LECS

Laboratory for Foundations of Computer Science

Department of Computer Science - University of Edinburgh

A Problem of Adequacy:
conservativity of calculus of constructions
over higher-order logic

:Aoenbapy Jo wsjqold

LFCS Report Series

by

Zhaohui Luo

ECS-LFCS-90-121

LFCS

Department of Computer Science
University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ

October 1990

Copyright © 1990, LFCS

A Problem of Adequacy:

conservativity of calculus of constructions

over higher-order logic

Zhaohui Luo
Department of Computer Science
University of Edinburgh
The King’s Buildings
Edinburgh EH9 3JZ, U.K.

August 3, 1990

*A draft of the paper was distributed on the Jumelage Meeting on the Typed Lambda Calculi held
at Bari, Ttaly, in May of 1990.

Contents

1 A Problem of Adequacy

1.1 Abstract reasoning e e .

2 Conservativity of calculus of constructions over higher-order logic
2.1 A formulae-as-types formulation of higher-order logic
2.1.1 Church’s simple typetheory
2.1.2 HOL: a formulae-as-types formulation of higher-order logic
2.2 Conservativity of CCtover HOL

2.2.1 the calculus of constructions with type constants: CC*
222 comservativity L L e,

3 Abstract Reasoning and Discussions
3.1 Predicativity vs. impredicativity
3.2 Predicative universes and abstract reasoning
3.2.1 predicative universes oo it e e e

3.2.2 formalization and reasoning of abstract mathematics

3.3 Extensionality: a pragmatic example?

10
12
12
14

Abstract

This paper discusses a problem of adequacy in formalization of mathematical
notions in type theories. Based on a point of view that there should be a clear
distinction between logical formulae and data types, we believe that, in an im-
predicative type theory like the calculus of constructions, arbitrary sets should be
formalized as non-propositional types rather than propositional types which may be
formed impredicatively.

‘We show that the calculus of constructions with type constants is a conservative
extension of the intuitionistic higher-order logic, provided that the object set of the
higher-order logic is interpreted as a non-propositional type constant. This result is
proved by giving a formulae-as-types formulation of higher-order logic and using a
projection technique developed by Berardi and Mohring. Comparing with the non-
conservativity result of the (pure) calculus of constructions over higher-order logic
[Ber89]{Geu89], this provides an evidence to support the above view of adequate
formalization and gives a better understanding of the formulae-as-types principle
for higher-order logic.

We briefly discuss how abstract mathematics (e.g., abstract algebras) can be
adeciua.tely formalized in an impredicative type theory with predicative universes to

support abstract reasoning.

1 A Problem of Adequacy

Various type theories have been developed and used in formalization of mathematical
notions with applications to, for example, theorem-proving and program development.
When using a type theory in applications, one must first give an adequate (or correct)
formalization of the notions in the concerned problem; this is in fact the most important
step. To formalize various mathematical notions adequately, it is essentially important
to have a correct understanding of the type theory as well as the notions to be formalized.

In this paper, we discuss an adequacy problem in formalization of mathematical
notions in (impredicative) type theories like the calculus of constructions [CH88]. More

specifically, the question we intend to ask and answer is:

e What is the (or an) adequate way to formalize the notion of arbitrary set in an

impredicative type theory?

To understand how an arbitrary set should be formalized is important in formalization of
abstract mathematical notions like abstract algebras and notions in category theory. The
formalization of these abstract notions is useful and important to do abstract reasoning
in the development of proofs and programs. (See section 1.1 and section 3.2 for further
explanations.)

In a type theory, a type is usually viewed intuitively as an entity representing a set; it
may either stand for an ordinary set (data type) or the set of proofs of a logical formula
by the Curry-Howard principle of formulae-as-types. It seems to be important, in both
practical applications and theoretical research, to have a better understanding of these
two kinds of types and their differences. In particular, when considering an impredicative
type theory like the calculus of constructions, we believe that it is important and useful
to have a clear distinction between a (small) type which represents the set of proofs of a
logical formula and a (large) type which represents an ordinary set or data type.

In the calculus of constructions, a logical formula of the embedded higher-order logic
is represented by a small type (called a proposition) which may be formed impredica-
tively. For example, the logical constant false can be represented by the proposition
Vz:Prop.z, where Prop is the type of all propositions. Such small types with an im-
predicative formation rule are so special that, we believe, they should not be used to
express arbitrary sets. In other words, trying to answer the above question of adequate

formalization, we believe that

e arbitrary sets should be formalized as non-propositional (predicative, large) types

rather than propositional (impredicative, small) types.

4

A model-theoretic explanation of the above idea of adequate formalization was discussed
in [Luo89a|, where it is shown, by giving a realizability model of an extended calculus of
constructions with predicative universes, that predicative (large) types can be understood
as arbitrary sets while it seems that the impredicative (small) types can not. Girard’s
paradox has also given us a hint on this; it shows that, roughly speaking, a type system
with two impredicative levels is logically inconsistent (see [Coq86]).

In this paper, we shall discuss another evidence to support the above point of view
of adequate formalization, by considering the conservativity problem of the calculus
of constructions over the higher-order (predicate) logic. We shall show, by giving a
formulae-as-types formulation of higher-order logic and using a projection technique
developed by Berardi [Ber90] and Mohring [Moh89], that

e the calculus of constructions with type constants (CC*) is a conservative extension
of the higher-order logic (HOL), provided that the object set of HOL is interpreted

as a non-propositional type constant in CC™.

As proved by Berardi [Ber89] and Geuvers [Geu89], an interpretation which interprets the
object set of higher-order logic as a propositional constant in the calculus of constructions
will give a non-conservativity result. It is the difference of the interpretations of the object
set as a non-propositional type (in our case) and as a proposition (in the case of Berardi
and Geuvers) that results in the two completely different results about conservativity.
These results conform with the conjecture in [Luo89a,90] that interpreting the object
set of the higher-order logic as a small propositional type will not give a conservative
extension result and interpreting it as a non-propositional type will.

Since the object set in a logic stands for an arbitrary set, these results about conser-
vativity provide an evidence of the above view of adequate formalization on the one hand,
and give a better understanding of the formulae-as-types principle for higher-order logic
on the other. Such an understanding is also useful in applications where impredicative
type theories are used to formalize program development or mathematics.

Based on the above point of view of adequate formalization, we shall briefly discuss
how abstract mathematics (e.g., abstract algebras) may be adequately formalized in an
impredicative type theory with predicative universes such as the extended calculus of

constructions [Luo89a,90], to support abstract reasoning.

1.1 Abstract reasoning

We give a very brief explanation of the motivation and the need to formalize abstract

mathematics and, in particular, the notion of arbitrary set. Formalizing abstract math-

5

ematics like abstract algebra and category theory is an interesting application area in
computer-assisted reasoning. However, what we want to emphasize here is another in-
teresting aspect of this, from the point of view of computer scientists, that is, the need
for abstract reasoning.

Computer scientists have a desire for abstraction in order to achieve clarity and
efficiency. Abstract reasoning is such an approach to theorem proving and verification
of proof obligations in rigorous program development. The basic idea is that, instead
of reproving a theorem (program property) for many concrete theories (programs), one
can prove an abstract theorem in an abstract theory and then simply instantiates the
abstract proofs as concrete ones for free. For example, we can consider an abstract
theory of groups and prove theorems about groups; then we can instantiate the proofs
for different group structures (say a concrete theory for integers).

Such an abstract reasoning has been (informally) adopted by mathematicians and
is analogous to the notion of parameterization in modular programming. It is desirable
and would not only save a lot of efforts from repeated proofs but also lead to a clearer
structured approach to reasoning. A type theory can provide such facilities on the condi-
tion that it can be used to formalize abstract theories (e.g., that for groups) adequately.
This requires an adequate formalization of the notion of arbitrary set (e.g., the carrier
set of an arbitrary group). See [Luo89b,90] for more discussions on abstract reasoning,
where an approach to structured abstract reasoning is studied as an application of the
extended calculus of constructions. What we shall show below, through discussing the
conservativity problem, is that arbitrary sets should be formalized as predicative large

types instead of impredicative small types.

2 Conservativity of calculus of constructions over higher-

order logic

The problem of conservativity, that is, whether a logical system is a conservative ex-
tension of another, has been an important research topic in logic. As well-known, by
Curry-Howard principle of formulae-as-types, various typed A-calculi can be viewed as
logical systems (see [Bar89] for a recent account of this for various type systems us-
ing the notion of Generalized Type Systems). When one adds new type constructors
to formulate a richer type theory, a natural question to ask is whether the enrichment
fundamentally strengthens the logical power or not; in other words, one hopes to know

whether the enriched theory is a conservative extension of the original system, which has

been investigated before.
A typical and interesting instance of this problem is Coquand-Huet’s calculus of
constructions [CH88], which incorporates dependent types and was formulated as a type

theory corresponding to higher-order predicate logic.
o Is the calculus of constructions a conservative extension of higher-order logic?

The intuition seems to suggest strongly that the answer be yes.

However, there is a subtle problem to be answered; that is, how should we interpret
the object set of higher-order logic in the calculus of constructions? In the (pure) calculus
of constructions, the only natural way to interpret the object type is to assume it to be a
proposition (small type of type Prop), since one can not postulate new non-propositional
type variable (or constant) in the system. Based on our point of view of adequate
formalization, such an interpretation seems inadequate since a proposition should not be
used to represent an arbitrary set, which is what the object set of a logic does stand for.

In [Luo89al, the author gave the following conjectures based on the above considerations:

1. if the object set is interpreted as a proposition (of type Prop), the interpretation

will not give a conservative extension of the higher-order logic;

2. ifthe object set is interpreted as a non-propositional type and the others interpreted

in the obvious way, then the interpretation will be conservative.

This conjecture was based on the semantic understanding of the theory based on the real-
izability model [Luo89a]. The intuition behind the non-conservativity conjecture 1 is that
too much computational power is embedded in the impredicative level of propositions.
There should be a clear distinction between logical formulas (propositions) and sets (data
types). Set-theoretically, an arbitrary non-propositional type can be understood as an
arbitrary set, but a proposition can not. Interpreting object sets as non-propositional
types (and formulas as propositions) conforms with such a distinction; on the other hand,
interpreting object sets as propositions confuses such a difference and would cause prob-
lems. Recently, Berardi [Ber89] and Geuvers [Geu89] proved that the interpetation of the
object set as a proposition in the calculus of constructions is non-conservative; in other
words, viewing an arbifrary proposition in the calculus of constructions as representing
the object set, one can prove some unexpected logical formulas that can not be proved
in higher-order logic. This justifies our non-conservativity conjecture 1.

The above problem is caused by the interpretation which identifies sets with logical

formulas. Arbitrary sets should be formalized as (large) predicative types rather than

propositions (small types). Along such a line of consideration, it is natural to interpret
the object set of higher-order logic as a non-propositional type. We shall consider the
calculus of constructions with type constants and show that it is a conservative extension
of higher-order logic, where the object set is interpreted as a non-propositional type
constant. This conservativity result gives a positive answer to the above conservativity
conjecture 2 and, together with the non-conservativity result by Berardi and Guevers
mentioned above, gives a better understanding of the principle of formulae-as-types for
higher-order logic and provides another evidence which supports our idea of adequate

formalization.

2.1 A formulae-as-types formulation of higher-order logic

The conservativity result and its proof will be presented as follows: we first, in this
subsection, give a faithful formulae-as-types formulation HOL of higher-order logic; then
we present the calculus of constructions with type constants (CC*), of which HOL is a
subsystem; finally, the proof of conservativity of CC* over HOL is given.

In the literature, there exist several different formulations of higher-order logic (see
[Chu40][Tak75][Sch77][LS86] among others). It is not our task here to compare their
differences. We shall take Church’s simple type theory [Chu40] as the system for higher-
order logic and give a formulae-as-types formulation for it. However, different from the
original classical extensional system of Church, what is presented below is the corre-

sponding intuitionistic intensional system.

Notation The following notational conventions will be used in this paper.

1. substitution: [N/z]M is used to express the substitution of the free occurrences
of variable z in M by N, where possible a-conversion is done to avoid variable

clashes.

2. syntactical identity: We write M = N to mean that M and N are syntactically

equal up to possible changes of bound variables (under a-conversion).

3. set of free variables: We use F'V(_) to denote the set of free variables in _ . a

2.1.1 Church’s simple type theory

Putting it simply, Church’s simple type theory is the simply typed A-calculus with type
constants Prop (the type of logical formulas) and Obj (the type of individuals or objects),

and endowed with a notion of logical formula and a notion of provability.

8

Terms: The basic expressions, called terms, are inductively defined as follows:

1. Constants Prop, Obj and variables (z, ...) are terms;

2. If M and N are terms, so are the following;:
M — N, \e:M.N, MN, M D N, Ye:M.N

The conversion relation (=) between terms is the (-conversion, induced by the
contraction scheme (Az:A.M)N ~+ [N/z]M.

Types: Types are formed as follows:

1. Prop and Obj are types;
2. If A and B are types, sois A — B.

Contexts: A (valid) context is a sequence of the form z:4,,...,2,:4,, where A; are

types and z; are distinct variables.

Typing rules: A typing judgement is of the form ' - M : A, where I' is a (valid)
context, M is a term and A is a type. I' - M : A means that ‘M is an object of
type A in context I'’. Derivable typing judgements are given by the following rules:

F,z:A+-M:B 'FM:A—-B TFN:A
Iy,z:A, T, Fz: A '-Az:AM:A— B 'MN:B

Logical formulas: Logical formulas are terms of type Prop (relative to contexts) in-
troduced by the following rules:

FC+P:Prop THQ: Prop I,z:AF P: Prop
I'-P>Q:Prop 'Va2:A.P: Prop

Provability: Whether a logical formula P is a logical consequence of (or is provable
from) a sequence of hypothetical formulas H (relative to a context T') is given by

the following rules:

1. If P € H, then P is a logical consequence of H.

2. If Q is a logical consequence of H, P, then P D @ is a logical consequence of
H.

3. If P is a logical consequence of H, A is a type and z ¢ FV(H), then Vz:A.P

is a logical consequence of H.

4. If Va:A.P is alogical consequence of H and N is of type A (in I'), then [N/z]P

is a logical consequence of H.

5. If P is a logical consequence of H and @) ~ P, then @ is a logical consequence
of H.

This completes the presentation of (the intuitionistic intensional version of) Church’s
simple type theory. Church’s type theory is slightly different from some other presen-
tations of higher-order logic (c.f., [Tak75][Sch77]). In particular, there are higher-order
functions of types like (Obj — Obj) — (Obj — Obj) or (Obj — Prop) — Obj.

2.1.2 HOL: a formulae-as-types formulation of higher-order logic

Now, we give a formulae-as-types formulation of higher-order logic, HOL; it is faithful
with respect to Church’s simple type theory as described above.

The idea of formulae-as-types is that one views a logical formula as the type of its
proofs and the provability of a formula corresponds to the inhabitance of its correspond-
ing type. We add to Church’s simple type theory a type formation operator Prf and,
for every logical formula P, Prf(P) is a type, the type of the proofs of P. The proofs
of logical formulas are also explicitly expressible as terms. The provability of a logical
formula P corresponds to the inhabitance of type Prf(P). This formulation gives us a
clear understanding of the Curry-Howard principle of formulae-as-types for higher-order
logic.

The terms of HOL are defined the same as that of Church’s simple type theory

except that we add the following clause:
¢ If M and N are terms, so are Prf(M), Az:M.N, M e N.

The conversion relation (~) between terms is the 3-conversion, induced by (Az:A.M)N ~g
[N/z]M and (Az:A.M)e N ~ 4 [N/z]M.

A context in HOL is a sequence of the form z;:4,,...,%,:4,,, where z; and A; are
variable and term, respectively. We use () to denote the empty context.

There are three judgement forms:

o I' valid: T is a valid context;
e I' - A type: Ais a type in context T

o '-M:A: M is of type A in context T.
The inference rules of HOL for inferring judgements are the following;:

Context Validity:

'+ Atype z ¢ FV(T)

(€1) I',z:A valid

(€2)

() valid

10

Type Formation:

. T valid T valid
(07) I'l- Obj type (Prop) '+ Prop type
' Atype Tt B type A,B # Pri(...) '+ P: Prop o
(=) I' A — B type (Prf) I'+ Prf(P) type

Basic Typing;:

Ty,z:A,T, valid

(var) T,z:A, T, Fz: A
3 I'z:A-M:B A,B#Prf(...) '+M:A—-B T'FN:A
() TFiz:AM:A— B (app) THMN:B

Propositions:

Ck+P:Prop THQ: Prop T,z:AF P: Prop A#Prf(.)

() I'FP>Q:Prop) I'-Vz:A.P: Prop
Proofs:
A T,z:Prf(P) - M : Prf(Q) Apps) I'-M:Prf(PD>Q) TN :Prf(P)
M) T AP (P) M P (P 5 Q) PP> TFMeN :Pri(Q)

(Ay) [,x2:AF- M :Prf(P) A#Prf(..) (4 I'FM:Prf(Ve:A.P) TEFN: A
v T F Az:A.M : Pri(Va:A.P) PPY) T F M e NV : Pri((V/a]P)

Type Conversion:

'FrM:ATFBtype A~B
'-M:B

(conv)

We call a type of the form Prf(...) a small type (or propositional type). A type A is
T-inhabited if and only if ' F M : A for some term M. A term M is well-typed if and
onlyif 'FM:Aor '+ M type for some I' and A.

Remarks Some remarks about the above formulae-as-types formulation follow.

1. Note that, although proofs become explicit in the theory, there is no arrow types
which contain small types. For example, Prf(P) — Prop is not a type. Because
of this, Leibniz’s equality (see section 2.2.1) can not be defined over a small type,
although it can be defined over other types.

11

2. The above formulation has nice formal properties as a type system. In particular,

we note that the strengthening lemma holds, i.e.,

e fy¢g FV(I',M, A), then
— I, 4:A, 17 valid implies I', IV valid,
- G,y:A, TV F A type implies ', I - A type, and
— [,y A,T'F M : A, implies ',V + M : A.

This strengthening lemma is proved using the method in [Luo88,90] to prove the
same property of type theories like the calculus of constructions; it is an important

lemma used to prove the projection theorem in the next section.

O
The formulae-as-types formulation of higher-order logic is faithful to Church’s for-

mulation, as the following theorem shows.

Theorem 2.1 A logical formula P is a logical consequence of H = P,...,P, in T
(in Church’s simple type theory) if and only if Prf(P) is U'y-inhabited, where Ty =
L, y:Prf(Py), ..., Yn:Prf(P,) with yy,...,y, fresh. O

2.2 Conservativity of CC* over HOL
In this section, we prove that the calculus of constructions with type constants is a
conservative extension of HOL (and hence of Church’s simple type theory).

2.2.1 the calculus of constructions with type constants: CCt

The following formulation of the calculus of constructions with type constants follows
that by Coquand [Coq89], with the only difference (and enrichment) that a new non-
propositional type constant Obj is added. (One may allow arbitrary many constants
following the style of presentation of Edinburgh LF [HHP87]. But, for our purpose here,
one type constant is enough. The proof of conservativity can easily be extended to the
many-sorted case.)

The basic expressions, called terms, are inductively defined as follows:
e Constants Prop and Obj, and variables (z, ...) are terms;
o If M and N are terms, so are the following:

Oz:M.N, Az:M.N, MN, Vz:M.N, Prf(M), Az:M.N, M e N

12

Conversion, contexts and judgement forms are defined in the same way as those for
HOL. The inference rules of CC* are the following:

Context Validity:

'+ Atype z ¢ FV(T)

(€1) () valid (€2) T,z:A valid
Type Formation:
. T valid I valid
(03) L'k 0bj type (Prop) I' - Prop type
I'FAtype I',z:AlF B type I'+P: Prop
(I0) '+ Mz:A.B type (Prf) I' - Prf(P) type
Basic Typing:
y,z:A4,T, valid
(var) F,z: ALz A
3 T,2.A+rM:B 'M :z:AB THFN:A
N TTE A oA (app) TFMN :[N/z|B
Propositions:
v I'yz:AF P: Prop
) F'+Vz:A.P: Prop
Proofs:
A T,z:A+ M : Prf(P) (App) I'HM:Prf(Ve:A.P) TFN: A
Q) T ARG A : Pri(veAP) PP TF M eN:Pri(|[N/z]P)

Type Conversion:

'rM:A TFHBtype A~ B
'-M:B

(conw)

The notion of type inhabitance is defined the same as that for HOL.

Remarks
1. HOL is a sub-system of CC™*. This becomes clear when we define in CCT,
A— B =4 Ta:A.B
A D B =4 Va:Prf(A).B

13

where ¢ ¢ FV(B). Note that this inclusion gives an interpretation of higher-
order logic in CC* in such a way that the object set Qbj is interpreted as a
non-propositional type constant. Under this (inclusion) interpretation, CC™ is a
conservative extension of higher-order logic, as we shall show below. If we the
object set were interpreted as a small type, the interpretation is non-conservative
(see [Ber89][Geu89]).

2. The most important enrichment of CC* compared with HOL is that proofs can
be formally manipulated in CC™*. For example, Leibniz’s equality over small types
can be defined in CC™*:

(P =pet(p) @) =ar VS :(Prf(P) — Prop). f(p) D f(q)

3. Dependent II-type IIz:A.Prf(P) is not identified with (although isomorphic to) the
small type Prf(Vz:A.P). This allows a proof-irrelevant semantics of the theory (see
[Coq89)). a

2.2.2 conservativity

That CC™ is a conservative extension of HOL is proved by using a projection tech-
nique developed by Berardi [Ber90] and Mohring [Moh89]. Berardi used the technique
to prove that the calculus of constructions is a conservative extension of Girard’s system
F* [Gir72] and Mohring used it to consider program extraction in the calculus of con-
structions. (Such an idea of projection also appears in [HHP87] where it is used to prove
the normalization property of Edinburgh Logical Framework by reducing it to that of
simply typed A-calculus.)

The problem of conservativity of CC* over HOL can be stated as follows (we shall
use FHOL and HCC* to distinguish judgements from the two systems under consideration

when confusion may occur):

o IfT FHOL A type, then A is -inhabited in CC? if and only if A is T-inhabited
in HOL.

Since HOL is a subsystem of CC™, the if-part of the above statement is obvious. Its

only-if-part is a corollary of the projection theorem 2.3. We first define the projection
map.

Definition 2.2 (projection ') The projection’ from CC* to HOL is defined by induc-
tion on the structure of the well-typed terms M in CC* (and then extended to contexts

in the obuvious way).

14

. M = Obj or Prop, then M' =4; M.
. M =z is a variable, then M' =4 .
. M = Prf(P), then M' =4 Pri(P’).

. M =1z:A.B, then

Prf(Py D Pg) if A =Prf(P,) and B’ = Prf(Pp)
Prf(Vz:A'.Pg) if A" # Prf(...) and B’ = Prf(Pp)
B’ if A' = Prf(...) and B’ # Prf(...)
A — B if A',B" # Prf(...)

!
M —=df

. M = Az:A.M,. We introduce a terminology here. A (well-typed) term M is called
proof-valued if it has a type of the form Hz:A;..Iz,:A,. Prf(...). M is called
non-proof-valued if it has a type of the form lz,:A;.. Illz,,:A,. K, where K is Obj
or Prop. Now, for M = Az:A.M,,

Ax:A'.M§ if M is proof-valued
M =4 { M if M is non-proof-valued and A’ = Prf(...)
Az:A' Mg if M is non-proof-valued and A’ # Prf(...)

. M = M]_Mz, then

M{ e M} if M, is proof-valued
M =4 ¢ M{ if M, is non-proof-valued and M, is proof-valued
MM} otherwise

. M =Vz:A.P, then

M'— PA:)PI ZfA,EPI‘f(PA)
T\ Va:AL P if A # Prf(..)

. M = Ax:A.My, then M’ =4 Az:A'.M{.
. M =M, eM,, then M' =4 M{ e M.
O

The projection map removes systematically the A-abstraction and II-quantification

over small types. For example, consider the Leibniz’s equality = uniformly defined over

the small types:

= = AP:Proplz,y:Prf(P). Vf:(Ilz:Prf(P).Prop)Vp:Prf(fz).fy

15

which is of type I P:Propllz, y:Prf(P). Prop (in CC™). Under the projection, we have
=' = AP:Prop.Vf:Prop.f D f

which is of type Prop — Prop (in HOL).

Remark As in [Ber90] and [Moh89], the above projection respects substitution in the
sense that ((N/z]M) = [N'/z]M’'.]

Theorem 2.3 (projection theorem) The projection ' from CC*t to HOL has the

following properties:

1. If T valid in CC", then I' valid in HOL;
if T FCC A type, then T’ FHOL A’ type; and
ifDECCY M ¢ A, then TV FHOL pp/ . AY,

2. If M is a well-typed term in HOL, then M' = M.

Proof The proof for the second statement can readily be done by induction on the
structure of well-typed term M in HOL. The proof for the first statement is by induction
on the derivation of the judgements in CC™, given as follows.

For the rules (C1)(C2)(0bj)(Prop)(Prf)(var)(A)(App), the induction argument can
readily be verified by the corresponding rule(s) in HOL and induction hypothesis. For
rule (conv), the fact that A’ ~ B’ whenever A ~ B is used. For rule (app), the prop-
erty that the projection respects substitution is used. For rules (II), (1) and (V), the

strengthening lemma for HOL must be used. Here, we give the argument for rule (II).

T HCC* 4 type I',z:A FCC" B type
T +°¢" Iz:4.B type

(1)
By induction hypothesis, we have I’ FHOL A’ type and IV, z:4’ FHOT B’ type. There

are four cases to consider.

1. A= Prf(P,) and B’ = Prf(Pg), then (Ilz:A.B)’ = Prf(P, D Py). By induction
hypothesis, I F#9T P, : Prop and IV, z:A’ FHOY Py : Prop. Since A’ = Prf(P,),
we have z ¢ FV(Pg). So, by the strengthening lemma for HOL, I F¥°T Py :
Prop. Hence, by (D)#°" and (Prf)®°%, we have

I’ FHOT Prf(P4 D Pg) type

16

2. A’ # Prf(...) and B’ = Prf(Pp), then (Iz:A.B) = Prf(Vz:A'.Pg). By induction
hypothesis, IV, z: A’ FHOT Py : Prop. Then, by (V)H°™ and (Prf)™°F, we have

[FHOF Prf(Vz:A'.Pg) type

3. A" = Prf(..) and B’ # Prf(...), then (Ilz:A.B) = B’. Since A’ = Prf(...),
z ¢ FV(B'). By induction hypothesis and the strengthening lemma for HOL,

I" FHOL B type

4. A',B' # Prf(...), then (llz:A.BY = A’ — B’. Since B’ # Prf(...), ¢ & FV(B').

So, by induction hypothesis and the strengthening lemma for HOL, IV -HOF
B’ type. Then, by (—)"° and induction hypothesis,
I FHOL A" — B’ type
So, we have I FHOL (T2:A.B)' type. O

Theorem 2.4 (conservativity) CCT is a conservative extension of HOL; i.e.,
if T FHOL A type, then A is T-inhabited in CCt if and only if A is T-inhabited in
HOL.

Proof By the projection theorem and the inclusion of HOL into CC™. a

Corollary 2.5 A logical formula in Church’s simple type theory is provable if and only
if its corresponding small type is inhabited in CC™. O

Remark The above conservativity result can also be thought of as a faithfulness or
completeness result, which can be read as that the interpretation of higher-order logic in
CC is faithful or, viewing type theories as a semantic base, the interpretation is (sound

and) complete. a

3 Abstract Reasoning and Discussions

The above conservativity result gives us a better understanding of the formulae-as-types
principle for higher-order logical systems. Such an understanding of type theory is impor-
tant both in theory and in pragmatic applications where type theories like the calculus
of constructions are used in, for example, theorem proving and program development.

We now discuss briefly some of the related issues.

17

3.1 Predicativity vs. impredicativity

First, we have noticed that the notions of sets and logical formulas are in some sense not
identifiable in an impredicative type theory in which impredicative types represent logical
formulae. In fact, in traditional studies of logic, logicians rarely regarded sets as formulas
in the strong sense as, for example, in Martin-Lof’s type theory. In particular, the object
set of a logic is not (and should not) be regarded as identifiable with a logical formula;
for example, in Church’s formulation of higher-order logic [Chu40], the object set is a
type which has nothing to do with a formula. It is some modern type theories (Martin-
Lof’s theory, the calculus of constructions among others) that make it possible to have
a ‘double identity’ for a type to denote. However, it seems that, both in theoretical and
pragmatical aspects, we should be careful about such an identification of concepts. The
conservativity problem discussed above gives us an example where a distinction between
sets and formulas is important both in theory and applications, when an impredicative
type theory is considered. Note that we have always been emphasizing that we are
considering impredicative type systems. For predicative type systems, e.g., Edinburgh
LF [HHP87], the story seems different. For example, one can show that the Edinburgh
LF, viewed as a logic, is a conservative extension of first-order logic (see [Ber90}), where
the object sets can be represented by (predicative) small types which represent logical

formulae as well.

3.2 Predicative universes and abstract reasoning

Abstract reasoning, as motivated in section 1.1, requires to formalize abstract mathe-
matics like theories for abstract algebras and notions in category theory. An adequate
formalization of a notion of (arbitrary) set is needed when, for example, formalizing the
carrier set of an abstract algebra or the object class of the category of small categories.

We briefly show how this can be done by considering predicative universes.

3.2.1 predicative universes

Predicative universes like those in Martin-L&f’s type theory can be introduced into an im-
predicative type theorylike the calculus of constructions, as shown in [Coq86][Luo88,89a).
In the extended calculus of constructions (ECC) [Luo89a,90], the impredicative type
universe is viewed as providing higher-order logical mechanisms, while the predicative
universes, where the ordinary sets reside, providing abstraction mechanisms which are
rich and expressive for formalization of mathematical problems and program develop-

ment.

18

Adding a predicative universe to the calculus of constructions is to introduce a type
which has as objects the names of the existing types. Such a universe T'ype, can be
given by the following rules (here, we use type equality judgement in Martin-Lof’s style,
although it is not necessary):

T valid LC'Fa:Typey
I'+ Type, type ' Ty(a) type

The type Prop is reflected in Type,:

' valid I' valid
I'F prop : Type, I' - To(prop) = Prop
II-types are reflected by:
I'Fa:Typey T,2:Ty(a)F b: Type, I'Fa:Typey, I',z:Ty(a)Fb: Type,
'tk rz:a.b : Type, I'FTy(rz:a.b) = Ha:Ty(a). Ty(b)

Small types are (lifted and) reflected by:

I'+P: Prop ' P: Prop
I'F to(P) : Type, ['F Ty(to(P)) = Prf(P)

Note that the universe T'ype, is not reflected in itself, for otherwise, the resulting system
would be logically inconsistent (by Girard’s paradox). Hence, Type, does not contain
(the names of) all of the types, e.g., it does not contain a name of itself. However,
one can iterate the above process to introduce higher universes Type;, Types, ..., SO
that the existing types after T'ype; is introduced, are reflected in Type;,,. Introducing
such a reflection principle into the calculus of constructions is logically consistent and
the resulting type system has nice proof-theoretic properties like Church-Rosser and
strong normalization [Luo88,90]. A realizability model of such a calculus can be found
in [Luo89a], where predicative universes are interpreted as large set universes while the
impredicative ‘universe’ Prop corresponds to the category of partial equivalence relations.

It is worth remarking that, in the above formulation of type theory, we do not have
type variables; in other words, we do not allow to have an assumption like X type in
a context and hence there is no way to quantify over all types. Besides assuring that
the system does not suffer logical paradoxes, this in particular allows the type theory
to remain open as Martin-Lof’s type theory does [ML73,84]. That is, new types (and
new type constructors) can be added to the system when it is needed. For example, one
may introduce strong sum types (X-types) as in the extended calculus of constructions
[Luo89a,90] or inductive types [CM90][Ore89]. The desire to do abstract reasoning can
be fulfilled by using predicative universes which reflect the classes of sets which have

been defined and under consideration. This reflection principle, although it does not

19

give us the (unachievable) power to talk about all types including those which have not
been introduced or defined, seems to be the best one can gain. On the other hand, it
does provide us a powerful tool to do abstract reasoning and is enough in applications.
In practice, the tension of worrying about universe levels can be eased by considering
a proper notion of universe subtyping, as formulated in ECC [Luo089a,90] and a notion
of universe polymorphism [Hue87][HP89]{Pol90a] where one can omit the universe levels
to write Type instead of T'ype;, as implemented in the proof development system Lego
[LPT89]. In such a setting, to assume X:Type in a context, is in some sense equivalent
to assume that X be an arbitrary type. One can also quantify over Type to talk about
‘all types’, bearing in mind that it is the machine who does the work to avoid universe

circularity (by giving an error message when it occurs).

3.2.2 formalization and reasoning of abstract mathematics

Our semantic consideration and the results about the conservativity problem both show
that, in an impredicative type theory used as a logical system, arbitrary sets should not
be represe;nted as impredicative small types; for otherwise, one might be able to prove
some unexpected logical consequences, i.e., the formalization would be inadequate. For
example, it would be inadequate to introduce an arbitrary monoid by the following
context:

X:Prop, e:Prf(X), o:Prf(X) — Prf(X) — Prf(X),

The way we have suggested is to use predicative universes (and the mechanism for

universe polymorphism) to formalize an arbitrary monoid as follows:
X:Type, X, : X - X = X,

Strong sum types can be introduced as in ECC so that a notion of abstract theory (as
opposed to a context which we call a concrete theory) can be considered and used to do
abstract reasoning and structured reasoning (see [Luo89b,90] for details). An example of
proof development using such a theory facility of abstract reasoning embodied in ECC
is Pollack’s proof of Tarski’s fixpoint theorem in Lego [Pol90b]. It is also possible to
formalize category theory in such a setting.

Adequate formalization is in fact a general problem in computer science (e.f., re-
quirements specification). What we have discussed is a particular case when using a
type theory as a language of specification. There is no general way using which one can

get an adequate specification, except that we should get a good understanding of the

20

language (a type theory in our case) and the problem to be formalized (abstract algebras,

for example). This paper addresses a particular problem in this aspect.

3.3 Extensionality: a pragmatic example?

We now discuss an example which concerns about the following extensionality axiom,
which Church mentioned in [Chu40] and is a consistent extension of Church’s simple

type theory:
Ezt =VP,Q:Prop. (P> Q) D (Q D P)D (P =pop Q)

where =p,,, is the Leibniz’s equality between propositions defined as:

(P =Prop Q) =df Vf:P’I'Op - PT‘Op. f(P)) f(Q)

Berardi [Ber90] uses this to prove the non-conservativity of the calculus of construc-
tions over higher-order logic as follows. Assuming Ezt, one would get the following

consequence in the calculus of constructions
¢ For any proposition X of type Prop, X is isomorphic to X — X.

In other words, one can show that a proposition X with different proofs can not be
finite (up to the intensional equality) under the extensionality axiom! This is in fact not
surprising, because the extensionality axiom is actually saying that ‘there are in conse-
quence only two propositions’ [Chu40], one inhabited and the other not. This is certainly
against the idea of representing the object set in logic as a proposition. The Church’s
simple type theory extended by the extensionality axiom should certainly allow arbitrary
interpretation of the object set, since it is an arbitrary type but not a proposition. Using
this fact, Berardi [Ber90] argues model-theoretically that the interpretation of object set
as a proposition in the calculus of constructions is not conservative. As we can readily
see, in HOL as presented in this paper, Obj can not be proved to be isomorphic to
Obj — Obj by assuming the extensionality axiom Fzt above.

A question can now be asked about adequate formalization. Does the above example
about extensionality give us a counter-example against the way to use propositions to
represent arbitrary sets? To some extent it does, because it shows that considering Prop
as the universe of sets conflicts with the proof-irrelevance principle people normally
believe in. However, one who tries to argue for using small types to represent sets might
still think that the axiom Ext should not be allowed at all. The author could not think of

a real pragmatic counter-example giving more direct justifications of the view of adequate

21

formalization (or it does not exist?) than the conservativity problem discussed in this
paper, although we believe that the material in this paper has given a strong support.
To conclude this paper, we leave the problem to find such an example or to disprove its

existence as a further open question to consider.

Acknoledgement Thanks to Rod Burstall and Randy Pollack for many helpful dis-

cussions.

References

[Bar89] H.P Barendregt, ‘Introduction to Generalized Type Systems’, to appear in
Proc. of the 3rd Italian Conf. on Theoretical Computer Science, Mandera.

[Ber89] S. Berardi, Non-conservativity of Coquand’s Calculus with respect to Higher-
_order Intuitionistic Logic, Talk given in the 3rd Jumelage meeting on Typed
Lambda Calculi, Edinburgh.

[Ber90] S. Berardi, Type Dependence and Constructive Mathematics, thesis

manuscript.

[CH88] Th. Coquand and G. Huet, ‘The Calculus of Constructions’, Information and
Computation 76(2/3).

[Chu40] A. Church, ‘A Formulation of the Simple Theory of Types’, J. Symbolic Logic
5(1).

[CM90] Th. Coquand and Ch. Paulin-Mohring, ‘Inductively Defined Types’, Lecture

Notes in Computer Science 417.

[Coq86] Th. Coquand, ‘An Analysis of Girard’s Paradoz’, Proc. 1st Ann. Symp. on

Logic in Computer Science.

[Coq89] Th. Coquand, ‘Metamathematical Investigations of a Calculus of Construc-

tions’, manuscript.

[Geu89] H. Geuvers, Talk given in the 3rd Jumelage meeting on Typed Lambda Cal-
culi, Edinburgh, Sept. 1989.

[Gir72] J.-Y. Girard, Interprétation fonctionelle et élimination des coupures de

Parithmétique d’ordre supérieur, These, Université Paris VIIL.

22

[HHPS7]

[HP89)

[Hue87]

[LPT89]

[LS86]

[Luo88] -

[Luo89a]

[Luo89b]

[Luo90]

[ML73]

[ML84]

[Moh89]

[Ore89]

[Pol90a]

R. Harper, F. Honsell and G. Plotkin, ‘A Framework for Defining Logics’,

Proc. 2nd Ann. Symp. on Logic in Computer Science.

R. Harper and R. Pollack, ‘Type Checking, Universe Polymorphism, and Typ-
ical Ambiguity in the Calculus of Constructions’, To appear in Theoretical

Computer Science.

G. Huet, ‘Frtending the Calculus of Constructions with Type:Type’, unpub-

lished manuscript.

Z. Luo, R. Pollack and P. Taylor, How to Use LEGQ: a preliminary user’s
manual, LFCS Technical Notes LFCS-TN-27, Dept. of Computer Science,
Edinburgh University.

J. Lambek and P.J. Scott, Introduction to higher-order categorical logic, Cam-
bridge University Press.

Zhaohui Luo, CC¥ and Its Meta Theory, LFCS report ECS-LFCS-88-58,
Dept. of Computer Science, Univ. of Edinburgh.

Zhaohui Luo, ‘ECC, an Fztended Calculus of Constructions’, Proc. of the

Fourth Ann. Symp. on Logic in Computer Science, June 1989, Asilomar,
California, U.S.A.

Zhaohui Luo, ‘A Higher-order Calculus and Theory Abstraction’, To appear

in Information and Computation.

Zhaohui Luo, An Fztended Calculus of Constructions, PhD thesis, University
of Edinburgh.

Per Martin-Lof, ‘An Intuitionistic Theory of Types: Predicative Part’, in
Logic Colloquium’73, (eds.) H.Rose and J.C.Shepherdson.

Per Martin-Lof, Intuitionistic Type Theory, Bibliopolis.

Ch. Paulin:Mohring, ‘Fxtracting F“ Programs from Proofs in the Calculus of

Constructions’, Proc. Principles of Programming Languages 1989.

C-E. Ore, ‘Notes about the Extensions of ECC for Including Inductive (Re-
cursive) Types’, draft.

R. Pollack, ‘The Implicit Syntaz’, manuscript.

23

[Pol90b] R. Pollack, “The Tarski Fizpoint Theorem’, private communication.
[Sch77] K. Schiitte, Proof Theory, Springer-Verlag.

[Tak75] G. Takeuti, Proof Theory, Stud. Logic 81.

24

Copyright © 1990, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

