, this is only an interesting point … We shall focus
on several other things.

ESSLLI 2017 60

Uses of coercive subtyping in MTT-semantics

1. Needs for subtyping in MTT-semantics

2. Sense enumeration/selection via. overloading

3. Linguistic coercions

4. Dot-types and copredication

ESSLLI 2017 61

1. Subtyping: basic need in MTT-semantics

What about, eg,

 “A man is a human.”

 “A handsome man is a man” ?

 “Paul walks”, with p=[Paul] : [handsome man]?

Solution: coercive subtyping

 Man Human

 [handsome man] = x:Man.handsome(x) 1 Man

 [Paul walks] = walk(p) : Prop

because

walk : HumanProp and

p : [handsome man] 1
Man Human

ESSLLI 2017 62

2. Sense selection via overloading

Sense enumeration (cf, Pustejovsky 1995 and others)

 Homonymy

 Automated selection

 Existing treatments (eg, Asher et al via +-types)

For example,

1. John runs quickly.

2. John runs a bank.

with homonymous meanings

1. [run]1 : HumanProp

2. [run]2 : Human→Institution→Prop

“run” is overloaded – how to disambiguate?

ESSLLI 2017 63

Overloading via coercive subtyping

Overloading can be represented by coercions

Eg,

Now, “John runs quickly” = “John [run]1 quickly”.

“John runs a bank” = “John [run]2 a bank”.

Homonymous meanings can be represented so that
automated selection can be done according to
typings.

ESSLLI 2017 64

3. Linguistic Coercions

Basic linguistic coercions can be represented by
means of coercions in coercive subtyping:

 (*) Julie enjoyed a book.

 (**) x: Book. enjoy(j, x)

 enjoy : Human Event Prop

 Book reading Event

 (*) Julie enjoyed reading a book.

Local coercions to disambiguate multiple coercions:

 coercion Book reading Event in (**)

 coercion Book writing Event in (**)

ESSLLI 2017 65

Dependent typing

What about (example by Asher in [Asher & Luo]):

(#) Jill just started War and Peace, which Tolstoy finished
after many years of hard work. But that won’t last because
she never gets through long novels.

 Overlapping scopes of “reading” and “writing”.

A solution with dependent typing

 Evt : Human Type
 Evt(h) is the type of events conducted by h : Human.

 start, finish, last : h: Human. (Evt(h)Prop)

 read, write : h: Human. BookEvt(h)

 Book c(h) Evt(h), where c(h,b)=writing if “h wrote b” &
c(h,b)=reading if otherwise (parameterised coercion over h)

ESSLLI 2017 66

Then, (#) is formalised as

 start(j,wp)

& finish(t,wp)

& ¬last(j,wp)

& lb : LBook. finish(j, 1(lb))

which is (equal to)

start(j,reading(j,wp))

& finish(t,writing(t,wp))

& ¬last(j,reading(j,wp))

& lb : LBook. finish(j, c(j,1(lb)))

as intended.

ESSLLI 2017 67

Plan of Lecture IV

Logic in an MTT

 Propositions-as-types, consistency, and HOL in UTT

Brief recap of coercive subtyping

 Explain the inadequacy of subsumptive subtyping for MTTs

Two applications of coercive subtyping

 Copredication via dot-types
 Dot-types in MTTs for copredication

 Disjoint union types (A+B)
 Modelling privative adjective modifications (eg, fake gun)

ESSLLI 2017 68

IV.1. Logics in MTTs – propositions as types

Curry-Howard correspondence (1958,1969):

 Formulae as types

 Proofs as objects

Eg: x:P.x : PP

ESSLLI 2017 69

formula type example

P Q P Q If … then …

x:A.P(x) x:A.P(x) Every man is handsome.

Curry-Howard correspondence: basic example

Theorem.

├L
for the implicational intuitionistic logic and

├ for the simply typed -calculus.

Then,

 if Γ├ M : A, then e(Γ)├L
A, where e(Γ) maps x:A to A;

 if ├L
A, then Γ├ M : A for some Γ & M such that e(Γ) .

70ESSLLI 2017 70

Implicational propositional logic

ESSLLI 2017 71

Simply-typed -calculus (rules as before)

ESSLLI 2017 72

Logic in impredicative type theories

Prop – universe of logical propositions

Notational notes:

In these three slides, “A : Type” stands for “A type”.

ESSLLI 2017 73

-types/universal quantification with Prop

T

for -types and
P

for universal quantification

74ESSLLI 2017 74

Logical operators in, eg, UTT

75ESSLLI 2017 75

Why are these definitions reasonable?

 Usual introduction/elimination rules are all derivable.

Examples

 Conjunction
 If P and Q are provable, so is P & Q.

 If P & Q is provable, so are P and Q.

 Falsity
 false has no proof in the empty context (logical consistency).

 false implies any proposition.

ESSLLI 2017 76

An episode: logic-enriched type theories

Curry-Howard naturally leads to intuitionistic logics.

 What about, say, classical logics?

But:

 Type-checking and logical inference are orthogonal.

 They can be independent with each other.

 In particular, the embedded logic of a type theory is not
necessarily intuitionistic.

 Type theories are not just for constructive mathematics.

A possible answer to the above question:
 Logic-enriched type theories (LTTs)

 Some work: Gambino & Aczel 2006, Luo 2006, Adams & Luo 2010.

ESSLLI 2017 77

IV.2. Subtyping: recap and the adequacy issue

Let’s start with three slides seen yesterday – the basic
concepts in subsumptive subtyping and coercive
subtyping.

ESSLLI 2017 78

Subsumptive subtyping: traditional notion

Subsumptive subtyping:
a : A A B

===========================

a : B

This is called the “subsumption rule”.

Fundamental principle of subtyping

If AB and, wherever a term of type B is required,
we can use a term of type A instead.

For example, the subsumption rule realises this.

ESSLLI 2017 79

Coercive subtyping: basic idea

AB if there is a coercion c from A to B:

Eg. Even Nat; Man Human; (Man, handsome) Man; …

Subtyping as abbreviations:

a : A c B

 “a” can be regarded as an object of type B

 CB[a] = CB[c(a)], ie, “a” stands for “c(a)”

This is more general than subsumptive subtyping and
adequate for MTTs as well.

ESSLLI 2017 80

Adequacy of subtyping

Question:

Is subsumptive subtyping adequate for MTTs
(or type theories with canonical objects)?

Answer:

No (canonicity fails)!

(Hence coercive subtyping.)

ESSLLI 2017 81

ESSLLI 2017 82

Canonicity

Example:

 A = Nat, a = 3+4, v = 7.

Definition

Any closed object of an inductive type is
computationally equal to a canonical object of
that type.

This is a basis of MTTs – type theories with
canonical objects.

 This is why the elimination rule is adequate.

 For -types, for example, its elimination rules say
that any closed object in a -type is a pair.

ESSLLI 2017 83

Canonicity for subsumptive subtyping?

Q: If AB and a:A is canonical in A, is it canonical in B?

Canonicity is lost in subsumptive subtyping.

 Eg,

 nil(A) : List(B), by subsumption;

 But nil(A) any canonical B-list nil(B) or
cons(B,b,l).

 The elim rule for List(B) is inadequate: it does not
cover nil(A) … …

ESSLLI 2017 85

Coercive subtyping: summary

 Inadequacy of subsumptive subtyping

 Canonical objects

 Canonicity: key for MTTs (TTs with canonical objects)

 Subsumptive subtyping violates canonicity.

Adequacy of coercive subtyping for MTTs

 Coercive subtyping preserves canonicity & other properties.

 Conservativity (Soloviev & Luo 2002, Luo, Soloviev & Xue 2012)

Historical development and applications in CS

 Formal presentation (Luo 1996/1999, Luo, Soloviev & Xue 2012)

 Implementations in proof assistants: Coq, Lego, Plastic, Matita

ESSLLI 2017 86

IV.3. Dot-types and copredication

Copredication (Asher, Pustejovsky, …)

 John picked up and mastered the book.

 The lunch was delicious but took forever.

 The newspaper you are reading is being sued by Mia.

 … …

How to deal with this in formal semantics

 Dot-objects (eg, Asher 2011, in the Montagovian setting)

 It has a problem: subtyping and CNs-as-predicates strategy
do not fit with reach other …

ESSLLI 2017 87

Subtyping problem in the Montagovian setting

 Problematic example (in Montague semantics)

 [heavy] : (Phyt)(Phyt)

 [book] : PhyInfot

 [heavy book] = [heavy]([book]) ?

 In order for the above to be well-typed, we need

PhyInfot Phyt

By contravariance, we need

Phy PhyInfo

But, this is not the case (the opposite is)!

 In MTT-semantics, because CNs are interpreted as types, things
work as intended (see next slide).

ESSLLI 2017 88

 In MTT-semantics, CNs are types – we have:
“John picked up and mastered the book.”

〔pick up〕: Human PHY Prop

 Human PHYINFO Prop

 Human 〔book〕 Prop

〔master〕: Human INFO Prop

 Human PHYINFO Prop

 Human 〔book〕 Prop

Hence, both have the same type (in LType) and therefore can be coordinated

by “and” to form “picked up and mastered” in the above sentence.

Remark: CNs as types in MTT-semantics – so things work.

Question: How to introduce dot-types like PHYINFO in an MTT?

ESSLLI 2017 89

Dot-types in MTTs

What is AB?

 Inadequate accounts (as summarised in (Asher 08)):

 Intersection type

Product type

Proposal (SALT20, 2010)

 AB as type of pairs that do not share components

 Both projections as coercions

 Implementations

 Coq implementations (Luo/LACL11,

 Implemented in proof assistant Plastic by Xue (2012).

ESSLLI 2017 90

Key points of a dot-type

A dot-type is not an ordinary type (eg, not an
inductive type).

To form AB, A and B cannot share components:

 E.g., “PhyPhy” and “(PhyInfo)Phy” are not dot-types.

 This is in line with Pustejovsky’s view that dot-objects
“appear in selectional contexts that are contradictory in type
specification.” (2005)

AB is like AxB but both projections are coercions:

 AB 1
A and AB 2

B

 This is OK because of the non-sharing requirement. (Note:
to have both projections as coercions would not be OK for
product types AxB since coherence would fail.)

ESSLLI 2017 91

ESSLLI 2017 92

Another example

“heavy book”

 [heavy] : Phy Prop

 PhyInfo Prop

 Book Prop

 So, the following is well-formed:

[heavy book] = (Book, [heavy])

ESSLLI 2017 93

IV.4. Disjoint union types

Disjoint union types

 A+B with two injections inl : AA+B and inr : BA+B

 Rules for A+B –
formation/introduction/elimination/computation rule(s)

ESSLLI 2017 94

Recall the following slide on adjectives:

adjective : CNs CNs

 In MG, predicates to predicates.

 In MTT-semantics, types to types.

Proposals in MTT-sem (Chatzikyriakidis & Luo, FG13 & JoLLI17)

ESSLLI 2017 95

classification example types employed

Intersective handsome man -types (of pairs)

Subsective large mouse -types (polymorphism)

Privative fake gun disjoint union types

Non-committal alleged criminal belief contexts

Privative adjectives

 “fake gun”

 GR – type of real guns

 GF – type of fake guns

 G = GR+GF – type of all guns

 Declare inl and inr both as coercions: GR inl G and GF inr G

 Now, eg,

 Can define “real gun” or “fake gun” inductively as predicates of
type GProp so that [real gun](g) iff [fake gun](g).

 We can interpret, for f : GF, “f is not a real gun” as [real gun](f),
which is logically equivalent to [fake gun](f), which is True.

 Note that, in the above, [real gun](f) and [fake gun](f) are only
well-typed because GR inr G and GF inr G.

ESSLLI 2017 96

V. Advanced Topics

Advanced topics in MTT-semantics

 Dependent types in event semantics

 MTT-semantics is both model-theoretic & proof-theoretic

 Dependent Categorial Grammars
 Syntactic analysis corresponding to MTT-semantics

 Two papers: Lambek dependent types (Luo 2015) and Linear
dependent types (Luo and Zhang 2016)

 … …

We shall consider the first two in this lecture.

(BTW, references for all lectures are available – see the last
several slides of this lecture.)

ESSLLI 2017 97

V.1. Dependent Event Types

This part is based on the slides for my last week’s
presentation of the following paper:

 Z. Luo and S. Soloviev. Dependent Event Types. London,
WoLLIC 2017.

I. Dependent event types

 Ce: DETs in simple type theory (Montague’s setting)

 UTT[E]: DETs in modern type theories (MTT-semantics)

 Adequacy of Ce: embedding into UTT[E]

 Comparison of traditional event semantics, Ce and UTT[E]

II. Event quantification problem: an example

 EQP in traditional event sem. and solutions in Ce and UTT[E]

ESSLLI 2017 98

Davidson’s event semantics

 Consider:

 (*) John buttered the toast.

[(*)] = butter(j,t), where butter : e2
t.

 (**) John buttered the toast with the knife at midnight.

(?) [(**)] = butter(j,t,k,m), where butter : e4
t

(?) [(**)] = m(k(butter(j)))(t), where butter : eet, m/k : (et)(et)

 Davidson’s original motivation (1967): better treatment of adverbial
modifications – e.g., butter : e2

Eventt, and

 [(*)] = e:Event. butter(j,t,e)

 [(**)] = e:Event. butter(j,t,e) & with(e,k) & at(e,m)

 Note: [(**)][(*)], among many other desirable inferences.

(No need for meaning postulates, needed in both (?)-approaches.)

 Neo-Davidson semantics (1980s): eg, butter : Eventt and

 [(*)] = e:Event. butter(e) & agent(e)=j & patient(e)=t.

WoLLIC 2017 99

I. Dependent event types

Refined types of events: Event Evt(…)

Event types dependent on agents/patients

 For a:Agent and p:Patient, consider dependent event types
Event, EvtA(a), EvtP(p), EvtAP(a,p)

 Note: the subscripts A, P and AP are just symbols.

Subtyping (a:A and AB a:B) between DETs:

WoLLIC 2017 100

Dependent event types in Montagovian setting

Eg. John talked loudly.

 talk, loud : Eventt

 agent : Eventet

 (neo-)Davidsonian event semantics

Dependent event types in Montagovian setting:

which is well-typed because EvtA(j) ≤ Event.

WoLLIC 2017 101

Ce: Underlying formal system

Ce extends Church’s simple type theory (1940) (as
used by Montague in MG), by dependent event types

Church’s STT

WoLLIC 2017 102

Dependent event types in Ce

WoLLIC 2017 103

UTT[E]: Dependent event types in MTT-sem

UTT[E]: UTT with coercions in E

 UTT: a modern type theory (Luo 1994)

 E characterising subtyping for DETs

Dependent event types in MTT-semantics

WoLLIC 2017 104

UTT[E]: formal presentation in LF

 Constant types/families:

 Coercive subtyping in E for DETs:

where

 UTT[E] has nice properties such as normalisation and
consistency (Luo, Soloviev & Xue 2012).

WoLLIC 2017 105

Faithful embedding of Ce into UTT[E]

 Definition (embedding of Ce into UTT[E])

 [x] = x; [e] = Entity; [t] = Prop

 [AB] = [A][B];

[x:A.b] = ([A],T,[x:[A]].[b]), if [b] : T;

[f(a)] = app(S,T,[f],[a]), if [f] : ST and [a] : S0 S.

 [PQ] = [P] [Q]; [(A,x.P)] = ([A], [x:[A]].[P])

 Theorem (embedding is “faithful”)
 Γ├ A type [Γ]├ [A] : Type.

 Γ├ a : A [Γ]├ [a] : A0 for some A0 s.t. [Γ]├ A0 d[A] for some d.

 Γ├ P true [Γ]├ p : [P], for some p.

 Γ├ A B [Γ]├ [A] c [B] : Type, for some unique c.

 Corollary: Ce inherits nice properties from UTT[E] including, e.g.,
normalisation and logical consistency.

WoLLIC 2017 106

Comparison (John talked loudly)

 (neo-)Davidsonian event semantics

 talk, loud : Eventt and agent : Eventet.

 Dependent event types in Montagovian setting:

 talk, loud : Eventt and agent : Eventet.

which is well-typed because EvtA(j) ≤ Event.

 Dependent event types in MTT-semantics:

Note: talk’s type requires that e have a dependent event type.

WoLLIC 2017 107

II. Event quantification problem

 A form of incompatibility between event semantics and MG
(Champollion, Winter-Zwarts, de Groote-Winter).

 No man talked.

But, we still have a problem, albeit a small one …

WoLLIC 2017 108

 What if one changes EvtA(x) into Event?

 That still would not prevent the following incorrect semantics:

 MTT-semantics helps:

 Note: talk’s type “dictates” the use of EvtA(x): talk(x,e) would
not be well-typed if e : Event only (and not of type EvtA(x)).
So, something like (#) would not be available.

WoLLIC 2017 109

Future work related to DETs: questions

 Why thematic roles as indexes of DEPs?

 Conceptual precedency/dependency of existence?
 EvtA(a) for a:Agent

 “a exists” in order for an event in EvtA(a) to exist …

 Several questions on DETs

 Dependency on other kinds of parameters than thematic roles?
(eg, Evt(h) where h:Human in (Asher & Luo 12))

 Potential applications of DETs (not just event quantification
problem.)

 Other forms of dependent event types

WoLLIC 2017 110

V.2. MTT-sem is both model-/proof-theoretic

The above claim was first made in the following
talk/paper:

Z. Luo. Formal Semantics in Modern Type Theories: Is It Model-theoretic,

Proof-theoretic, or Both? Invited talk at LACL 2014.

Since then, further discussions and developments
have been made, although the basic theme and
arguments have remained the same.

Let’s start by revisiting two slides in Lecture 1.

ESSLLI 2017 111

Formal semantics

Model-theoretic semantics

 Meaning is given by denotation.

 c.f., Tarski, …, Montague.

 e.g., Montague grammar (MG)
 NL simple type theory set theory

Proof-theoretic semantics

 In logics, meaning is inferential use

(proof/consequence).

 c.f., Gentzen, Prawitz, …, Martin-Löf.

 e.g., Martin-Löf’s meaning theory

ESSLLI 2017 112

Simple example for MTS and PTS

Model-theoretic semantics

 John is happy. happy(john)

 John is a member of the set of entities that are happy.

 Montague’s semantics is model-theoretic – it has a wide
coverage (powerful).

Proof-theoretic semantics

 How to understand a proposition like happy(john)?

 In logic, its meaning can be characterised by its uses –
two respects:
 How it can be arrived at (proved)?

 How it can be used to lead to other consequences?

(*)

ESSLLI 2017 113

Example argument for traditional set-theoretic sem.

 Or, an argument against non-set-theoretic semantics

 “Meanings are out in the world”
 Portner’s 2005 book on “What is Meaning” – typical view

 Assumption that set theory represents (or even is) the world

Comments:

 This is illusion! Set theory is just a theory in FOL, not “the
world”.

 A good/reasonable formal system can be as good as set
theory. (For example, if set theory is good enough, then so
is an MTT.)

ESSLLI 2017 114

Claim:

Formal semantics in Modern Type Theories

is both model-theoretic and proof-theoretic.

 NL MTT (representational, model-theoretic)
 MTT as meaning-carrying language with its types representing

collections (or “sets”) and signatures representing situations

 MTT Meaning theory (inferential roles, proof-theoretic)
 MTT-judgements, which are semantic representations, can be

understood proof-theoretically by means of their inferential roles
(c.f., Martin-Löf’s meaning theory)

ESSLLI 2017 115

Traditional model-theoretic semantics:

Logics/NL Set-theoretic representations

Traditional proof-theoretic semantics of logics:

Logics Inferences

Formal semantics in Modern Type Theories:

NL MTT-representations Inferences

Remark: This was not possible without a language like MTTs;
in other words, MTTs offer a new possibility for NL semantics!

ESSLLI 2017 116

Justifications of the claim

Model-theoretic characteristics of MTT-semantics

 Signatures – context-like but more powerful mechanism to
represent situations (“incomplete worlds”)

Proof-theoretic characteristics of MTT-semantics

 Meaning theory of MTTs – inferential role semantics of MTT-
judgements

Remark: The proof-theoretic characteristics is easier to
justify; what about the model-theoretic ones? A focus
of some recent work such as those on signatures.

ESSLLI 2017 117

Model-theoretic characteristics of MTT-sem

 In MTT-semantics, MTT is a representational
language.

 Types represent collections (c.f., sets in set theory) – see
earlier slides on using rich types in MTTs to give semantics.

 Signatures represent situations (or incomplete possible
worlds).

ESSLLI 2017 118

Signatures

 Types and signatures/contexts are embodied in judgements:

├ a : A

where A is a type, is a context and is a signature.

 New: Signatures, similar to contexts, are finite sequences of
entries, but
 their entries are introducing constants (not variables; i.e., cannot be

abstracted – c.f, Edinburgh LF (Harper, Honsell & Plotkin 1993)), and

 besides membership entries, allows more advanced ones such as manifest
entries and subtyping entries (see later).

ESSLLI 2017 119

Situations represented as signatures

Beatles’ rehearsal: simple example

 Domain:

 Assignment:

 Signature representing the situation of Beatles’ rehearsal:

 We have, for example,

“John played guitar” and “Bob was not a Beatle”.

Remark: the same as a slide in Lecture 2, except that we now use

signatures, rather than contexts.

ESSLLI 2017 120

This shows that, by means of membership entries,
we already can do things we would usually do in
models (in set theory):

 Declaring types (say, D is a type, representing a collection)

 Declaring objects of a type (say John : D)

 Remark: In a many-sorted FOL, one may declare a FOL-
language with sorts and constants, not different
sorts/constants in the same language.

However, we need to further increase the
representational power – manifest fields and
subtyping assumptions in signatures.

ESSLLI 2017 121

Manifest entries

More sophisticated situations

 E.g., infinite domains

 In signatures, we can have a manifest entry:

x a : A

where a : A.

 Informally, it assumes x that behaves the same as a.

ESSLLI 2017 122

Manifest entries: formal treatment

Manifest entries are just abbreviations of special
membership entries:

 x a : A abbreviates x : 1A(a) where 1A(a) is the unit type
with only object *A(a).

 with the following coercion:

where (z) = a for every z : 1A(a).

So, in any hole that requires an object of type A, we
can use x which, under the above coercion, will be
coerced into a, as intended.

ESSLLI 2017 123

Manifest entries: examples

where

with aD being a finite type and aB and aG inductively defined.

(Note: Formally, “Type” should be a type universe.)

ESSLLI 2017 124

Infinity:

 Infinite domain D represented by infinite type Inf

D Inf : Type

 Infinite predicate with domain D:

f f-defn : D Prop

with f-defn being inductively defined.

 “Animals in a snake exhibition”:

Animal1 Snake : CN

ESSLLI 2017 125

Subtyping entries in signatures

Subtyping entries in a signature:

c : A B

This is to declare A c B, where c is a functional
operation from A to B.

Eg, we may have

D { John, … } : Type, c : D Human

Note that, formally, for signatures,

 we only need “coercion contexts” but do not need “local
coercions” [Luo 2009, Luo & Part 2013];

 this is meta-theoretically simpler (Lungu 2017)

ESSLLI 2017 126

Concluding Remarks

 Using contexts to represent situations: historical notes

 Ranta 1994 (even earlier?)

 Further references [Bodini 2000, Cooper 2009, Dapoigny/Barlatier 2010]

 We introduce “signatures” with new forms of entries:
manifest/subtyping entries

 Manifest/subtyping entries in signatures are simpler than manifest
fields (Luo 2009) and local coercions (Luo & Part 2013).

 Preserving TT’s meta-theoretic properties is important (eg,
consistency of the embedded logic).

 Summary

 NL MTT (model-theoretic)

 MTT meaning theory (proof-theoretic)

ESSLLI 2017 127

References (1)

 N. Asher. A type driven theory of predication with complex types. Fundamenta Informaticae
84(2). 2008.

 N. Asher. Lexical Meaning in Context: A Web of Words. Cambridge University Press. 2011.

 N. Asher and Z. Luo. Formalisation of coercions in lexical semantics. Sinn und Bedeutung
17, Paris. 2012.

 J. Belo. Dependently Sorted Logic. LNCS 4941.

 P. Bodini. Formalizing Contexts in Intuitionistic Type Theory. Fundamenta Informaticae
4(2).

 Cartmell. Generalised algebraic theories and contextual categories, Ph.D. thesis, Oxford.
1978.

 S. Chatzikyriakidis. Adverbs in a Modern Type Theory. LACL 2014, LNCS 8535. 2014.

 S. Chatzikyriakidis and Z. Luo. Adjectives in a Modern Type-Theoretical Setting. The 18th
Conf. on Formal Grammar, Dusseldorf. LNCS 8036. 2013.

 S. Chatzikyriakidis and Z. Luo. An Account of Natural Language Coordination in Type Theory
with Coercive Subtyping. Constraint Solving and Language Processing 2012, LNCS 8114.
2013.

ESSLLI 2017 128

References (2)

 S. Chatzikyriakidis and Z. Luo. Natural Language Reasoning Using Proof-assistant
Technology: Rich Typing and Beyond. EACL Workshop on Type Theory and Natural
Language Semantics (TTNLS), Goteborg, 2014.

 S. Chatzikyriakidis and Z. Luo. Natural Language Inference in Coq. Journal of Logic,
Language and Information, 23(4). 2014.

 S. Chatzikyriakidis and Z. Luo. Using Signatures in Type Theory to Represent Situations. T.
Murata, K. Mineshima and D. Bekki (eds). New Frontiers in Artificial Intelligence - JSAI-isAI
2014 Workshops in Japan (LENLS, JURISIN and GABA), Revised Selected Papers. LNCS
9067, 2015.

 S. Chatzikyriakidis and Z. Luo. Individuation Criteria, Dot-types and Copredication: A View
from Modern Type Theories. Proc of the 14th Inter. Conf. on Mathematics of Language,
Chicago, 2015.

 S. Chatzikyriakidis and Z. Luo. Proof Assistants for Natural Language Semantics. Logical
Aspects of Computational Linguistics 2016 (LACL 2016), Nancy. 2016.

 S. Chatzikyriakidis and Z. Luo (eds.). Modern Perspectives in Type Theoretical Semantics.
Studies in Linguistics and Philosophy, Springer. 2017.

SLLI 2017 129

References (3)

 S. Chatzikyriakidis and Z. Luo. On the Interpretation of Common Nouns: Types v.s.
Predicates. In S. Chatzikyriakidis and Z. Luo (eds.), Modern Perspectives in Type
Theoretical Semantics. Springer. 2017.

 S. Chatzikyriakidis and Z. Luo. Adjectival and Adverbial Modification: The View from Modern
Type Theories. Journal of Logic, Language and Information 26(1), 2017.

 S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. ISTE/Wiley
Science Publishing Ltd. (to appear)

 A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5(1). 1940.

 H. Curry and R. Feys. Combinatory Logic, Vol 1. North Holland, 1958.

 Dapoigny and Barlatier. Modelling Contexts with Dependent Types. Fundamenta
Informaticae 104. 2010.

 M. Dummett. The Logical Basis of Metaphysics Harvard University Press, 1991.

 M. Dummett. The Seas of Language. OUP, 1993.

 P. Elbourne. Meaning: A Slim Guide to Sremantics. OUP. 2011.

 W. Howard. The formulae-as-types notion of construction. In To HB Curry: Essays on
Combinatory Logic (1980). 1969.

SLLI 2017 130

References (4)

 R. Kahle and P. Schroeder-Heister (eds.). Proof-Theoretic Semantics. Synthese, 2005.

 G. Lungu. Subtyping in Signatures. PhD thesis, Royal Holloway, Univ. of London. 2017.
(forthcoming)

 G. Lungu and Z. Luo. Monotonicity Reasoning in Formal Semantics Based on Modern Type
Theories. LACL 2014, LNCS 8535. 2014.

 Z. Luo. Coercive subtyping in type theory. CSL’96, LNCS 1258. 1996.

 Z. Luo. Coercive subtyping. J. of Logic and Computation, 9(1). 1999.

 Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.

 Z. Luo. Type-theoretical semantics with coercive subtyping. SALT20. 2010.

 Z. Luo. Contextual analysis of word meanings in type-theoretical semantics. Logical Aspects
of Computational Linguistics (LACL'2011). LNAI 6736, 2011.

 Z. Luo. Common nouns as types. LACL'12, LNCS 7351. 2012.

 Z. Luo. Formal Semantics in Modern Type Theories with Coercive Subtyping. Linguistics and
Philosophy, 35(6). 2012.

SLLI 2017 131

References (5)

 Z. Luo. Formal Semantics in Modern Type Theories: Is It Model-theoretic, Proof-theoretic,
or Both? Invited talk at Logical Aspects of Computational Linguistics 2014 (LACL 2014),
Toulouse. LNCS 8535. 2014.

 Z. Luo. A Lambek Calculus with Dependent Types. TYPES 2015. Tallinn, May 2015.

 Z. Luo and P. Callaghan. Coercive subtyping and lexical semantics (extended abstract).
Logical Aspects of Computational Linguistics (LACL'98). 1998.

 Z. Luo and S. Soloviev. Dependent event types. Proc of the 24th Workshop on Logic,
Language, Information and Computation (WoLLIC'17), LNCS 10388. London, 2017.

 Z. Luo, S. Soloviev and T. Xue. Coercive subtyping: theory and implementation. Information
and Computation 223. 2012.

 Z. Luo and Y. Zhang. A Linear Dependent Type Theory. TYPES 2016. Novi Sad, May 2016.

 P. Martin-Löf. On the Meanings of the Logical Constants and the Justifications of the Logical
Laws. Nordic Journal of Philosophical Logic, 1(1). 1996.

 P. Martin-Löf. Intuitionistic Type Theory. 1984.

SLLI 2017 132

References (6)

 R. Montague. Formal philosophy. Yale Univ Press, 1974. (Collection edited by R. Thomason)

 B. Partee. Compositionality and coercion in semantics: the semantics of adjective meaning.
In Cognitive Foundations of Interpretation, Netherlands Academy of Arts and Sciences.
2007.

 P. Portner. What is Meaning? Blackwell. 2005

 P. Pontner and B. Partee (eds). Formal Semantics: The Essential Readings. Blackwell. 2002.

 J. Pustejovsky. The Generative Lexicon. MIT. 1995.

 C. Retoré et al. Towards a Type-Theoretical Account of Lexical Semantics. JoLLI 19(2).
2010.

 T. Streicher. Investigations into Intensional Type Theory. Habilitation Thesis, 1993.

 Sundholm. Constructive Generalized Quantifiers. Synthese 79(1). 1989.

 J. Pustejovsky. The Generative Lexicon. MIT. 1995.

 A. Ranta. Type-Theoretical Grammar. Oxford University Press. 1994.

 T. Xue and Z. Luo. Dot-types and their implementation. LACL'12, LNCS 7351. 2012.

ESSLLI 2017 133

ESSLLI 2017 134

