Type-Theoretical Lexical Semantics	
Nicholas Asher and Zhaohui Luo	
(Lectures 4/5 on Lexical Semantics at ESSLLI 2011)	

٥١	/erview
•	• Formal semantics (lexical semantics, in particular)
•	 Typing – formal calculi with typing
	How to capture linguistic data?
	How to capture "type presuppositions" with typing?
	What is (is not) typing/subtyping?
	Which typing formalisms?
	✤ FOL with types
	 HOL as in Church's Simple Type Theory (Montague)
	* TCL (Asher 2011)
	Other formalisms?

oposai	
Type-theoreti	c semantics
 Formal sema 	ntics in Modern Type Theories
 In particular 	, lexical semantics in MTTs
♦ Why are MT1	s useful?
Remarks:	
(1) Focussing on (lexical) semanti	providing formal mechanisms for formal ics, not on empirical issues.
(2) Another way implementation (Using seen exa	to look at this: Formal realisation or of the categorical ideas in earlier lectures. mples etc.)

The	se lectures
*	Basics of MTTs and type-theoretical semantics
*	exical semantics in MTTs with coercive subtyping
	Remark: Coercive Subtyping/coercions are different from (but related to) and developed independently upon the notion of coercion in linguistics.
*	Revisiting the linguistic issues in MTTs
	"Type presuppositions" via typing Copredication
	Coercions (in linguistics)
	 Other issues (eg, sense enumeration/selection)

I. Typing	and Modern Type Theories
The typ	ing relation (or judgement)
	a : A
Usually	specified by means of a proof system.
What ca	an be "A" in "a : A"?
 Types Nat 	s: eg, t, List(Nat), Table, Man, Man→Prop, Phy×Info, Phy•Info
 Prop 	ositions ("propositions-as-types"): eg,
∀x:	[man]. [handsome](x) $\rightarrow \neg$ [ugly](x)
	nced types: dependent types, type universes (see later)
ESSLLI 2011	5

What typing is not:	
* "a : A" is not a logical formula.	
* 7 : Nat	
Different from a logical formula is_nat(7)	
 Eg, Typing judgements (in intensional TTs) is decidable while the truth/provability of a formula (in FOL or a stronger calculus) is no 	ot.
* "a : A" is different from the set-theoretic membership	
relation " $a \in S''$ (the latter is a logical formula in FOL).	
What typing is related to:	
 Semantic/category errors (eg, "A table talks.") 	
♦ Type presuppositions (Asher 2011)	
ESSLLI 2011	6

туре	s v.s. sets
♦ Ty	pes may be thought of as "manageable sets".
* So	ome typical differences
•	Typing is decidable: "a:A" is decidable (in intensional TTs), while the set membership "a \in S" is not.
*	Type theories can have an embedded/consistent logic, by propositions-as-types principle, while set theory is different.
•	There are union/intersection sets $S \cup S'/S \cap S'$, but union or intersection types would usually make the type theory undecidable or logically inconsistent.
*	There is set inclusion $S \subseteq S'$, but subtyping $A \le B$ is much more restricted (and we do need a powerful subtyping mechanism for lexical semantics.)

Simple v.s. Modern Type Theories	
Church's simple type theory (Montague semantics)	
☆ Composite types: e→t, (e→t)→t, …	
 Formulas in HOL (eg, membership of sets) 	
◆ Eg, s : e→t is a set of entities (a∈s iff s(a))	
Modern type theories (eg, Martin-Löf's type theory)	
 Many types of entities – "many-sorted" 	
Table, Man, Human, Phy, are all types (of certain entities).	
 Different MTTs have different embedded logics 	
Martin-Löf's type theory: first-order logic (but not the standard one) Impredicative UTT: higher-order logic (standard one)	
ESSUIT 2011	8

MTTs (2) – En	nbedde	d Logic	
Propo	ositions-as	s-types		
	formula	type	example	
	A ⊃ B	$A \rightarrow B$	If, then	
	∀x:A.B(x)	∏x:A.B(x)	Every man is handsome.	
Prop Im (a)	- totality	of logical type theor	propositions ies such as UTT [Luo 94]	
= Ex	ample – pre nandsome :	edicates to $Man \rightarrow Prop$	interpret adjectives/verbs:	

111	s (5). dependent inductive types
Σ	-types – an example
	Types of dependent pairs ("inductive": the only objects are pairs)
	$ \underline{\text{Intuitively}}, \text{ for } A : Type \text{ and } B : A \rightarrow Type, \\ \Sigma(A,B) = \{ \langle x,y \rangle \mid x : A \& y : B(x) \} $
	("dependent": type B(x) depends on object x.)
	Example (when B is an A-indexed proposition): Σ (Man, handsome)
	Σ -types could be used (as in Martin-Löf's type theory) as existential formulas – but this is a non-standard strong quantifier.
• 0	ther inductive types
	finite types, nats, lists, vectors, trees, ordinals,

Types in MTTs: summary	
 ♦ Propositional types ♦ P⊃Q, ∀x:A.P(x), 	
 Inductive types Nat, AxB, List(A), 	
 ◆ Dependent types 	: B(a) })
 Universes A universe is a type of (some other) types 	
 Eg, CN – a universe of the types that interpret CNs for an example of using this) 	(see later
* Other types: Phy, Table,, A•B,	
ESSLLI 2011	12

MH	s: example 11s
✤ P	redicative type theories
	Martin-Löf's type theory
	Extensional and intensional equalities in TTs
I	mpredicative type theories
	> Prop
	Impredicative universe of logical propositions (cf, t in simple TT)
	\diamond Internal totality (a type, and can hence form types, eg Table—Prop, Man —Prop, $\forall X:$ Prop.X,
	F/F ^{\u03c6} (Girard), CC (Coquand & Huet)
	ECC/UTT (Luo, implemented in Lego/Plastic)
	 pCIC (implemented in Coq/Matita)

MTTs: Technology and Applications (in CS)
 Proof technology based on type theories Proof assistants – ALF/Agda, Coq, Lego, NuPRL, Plastic, Applications Formalisation of mathematics (eg, 4-colour Theorem in Coq) Program verification (eg, security protocols) Denendently-typed programming (Cavenae DML Enigram)
Here: type-theoretical lexical semantics
June 2009 14

. Type-Theoretica	al Semantics
Type-theoretical sem	antics
 Formal semantics in t 	he Montagovian style
 But, in modern type t 	heories (not in simple TT)
Remark: proof-theoretic	v.s. model-theoretic semantics of
logical systems	
A key difference from	n the Montague semantics:
 CNs interpreted as type 	pes (not predicates of type $e \rightarrow t$)
Some work on TT se	mantics
 Ranta 1994: basics of 	TT semantics
Luo 1998/2010/2011:	coercive subtyping in TT semantic

Montaque Semantics: examples	
Tionague Semanaes, examples	
 Sentences (as propositions) 	
 [John walks], [A man walks] : t 	
 Common nouns (as functional subsets of entities))
man : CN	
• [man] : $e \rightarrow t$	
 Verbs (as subsets of entities) 	
walk : IV	
• [walk] : $e \rightarrow t$	
[John walks] = [walk](j), if j = [John] : e.	
[A man walks] = Im:e. [man](m) & [walk](m)	
 Adjectives (as functions from subsets to subsets) 	
 nandsome : UN/UN thandsome : (a, st) > (a, st) 	
■ [handsome]: (e→c) → (e→c) ■ [handsome man] = [handsome]([man]) : e → t	
ESSLEI ZUTT	10

 ◆ [John walks] : Prop ◆ [A man walks] : Prop ◆ Common nouns are interpreted as types ◆ [man], [book], [table] : Type (fine-grained) ◆ Remark: not as sets of type e→t as in Montague semanti 	Sentences (as	propositions)
 ◇ [A man walks] : Prop Common nouns are interpreted as types ◇ [man], [book], [table] : Type (fine-grained) ◇ Remark: not as sets of type e→t as in Montague semanti 	[John walks]	: Prop
 Common nouns are interpreted as types (man], [book], [table] : Type (fine-grained)	 [A man walks]] : Prop
 ◊ [man], [book], [table] : Type (fine-grained) ◊ Remark: not as sets of type e→t as in Montague semanti 	Common noun	is are interpreted as <u>types</u>
	♦ [man], [book]	, [table] : Type (fine-grained)
	Remark: not a	as sets of type e $ ightarrow$ t as in Montague semantic
Other semantics types	Other semanti	cs types
 Eg, Phy/Info – the type of physical/informational entities 	Eg, Phy/Info -	- the type of physical/informational entities

	Verhs are interpreted as predicates over "meaningful" domains
	◊ [shout] : [human]→Prop
	 Note: "A table shouts" is meaningless (a "category error") in the sense that ∃t:[table]. [shout](t) is ill-typed (not "false", as in Montague's semantics).
*	We need:
	[John shouts] = [shout](j) : Prop, for j : [man]
1	But these are ill-typed! -([man] is not [human])
	Subtyping
	 {[man] ≤ [human], the above become well-typed.
	 Subtyping is crucial for type-theoretical semantics: (Things only work in the presence of subtyping.)

11-	semantics (3): adjectives & modified civis
*	Adjectives, like verbs, are interpreted as predicates over "meaningful" domains
	↓ [handsome] : [man]→Prop
	 Note: "A table is handsome" is meaningless (a "category error") in the sense that ∃t:[table].[handsome](t) is ill-typed (not "false", as in Montague's semantics).
*	Modified CNs
	♦ [handsome man] = $\sum([man], [handsome])$
	Subtyping is needed as well (A handsome man is a man) More on subtyping later
ESSI	LI 2011 19

ieu	icate mounying adverbs, all advanced example
*	Advanced features in MTTs are useful
	 Semantics to adverbs: example of using type universes
*	Montague semantics:
	+ [quickly] : (e→t)→(e→t)
	Solution (John walked quickly] = [quickly]([walk], j) : t
*	How in MTT?
	 Problem: We have many types that interpret CNs (Table, Man, Animated,), not a single e.
	Solution:
	Introduce universe CN of types that interpret CNs The CN (A Dars) (A Dars)
	 [quickiy]: [[A:CN. (A→Prop)→(A→Prop) []ohn walked quickly] = [quickly]([animated], [walk1, i) : Prop.
	 Remark: the above type of [quickly] is both polymorphic and dependent.

Remark on a	anaphora analysis	
Various trea	tments of "dynamics"	
 DRTs, dyna 	amic logic,	
 MTTs provi 	de a suitable (alternative) mechanism.	
Donkey sent	tences	
 Eg, "Every 	farmer who owns a donkey beats it."	
 Montague 	semantics	
$\forall x. farmer \Rightarrow beat(x,?)$	(x) & [∃y. donkey(y) & own(x,y)] 'y)	
 Modern TT 	s (Π for \forall and Σ for \exists):	
Пx:Farmer	Πz:[Σ y:Donkey. own(x,y)] beat(x, π_1 (z)))
But, this is of	only an interesting point	

Type-theoretical lexical semantics: why	/how?
• MTTs provide a promising formalism for	
 Formal semantics (basics as above) 	
 Lexical semantics, in particular (next) 	
Many promising mechanisms in MTTs to r	epresent
 Sense enumeration/selection model 	
 Dot-types and copredication 	
 Type presuppositions 	
 Coercions (in linguistics) 	
♦ and (other difficult cases)	
How?	
 Coercive subtyping etc 	
·····	
ESSI/12011	22

* N	eed for subtyping
	Some subtypes of entities: Phy/Info \leq e
	More crucially needed for TT semantics
	 Many-sorted (CNs & modified CNs are interpreted as types) Representation of relationships between these types is needed in TT semantics
* Co	percive subtyping
*	Adequate (and powerful) framework for MTTs
	Coercive subtyping are very useful in lexical semantics.

Sub	typing problem in the Montagovian setting
* F	Problematic example (in Montague semantics)
	\Rightarrow [heavy] : (Phy→t)→(Phy→t)
	[heavy book] = [heavy]([book]) ?
	 In order for the above to be well-typed, we need
	Phy•Info→t ≤ Phy→t
	By contravariance, we need
	Phy ≤ Phy•Info
	But, this is not the case (the opposite is)!
* 1 2	In TT sem, because CNs are interpreted as types, things work as intended (see later).
ESSLLI	2011 24

Subsu	Imptive subtyping":
	a : A A ≤ B
	a : B
Fundar	nental principle of subtyping
If A≤ we c	'B and, wherever a term of type B is required an use a term of type A instead.
For exa	ample, the subsumption rule realises this.

Question:	
Is subsumptive subtyping adequate	for
type theories with canonical objects?	2
Answer:	
No (canonicity fails) and then what?	
April 2011	26

Jano	nicity
*De	efinition
	Any closed object of an inductive type is
	computationally equal to a canonical object of that type.
*Th	is is a basis of TTs with canonical objects.
*	This is why the elimination rule is adequate.
	Eg, Elimination rule for List(T):
	"For any family C, if C is inhabited for all canonical T-lists nil(T) and cons(T,a,I), then so is C for all T-lists."

** (Canonicity is lost in subsumptive subtyping.
	\star Eg, $A \leq B$
	$\overline{List(A)} \le List(B)$
	il(A) : List(B), by subsumption;
	But nil(A) ≠ any canonical B-list nil(B) or cons(B,b,l).
	The elim rule for List(B) is inadequate: it does not cover nil(A)

	F 3
🔹 Wh	at about, eg,
* `	'A man is a human."
	'A handsome man is a man"?
*	Paul walks", with p=[Paul] : [handsome man]?
Sol	ution: coercive subtyping
*	[man] ≤ [human]
*	handsome man] = $\sum([man], [handsome]) \leq_{\pi_1} [man]$
*	Paul walks] = [walk](p) : Prop
1	pecause
	[walk] : [human]→Prop and
	p : [handsome man] \leq_{-} [man] \leq [human]

Loe	rcive subtyping: adequacy etc.
∻ I	nadequacy of subsumptive subtyping
	Canonical objects
	 Canonicity: key for TTs with canonical objects
	 Subsumptive subtyping violates canonicity.
* A	Adequacy of coercive subtyping
	Coercive subtyping preserves canonicity & other properties.
	 Conservativity (Luo & Soloviev 2002; Xue, Luo & Adams 2011)
* F	listorical development and applications in CS
	 Formal presentation (Luo 1997/1999)
	 Implementations in proof assistants: Cog, Lego, Plastic, Matita

۷.	coercive subtyping in TT semantics
1.	Need for subtyping (earlier slides)
2.	Sense enumeration/selection via. overloading
3.	Coercion contexts and local coercions
4.	Dot-types and copredication
5.	Structured lexical entries as Σ-types
N	otes:
	 Focus on representation mechanisms, rather than NL semantic treatments.
	 However, linguistic examples, rather than formal details

2. Sense selection via overloading	
Sense enumeration (cf, Pustejovsky 1995 and others) Homonymy Automated selection	
 Existing treatments (eg, Asher et al via +-types) 	
✤ For example,	
1. John runs quickly. 2. John runs a bank.	
with homonymous meanings	
1. [run] ₁ : Human→Prop	
2. $[run]_2$: Human \rightarrow Institution \rightarrow Prop	
"run" is <u>overloaded</u> – how to disambiguate?	
ESSLLI 2011	34

Overloading via coercive subtyping	9
• Overloading can be represented by coerc	ions
Eg c_1 $[run]_1: Human \to Prop$	
$run: 1_{run}$	
c_2 $[run]_2 : Human \to Institution$	$on \rightarrow Prop$
Homonymous meanings can be represent	ted.
 Automated selection according to typings 	ş
Question: What if typings cannot disambiguate (eg, A solution: Local coercions	bank)?
ESSLLT 2011	35

3. Coercion contexts and local coercions
Coercion contexts
x:C,, A ≤ _c B, ⊢
Useful in representing context-sensitivity
 Eg, reference transfer
The ham sandwich shouts.
This can be interpreted in a context that contains, eg,
[sandwich] < [human]
that coerces sandwich into the person who has ordered a sandwich.
<i>Remark: "coherent contexts" needed, not just valid contexts.</i> (Formal details omitted.)
ESSLII 2011 36

	<u> </u>
 Local coercions (in terms/judgements) 	
<u>coercion</u> A ≤ _c B <u>in</u> t	
Useful in disambiguation	
 Eg, "bank" has different meanings in 	
(1) the bank of the river	
(2) the richest bank in the city	
 We might consider two coercions: 	
$c_1 : 1_{bank} \rightarrow Type c_1(bank) = [bank]_1$	
$c_2 : 1_{bank} \rightarrow Type c_2(bank) = [bank]_2$	
But this is incoherent!	
ESSLLI 2011	37

Solution: local coercions	
 Rather than two coercions for "bank" in the same context, (which is incoherent), we can use 	
<u>coercion</u> $1_{bank} \leq_{c1} Type in [(1)]$	
<u>coercion</u> 1 _{bank} ≤ _{c2} Type <u>in</u> [(2)]	
	+
ESSLLI 2011 38	

4. Dot-types and copredication	n
Dot-types in Pustejovsky's GL theory	
Example: PHY•INFO	
♦ PHY•INFO ≤ PHY and PHY•INFO ≤ INFO	
 Copredication 	
"John picked up and mastered the book,"	
[pick up] Human \rightarrow PHY \rightarrow Prop	
\leq Human \rightarrow PHY•INFO \rightarrow Prop	
\leq Human \rightarrow [book] \rightarrow Prop	
$[master]$: Human \rightarrow INFO \rightarrow Prop	
\leq Human \rightarrow PHY•INFO \rightarrow Prop	
\leq Human \rightarrow [book] \rightarrow Prop	
Remark: CNs as types in type-theoretical semar	ntics – so things work.

Modelling dot-types in type theory	
modelling dot-types in type theory	
♦ What is A•B?	
 Inadequate accounts (cf, (Asher 08)): 	
✤ Intersection type	
Product type	
Proposal (SALT20, 2010)	
 A•B as type of pairs that do not share components 	
 Both projections as coercions 	
Implementation	
 Being implemented in proof assistant Plastic by Xue. 	
ESSLLI 2011	40

Evampla	
*"heavy book"	
≤ Phy•Info→Prop	
≤ [book]→Prop	
⇔ So,	
[heavy book] = Σ ([book], [heavy])	
is well-formed!	
ECCUT 2011	12
ESSEL1 2011	4Z

Another example	
Privative adjectives (cf, material modifiers)	
Eg, "fake" in "fake gun"	
 A tentative proposal: use disjoint union types 	
☆Eg, [gun]* = [real gun] + [fake gun]	
The injection operators inl/inr as coercions:	
inl/inr : [real gun]/[fake gun] \rightarrow [gun]*	
* "A fake gun is not a gun."	
In most of the cases, we do not want this!	
Local coercions! (In the situations we do, use + and the associated coercions.)	e
	2

5. Structured lexical entries
Proposal (1998, 2011): Basic CNs represented by Σ-types, eg,
$\llbracket book \rrbracket = \sum \left\{ \begin{array}{ll} Arg & : \ \mathrm{PHY} \bullet INFO \\ Qualia & : \ \sum \left\{ \begin{array}{ll} Formal & : \ Hold(p_1(Arg), p_2(Arg)) \\ Telic & : \ R(Arg) \\ Agent & : \ \exists h:Human.W(h, Arg) \end{array} \right\} \end{array} \right\}$
*Remarks
 Should lexicon be complex/structured/generative? Non-CN lexical entries: a general structure (A)?
 Cf, Cooper's work on record types (2005, 2007)
ESSLLI 2011 44

· aca	
• 50	How well MTTs capture, eq. type presuppositions?
- ×	How far may a type-theoretical semantics go?
	Proof-theoretic semantics for linguistic interpretations?
• In	plementation for linguistic inference
* 111	Extending mathematical vernacular
*	Extending Indulenducal verhacular
*	Exploiting the existing 11-based proof technology

* * * (Fc	N. Asher. <i>Lexical Meaning in Context: A Web of Words.</i> Cambridge University Press. 2011. Z. Luo. Coercive subtyping. J. of Logic and Computation, 9(1). 1999. Z. Luo. Type-theoretical semantics with coercive subtyping. SALT20. 2010. Z. Luo. Contextual analysis of word meanings in type-theoretical semantics. LACL 2011, LNAI 6736. 2011. A. Ranta. <i>Type-Theoretical Grammar.</i> Oxford University Press. 1994.
--------------------	---