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Abstract When type theories are used for formal semantics, different approaches

to the interpretation of common nouns (CNs) become available w.r.t whether a CN is

interpreted as a predicate or a type. In this paper, we shall first summarise and analyse

several approaches as found in the literature and then study a particularly interesting

and potentially challenging issue in a semantics where some CNs are interpreted as

types – how to deal with some of the negated sentences and conditionals. When some

CNs are interpreted as types (e.g., Man : Type), a sentence like John is a man

can be given a judgemental interpretation j : Man, rather than the traditional Mon-

tagovian interpretation man(j). In such a setting, the question is then how to interpret

negated sentences like John is not a man (or more complicated sentences

like conditionals). A theory for predicational forms of judgemental interpretations is

introduced and is shown to be able to deal with negated sentences and conditionals

appropriately. A number of examples are considered to show that the theory provides

an adequate treatment in various situations. Furthermore, experiments in the proof

assistant Coq are performed in order to provide more supporting evidence for this

adequacy. Besides the above, we also briefly study the use of indexed types in order

to deal with CNs exhibiting temporal sensitivity and gradability.
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1 Introduction

The interpretation of common nouns is a central topic for any theory of formal seman-

tics. When type theories are used for formal semantics, there are several approaches

as regards interpreting CNs:

• One can interpret CNs as predicates in Church’s simple type theory (Church 1940).

This is the traditional and dominating approach taken by Montague and his fol-

lowers (Montague 1973, 1974);

• One may interpret CNs as types. This is the view taken in the formal semantics

using Modern Type Theories (MTT-semantics for short) (Ranta 1994; Luo 2012;

Luo 2012a);

• One may employ a dependent type theory for formal semantics but still take the

traditional view of CNs as predicates (as suggested in, for example, Krahmer and

Piwek 1999; Bekki 2014; Tanaka et al. 2015); and

• One may take a view that some CNs are interpreted both as types and predicates

at the same time (Retoré 2013).

Interpreting CNs in the above different ways has important implications. To lay down

the background of our work in this paper, we shall first, in Sect. 2, briefly discuss these

approaches and, in particular, explicate their advantages and potential problems.

Interpreting CNs as types, as in MTT-semantics (the second approach of the

above), has several advantages as compared with a CNs-as-predicates approach.

These include, for example, the treatment of selectional restrictions as typing and its

compatibility with subtyping, whose use has been found useful in recent semantic

studies of advanced linguistic features such as copredication (a CNs-as-predicates

approach has met difficulties in these respects – see Sect. 2 for more details). However,

it is not the case that a CNs-as-types approach does not have its own problems. An

important issue to study is the way to interpret some of the negated sentences and

conditionals when one takes the CNs-as-types approach.1 To understand the issue,

we need first to appreciate the difference between judgements and propositions in

MTTs. In MTT-semantics, besides interpreting most of the sentences as propositions

(for example, propositions of type Prop in UTT Luo 1994), one may interpret (1) as

the judgement in (2), where the CN man is interpreted as a type Man:

(1) John is a man.

(2) j : Man.

Can such a judgemental interpretation of a sentence be turned into a predicational

form? Furthermore, in such a setting, how should negated sentences like (3) and

conditionals like (4) be interpreted?

1Please note that this is not just an issue for MTT-semantics; it is a general problem whenever one

has many types to interpret (even some) CNs in formal semantics. Several people have raised this

issue of how to interpret negated sentences in MTT-semantics to the second author including, to

name a few, G. Morrill (during ESSLLI 2011), N. Asher (in email communications about a paper in

LACL 2014) and K. Mineshima (in ESSLLI 2014). We are grateful for their interesting discussions

and comments.
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(3) Tables do not talk.

(4) If John is a student, he is happy.

We shall study a proposal for predicational forms of judgemental interpretations,

including those for negated sentences and conditionals. In particular, in Sect. 3, we

shall propose the predicational form for the simple judgements like (2) and further

propose and study a special negation operator not to be used for interpreting negated

sentences like (3) and conditionals like (4). In Sect. 4, one can find many examples

of semantic interpretations of negated sentences and conditionals. Experiments of

these semantic examples and some related inference examples are done in the proof

assistant Coq (The Coq Team 2007) and are reported in Sect. 4. In Sect. 5, we shall

illustrate, from a particular angle, that dependent types as found in MTTs are useful

in giving semantics to CNs when more advanced issues are considered. In particular,

we shall show how to use indexed types, types that are dependent on indexes in a

type, to deal with temporal sensitivity and gradability. A summary is given in the

Conclusion.

2 Common Nouns as Types or Predicates: Different

Approaches

As summarised above, when considering type-theoretical semantics, there are several

approaches to the interpretation of CNs. The key difference is whether to interpret a

CN as a predicate or as a type. We shall start by discussing the differences between

predicates and types and then consider the different approaches in the literature to

discuss some of the advantages and potential problems of each of them.

2.1 Types Versus Predicates

A predicate in a higher-order logic can be seen as a representation of a set, standing

for a collection of elements.2 For example, in Montague semantics, a predicate of type

e → t represents a subset of the type e of entities. A type is also a representation of a

collection of objects. For example, in Martin-Löf’s type theory, the type N represents

the inductively defined collection of natural numbers. Therefore, since both of them

are representations of collections, one may think that predicates and types are rather

similar. However, their similarities stop here. In fact, predicates (or sets) and types are

very different, as to be discussed below. CNs are standing informally for collections:

in doing formal semantics, one can either interpret a CN as a predicate or as a type.

2A predicate in a higher-order logic may be seen as different from a predicate in first-order logic.

Here, for those who are interested, it is instructive to mention Quine’s view on this difference (Quine

1986) (although the authors should not be regarded as agreeing with it).
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But because predicates and types have important differences, the choice of using one

of them to interpret CNs has profound implications.

We shall briefly discuss several differences between predicates (or sets) and types.

Types as Manageable Sets. Intuitively, both sets and types represent collections.

However, types are much more ‘manageable’ than sets (as in set theory). For instance,

the membership relation s ∈ S is a logical formula and whether such a formula is

true is undecidable. In contrast, whether the judgement a : A, expressing that the

object a is of type A, is correct is decidable (in a technical jargon, we say that

type checking is decidable). This decidability is essential for type theories in many

respects including, for example, the employment of the embedded logic according to

the propositions-as-types principle (see below) and the computer implementations

of MTTs in proof assistants. This also shows that types are manageable (and simpler

than sets or predicates).

In simple type theory (Church 1940) where Montague semantics is based, e and t

are (base) types and so are function types such as e → t. In an MTT, such as Martin-

Löf’s type theory (Martin-Löf 1984; Nordström et al. 1990) or UTT (Luo 1994),

besides the function types, there are many more types such as dependent function

types (Π -types), dependent sum types (Σ-types), type universes, etc. However, in

MTTs there are still much fewer types than sets. For example, one can form unions

or intersections of sets, but one cannot do so for types: if one did this, type checking

would become undecidable.

Embedded Logic. MTTs have consistent embedded logics according to the

propositions-as-types principle (Curry and Feys 1958; Howard 1980). For instance, in

Martin-Löf’s type theory, the embedded logic is a (non-standard) first-order logic as

explained in Martin-Löf (1984) and, in UTT, the embedded logic is the higher-order

logic as explained in Chap. 5 of Luo (1994). Based on the normalisation theorem

(e.g., in the case of UTT), one can show that the embedded propositions-as-types

logic is consistent.

This is in contrast to some other systems such as set theory. It is important to

mention that, in order to employ a consistent logic (e.g., higher-order logic in the

Montagovian setting or propositions-as-types logics in MTTs), type checking must

be decidable. This is because, as a logical system, given a formula A and a potential

proof a, it should be decidable whether a is a proof of A. If one uses the propositions-

as-types principle, this means that type checking (i.e., the derivability of judgements

a : A) must be decidable.3 Therefore, in systems like set theory, or some systems

with :-judgements that do not have the decidability property, one does not have an

embedded logic for applications (e.g., in giving a formal semantics).

Equalities Associated with Types. MTTs were originally developed as founda-

tional languages for constructive mathematics, where types represent constructive

3Decidability of type checking means that of the judgement a : A. In Church’s simple type theory

(as used in Montague semantics), it means that, for example, it is decidable to check whether j : e,

p : t, f : e → t, etc. This obviously has to be decidable for, otherwise, the embedded logic (HOL in

Montague’s semantics) could not be used in a feasible way (for example, we would not be able to

apply its rules).
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collections. Constructive collections are associated with their own equalities.4 This

is in contrast to set theory where there is a universal equality between sets (and

their elements which formally are sets as well). When types in MTTs are used to

interpret CNs, it is natural to think that the CNs are associated with their own equal-

ities as well, although many of them share the same ones (but some of them do

not). Note that this is different from set-theoretical semantics such as Montague

where a universal equality exists. From a philosophical point of view, it is argued in

Luo (2012) that the idea of interpreting CNs as types ties well with Geach’s criterion

of identity for CNs (Geach 1962). We shall not talk about this in the following pages

and the interested readers may consult (Luo 2012) where this has been studied.

2.2 Different Approaches to Interpretation of CNs

Common nouns are usually interpreted as standing for collections in formal seman-

tics. In type theories, as we have already mentioned, they can be interpreted either

as predicates or as types. We describe several approaches in the literature and briefly

analyse their advantages and, in particular, potential problems.

CNs as Predicates. In the formal semantics literature, the traditional approach

is to interpret common nouns as predicates, as initiated in Montague Grammar

(Montague 1974) where CNs are predicates of type e → t. This has been the dominat-

ing approach in the last several decades and the most obvious advantage is its robust-

ness: it has been extensively studied in various scenarios and is well-understood.

However, this does not mean that the CNs-as-predicates approach does not have

its problems. For example, some critics have pointed out that Montague semantics

is model-theoretic and lacks support in proof-theoretical studies and therefore, for

example, it is not suitable for implementation of reasoning tools. Some people think

that this is a regrettable weakness for model-theoretic semantics because reasoning

is one of the major motivations of conducting formal semantics in the first place.

Another problem with the CNs-as-predicates approach is its incompatibility with

subtyping, as shown and discussed in Luo (2010, 2012a). When modelling some

advanced linguistic features, one may introduce various subtypes of entities. For

instance, consider the linguistic feature of copredication as exemplified in the fol-

lowing sentence:

(5) John picked up and mastered three books in the library.

where book exhibits both a physical and an informational aspect. In dealing with

this, Asher (2012) considers the subtypes Phy < e and Info < e of physical objects

and informational objects respectively, and interprets pick up as of type Phy → t

and master as of type Info → t. Furthermore, in the Montagovian setting where

CNs are predicates, one would interpret CNs such as book as predicates of dot-type

Phy • Info:

4We cannot explain this in details. See, for example, Beeson (1985) among others.
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book : Phy • Info → t.

Unfortunately, the introduction of subtypes Phy and Info is incompatible with the

above interpretation of book as a predicate. To see the problem, consider the adjective

heavy which can only be applied to physical objects:

heavy : (Phy → t) → (Phy → t)

Now, how can one interpret the phrase heavy book? In order to type

heavy(book),

the type of book should be a subtype of the domain type of heavy, i.e.:

Phy • Info → t ≤ Phy → t,

and, by contravariance, we must have

Phy ≤ Phy • Info.

But this is in the wrong direction (just the other way around!) – intuitively, not every

physical object has an informational aspect. We shall show below that, when CNs

are interpreted as types, the above problem disappears and things work as intended.

Therefore, we may conclude that the CNs-as-predicates approach is incompatible

with the introduction of subtypes such as Phy and Info in dealing with advanced

linguistic features.

CNs as Types. An alternative to the CNs-as-predicates view comes from Modern

Type Theories: instead of interpreting CNs as predicates, one may interpret them

as types. This CNs-as-types approach was first studied in Ranta’s seminal work on

using Martin-Löf’s type theory in formal semantics (Ranta 1994). For instance, the

sentence (6) is interpreted as (7):

(6) Every student talks.

(7) ∀x : Student. talk(x)

where Student is a type that interprets the CN student and talk : Human → Prop

interprets the verb talk.

The CNs-as-types approach, as we have already briefly mentioned, has several

advantages as compared with the CNs-as-predicates approach. For example, it has

been used successfully to deal with selectional restrictions and copredication (Luo

2010) and has been applied to practical reasoning by implementing these ideas in the

Coq proof assistant (Chatzikyriakidis and Luo 2014, 2015). For instance, selectional

restrictions like the ones shown below are handled by virtue of the many sorted

system, with sentences like these producing a semantic type mismatch and therefore

function application is impossible:
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(8) (#) The television ate the cake.

where the predicate [[eat]] : Animal → Prop needs an argument of type Animal while

the television is a physical object not of type Animal.

Adopting the CNs-as-types approach, it is important to note that there must be a

compatible subtyping mechanism in the type-theoretical framework for, otherwise,

the approach would not be viable. For instance, in the semantics (7) of the above

example, Student is a subtype of Human; it is this subtyping relationship that makes

the application talk(x) in (7) well-typed. Fortunately, there is a subtyping mechanism

called coercive subtyping (Luo 1999; Luo et al. 2012) that is suitable for modern

type theories and that, as shown by the second author (Luo 2010, 2012a), makes

the CNs-as-types approach viable. The authors of the current paper have studied

this approach systematically to show how various classes of CNs with adjectival and

adverbial modifications can be interpreted as types in MTTs (Chatzikyriakidis and

Luo 2013, 2016). We shall consider this further in Sect. 5, i.e. how dependent types

can be used to interpret CNs in more advanced situations.

Interpreting CNs as types, one can have a straightforward treatment of copredica-

tion. Considering the above example (5) (cf., the discussion following that), book

is interpreted as a type, a subtype of Phy • Info (a book has both physical and

informational aspects):

Book ≤ Phy • Info.

So in MTT-semantics, especially with the dot-types as defined in Luo (2010), the

coordination in (5) can be treated as intended since pick up and master are both

of type Book → Prop:

pick up : Phy → Prop ≤ Phy • Info → Prop ≤ Book → Prop

master : Info → Prop ≤ Phy • Info → Prop ≤ Book → Prop

Put in another way, the problem of incompatibility with subtyping is not a problem

in the CNs-as-types approach.

Of course, the CNs-as-types approach, as a relatively new way to interpret CNs,

may have its own problems or issues worth being investigated further. One of them is

how to deal with negated sentences as mentioned in the introduction; we shall devote

Sects. 3 and 4 in the current paper to propose a solution to this.

Another issue worth paying a special attention to is the need of proof irrelevance

in formal semantics based on MTTs. This issue has been studied by the second author

in Luo (2012), where it is shown that, in order to give an adequate formal semantics,

the MTT that is used must have the ability to impose proof irrelevance. Intuitively,

proof irrelevance means that, for any logical proposition P and any two proofs p

and q of P, p and q are equal. The importance of this can be explained by means of

an example using Σ-types to interpret some of the CNs modified by adjectives. For

instance, the phrase handsome man can be interpreted as Σ(Man, handsome),

where Man is a type, handsome : Man → Prop and the Σ-type consists of pairs

(m, p) such that p is a proof that m is handsome. In such examples, proof irrelevance
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is required in order to obtain correct identification criteria for handsome men: we

need that (m, p) = (m′, p′) if and only of m = m′; put in another way, as soon as m

and m′ the same, so are p and q. (See Luo 2012 for a more detailed explication.)

It is worth pointing out that, if the above argument (or that given in Luo 2012)

is correct, then it would not be adequate to use Martin-Löf’s type theory for formal

semantics because one cannot impose that every two proofs should be identified

since, in Martin-Löf’s type theory, propositions and types are identified. If one did

identify all proofs/objects of the same proposition/type in Martin-Löf’s type theory,

one would not have types with more than one object anymore! That would of course

be absurd. Therefore, it seems that it is better to use an MTT where there is a clear

distinction between propositions and types. In our work on MTT-semantics, we have

used UTT (Luo 1994) where there is a distinctive (and impredicative) type Prop of

logical propositions. UTT is used in the examples in the current paper as well.

CNs as Predicates in a Dependent Type Theory. A number of researchers work-

ing on the application of constructive type theories into linguistic semantics have

taken the traditional route, interpreting CNs to be predicates rather than types. Such

proposals can be found in Krahmer and Piwek (1999); Bekki (2014); Tanaka et al.

(2015) among others. For instance, Bekki and his colleagues have considered DTS

(Bekki 2014), a system with Π -types, Σ-types, the type of natural numbers and the

equality types (as in Martin-Löf’s type theory), together with a newly introduced

@-operator to deal with anaphora and presupposition. The propositions-as-types

principle is adopted so that the embedded logic as in Martin-Löf’s type theory can

be used for formal semantics.5

In DTS, CNs are interpreted as predicates. For example, instead of interpreting the

CN man as a type, the DTS-interpretation of man is a predicate Man with domain e,

the type of entities.6 This employs the traditional Montagovian approach to CNs and

has the advantage of being well-understood (but of course looses the advantageous

points of the CNs-as-types approach discussed above).

In DTS, Π and Σ are used as logical operators and play a useful role in defin-

ing its notational devices called dynamic conjunction/disjunction for dealing with

anaphoric expressions/discourses. Unlike the CNs-as-types approach, using DTS

for formal semantics does not use other types available in a modern type theory

to interpret CNs or to deal with other linguistic issues (for example, it does not

employ disjoint union types or type universes as in MTT-semantics to interpret more

5DTS as described in Bekki (2014) does not seem to contain the other logical type constructors such

as disjoint union or the empty type. It is unclear how to define some of the logical operators such as

negation without the empty type. We might assume that DTS be extended with such types and type

constructors, since a logic in DTS is needed for doing formal semantics. (Bekki and Mineshima,

in a private communication with the authors after seeing this footnote, have clarified that DTS is

intended to contain these type constructors; this is further clarified by adding a new paragraph in

Sect. 1.3 of their paper in the current collection Bekki and Mineshima 2016).
6Formally, the type of a predicate is the function type e → U, where U is either a type universe or

a totality of propositions. We assume that DTS be extended with such a type.
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sophisticated noun phrases such as privative adjectival modification). Like the tradi-

tional CNs-as-predicates approach in Montague semantics, it suffers from the incom-

patibility with subtyping extensions. For example, contrary to the claim made in

Tanaka et al. (2015), if we extended DTS with types Phy of physical objects and

Info of informational objects, the problem as discussed above would still exist when

one tries to interpret the phrases such as heavy book.

CNs as Both Predicates and Types. Another interesting alternative suggestion pro-

posed by researchers like Retoré (2013) (and, to some extent, Asher et al. 2016),

argues that we could employ both predicates and types in interpreting (some) CNs.

For instance, the CN man can be interpreted as both a type Man and a predicate

man : e → t (for example, both Man and man being constants). Then, we could

use a suitable interpretation: to use Man when a type is required and man when a

predicate is. For instance, one can use a CNs-as-types interpretation when dealing

with the copredication feature and a CNs-as-predicates interpretation in some other

situations. This may sound very desirable indeed, but we think it has a potentially

serious problem: it is unclear how the two interpretations of the same CN relate to

each other. For this to work, we would need, for example:

(*) For any x : e, x : Man if and only if man(x) is true.

In other words, (∗) is the basis for having two interpretations of man (type Man

and predicate man) at the same time! Unfortunately, we cannot simply stipulate

that the requirements like (∗) be the case, for if we did this in general, there would

be problems with the setting (in Church’s simple type theory) including that type

checking would become undecidable. This is because the truth of a logical formula

is undecidable and, as a consequence, one cannot employ the embedded logics in

such systems. We do not see how we can sidestep this problem, if at all. Research

seems called for to clarify this further.

3 Predicational Forms of Judgements in Formal Semantics

As mentioned in Sect. 1, the MTT-semantics, which takes the CNs-as-types approach,

faces the problem of interpreting negated sentences and conditionals. We make a

proposal for predicational forms of type-theoretical judgements so that the corre-

sponding predicational forms of judgemental interpretations in MTT-semantics can

be used in interpreting composite sentences with those sentences as components.7

7This proposal was started by considering a predicational form for a non-hypothetical judgement,

proposed in an email communication by the second author with Koji Mineshima during ESSLLI

2014. It was further developed to consider the logical operator not, first proposed in Chatzikyriakidis

and Luo (2014) and further developed here, for negated judgements � a : A to interpret negated VPs

and hypothetical judgements (e.g. conditionals).
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3.1 Predicational Forms of Non-hypothetical Judgements

As explained above, in MTT-semantics, most of the sentences are interpreted as

propositions. However, because CNs are interpreted as types, some sentences are

better interpreted as judgements, rather than propositions. For instance, the sentence

(1) can be interpreted as (2), repeated here as (9) and (10), respectively:

(9) John is a man.

(10) j : Man

where Man is a type. A judgement of the form (10) is called non-hypothetical because

it does not depend on other contextual assumptions. Formally, a non-hypothetical

judgement is a judgement Γ ⊢ a : A such that the context Γ is empty.

In general, the predicational form of the non-hypothetical judgement a : A is the

proposition pA(a), defined in the following definition.

Definition 1 (predicate pA) Let A be a type. Then, predicate pA : A → Prop is

defined as: for any x : A, pA(x) = true, where true : Prop is any (fixed) tautological

proposition.

It is straightforward to see that a : A is derivable if, and only if, pA(a) is true (in

the sense that the synthetic judgement ‘pA(a) true’ is derivable).

Example. Consider (9) and its judgemental interpretation (10). The corresponding

propositional interpretation of (9) is (11), which is a proposition:

(11) pMan(j).

Therefore, for example, the composite sentence (12) can be given semantics in (13):

(12) John is a man and he is happy.

(13) pMan(j) & happy(j).

Remark It is worth noting that the semantic meanings of two logically equivalent

propositions may be (intensionally) different. For instance, when j : Man, the propo-

sition pMan(j) is logically equivalent to the true proposition true. However, the well-

typedness of pMan(j), i.e., that pMan(j) is a proposition of type Prop, presupposes the

derivability (or, informally, correctness) of the judgement j : Man, while the well-

typedness of true does not.

3.2 Predicational Forms of Negated Judgements

Consider the following negated sentence:

(14) John is not a man.
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Intuitively, the interpretation of (14) would correspond to the negated judgement

� j : Man, where j is the interpretation of John. What would be a predicational form

of such a negated judgement?

Before answering this question, we should first note that it would not be always

correct to interpret (14) as ¬pMan(j) because its well-typedness presupposes that

j : Man (cf., the above remark). Put in another way, we should realise that, in (14),

the interpretation of John may not always be of type Man; instead, it could be some

object which is not a man.

In order to interpret such cases of negation in NL sentences like (14), we have

proposed the following operator not
8:

not : ΠA : cn. (A → Prop) → (Obj → Prop),

where Obj is the top type in the universe cn of (the interpretations of) common

nouns. That is, for every A : cn, A ≤cA
Obj for some cA.

Notation We shall use the following notations.

• For a : A, we shall use ā to denote cA(a).

• We often omit the first argument of not and the coercion operator of its third

argument by writing not(p, b) for not(A, p, b̄).

The negation operator not satisfies several logical laws including the following

concerning its relationship with the predicate pA as defined in Definition 1:

(L1) For any A : cn and a : A, not(pA, a) ⇐⇒ ¬pA(a).

(L2) If A ≤ B, then not(pB, c) =⇒ not(pA, c), for any c : C : cn.

Using not, the predicational interpretation of (14) is the proposition in (15):

(15) not(pMan, j).

There are two possibilities according to the interpretation j of John: (1) if j : Man then,

by the above law (L1), (15) is logically equivalent to ¬pMan(j), which is logically

false; (2) if j : A for some A which is not Man, then the truth value of (15) could be

either true or false, or even unknown.

Here are some further examples with negated VPs. The propositional interpreta-

tions of (16) and (17) are (18) and (19), respectively:

(16) Tables do not talk.

(17) Red tables do not talk.

(18) ∀x : Table. not(talk, x).

(19) ∀y : Σ(Table, red). not(talk, y).

where talk : Human → Prop, red : Phy → Prop and Table ≤ Phy. We have used Σ-

types to interpret modified CNs: [[red table]] = Σ(Table, red). Because Σ(Table,

8
not was first proposed in Chatzikyriakidis and Luo (2014) to deal with negated VPs. We develop

the idea further in this paper.
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red) ≤ Table (assuming that the first projection be a coercion), it is straightforward

to see that (18) implies (19) (see Sect. 4 for these and more examples and their Coq

verifications, including uses of the laws (L1) and (L2) for not).

3.3 Conditionals: Predicational Forms of Hypothetical

Judgements

Conditionals occur in sentences like (20):

(20) If John is a student, he is happy.

Since its premise has a judgemental interpretation, (20) may be interpreted as corre-

sponding to the following judgement:

(21) j : Student ⊢ happy(j) true

What is the predication form of (21)? In general, what are the predicational forms of

hypothetical judgements of the form Γ ⊢ J , where Γ ≡ x1 : A1, ..., xn : An is non-

empty (i.e., n ≥ 1)? This requires us to consider the following predicate PA (with P

in capital), defined by means of the not operator.

Definition 2 (predicate PA) Assume that A, B : cn. Then, predicate PA : B → Prop

is defined as: for any x : B, PA(x) = ¬not(pA, x̄), where pA is the predicate defined

in Definition 1.

Intuitively, one may regard PA(b) as a propositional representation of the

judgement that b is of type A, even in a position as a premise. For instance, the

predicational form of the hypothetical judgement (21) that interprets (20) is (22),

which is the abbreviation of (23):

(22) PStudent(j) =⇒ happy(j)

(23) ¬not(pStudent, j) =⇒ happy(j)

where j : B for some B : cn.

Remark Note that it would not be correct to interpret (20) as the following proposition

with the predicate pStudent (with a small p):

(24) pStudent(j) =⇒ happy(j)

since the well-formedness of (24) would have presumed that j : Student which may

not be the case when one utters (20). Put in a more precise way, there are two

possibilities here in understanding (20):

1. j : Student. In this case, (24) would be correct and logically equivalent to (22), by

the law (L1) for not.

2. j : A (and A is not Student; e.g., A = Human).9 In this case, (24) would be incorrect

(pStudent(j) is not well-typed) and the correct interpretation of (20) is (22).

9This is the case, for example, when we do not know the type of John in the NL context.
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4 Examples with Coq Experiments

We have put the above proposal for predicational forms into the proof assistant

Coq (The Coq Team 2007), where the MTT-semantics has been implemented

(Chatzikyriakidis and Luo 2014). In particular, we have implemented the setting of

predicational forms, considered several relevant examples and their Coq implemen-

tations, and conducted examples of reasoning for the corresponding predicational

semantics. Space considerations do not allow us to give a detailed exposition of how

Coq works – see Appendix A where a brief introduction to how Coq works is given,

and Appendix B where one can find all of the data and assumptions for the examples

in this paper to go through.

4.1 General Set-Up for Predicational Forms

We shall implement the basic set-up of predicational forms in Coq. First of all, the

predicate pA in Definition 1 is defined as pr in Coq as follows:

Definition pr:= fun (A:CN)(a:A)=>True.

With pr, the predicational form of j : Man that interprets ‘John is a man’, is the

following proposition (cf. (9–10))

pr Man John: Prop

If we unfold the definition, this will just return True.

Now, the next step is to introduce the negation operator not.

Parameter NOT: forall A:CN, (A->Prop)->(Object->Prop).

When declaring NOT, we have made the first CN-argument to be implicit, using

Coq’s command Set Implicit Arguments; this means that, when we write

NOT-expressions, its first argument is omitted, just like our informal notations.

For example, instead of NOT Human talk John, we omit Human by writing

NOT talk John, which Coq now accepts.

We need then to implement the logical laws (L1-L2) for not. We implement these

laws using the V ariable declarations. With this, and given that we have introduced

a local section, these laws will appear as part of the context of the relevant proofs.

However, the logical laws (L1-L2) are generic: (L1) is for arbitrary A ≤ Obj and (L2)

is for any A ≤ B. Both of these conditions are not representable generically in Coq,10

although every individual case can be done. For instance, for the first law (L1): for

10To get such genericity would require the so-called bounded quantification which is usually not

available in a type theory of any sophistication.
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any a : A ≤ Obj, ¬not(pA, a) ⇐⇒ pA(a), Coq will complain that not(pA, a) is

ill-typed because there is no way to assume an arbitrary subtype A of Obj. Although

to do this for each individual case is tedious, it still can be done. We have to declare

the laws for each type in the case of the first law and each subtyping relation for

the second one. We present the rules for the type Man and the subtyping relation

Man < Human.

Variable NOT1_m: forall a:Man, (NOT (pr Man) a) <->

not (pr Man a).

Variable NOT2_hm: forall (a : Human), NOT (pr Human)

a -> NOT (pr Man) a.

Finally, the predicate PA in Definition 2 is defined as PR in Coq. Again the same

problems of generality arise so we show the definition with the B in the original

definition replaced by types Man and Object respectively (we note this with (m, o)

following PR in the code):

Definition PR_m := fun A:CN, fun x:Man => not (NOT

(pr A) x).

Definition PR_o := fun A:CN, fun x:Object => not (NOT

(pr A) x).

4.2 Examples with Explanations

We now give some examples to demonstrate how predicational forms are used to give

propositional semantics of negated sentences and conditionals when judgemental

interpretations are involved. For each example, we shall give its MTT-semantics as

well as its Coq representation and, if needed, we shall explain the related reasoning

about the semantics.

Example 1

(25) John is a man and John is not a man.

(26) pMan(j) & not(pMan, j), where j : Man

(27) pr Man John ∧ NOT (pr Man) John

Note that, by the first law (L1) of not, the above sentence is equivalent to false.

Example 2

(28) Tables do not talk.

(29) ∀x : Table. not(talk, x).

(30) forall x:Table, NOT talk x

where talk : Human → Prop.
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Example 3

(31) Red tables do not talk.

(32) ∀y : Σ(Table, red). not(talk, y).

(33) (all redtable) (NOT talk).

whereredtable is defined as a Σ-type, implemented by means of Coq’s equivalent

dependent record mechanism (see Chatzikyriakidis and Luo 2014):

Record redtable : CN := mkredtable{rt :> Table; _ : Red rt}.

where Red : Object -> Prop being a predicate over the top type Object in

cn, and all is the name of the standard universal quantifier:

Definition all := fun A:CN, fun P:A->Prop => forall x:A,

P x.

We can now prove the following theorem since redtable is a subtype of Table

with the first projection as coercion:

Theorem TABLE : (all Table) (NOT talk) -> (all redtable)

(NOT talk).

To prove this, we unfold all the definitions and apply intros, moving the con-

sequent as a hypothesis:

TABLE < cbv. intro.

1 subgoal

H : forall x : Table, NOT talk x

x : redtable

============================

NOT talk (let (r3, _) := x in r3)

Then, applying H will complete the proof.

Example 4

(34) It is not the case that John is not a man.

(35) ¬not(pMan, j), where j : Man.

(36) not (NOT (pr Man) John)

We can show that this sentence is true. We turn this into a theorem and see if we can

prove it. If it is true, this should be possible:

Theorem NOTNOTMAN: not (NOT (pr Man) John).
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Here, for simplicity, we have introduced the classical law (as an axiom). Coq goes

into proof-mode:

Classical_Negation : forall P : Prop, ˜ ˜ P <-> P

NOT_1m : forall x : Man, NOT (pr Man) x -> ˜ pr Man x

============================

˜ NOT (pr Man) John

where the hypothesis NOT1_m is an instance of the (L1) law for the type Man (as

discussed earlier). We unfold the definitions with cbv and also unfold pr in the type

of NOT1_m. Then, we call a variant of Coq’s built-in auto tactic, eauto. This suffices

to get a proof.

Example 5

(37) If John is a student, he is happy.

(38) PStudent(j) =⇒ happy(j)

(39) PR_m Student John -> happy John.

Note that the semantics of the above sentence is not pStudent(j) =⇒ happy(j);

instead, PStudent as defined in Definition 2 should be used. As remarked at the end

of Sect. 3.3, if j : Student, we can show that PStudent(j) is equivalent to true and the

above sentence is logically equivalent to happy(j).

Example 6

(40) Some linguists are logicians.

(41) ∃l : Linguist. not(pLogician, l)

(42) (some Linguist) (NOT (pr Logician)).

Unfolding the definition of some in (42), we get:

(43) exists x:Linguist, NOT (pr Logician) x

Please note that the semantics of this example cannot be ∃l : Linguist. ¬pLogician(l),

which would be ill-typed because l is not of type Logician.

Example 7

(44) It is not the case that John is a student.

(45) ¬PStudent(j), where j : Human.

(46) Theorem JOHNNOTSTUDENT: not (NOT (pr Student) John).

Note that, by Definition 2, (45) is the abbreviation of ¬¬not(pStudent, j), which is

(classically11) equivalent to not(pStudent, j), the semantics of ‘John is not a student’.

11In order to do this in Coq, we need to introduce a classical axiom (say, the double negation axiom).
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Example 8

(47) It is not the case that every linguist is a logician.

(48) ¬∀l : Linguist. PLogician(l)

(49) not (forall l:Linguist, PR_l Logician l)

where PR_l is the predicate PLinguist , similarly defined as PR_m at the end of

Sect. 4.1. Classically, the semantics is equivalent to ∃l : Linguist. not(pLogician, l).

Indeed, we can prove the following theorem in Coq (the only if part of this

equivalence):

Theorem NOTLL : not (forall l:Linguist, PR_l Logician l)

-> exists l:Linguist, NOT (pr Logician) l.

Example 9

(50) It is not the case that every human is a logician.

(51) ¬∀h : Human. PLogician(h)

(52) not (forall h:Human, PR_l Logician h)

Similarly to the previous example, the semantics is equivalent to ∃h : Human.

not(pLogician, h). Most importantly we can prove (51) from (48):

Theorem NOTHL: not (forall l:Linguist, PR_l Logician l)

-> not (forall h:Human, PR_h Logician h).

Example 10

(53) If John is not a human, then John is not a man.

(54) not(pHuman, j) =⇒ not(pMan, j)

(55) NOT (pr Human) John -> NOT (pr Man) John

By the second law (L2) for not, the above is true because Man ≤ Human. In Coq,

we can prove the following:

Theorem NOTHUMANMAN: NOT (pr Human) John -> NOT (pr Man) John.

5 Indexed Types for Interpretation of CNs

The semantics of common nouns involve a number of fine-grained distinctions that

require careful treatments that go beyond a straightforward standard interpretation.

For example, there are clear cases like gradable nouns or nouns exhibiting temporal

sensitivity whose semantic treatments are difficult, if not impossible, to be handled

using the standard view:
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(56) Dead rapper fired shot first.

(57) What an enormous idiot!

In the first example taken from Tonhauser (2002), the rapper fired the shot while

still alive and not after he died. In order to capture this, one has to allow a time

argument for the nominal that can be potentially different to the time at which the

rest of the sentence is true. In the second example, the most natural reading we get,

as Morzycki (2009) argues, is not one about large physical size but rather of the

nominal holding to a high degree. Although the problem of handling this type of

cases is orthogonal to the interpretation of CNs as predicates or as types, to deal

with them in the CNs-as-types approach may be more challenging because there are

fewer types than predicates and in general, it is more delicate when dealing with

types rather than with predicates. Also, the issue of providing accounts for gradable

nouns or the temporal sensitivity of nouns is far too complex to engage with in full

in the current paper. In this section, we will try to show how one can approach this

type of phenomena in MTTs, taking the CNs-as-types view. In particular, we will

show how more fine-grained issues such as those above can be handled using indexed

types in MTTs.

Indexed types are special kinds of dependent types – types dependent on indexes.

Put in another way, indexed types are just families of types that are indexed by a type

parameter whose type is usually a simple one. Example types of indexes include, for

example, the type N of natural numbers, the type Human of human beings, and the

type Height of heights (see below). For instance, one may consider, for h : Human,

a family of types Evt(h) of events that are conducted by h; such a type family was

used in Asher and Luo (2012) to study linguistic coercions in formal semantics.12

In this section, we show that indexed types also provide useful tools to deal with the

extra fine-grainedness required in advanced treatment of CNs.

The general idea is that CNs like Human, Man and Table might come in different

guises depending on the type they are indexed each time. Their general form is a

CN-valued function from indexes. For example, one might wish to have the family

of types of humans that are indexed with a Height parameter:13

(58) Human : Height → cn

Then, Human(n) is the family of types of humans with height n. This idea has

been used by the authors in Chatzikyriakidis and Luo (2014) to deal with gradable

adjectives as well as adjectives involving temporal relations like former. According

12In general, dependent types are useful in describing dependent event types, giving a fine-grained

treatment of Davidsonian event semantics (Davidson 1967; Parsons 1990). In this respect, an initial

study of how event semantics can be considered in dependent type theories has been carried out

(Luo and Soloviev 2016) and further work is at the moment in progress.
13A similar idea has been used by de Groote (2007) in discussing type-theoretic extensions of

abstract categorial grammars. However, indices there are used on the (linguistic) syntactic level,

trying to capture morphological considerations (e.g. gender, number etc.); in effect those indices

correspond to elements that are morphologically realized. In our case, the approach deals with

things that are not morphologically realized (e.g. grades) and is purely on the (linguistic) semantic

level.
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to Chatzikyriakidis and Luo (2014), gradable adjectives are interpreted as predicates

that take an indexed cn argument. For example in the case of tall, the argument is of

type Human(n), which is indexed by n, a height parameter. This is essential if one

wants to reason about heights, e.g. in the inference example below:

(59) John is shorter than George.

George is 1.70.

Is John less than 1.70 tall? [Yes]

See Chatzikyriakidis and Luo (2014, 2016) for more details on the analysis of com-

paratives.

The above idea of types indexed by heights can be generalised in that types can be

indexed by any degree of measurement. One can introduce a type universe Degree

of all degrees which contain all measurement types such as Height, W eight, W idth,

etc. Also, some nouns are indexed by more than one parameter. For instance, we

may have that humans are indexed by one’s height as well as one’s weight. In such

a case, we would have: Human : Height → W eight → cn and, therefore, a type

Human(n, w) would be indexed by both height n and weight w.

Now, let us go back to example (57) repeated below:

(60) What an enormous idiot!

The problem here is that enormous idiot does not designate an idiot who is enormous

in terms of size but rather enormous in terms of idiocy. Morzycki (2009) argues

that these nouns have similarities with gradable adjectives and attempts a similar

analysis to adjectives like tall for the noun idiot. The idea is that idiot involves

a measure function from individuals to their degree of idiocy. On the other hand,

Constantinescu (2013) assumes that the interpretation in huge idiot is one of size

as in the case of huge man, albeit with the following difference: nouns involving

abstract parameters as well as abstract nouns denote kind of tropes. The idea of

tropes has been developed by Moltmann (2003, 2007) and in simple terms it defines

kinds of tropes as a ‘universal whose instances are concrete property manifestations’

(Moltmann 2003, 2007). Constantinescu (2013) exploits this idea and proposes two

types of nouns involving tropes: type A, i.e. nouns involving abstract parameters like

idiot and type B, i.e. abstract nouns like wisdom, generosity etc. The proposal is that

type A nouns involve types of individuals in which a property (for example idiocy)

is instantiated while type B nouns are analyzed as two place predicates, basically

a relation between tropes and individuals that instantiate this trope (for example

generosity(p,x)).

Such an idea is very naturally interpreted using Sigma-types. Let us explain.

According to Luo (2012), a possible characterization of CNs is by means of Σ-

types. For example, the CN passenger can be represented by the following Σ-type:

(61) Passenger[T ] = Σp : Person.Journey[T ](p)

In the above example, Person is the type of persons and Journey[T](p) the finite type

of journeys in T that the person p has made. There is a way to deal with nouns with
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abstract parameters and abstract nouns in the same sense. For example, idiot can be

represented as the following Σ-type:

(62) Idiot = Σ i : Idiocy.Human(i) × i > STND

Intuitively, an object of the above type is a triple (i, h, p) consisting of a degree i

of idiocy, a human h whose idiocy degree is i and a proof that i is bigger than the

idiocy threshold STND. Note that this account has not only similarities with the ideas

proposed in Constantinescu (2013) but also brings out a connection with gradable

adjectives in the sense that they both involve a degree parameter. However, these two

constructions are clearly different in terms of their formal status, adjectives being

predicates while nouns types.

With these assumptions in line, we now have to show to get the interpretation we

need in the cases like enormous idiot. As already said, we take gradable adjectives to

take arguments of type D : Degree → cn indexed by grade parameters D : Degree.

Thus, we can assume the following type for enormous:

(63) Enormous : ΠD : Degree.ΠA : D → cn. A(d) → Prop

However, this type does not say anything about the semantics of enormous. intuitively,

what we want to get in the case of enormous idiot is someone who is an idiot to a high

degree. This means that this degree must be higher than the degree of idiocy needed

for someone to be considered an idiot (i in the case of idiot). Assume that there are

different standards depending on the case: first there is a standard of idiocy. One

needs to exceed this in order to be counted as an idiot. Then, there is a polymorphic

standard for enormous. Above this standard a given degree is considered as being

enormous:

(64) STNDid : Idiocy

(65) STNDen : ΠD : Degree.D

With this in line, one can assume the following type for enormous:

(66) enormous :

ΠD : Degree ΠA : D → cn Πp : (Σd : D. d > STNDen(D)). A(π1(p))

→ Prop

So, what about the interpretation of enormous idiot? This is given below as a Σ type

in line with various proposals within the MTT literature to treat adjectives as Σ types

(Ranta 1994; Chatzikyriakidis and Luo 2013; Luo 2011) among others:

(67) Enormous Idiot = Σh : Idiot. enormous(Idiocy, Human, (π1(h), q), π1(π2(π1

(h)))

where q : π1(h) > STNDid .

If you take the first two arguments to be implicit (a form of syntactic sugar), this is

rewritten as:

(68) Enormous Idiot = Σh : Idiot. enormous((π1(h), q), π1(π2(π1(h)))

where q : π1(h) > STNDid .
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Now, even though we concur with Constantinescu as regards the idea of (kinds

of) tropes, we do not agree that no degrees are involved in these cases. On the other

hand, as Solt (2009) notes in a rather interesting discussion, assuming that nouns

and adjectives pattern together as regards degree structure, then the fact that there

is no coherent class of adnominal modifiers (in contrast to adjectival modifiers, e.g.

too/very etc.) is a puzzling fact. According to what we have proposed in this chapter,

this fact can at least be partially explained. This is because, even though nouns like

idiot involve a degree parameter, they are however not predicates but rather Σ types.

This is a major difference as compared to gradable adjectives and can be used as

the basis for distinguishing their very different distributional properties. The exact

details of this idea are however left for future research.

Another issue discussed in the literature on gradable nouns and their modification

by adjectives, is the so-called bigness generalization (Morzycki 2009). This gener-

alization specifies that low degree interpretations by size adjectives are not possible,

i.e. cases like small idiot. This is, we believe, a non-existing generalization. Cross-

linguistically one can find violations of this generalization. In Greek one can have

megalos anthropos ‘a big human’ and mikros anthropos ‘small human’ to mean

someone who shows a great degree of humanness (or achievement as a human) and

low degree of humanness (or achievement) respectively. So, if this generalization

is not there, why cases like small idiot are deviant? We believe that Constantinescu

is right in pointing out that being an idiot involves idiocy to a relatively big extent.

Small on the other hand, specifies that the degree should hold to a small degree, thus

leading to a contradiction (basically one would end up with contradictory statements

like i > STNDid ∧ i < STNDid). We believe that this account is on the correct track.

It is surely simpler as it treats adjectives like small and big in the same sense by

positing that the infelicitousness is actually due to the lexical semantics of nouns like

idiot.

The idea that CNs may involve index parameters has been pursued with time

parameters as well in Chatzikyriakidis and Luo (2014). There, it was proposed that

a CN like president is interpreted as a family of types indexed by t : Time:

(69) president(t) : cn.

The question that quickly comes to mind is what is the relation between a regular

CN type like Human and its indexed counterpart, e.g. Human(n). One idea we can

pursue is to consider that the type Human(n) be actually a subtype of Human of all

human beings, in effect:

(70) Human(n) <c Human,

where is a natural number argument representing human heights. In general, one can

consider a coercion parametrized by the elements of the universes cn and Degree:

for every type A : cn and any D : Degree, one can consider a parametrized coercion

from the indexed CNs AD(d):

(71) AD(d) <c(A,D) A.

In the particular case (70), A is Human, D is Height and AD(d) is Human(n).
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Something like the above has to be further restrained given that it will otherwise

predict that every CN induces a coercion between its parametrized versions and

itself. Thus, it will predict nouns with abstract parameters and abstract nouns to

be compatible with height indexed versions and so on. In order to deal with this,

one might assume that every type A specifies its range of possible refinements.

For example Human will specify that refinements HumanD with D : Degree will

be possible for the types Height, W eight, Size, W idth : Degree (the list of types

is not exhaustive here). One can have specific sub-universes of Degree containing

the types needed for each case. Then, parameterisations are considered over such

sub-universes.

Also, potentially, one may need to further allow more than one parameter to be

present in nouns. For example, this will be needed in cases like the following:

(72) The dead rapper was an enormous idiot

In the above example, we need to capture the fact that the dead rapper was an idiot

to a great extent, but also the fact that this was before he was dead! In this sense, we

need both the i grade as well as a time parameter for idiot. Such a flexible treatment

is available but we will not get into details here.

6 Concluding Remarks

In this paper, after summarising and discussing several different approaches in the

interpretation of common nouns in type-theoretical semantics, we have proposed

a solution to the issue of interpreting negated sentences and conditionals in MTT-

semantics. The account was checked using the proof assistant Coq and it was shown

that it produces the correct results as regards to its inferential properties based on

the semantic treatment. We have also studied the use of indexed types in dealing

with advanced linguistic issues like gradability and temporal sensitivity, showing the

potential of the CNs-as-types approach from this particular respect.
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A. Coq: A Gentle Introduction

Coq is an interactive theorem prover, i.e. a proof-assistant, that implements the Calcu-

lus of Inductive Constructions (pCIC, see The Coq Team 2007), in effect an MTT.14

The basic idea behind Coq is as follows: it helps one to see whether propositions

14The calculus pCIC is very similar to UTT (Luo 1994), the MTT we have used in MTT-semantics.

This is the case especially after the universe Set became predicative in the version 8 of Coq in 2004

(The Coq Team 2007).
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based on statements previously pre-defined or user defined (definitions, parameters,

variables) can be proven or not. To give a very short example on how Coq operates,

imagine that we want to prove the following propositional tautology:

(73) ((P ∨ Q) ∧ (P → R) ∧ (Q → R)) → R

Given Coq’s typed nature we have to introduce the variables P, Q, R as being of type

Prop (P, Q, R : Prop). Using the command Theorem, we put Coq into proof mode:

(74) Theorem A : ((P ∨ Q) ∧ (P → R) ∧ (Q → R)) → R

Theorem A:((P\/Q)/\(P -> R)/\(Q->R))->R.

1 subgoal

============================

(P\/Q)/\(P -> R)/\(Q -> R)->R

The idea from this point onwards is to guide the prover into the completion of the

proof using proof tactics that are either already predefined or can be defined by

the user using the tactical language Ltac. For the case interested, we first introduce

the antecedent as an assumption using intro:

A < intro.

1 subgoal

H :(P \/ Q)/\(P -> R)/\(Q -> R)

============================

R

We split the hypothesis into individual hypotheses using destruct

destruct H0.

1 subgoal

H : P \/ Q

H0 : P -> R

H1 : Q -> R

============================

R

Now, we can apply the elimination rule for disjunction (elim) which will basically

result in two subgoals:

elim H.

2 subgoals

H : P \/ Q

H0 : P -> R

H1 : Q -> R

============================
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P -> R

subgoal 2 is:

Q -> R

The two subgoals are already hypotheses. We can use the assumption tactic that

matches the goal with an identical hypothesis and the proof is completed:

assumption. assumption.

1 subgoal

H : P \/ Q

H0 : P -> R

H1 : Q -> R

============================

Q -> R

Proof completed.

Now, what we need to do in order to reason about NL is to implement our theoretical

accounts we have provided in Coq. For example, one must introduce the universe cn

and further declare the types of the universe. For the moment, since universe con-

struction is not an option in Coq, we define cn to be Coq’s predefined Set universe. We

show these, plus the introduction of individuals John and Mary and quantifier some.

We also introduce the subtyping relations Man < Human < Animal < Object:

Definition CN:=Set.

Parameters Man Human Animal Object:CN.

Parameter John:Man.

Parameter Mary:Woman.

Axiom mh: Man->Human. Coercion mh: Man>->Human.

Axiom ha: Human->Animal. Coercion ha: Human>->Animal.

Axiom ao: Animal->Object. Coercion ao: Animal>->Object.

Definition some:= fun A:CN, fun P:A->Prop=> exists x:A, P(x).

Parameter: Animal->Prop.

With the above definitions one can perform reasoning tasks, for example one might

want to check whether some man walks follows from John walks. We formulate this

as a theorem named EX:

Theorem EX: (walk) John-> some Man (walk).

The next step here is to unfold the definition for the quantifier. This is done using the

cbv command, which basically performs any reduction possible. Then, we move the

antecedent as a hypothesis using intro:
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EX < intro.

1 subgoal

H : walk John

============================

exists x : Man, walk x

At this point, we use the exists tactic to substitute John for x. Using assumption the

theorem is proven.

B. Coq Data and Assumptions

The following gives all of the data and assumptions made in Coq in order to deal

with all the examples discussed in this paper.

Definition CN:=Set.

Parameters Man Human Animal Object Logician Linguist Table:CN.

Parameter John:Man.

Axiom mh: Man->Human.Coercion mh: Man>->Human.

Axiom ha: Human->Animal.Coercion ha: Human>->Animal.

Axiom ao: Animal->Object.Coercion ao: Animal>->Object.

Definition some:= fun A:CN,fun P:A->Prop=>exists x:A, P(x).

Definition pr := fun(A : CN)(a : A)=>True.

Set Implicit Arguments.

Parameter NOT: forall A:CN,(A->Prop)->(Object->Prop).

Parameter Linguist Logician:CN.

Axiom lo:Linguist->Human.Coercion lo:Linguist>->Human.

Axiom lo1:Logician->Human.Coercion lo1:Logician>->Human.

Unset Implicit Arguments.

Definition PR_o:= fun A:CN,fun x:Object=>not(NOT(pr A)x).

Definition PR_m:= fun A:CN,fun x:Man=>not(NOT(pr A)x).

Definition PR_h:= fun A:CN,fun x:Human=>not(NOT(pr A)x).

Definition PR_l:= fun A:CN,fun x:Linguist=>not(NOT(pr A)x).

Definition PR_lo:= fun A:CN,fun x:Logician=>not(NOT(pr A)x).

Parameter Table: CN.

Axiom to: Table->Object. Coercion to: Table>->Object.

Section NEG.

Variable Classical_Negation:forall P:Prop,not(not P)<->P.

Variable NOT_2hm:forall(a:Human),NOT(pr Human)a->

NOT(pr Man) a.

Variable NOT_2ha:forall(a:Animal),NOT(pr Animal)a->

NOT(pr Human) a.

Variable NOT_2ao:forall(a:Object),NOT (pr Object)a->
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NOT(pr Animal) a.

Variable NOT_2hl: forall (a : Human), NOT (pr Human) a ->

NOT (pr Logician) a.

Variable NOT_1m:forall x:Man,NOT(pr Man)x->not(pr Man x).

Variable NOT_1h:forall x:Human,NOT(pr Human)x->not(pr

Human x).

Variable NOT_1a:forall x:Animal,NOT(pr Animal)x->

not(pr Animal x).

Variable NOT_1l:forall x:Linguist,NOT(pr Linguist)x->

not(pr Linguist x).

Variable NOT_1lo:forall x:Logician,NOT(pr Logician)x->

not(pr Logician x).

Parameter Red: Object->Prop.

Record redtable:CN:=mkRedtable{rt:>Table;_ :Red rt}.

We further assume that all the types in the universe D are totally ordered and

dense; i.e., they respect the following axioms:

(reflexivity) ∀A : D. ∀d : A. d ≤ d

(anti-symmetry) ∀A : D. ∀d, d1 : A. d ≤ d1 ∧ d1 ≤ d → d = d1

(transitivity) ∀A : D. ∀d, d1, d2 : A. d ≤ d1 ∧ d1 ≤ d2 → d ≤ d2

(density) ∀A : D. ∀d, d1 : A. d ≤ d1 → ∃d2 : A.d ≤ d2 ≤ d1

Remark There is a pending question w.r.t the formal properties of grades. One of

the common assumptions in the literature is that grades are dense, total, transitive,

anti-symmetric and reflexive. The question is whether these assumptions are enough

or different weaking might be needed depending on the grade in each case. What is

rather difficult to tackle is the formal properties of abstract grades like idiocy.
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