
Dependent Event Types⋆

Zhaohui Luo1⋆⋆ and Sergei Soloviev2

1 Royal Holloway, Univ of London, U.K.
zhaohui.luo@hotmail.co.uk

2 IRIT, Toulouse, France
Sergei.Soloviev@irit.fr

November 30, 2016

Abstract. This paper studies how dependent types can be employed
for a refined treatment of event types, offering a nice improvement to
Davidson’s event semantics. We consider dependent event types indexed
by thematic roles and illustrate how, in the presence of refined event
types, subtyping plays an essential role in semantic interpretations. The
underlying formal system Ce for dependent event types, that extends
the simple type theory as employed in Montague semantics, is described
and proven to have nice meta-theoretic properties such as normalisation
and logical consistency. It is also shown that dependent event types give
a natural solution to the incompatibility problem (sometimes called the
event quantification problem) in combining event semantics with the
traditional compositional semantics, both in the Montagovian setting
with the simple type theory and in the setting of formal semantics in
modern type theories.

1 Introduction

The event semantics, whose study was initiated by Davidson [4] and further
studied in its neo-Davidsonian turn (see [14] among others), has several notable
advantages including Davidson’s original motive to provide a satisfactory se-
mantics for adverbial modifications. Dependent types, as those found in Modern
Type Theories such as Martin-Löf’s type theory [12] and UTT [8], provide a
useful tool in formalising event types and provide a nice treatment of the event
semantics.

An event type may depend on thematic roles such as agents and patients of
the events in the type. For example, we can consider the type EvtAP (a, p) of
events whose agent and patient are a and p, respectively. It is shown that such
dependent event types give a natural solution to the incompatibility problem

⋆ This is the online paper to accompany the LACL 2016 abstract [10]. The main
difference with the earlier online paper on September 23, with the same title, is that
we have now added §4 and §5.2.

⋆⋆ This work is partially supported by EU COST Action CA15123 and CAS/SAFEA
International Partnership Program.

in combining event semantics with the traditional Montague semantics [2, 17]
(sometimes called the event quantification problem [5]): the correct semantics
are accepted while the incorrect ones are excluded by typing because they would
be ill-typed and hence illegal.

We shall investigate subtyping relations between event types which include
dependent types such as Evt(a, p) and the non-dependent type Event of all
events (the latter is found in the traditional setting). For example, it may be
natural to have EvtAP (a, p) ≤ EvtA(a), that is, the type of events with agent a
and patient p is a subtype of that with agent a. With such subtyping relations in
place, the semantics of verb phrases can now take the usual non-dependent types,
as in the traditional setting, although dependent event types are considered.

Dependent event types were first considered in an example in [1] to study
linguistic coercions in formal semantics, where types of events are indexed by
their agents: Evt(h) is the type of events conducted by h : Human. In this
short paper, we shall study event types dependent on thematic roles in a gen-
eral setting in formal semantics with events both in the traditional Montague
semantics [13] and in formal semantics in modern type theories [15, 9]. In §2,
we shall describe the basics of dependent event types, introducing notations and
examples. Subtyping between event types is described in §3, where we show,
for example, how VPs can take the traditional non-dependent type, while we
consider dependent event types. §5 shows that a natural solution to the event
quantification problem can be found in the setting with dependent event types,
giving an example of advantages over the traditional setting. In the concluding
section, we shall briefly discuss the future work on dependent event types.

2 Dependent Event Types

In the Davidsonian event semantics in the traditional Montagovian setting [4,
14], there is only one type Event of all events. For example, the sentence (1) is
interpreted as (2):

(1) John kissed Mary passionately.

(2) ∃e : Event. kiss(e) & agent(e, j) & patient(e,m) & passionate(e)

where in (2), Event is the type of all events, kiss, passionate : Event → t
are predicates over events, and agent, patient : Event → e → t are relations
between events and entities.3 Please note that, in the above neo-Davidson’s

3 In logical formulas or lambda-expressions, people often omit the type la-
bels of events and entities: for example, (2) would just be written as
∃e. kiss(e) & agent(e, j) & patient(e,m) & passionate(e), since traditionally there
are only one type of events and one type of entities; we shall put in the type labels
explicitly. Another note on notations is: e and t in boldface stand for the type of
entities and the type of true values, respectively, as in MG, while e and t not in bold-
face stand for different things (for example, e would usually be used as a variable of
an event type).

semantics (2), adverbial modifications and thematic role relations are all propo-
sitional conjuncts in parallel with the verb description, an advantageous respect
as compared with an interpretation without events.

We propose to consider refined types of events. Rather than a single type
Event of events, we introduce types of events that are dependent on some pa-
rameters. For instance, an event type can be dependent on agents and patients.
Let Agent and Patient be the types of agents and patients, respectively. Then,
for a : Agent and p : Patient, the dependent type

EvtAP (a, p)

is the type of events whose agents are a and whose patients are p. With such
dependent event types, the above sentence (1) can now be interpreted as:4

(3) ∃e : EvtAP (j,m). kiss(e) & passionate(e)

Note that, besides other things we are going to explain below, we do not need
to consider the relations agent and patient as found in (2) because they can
now be ‘recovered’ from typing. For example, for a : Agent and p : Patient, we
can define functions agentAP [a, p] and patientAP [a, p] such that, for any event
e : EvtAP (a, p), agentAP [a, p](e) = a and patientAP [a, p](e) = p.5

The parameters of dependent event types are usually names of thematic roles
such as agents and patients. Formally, the dependent event types are parame-
terised by objects of types A1, ..., An. Event types with n parameters are called
n-ary event types. In this paper, we shall only consider n-ary event types with
n = 0, 1, 2:

– When n = 0, the event type, usually written as Event, has no parameters.
Event corresponds to the type of all events in the traditional setting.

– When n = 1, we only consider EvtA(a) and EvtP (p), where a : Agent
and p : Patient; i.e., these are event types dependent on agents a and those
dependent on patients p. For example, if John is an agent with interpretation
j, EvtA(j) is the type of events whose agents are John.

– When n = 2, we only consider EvtAP (a, p) for a : Agent and p : Patient, i.e.,
the event type dependent on agent a and patients p. For example, if agent
John and patient Mary, EvtAP (j,m) is the type of events whose agents and
patients are John and Mary, respectively (cf., the example (3) above).

Introducing dependent event types has several advantages. In this paper, we
shall detail one of them, that is, it gives a natural solution to the event quan-
tification problem – see §5. Before doing that, we shall consider the subtyping
relationship between event types which, among other things, simplifies the se-
mantic interpretations of VPs in the semantics with dependent event types.

4 Please note here that, for kiss(e) and passionate(e) to be well-typed, the type of
event e must be the same as the domain of kiss and passionate – see the next section
about subtyping, which allows them to be well-typed.

5 Formally, we have agentAP [a, p] = λe:EvtAP (a, p).a, of type EvtAP (a, p) → Agent.
Usually we simply write, for example, agentAP (e) for agentAP [a, p](e).

EvtAP (a, p)

EvtA(a)

EvtP (p)

Event

�����

XXXXX

XXXXX

�����

≤

≤

≤

≤

Fig. 1. Subtyping between event types with a : Agent and p : Patient.

3 Subtyping between Event Types

Event types have natural subtyping relationships between them. For example, an
event whose agent is a and patient is p is an event with agent a. In other words,
for a : Agent and p : Patient, the type EvtAP (a, p) is a subtype of EvtA(a).
If we only consider the event types Event, EvtA(a), EvtP (p) and EvtAP (a, p)
(cf., the last section), they have the following subtypnig relationships:

EvtAP (a, p) ≤ EvtA(a) ≤ Event

EvtAP (a, p) ≤ EvtP (p) ≤ Event

which can be depicted as Figure 1.
Formally, the subtyping relationship obeys the following rule (called sub-

sumption rule):

(∗) a : A A ≤ B

a : B

It is also reflexive and transitive. The underlying type theory for formal semantics
can be extended by dependent event types together with the subtyping relations
governed by the subsumption rule.6

The incorporation of subtyping between event types is not only natural but
plays an essential role in semantic interpretations. This can best be explained
by considering how verb phrases are interpreted. In the neo-Davidson’s event
semantics (with only Event as the type of events), a verb phrase is interpreted
as a predicate over events, as the following example shows.

(4) talk : Event → t.

(5) John talked loudly.

(6) ∃e : Event. talk(e) & loud(e) & agent(e, j)

6 See §4 for the underlying formal system Ce, which is the extension of Church’s simple
type theory [3] with dependent event types.

With dependent event types such as EvtA(j), how can we interpret talk and
(5)? In analogy, the desired semantics of (5) would be (7), where the agent of
the event e can be obtained as agentA(e) = j:

(7) ∃e : EvtA(j). talk(e) & loud(e)

However, if talk is of type Event → t, talk(e) would be ill-typed since e is of
type EvtA(j), not of type Event. Is (7) well-typed? The answer is, if we do
not have subtyping, it is not. But, if we have subtyping as described above,
it is! To elaborate, because e : EvtA(j) ≤ Event, talk(e) is well-typed by the
subsumption rule (∗). Similarly, we have loud : Event → t and, therefore, loud(e)
is well-typed for e : EvtA(j) ≤ Event as well.

To summarise, the subtyping relations have greatly simplified the event se-
mantics in the presence of refined dependent event types.

Remark 1. The subtyping relations also facilitate a natural relationship between
the functions such as agentAP and agentA (see §2 and Footnote 5). For exam-
ple, because of the subtyping relations as depicted in Fig 1, for e : EvtAP (a, p) ≤
EvtA(a), we have, by definition: agentAP [a, p]e) = agentA[a](e) = a.

4 The Underlying System Ce and Its Embedding

In this section, we describe the underlying formal system Ce for dependent event
types, that extends the simple type theory as employed in Montague semantics,
and proves that Ce has nice meta-theoretic properties such as normalisation and
logical consistency, by embedding Ce into a modern type theory (see below).7

Ce is the extension of Church’s simple type theory [3], as used in the Mon-
tague semantics, with dependent event types and the subtyping relations between
them, as informally described in §2 and §3. Ce can be faithfully embedded into
UTT[C], i.e., the type theory UTT [8] extended with coercive subtyping in C
[11], where C contains the subtyping judgements that correspond to the subtyp-
ing relations between dependent event types as described in §3. Since UTT[C]
has nice meta-theoretic properties such as normalisation and logical consistency,
so does Ce.

In §4.1, we shall give a formal presentation of Ce and then, in §4.2, prove
that it can be faithfully embedded into UTT[C] and hence has nice properties.

4.1 The Underlying System Ce

We shall first explain what a context is and what a judgement is in the system
Ce, and then the rules of Ce are given.

7 This section is rather formal and its details might be safely skipped if wished.

Γ valid

Γ ⊢ e type

Γ valid

Γ ⊢ t type

Γ, x:A, Γ ′ valid

Γ, x:A, Γ ′ ⊢ x : A

Γ, P true, Γ ′ valid

Γ, P true, Γ ′ ⊢ P true

Γ ⊢ A type Γ ⊢ B type

Γ ⊢ A → B type

Γ, x:A ⊢ b : B x ̸∈ FV (B)

Γ ⊢ λx:A.b : A → B

Γ ⊢ f : A → B Γ ⊢ a : A

Γ ⊢ f(a) : B

Γ ⊢ P : t Γ ⊢ Q : t

Γ ⊢ P ⊃ Q : t

Γ, P true ⊢ Q true

Γ ⊢ P ⊃ Q true

Γ ⊢ P ⊃ Q true Γ ⊢ P true

Γ ⊢ Q true

Γ ⊢ A type Γ, x:A ⊢ P : t

Γ ⊢ ∀(A, x.P) : t

Γ, x:A ⊢ P true

Γ ⊢ ∀(A, x.P) true

Γ ⊢ ∀(A, x.P [x]) true Γ ⊢ a : A

Γ ⊢ P [a] true

Fig. 2. Rules for Church’s STT.

Contexts. A context is a sequence of entries either of the form x : A or of the
form P true. Informally, the former assumes that the variable x be of type A
and the latter that the proposition P be true. Only valid contexts are legal and
context validity is governed by the following rules:

⟨⟩ valid
Γ ⊢ A type x ̸∈ FV (Γ)

Γ, x:A valid

Γ ⊢ P : t

Γ, P true valid

where ⟨⟩ is the empty sequence and FV (Γ) is the set of free variables in Γ .8

Judgements. Judgements are sentences in the system Ce, whose correctness will
be governed by the inference rules below. In Ce, there are five forms of judge-
ments:

– Γ valid, which informally means that Γ is a valid context (the rules of
deriving context validity) are given above).

– Γ ⊢ A type, which informally means that A is a type under context Γ .
– Γ ⊢ a : A, which informally means that a is an object of type A under

context Γ .
– Γ ⊢ P true, which informally means that P is a true proposition under

context Γ .
– Γ ⊢ A ≤ B, which informally means that A is a subtype of B under context

Γ .

Inference rules. The inference rules for Ce consist of:

1. Rules for context validity (the three rules above);
2. Figure 2: the rules for Church’s simple type theory including those for (1)

the basic types e and t of entities and formulas, (2) function types with
β-conversion ((λx:A.b[x])(a) ≃ b[a]), and (3) logical formulas9; and

8 Formally, FV (Γ) is inductively defined as follows: (1) FV (⟨⟩) = ∅; (2) FV (Γ, x:A) =
FV (Γ) ∪ {x}; (3) FV (Γ, P true) = FV (Γ).

9 We only consider the intuitionistic ⊃ and ∀ here, omitting other operators and, in
particular, those about, e.g. negation/classical logic in the original version of [3].
Also, we shall not assume extensionality.

Agent type Patient type

Event type

a : Agent

EvtA(a) type

p : Patient

EvtP (p) type

a : Agent p : Patient

EvtAP (a, p) type

a : Agent p : Patient

EvtAP (a, p) ≤ EvtA(a)

a : Agent p : Patient

EvtAP (a, p) ≤ EvtP (p)

a : Agent

EvtA(a) ≤ Event

p : Patient

EvtP (p) ≤ Event

A type

A ≤ A

A ≤ B B ≤ C

A ≤ C

A′ ≤ A B ≤ B′

A → B ≤ A′ → B′

A ≃ B

A ≤ B

a : A A ≤ B

a : B

Fig. 3. Rules for dependent event types.

3. Figure 3: the rules for dependent event types including those for (1) depen-
dent event types and (2) their subtyping relations, and (3) general subtyping
rules including subsumption.

Some explanations of the rules are in order:

– In the λ-rule in Figure 2, we have added a side-condition x ̸∈ FV (B), i.e.,
x does not occur free in B. This is necessary because we have dependent
event types like EvtA(a): for example, we need to forbid to derive Γ →
λx:Agent.e : Agent → EvtA(x) from Γ, x:Agent ⊢ e : EvtA(x), where in the
former judgement, x would not have been declared in Γ .

– In the rules in Figure 3, since all of the judgements have the same contexts,
we have omitted the contexts. For example, the first rule in its third row
should have been, if written in full:

Γ ⊢ a : Agent Γ ⊢ p : Patient

Γ ⊢ EvtAP (a, p) ≤ EvtA(a)

4.2 Embedding of Ce into UTT[C]

In this subsection, we show that Ce can be faithfully embedded into UTT[C]
and hence have nice meta-theoretic properties. The type theory UTT [8] is a
dependent type theory with inductive types, type universes and higher-order
logic.10 Its meta-theory was studied in the PhD thesis by Healf Goguen [6]
where, in particular, it is shown that UTT is strongly normalising and hence
logically consistent. Coercive subtyping has been developed by the authors and

10 If one has had contacts with formal semantics in modern type theories (MTT-
semantics, see, for example, [9]), UTT is a typical MTT – actually, it is the MTT
the first author and colleagues have employed in developing MTT-semantics.

colleagues for dependent type theories such as Martin-Löf’s type theory and
UTT [11]. The fact that Ce can be faithfully embedded into UTT[C], where C
contains the subtyping judgements that correspond to the subtyping relations
between dependent event types, shows that Ce has nice meta-theoretic properties
as well; in particular, Ce is also strongly normalising and logically consistent.

We shall not describe UTT here and interested readers can study the given
references (for example, about MTT-semantics). Before the embedding theorem,
we shall describe the coercive subtyping relations in UTT[C], as specified in C.

Subtyping in UTT[C]. In UTT[C], we have constant types and constant type
families for dependent event types:

– Entity : Type
– Agent, Patient : Type.
– Event : Type,

EvtA : (Agent)Type,
EvtP : (Patient)Type, and
EvtAP : (Agent)(Patient)Type.

The dependent event types have subtyping relationships specified by the follow-
ing parameterised constant coercions ci (i = 1, ..., 4) in C, where a : Agent and
p : Patient:

EvtAP (a, p) ≤c1[a,p] EvtA(a), EvtAP (a, p) ≤c2[a,p] EvtP (p),

EvtA(a) ≤c3[a] Event, EvtP (p) ≤c4[p] Event,

which also satisfy the following coherence condition: c3[a] ◦ c1[a, p] = c4[p] ◦
c2[a, p].

The embedding of Ce into UTT[C] is defined as follows and it is a faithful
embedding as the theorem below shows.

Definition 1 (embedding) The embedding [[]] from Ce to UTT[C] is induc-
tively defined as follows:11

– [[x]]Γ = x.
– [[e]]Γ = Entity.
– [[t]]Γ = Prop.
– [[A → B]]Γ = [[A]]Γ → [[B]]Γ .
– [[λx:A.b]]Γ = λ([[A]]Γ , T, [x: [[A]]Γ] [[b]]Γ,x:A), if [[Γ, x:A]] ⊢ [[b]]Γ,x:A : T .
– [[f(a)]]Γ = app(S, T, [[f]]Γ , [[a]]Γ), if [[Γ]] ⊢ [[f]]Γ : S → T and [[Γ]] ⊢ [[a]]Γ : S0,

where [[Γ]] ⊢ S0 ≤ S.

11 Formally, this is a partial function – it is only defined when certain conditions hold.
The embedding theorem shows that the embedding is total for well-typed terms.
Also, a notional note: we shall use S and T to stand for types in UTT[C] where
function types are special cases of Π-types: for any types S and T , S → T =
Π(S, [:S]T).

– [[P ⊃ Q]]Γ = [[P]]Γ ⊃ [[Q]]Γ
– [[∀(A, x.P)]]Γ = ∀([[A]]Γ , [x: [[A]]Γ]. [[P]]Γ,x:A)

Furthermore, dependent event types are mapped to the ‘same’ types in UTT[C]
(we have overloaded their names). The embedding is extended to contexts in a
straightforward way.

The following theorem shows that the embedding is well-defined and faithful
(in the sense of the theorem). Its proof is based on the embedding of Church’s
simple type theory into the calculus of constructions [7], but has proved to be
very intriguing, partly because that, embedding Ce into UTT[C], we need to con-
sider how to emulate subsumptive subtyping by means of coercive subtyping and
how to use fully typed terms of the forms such as λ(S, T, f) and app(A,B, f, a)
to emulate ordinary λ-terms of the forms λx:A.b and f(a). Both of these are
interesting in themselves, but the technical details are out of the scope of the
current paper.

Theorem 2 (faithfulness) The embedding in Definition 1 is defined for every
well-typed term in Ce and, furthermore, we have:

1. If Γ valid in Ce, then [[Γ]] valid in UTT[C].
2. If Γ ⊢ A type in Ce, then [[Γ]] ⊢ [[A]] : Type in UTT[C].
3. If Γ ⊢ a : A in Ce, then in UTT[C], [[Γ]] ⊢ [[a]] : T for some T such that

[[Γ]] ⊢ T ≤d [[A]] for some d.
4. If Γ ⊢ P true in Ce, then [[Γ]] ⊢ p : [[P]] for some p in UTT[C].
5. If Γ ⊢ A ≤ B in Ce, then [[Γ]] ⊢ [[A]] ≤c [[B]] for some unique c in UTT[C].

Corollary 3 Ce inherits nice meta-theoretic properties from UTT[C], including
strong normalisation and logical consistency.

5 Event Quantification Problem

It has been argued that there is some incompatibility between (neo-)Davidsonian
event semantics and the traditional compositional semantics [2, 17]. De Groote
and Winter [5] have dubbed this as the event quantification problem (EQP for
short). Consider the following sentence (8) which, under the traditional event
semantics, could have two possible interpretations (9) and (10), where (10) is
incorrect.

(8) No dog barks.

(9) ¬∃x : e. dog(x) & ∃e:Event. bark(e) & agent(e, x)

(10) (#) ∃e : Event. ¬∃x : e. dog(x) & bark(e) & agent(e, x)

where bark : Event → t.
Formally, the incorrect interpretation is acceptable just as the correct one:

(10) is a legal formula. In order to avoid such incorrect interpretations as (10),
people have made several proposals (see, for example, [2, 17]) which involve, for

instance, consideration of quantification not over events but over sets of events
[2], or some (informal and somewhat ad hoc) principles whose adherence would
disallow the incorrect interpretations.

We shall study this with dependent event types both in the Montagovian
setting (i.e., the system informally described in §2 and §3 and formally in Ce as
described in §4.1) and in the MTT-semantics (formally in UTT[C] as described
in §4.2). It is shown that, with dependent event types, the incorrect semantics
is blocked as illegal since they are ill-typed.

5.1 EQP in Montague Semantics with Dependent Event Types

In the Montagovian setting with dependent event types (formally, Ce in §4), this
problem is solved naturally and formally – the incorrect semantic interpretations
are excluded because they ill-typed (in the empty context, where semantic inter-
pretations of whole sentences like (8) are considered). For example, (8) will be
interpreted as (11), while the ‘incorrect’ interpretation (12) is not available (the
formula (12) is ill-typed because x in EvtA(x), outside the scope of second/bound
x (although intuitively it refers to it), is a free variable without being declared.)

(11) ¬∃x : e. (dog(x) & ∃e : EvtA(x). bark(e))

(12) (#) ∃e : EvtA(x). ¬∃x : e. dog(x) & bark(e)

This offers a natural solution to the event quantification problem. Compared
with existing solutions with informal ad hoc principles such as those mentioned
above, our solution comes naturally as a ‘side effect’ of introducing dependent
event types: it is formally disciplined and natural.

5.2 EQP in MTT-semantics with Dependent Event Types

In this paper so far, we have only considered extending the traditional Montague
semantics with dependent event types (and hence, formally, Ce – the extension
of Church’s STT with dependent event types). One can also extend the MTT-
semantics [9] with dependent event types and hence consider such refined event
semantics in the setting of MTT-semantics. Here, we give an example to show
how this is done.

Still consider the sentence (8): No dog barks. In the MTT-semantics, where
CNs are interpreted as types (rather than predicates), the verb bark is given a
dependent type as its semantics:

(13) bark : Πx:Dog. EvtA(x) → Prop

It is also the case that the correct semantics (14) for (8) is legal (well-typed),
while the incorrect one (15) is not:

(14) ¬∃x : Dog. ∃e : EvtA(x). bark(x, e)

(15) (#) ∃e : EvtA(x). ¬∃x : Dog. bark(x, e)

Note that (15) is ill-typed for two reasons now: the first x is a variable not
assumed anywhere and the term bark(x, e) is ill-typed as well.

Remark 2. Employing dependent event types in the Montagovian semantics (i.e.,
in Ce as described in §4), would still leave a small possibility of some formally
legal but incorrect semantics.12 For instance, one might consider the following
semantics for (8):

(16) (#) ∃e : Event. ¬∃x : e. dog(x) & bark(e)

Note that, although (16) is incorrect, it is still well-typed because e is just an
event, not an event with x as agent.13 This, however, would not happen in the
MTT-semantic setting where the type of the verb bark is the dependent type
(13) and the following semantic sentence is ill-typed:

(17) (#) ∃e : Event. ¬∃x : Dog. bark(x, e),

because bark(x, e) is not well-typed (it requires e to be of type EvtA(x), not just
of type Event).

6 Conclusion

In this paper, we have introduced dependent event types for formal semantics.
Subtyping is shown to play an essential role in this setting. We have also consid-
ered how dependent event types naturally solve the event quantification problem
in combining event semantics with the traditional compositional semantics.

The notion of event types as studied in this paper is intensional, rather than
extensional. For instance, when considering inverse verb pairs such as buy and
sell, one may think that the events in (18) and (19) are the same event [16].

(18) John bought the book from Mary.

(19) Mary sold the book to John.

If one considers this from the angle of extensionality/intensionality, the buying
event and the selling event in the above situation are extensionally the same, but
intensionally different. Work need be done to study the such event structures and
relevant inference patterns. More generally, this is related to how to understand
the sameness of events in the setting with dependent event types.

Another interesting research topic is to study whether general thematic roles
should be considered as parameters of dependent event types. Unlike agents and
patients, some thematic roles considered in the literature may not be suitable
to play the role of indexing dependent event types. In such cases, we would still
propose that they should be formalised by means of logical predicates/relations.
However, more careful studies are called for.

Acknowledgement. Thanks go to David Corfield who has spotted an error
in a previous version and given useful suggestions, and to Christian Retoré for
helpful comments on this work.

12 Thanks for an anonymous LACL referee for a useful comment on this.
13 Of course, one can argue that this is not intended since the agent is known, but

formally, nothing prevents one from doing it.

References

1. N. Asher and Z. Luo. Formalisation of coercions in lexical semantics. Sinn und
Bedeutung 17, Paris, 2012.

2. L. Champollion. The interaction of compositional semantics and event semantics.
Linguistics and Philosophy, 38:31–66, 2015.

3. A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5(1),
1940.

4. D. Davidson. The logical form of action sentences. In: S. Rothstein (ed.). The
Logic of Decision and Action. University of Pittsburgh Press, 1967.

5. P. de Groote and Y. Winter. A type-logical account of quantification in event
semantics. Logic and Engineering of Natural Language Semantics 11, 2014.

6. H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, Univer-
sity of Edinburgh, 1994.

7. Z. Luo. A problem of adequacy: conservativity of calculus of constructions over
higher-order logic. Technical report, LFCS report series ECS-LFCS-90-121, De-
partment of Computer Science, University of Edinburgh, 1990.

8. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
University Press, 1994.

9. Z. Luo. Formal semantics in modern type theories with coercive subtyping. Lin-
guistics and Philosophy, 35(6):491–513, 2012.

10. Z. Luo and S. Soloviev. Dependent event types (abstract). Logical Aspects of
Computational Linguistics (LACL 2016), 2016.

11. Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: theory and implementation.
Information and Computation, 223:18–42, 2012.

12. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
13. R. Montague. Formal Philosophy. Yale University Press, 1974. Collected papers

edited by R. Thomason.
14. T. Parsons. Events in the Semantics of English. MIT Press, 1990.
15. A. Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.
16. A. Williams. Arguments in Syntax and Semantics. Cambridge, 2015.
17. Y. Winter and J. Zwarts. Event semantics and abstract categorial grammar. Proc.

of Mathematics of Language 12, LNCS 6878, 2011.

