
1

Type-Theoretical Lexical Semantics

Nicholas Asher and Zhaohui Luo

(Lectures 4/5 on Lexical Semantics at ESSLLI 2011)

Overview

�Formal semantics (lexical semantics, in particular)

�Typing – formal calculi with typing

� How to capture linguistic data?

� How to capture “type presuppositions” with typing?

� What is (is not) typing/subtyping?

�Which typing formalisms?

� FOL with types

� HOL as in Church’s Simple Type Theory (Montague)

� TCL (Asher 2011)

� Other formalisms?

ESSLLI 2011 2

Proposal

�Type-theoretic semantics

� Formal semantics in Modern Type Theories

� In particular, lexical semantics in MTTs

� Why are MTTs useful?

Remarks:

(1) Focussing on providing formal mechanisms for formal
(lexical) semantics, not on empirical issues.

(2) Another way to look at this: Formal realisation or
implementation of the categorical ideas in earlier lectures.
(Using seen examples etc.)

ESSLLI 2011 3

These lectures

�Basics of MTTs and type-theoretical semantics

� Lexical semantics in MTTs with coercive subtyping

Remark: Coercive Subtyping/coercions are different from (but
related to) and developed independently upon the notion of
coercion in linguistics.

�Revisiting the linguistic issues in MTTs

� “Type presuppositions” via typing

� Copredication

� Coercions (in linguistics)

� Other issues (eg, sense enumeration/selection)

ESSLLI 2011 4

I. Typing and Modern Type Theories

�The typing relation (or judgement)

a : A

Usually specified by means of a proof system.

What can be “A” in “a : A”?

� Types: eg,

Nat, List(Nat), Table, Man, Man→Prop, Phy×Info, Phy•Info

� Propositions (“propositions-as-types”): eg,

∀x:[man]. [handsome](x) → ¬[ugly](x)

� Advanced types: dependent types, type universes (see later)

ESSLLI 2011 5

�What typing is not:

� “a : A” is not a logical formula.
� 7 : Nat

� Different from a logical formula is_nat(7)

� Eg, Typing judgements (in intensional TTs) is decidable while the

truth/provability of a formula (in FOL or a stronger calculus) is not.

� “a : A” is different from the set-theoretic membership
relation “a∈S” (the latter is a logical formula in FOL).

�What typing is related to:
� Meaningfulness (ill-typed � meaningless)

� Semantic/category errors (eg, “A table talks.”)

� Type presuppositions (Asher 2011)

ESSLLI 2011 6

2

Types v.s. Sets

�Types may be thought of as “manageable sets”.

�Some typical differences
� Typing is decidable: “a:A” is decidable (in intensional TTs),

while the set membership “a∈S” is not.

� Type theories can have an embedded/consistent logic, by
propositions-as-types principle, while set theory is different.

� There are union/intersection sets S∪S’/S∩S’, but union or
intersection types would usually make the type theory
undecidable or logically inconsistent.

� There is set inclusion S⊆S’, but subtyping A≤B is much more
restricted (and we do need a powerful subtyping mechanism
for lexical semantics.)

ESSLLI 2011 7

Simple v.s. Modern Type Theories

�Church’s simple type theory (Montague semantics)

� Base types (“single-sorted”): e and t

� Composite types: e→t, (e→t)→t, …

� Formulas in HOL (eg, membership of sets)
� Eg, s : e→t is a set of entities (a∈s iff s(a))

�Modern type theories (eg, Martin-Löf’s type theory)

� Many types of entities – “many-sorted”
� Table, Man, Human, Phy, … are all types (of certain entities).

� Different MTTs have different embedded logics
� Martin-Löf’s type theory: first-order logic (but not the standard one)

� Impredicative UTT: higher-order logic (standard one)

ESSLLI 2011 8

June 2009 9

MTTs (1) – canonical objects

Examples:

� A = N, a = 3+4, v = 7.

� A = N×N, a = (λx:N.〈x,x+1〉)(2), v = 〈2,3〉.

June 2009 10

MTTs (2) – Embedded Logic

Propositions-as-types

formula type example

A ⊃ B A → B If …, then …

∀x:A.B(x) ∏x:A.B(x) Every man is handsome.

Prop – totality of logical propositions

� Impredicative type theories such as UTT [Luo 94]

(as in t in Montague grammar)

� Example – predicates to interpret adjectives/verbs:

handsome : Man→Prop

walk : Man→Prop

June 2009 11

MTTs (3): dependent/inductive types

∑-types – an example
� Types of dependent pairs (“inductive”: the only objects are

pairs)

� Intuitively, for A : Type and B : A→Type,
∑(A,B) = { 〈x,y〉 | x :A & y : B(x) }

(“dependent”: type B(x) depends on object x.)

� Example (when B is an A-indexed proposition):
∑(Man, handsome)

� ∑-types could be used (as in Martin-Löf’s type theory) as
existential formulas – but this is a non-standard strong
quantifier.

Other inductive types
� finite types, nats, lists, vectors, trees, ordinals, …

Types in MTTs: summary

� Propositional types
� P⊃Q, ∀x:A.P(x), …

� Inductive types
� Nat, AxB, List(A), …

� Dependent types
� Σx:A.B(x) (intuitively, { (a,b) | a : A & b : B(a) })

� Πx:A.B(x) (intuitively, { f : A→∪
a∈A

B(a) | a : A & b : B(a) })

� Universes
� A universe is a type of (some other) types

� Eg, CN – a universe of the types that interpret CNs (see later
for an example of using this)

� Other types: Phy, Table, …, A•B, …

ESSLLI 2011 12

3

MTTs: example TTs

�Predicative type theories

� Martin-Löf’s type theory

� Extensional and intensional equalities in TTs

� Impredicative type theories

� Prop
� Impredicative universe of logical propositions (cf, t in simple TT)

� Internal totality (a type, and can hence form types, eg Table→Prop,

Man →Prop, ∀X:Prop.X,

� F/Fω (Girard), CC (Coquand & Huet)

� ECC/UTT (Luo, implemented in Lego/Plastic)

� pCIC (implemented in Coq/Matita)

ESSLLI 2011 13 June 2009 14

MTTs: Technology and Applications (in CS)

Proof technology based on type theories

� Proof assistants – ALF/Agda, Coq, Lego, NuPRL, Plastic, …

Applications

� Formalisation of mathematics (eg, 4-colour Theorem in Coq)

� Program verification (eg, security protocols)

� Dependently-typed programming (Cayenne, DML, Epigram)

Here: type-theoretical lexical semantics

II. Type-Theoretical Semantics

�Type-theoretical semantics

� Formal semantics in the Montagovian style

� But, in modern type theories (not in simple TT)

Remark: proof-theoretic v.s. model-theoretic semantics of

logical systems

A key difference from the Montague semantics:

� CNs interpreted as types (not predicates of type e→t)

�Some work on TT semantics

� Ranta 1994: basics of TT semantics

� Luo 1998/2010/2011: coercive subtyping in TT semantics

ESSLLI 2011 15 ESSLLI 2011 16

Montague Semantics: examples

Sentences (as propositions)

� [John walks], [A man walks] : t

Common nouns (as functional subsets of entities)

� man : CN

� [man] : e → t

Verbs (as subsets of entities)

� walk : IV

� [walk] : e → t

� [John walks] = [walk](j), if j = [John] : e.

� [A man walks] = ∃m:e. [man](m) & [walk](m)

Adjectives (as functions from subsets to subsets)

� handsome : CN/CN

� [handsome] : (e→t) → (e→t)

� [handsome man] = [handsome]([man]) : e → t

Type-theoretic semantics (1): sentences & CNs

�Sentences (as propositions)

� [John walks] : Prop

� [A man walks] : Prop

�Common nouns are interpreted as types

� [man], [book], [table] : Type (fine-grained)

� Remark: not as sets of type e→t as in Montague semantics

�Other semantics types

� Eg, Phy/Info – the type of physical/informational entities

ESSLLI 2011 17

Type-theoretical semantics (2): verbs

� Verbs are interpreted as predicates over “meaningful” domains

� [shout] : [human]→Prop

� Note: “A table shouts” is meaningless (a “category error”) in the sense that
∃t:[table]. [shout](t) is ill-typed (not “false”, as in Montague’s semantics).

� We need:

� [John shouts] = [shout](j) : Prop, for j : [man]

� [A man shouts] = ∃m:[man]. [shout](m) : Prop

� But these are ill-typed! ([man] is not [human])

� Subtyping

� [man] ≤ [human], the above become well-typed.

� Subtyping is crucial for type-theoretical semantics! (Things only work in the

presence of subtyping.)

ESSLLI 2011 18

4

TT semantics (3): adjectives & modified CNs

� Adjectives, like verbs, are interpreted as predicates over
“meaningful” domains

� [handsome] : [man]→Prop

� Note: “A table is handsome” is meaningless (a “category error”) in
the sense that ∃t:[table].[handsome](t) is ill-typed (not “false”, as
in Montague’s semantics).

� Modified CNs

� ∑-types for modified CNs

� [handsome man] = ∑([man], [handsome])

� Subtyping is needed as well (A handsome man is a man …)

� More on subtyping later

ESSLLI 2011 19

Predicate-modifying adverbs: an advanced example

� Advanced features in MTTs are useful

� Semantics to adverbs: example of using type universes

� Montague semantics:

� [quickly] : (e→t)→(e→t)

� [John walked quickly] = [quickly]([walk], j) : t

� How in MTT?

� Problem: We have many types that interpret CNs (Table, Man, Animated,

…), not a single e.

� Solution:

� Introduce universe CN of types that interpret CNs

� [quickly] : ∏A:CN. (A→Prop)→(A→Prop)

� [John walked quickly] = [quickly]([animated], [walk], j) : Prop

� Remark: the above type of [quickly] is both polymorphic and dependent.

ESSLLI 2011 20

Remark on anaphora analysis

�Various treatments of “dynamics”

� DRTs, dynamic logic, …

� MTTs provide a suitable (alternative) mechanism.

�Donkey sentences

� Eg, “Every farmer who owns a donkey beats it.”

� Montague semantics

∀x. farmer(x) & [∃y. donkey(y) & own(x,y)]
⇒ beat(x,?y)

� Modern TTs (Π for ∀ and ∑ for ∃):

Πx:FarmerΠz:[∑y:Donkey. own(x,y)] beat(x,π1(z))

�But, this is only an interesting point …

ESSLLI 2011 21

Type-theoretical lexical semantics: why/how?

�MTTs provide a promising formalism for

� Formal semantics (basics as above)

� Lexical semantics, in particular (next)

�Many promising mechanisms in MTTs to represent

� Sense enumeration/selection model

� Dot-types and copredication

� Type presuppositions

� Coercions (in linguistics)

� and … (other difficult cases)

�How?

� Coercive subtyping etc

ESSLLI 2011 22

III. Coercive Subtyping

�Need for subtyping

� Some subtypes of entities: Phy/Info ≤ e

� More crucially needed for TT semantics

�Many-sorted (CNs & modified CNs are interpreted as types)

�Representation of relationships between these types is needed
in TT semantics

�Coercive subtyping

� Adequate (and powerful) framework for MTTs
� Traditional “subsumptive subtyping” is inadequate for MTTs

� Coercive subtyping are very useful in lexical semantics.

ESSLLI 2011 23

Subtyping problem in the Montagovian setting

� Problematic example (in Montague semantics)

� [heavy] : (Phy→t)→(Phy→t)

� [book] : Phy•Info→t

� [heavy book] = [heavy]([book]) ?

� In order for the above to be well-typed, we need

Phy•Info→t ≤ Phy→t

By contravariance, we need

Phy ≤ Phy•Info

But, this is not the case (the opposite is)!

� In TT sem, because CNs are interpreted as types, things work
as intended (see later).

ESSLLI 2011 24

5

Subsumptive subtyping: traditional notion

�“Subsumptive subtyping”:
a : A A ≤ B

===========================

a : B

�Fundamental principle of subtyping

If A≤B and, wherever a term of type B is required,
we can use a term of type A instead.

For example, the subsumption rule realises this.

April 2011 25

Question:

Is subsumptive subtyping adequate for

type theories with canonical objects?

Answer:

No (canonicity fails) and then what?

April 2011 26

Canonicity

�Definition

Any closed object of an inductive type is
computationally equal to a canonical object of
that type.

�This is a basis of TTs with canonical objects.

� This is why the elimination rule is adequate.

� Eg, Elimination rule for List(T):

“For any family C, if C is inhabited for all canonical T-lists
nil(T) and cons(T,a,l), then so is C for all T-lists.”

April 2011 27

�Canonicity is lost in subsumptive subtyping.

� Eg,

� nil(A) : List(B), by subsumption;

� But nil(A) ≠ any canonical B-list nil(B) or
cons(B,b,l).

� The elim rule for List(B) is inadequate: it does not
cover nil(A) … …

April 2011 28

Coercive subtyping: basic idea

�A≤B if there is a coercion c from A to B:

Eg. Even ≤ Nat; Man ≤ Human; ∑(Man, handsome) ≤ Man; …

�Subtyping as abbreviations:

a : A ≤c B

� “a” can be regarded as an object of type B

� CB[a] = CB[c(a)], ie, “a” stands for “c(a)”

ESSLLI 2011 29 ESSLLI 2011 30

6

Subtyping: basic need in TT semantics

�What about, eg,

� “A man is a human.”

� “A handsome man is a man” ?

� “Paul walks”, with p=[Paul] : [handsome man]?

Solution: coercive subtyping

� [man] ≤ [human]

� [handsome man] = ∑([man], [handsome]) ≤π1
[man]

� [Paul walks] = [walk](p) : Prop

because

[walk] : [human]→Prop and

p : [handsome man] ≤π1
[man] ≤ [human]

ESSLLI 2011 31

Coercive subtyping: adequacy etc.

� Inadequacy of subsumptive subtyping

� Canonical objects

� Canonicity: key for TTs with canonical objects

� Subsumptive subtyping violates canonicity.

�Adequacy of coercive subtyping

� Coercive subtyping preserves canonicity & other properties.

� Conservativity (Luo & Soloviev 2002; Xue, Luo & Adams 2011)

�Historical development and applications in CS

� Formal presentation (Luo 1997/1999)

� Implementations in proof assistants: Coq, Lego, Plastic, Matita

ESSLLI 2011 32

IV. Coercive subtyping in TT semantics

1. Need for subtyping (earlier slides)

2. Sense enumeration/selection via. overloading

3. Coercion contexts and local coercions

4. Dot-types and copredication

5. Structured lexical entries as Σ-types

Notes:

� Focus on representation mechanisms, rather than NL
semantic treatments.

� However, linguistic examples, rather than formal details.

ESSLLI 2011 33

2. Sense selection via overloading

�Sense enumeration (cf, Pustejovsky 1995 and others)

� Homonymy

� Automated selection

� Existing treatments (eg, Asher et al via +-types)

�For example,

1. John runs quickly.

2. John runs a bank.

with homonymous meanings

1. [run]1 : Human→Prop

2. [run]2 : Human→Institution→Prop

“run” is overloaded – how to disambiguate?

ESSLLI 2011 34

Overloading via coercive subtyping

�Overloading can be represented by coercions

Eg,

�Homonymous meanings can be represented.

�Automated selection according to typings

Question: What if typings cannot disambiguate (eg, bank)?

A solution: Local coercions

ESSLLI 2011 35

3. Coercion contexts and local coercions

�Coercion contexts

x:C, …, A ≤c B, … ├ … …
�Useful in representing context-sensitivity

� Eg, reference transfer

The ham sandwich shouts.

This can be interpreted in a context that contains, eg,

[sandwich] < [human]

that coerces sandwich into the person who has ordered a
sandwich.

Remark: “coherent contexts” needed, not just valid contexts.

(Formal details omitted.)

ESSLLI 2011 36

7

� Local coercions (in terms/judgements)

coercion A ≤c B in t

�Useful in disambiguation

� Eg, “bank” has different meanings in

(1) the bank of the river

(2) the richest bank in the city

� We might consider two coercions:

c1 : 1bank→Type c1(bank) = [bank]1

c2 : 1bank→Type c2(bank) = [bank]2

But this is incoherent!

ESSLLI 2011 37

�Solution: local coercions

� Rather than two coercions for “bank” in the same context,
(which is incoherent), we can use

coercion 1bank ≤c1 Type in [(1)]

coercion 1bank ≤c2 Type in [(2)]

ESSLLI 2011 38

4. Dot-types and copredication

� Dot-types in Pustejovsky’s GL theory

� Example: PHY•INFO

� PHY•INFO ≤ PHY and PHY•INFO ≤ INFO

� Copredication

“John picked up and mastered the book.”〔pick up〕: Human → PHY → Prop

≤ Human → PHY•INFO → Prop

≤ Human →〔book〕→ Prop〔master〕: Human → INFO → Prop

≤ Human → PHY•INFO → Prop

≤ Human →〔book〕→ Prop

Remark: CNs as types in type-theoretical semantics – so things work.

ESSLLI 2011 39

Modelling dot-types in type theory

�What is A•B?

� Inadequate accounts (cf, (Asher 08)):

� Intersection type

�Product type

�Proposal (SALT20, 2010)

� A•B as type of pairs that do not share components

� Both projections as coercions

� Implementation

� Being implemented in proof assistant Plastic by Xue.

ESSLLI 2011 40

ESSLLI 2011 41

Example

�“heavy book”

� [heavy] : Phy→Prop

≤ Phy•Info→Prop

≤ [book]→Prop

� So,

[heavy book] = Σ([book], [heavy])

is well-formed!

ESSLLI 2011 42

8

Another example

�Privative adjectives (cf, material modifiers)

� Eg, “fake” in “fake gun”

� A tentative proposal: use disjoint union types

�Eg, [gun]* = [real gun] + [fake gun]

�The injection operators inl/inr as coercions:

inl/inr : [real gun]/[fake gun] → [gun]*

�“A fake gun is not a gun.”

� In most of the cases, we do not want this!

�Local coercions! (In the situations we do, use + and the
associated coercions.)

ESSLLI 2011 43

5. Structured lexical entries

�Proposal (1998, 2011):

Basic CNs represented by Σ-types, eg,

�Remarks
� Should lexicon be complex/structured/generative?

� Non-CN lexical entries: a general structure (A, ϕ)?

� Cf, Cooper’s work on record types (2005, 2007)

ESSLLI 2011 44

Future work

�Some interesting topics

� How well MTTs capture, eg, type presuppositions?

� How far may a type-theoretical semantics go?

� Proof-theoretic semantics for linguistic interpretations?

� Implementation for linguistic inference

� Extending mathematical vernacular

� Exploiting the existing TT-based proof technology

ESSLLI 2011 45

References (for Lectures 4/5)

� N. Asher. Lexical Meaning in Context: A Web of Words. Cambridge
University Press. 2011.

� Z. Luo. Coercive subtyping. J. of Logic and Computation, 9(1). 1999.

� Z. Luo. Type-theoretical semantics with coercive subtyping. SALT20.
2010.

� Z. Luo. Contextual analysis of word meanings in type-theoretical
semantics. LACL 2011, LNAI 6736. 2011.

� A. Ranta. Type-Theoretical Grammar. Oxford University Press. 1994.

(For further references, see the references of the associated notes.)

ESSLLI 2011 46

