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t. We present an extension of an algorithm for 
omputing di-re
tly the denotation of a modal �-
al
ulus formula � over the 
on�gu-ration graph of a pushdown system to allow ba
kwards modalities. Ourmethod gives the �rst extension of the saturation te
hnique to the fullmodal �-
al
ulus with ba
kwards modalities.1 Introdu
tionRe
ently we introdu
ed a saturation method for dire
tly 
omputing the denota-tion of a modal �-
al
ulus formula over the 
on�guration graph of a pushdownsystem [2℄. Here we show how this algorithm 
an be extended to allow ba
kwardsmodalities. This arti
le is intended as a 
ompanion to our previous work, and assu
h, does not repeat many of the details.2 PreliminariesSin
e we extend our de�nition of modal �-
al
ulus, we give the full details here.The reader is dire
ted to our previous work for the remaining preliminaries [2℄.Given a set of propositions AP and a disjoint set of variables Z , formulas ofthe modal �-
al
ulus are de�ned as follows (with x 2 AP and Z 2 Z):' := x j :x j Z j ' ^ ' j ' _ ' j �' j �' j �Z:' j �Z:' :Thus we assume that the formulas are in positive form, in the sense that negationis only applied to atomi
 propositions. Over a pushdown system, the semanti
s ofa formula ' are given with respe
t to a valuation V : Z ! P(C) whi
h maps ea
hfree variable to its set of satisfying 
on�gurations and an environment � : AP !P(C) mapping ea
h atomi
 proposition to its set of satisfying 
on�gurations. We
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J�Z:'KPV = Tn S � C ��� J'KPV [Z 7!S℄ � S o
J�Z:'KPV = Sn S � C ��� S � J'KPV [Z 7!S℄ owhere V [Z 7! S℄ updates the valuation V to map the variable Z to the set S.The operators�' and �' assert that ' holds after all possible transitions andafter some transition respe
tively; � and � are their ba
kwards time 
ounter-parts; and the � and � operators spe
ify greatest and least �xed points. Anotherinterpretation of these operators is given below. For a full dis
ussion of the modal�-
al
ulus we refer the reader to a survey by Brad�eld and Stirling [1℄.3 The AlgorithmWithout loss of generality, assume all pushdown 
ommands are p a! p0 ", p a!p0 b, or p a! p0 bb0.The extensions to our earlier work [2℄ are given in Pro
edures 1 and 2. Werefer the reader to the original arti
le for a des
ription of the notations used.For a 
ontrol state p and 
hara
ters a; b, let Pop(p) = f (p0; a0) j p0 a0 ! p " g,andRew(p; a) = f (p0; a0) j p0 a0 ! p b g, Push(p; a; b) = f (p0; a0) j p0 a0 ! p ab g,and together Pre(p; a; b) = Pop(p) [ Rew(p; a) [ Push(p; a; b).4 TerminationThe new pro
edures de�ned here add extra 
ases to the termination proof [2℄.We show these 
ases here and refer the reader to the original arti
le for anexplanation of the notation and 
on
epts.Lemma 1 (Termination). The algorithm satis�es the following properties.1. Ea
h subroutine introdu
es a �xed set of new states, independent of the au-tomaton A given as input (but may depend on the other parameters). Tran-sitions are only added to these new states.2. For two input automata A1 and A2 (giving valuations of the same environ-ments) su
h that A1 � A2, then the returned automata A01 and A02, respe
-tively, satisfy A01 � A02.3. The algorithm terminates. 2



Pro
edure 1 Ba
kBox(A;'1; 
;P)((Q1; �;�1; ;F1); I1) = Dispat
h(A;'1; 
;P)A0 = (Q1 [ I [Qint; �;�1 [�0; ;F1)where I = � (p;�'1; 
) j p 2 P 	and Qint = � (p;�'1; 
; a) j p 2 P ^ a 2 � 	and �0 =8>>>>>>>>>>>>><>>>>>>>>>>>>>: ((p;�'1; 
); a;Q) �������������������
Q = �(p;�'1; 
; a)	 [Qpop [Qrew ^Pop(p) = f(p1; a1); : : : ; (pn; an)g ^V1�j�n�I1(pj) aj��!�1 Q0j a��!�1 Qpopj � ^Qpop = Qpop1 [ � � � [Qpopn ^Rew(p; a) = f(p01; a01); : : : ; (p0n0 ; a0n0)g ^V1�j�n0 �I1(p0j) a0j��!�1 Qrewj � ^Qrew = Qrew1 [ � � � [Qrewn

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;[8>><>>: �(p;�'1; 
; a); b; Q� �������� Pre(p; a; b) = f(p1; a1); : : : ; (pn; an)g^V1�j�n�I1(pj) aj��!�1 Qpushj �^Q = Qpush1 [ � � � [Qpushn 9>>=>>;[� �(p;�'1; 
); a; fq�g� j 8b:P re(p; a; b) = ; 	[� �(p;�'1; 
);?;�q"f	� j 8a:Pre(p;?; a) = ; 	[� �(p;�'1; 
; a); b; fq�g� �� Push(p; a; b) = ; 	[� �(p;�'1; 
; a);?;�q"f	� �� Push(p; a;?) = ; 	return (A0; I)
Pro
edure 2 Ba
kDiamond(A;'1; 
;P)((Q1; �;�1; ;F1); I1) = Dispat
h(A;'1; 
;P)A0 = (Q1 [ I [Qint; �;�1 [�0; ;F1)where I = � (p;�'1; 
) j p 2 P 	and Qint = � (p;�'1; 
; a) j p 2 P ^ a 2 � 	
and �0 = 8<: ((p;�'1; 
); a;Q) ������ (p0; a0) 2 Pop(p)^I1(p0) a0��!�1 Q0 a��!�1 Q 9=;[8<: ((p;�'1; 
); a;Q) ������ (p0; a0) 2 Rew(p; a)^I1(p0) a0��!�1 Q 9=;[�((p;�'1; 
); a;�(p;�'1; 
; a)	)	[8<: ((p;�'1; 
; a); b; Q) ������ (p0; a0) 2 Push(p; a; b)^I1(p0) a0��!�1 Q 9=; .return (A0; I) 3



Proof. The �rst of these 
onditions is trivially satis�ed by all 
onstru
tions,hen
e we omit the proofs. Similarly, termination is trivial. The se
ond and third
onditions will be shown by mutual indu
tion over the re
ursion (stru
ture ofthe formula). The new 
ases follow.Case Ba
kBox(A;'1; 
;P) and Ba
kDiamond(A;'1; 
;P):It 
an be observed that all new transitions in A are derived from transitionsI(p0) a�!A Q (or are independent of A and A0). Sin
e A � A0 it follows that alltransitions have a 
ounterpart I(p0) a�!A0 Q0 with Q0 � Q. Hen
e the propertyfollows in a similar manner to the previous 
ases.4.1 ComplexityThe new pro
edures 
hange the 
omplexity of the algorithm slightly, althoughthe algorithm remains in EXPTIME. In parti
ular, the algorithm is now expo-nential in the number of 
ontrol states, the size of the sta
k alphabet and the sizeof the formula. Let m be the nesting depth of the �xed points of the formula andn be the number of states in AV . We introdu
e at most k = O (jPj � j�j �m � j�j)states to the automaton. Hen
e, there are at most O (n+ k) states in the au-tomaton during any stage of the algorithm. The �xed point 
omputations iterateup to an O �2O(n+k)� number of times. Ea
h iteration has a re
ursive 
all, whi
htakes up to O �2O(n+k)� time. Hen
e the algorithm is O �2O(n+k)� overall.5 Corre
tnessWe extend the proofs of 
orre
tness. We refer the reader to our previous workfor the full details [2℄.De�nition 1 (Corre
tness Conditions). The 
orre
tness 
onditions are asfollows. Let A be the input automaton, ' be the input formula1, 
 be the inputlevel and A0 be the result.1. We only introdu
e level 
 states.2. If A is V -sound, A0 is V 
'-sound.3. If A is V -
omplete, A0 is V 
'-
omplete.The �rst 
ondition is obvious. The remaining 
onditions are shown by indu
-tion and require the addition of proof 
ases for the new pro
edures.Lemma 2 (Valuation Soundness). The algorithm is V -sound.1 For 
ases su
h as And(A;'1; '2; 
;P) we take, as appropriate ' = '1 ^ '2.4



Proof. Case Ba
kBox(A;'1; 
;P):We assume that A is valuation sound with respe
t to some valuation V . Byindu
tion the result A1 of the re
ursive 
all is valuation sound with respe
t toV 
'1 . We show that A0 is valuation sound with respe
t to V 
�'1 .We observe that no (p0;�'1; 
) are rea
hable from a state (p;�'; 
; a), hen
ewe show soundness for the latter states �rst.The �rst 
ase is for some b with Push(p; a; b) = ;. In this 
ase, the valuationof (p;�'; 
; a) 
ontains all words of the form bw. Hen
e soundness is immediatelysatis�ed.Otherwise, Push(p; a; b) = f(p1; a1); : : : ; (pn; an)g su
h that for all 1 � j � n,hpj ; aiwi ,! hp; abwi. Take a new transition ((p;�'1; 
; a); b; Q) derived from theruns I1(pj) aj��!A1 Qj for all 1 � j � n, with Q = Q1[Qn. Suppose for some w, w 2V 
�'1(q) for all q 2 Q. By valuation soundness of A1 we know ajw 2 V 
�'1(I1(pj))and hen
e, sin
e all transitions to hp; abwi are from 
on�gurations satisfying '1,we have bw 2 V 
�'1(p;�'1; 
; a) as required.The remaining states are of the form (p;�'1; 
). We �rst deal with the 
asewhen for all b we have Pre(p; a; b) = ;. In this 
ase, the valuation of �'1 
ontainsall words of the form aw for some w. Hen
e, all added transitions are triviallysound.Otherwise, take a new transition ((p;�'1; 
); a;Q) derived from some b,the value of Pop(p) = f(p1; a1); : : : ; (pn; an)g and for all 1 � j � n, theruns I1(pj) wj��!A1 Q0j b��!A1 Qpopj , with Qpop = Qpop1 [ Qpopn , and the value ofRew(p;=) f(p01; a01); : : : ; (p0n0 ; a0n0)g and for all 1 � j � n0, the runs I1(p0j) a0j��!A1Qrewj , with Qrew = Qrew1 [Qrewn . Finally, Q = �(p;�'1; 
; a; b)	 [Qpop [Qrew.Suppose for some w, w 2 V 
�'1(q) for all q 2 Qpop. By valuation soundnessof A1 we know ajaw 2 V 
�'1(I1(pj)) and hen
e all pop transitions leading tohp; awi are from 
on�gurations satisfying '1.Now suppose for some aw, aw 2 V 
�'1(q) for all q 2 Qrew. By valuationsoundness of A1 we know ajw 2 V 
�'1(I1(pj)) and hen
e all rewrite transitionsleading to hp; awi are from 
on�gurations satisfying '1.Finally, 
onsider some bw in the valuation of (p;�'1; 
; a). From the sound-ness of this state, shown above, we have that all push transitions leading tohp; abwi are from 
on�gurations satisfying '1.Putting the three 
ases together, we have for all abw 2 V 
�'1(p;�'1; 
) asrequired.The above 
ases do not 
over the 
ase ?2 V 
�'1(p;�'1; 
). However, sin
eno push transition 
an rea
h this sta
k, we just require the �rst two 
ases andthat (p;�'1; 
;?) = q"f . 5



Case Ba
kDiamond(A;'1; 
;P):We assume that A is valuation sound with respe
t to some valuation V . Byindu
tion the result A1 of the re
ursive 
all is valuation sound with respe
t toV 
'1 . We show that A0 is valuation sound with respe
t to V 
�'1 .We begin with the states (p;�; 
; a). Take a transition ((p;�; 
; a); b; Q).Then there is some (p0; a0) 2 Push(p; a; b) su
h that I1(p0) a0�! QA1. From thesoundness of A1 we know for all w with w 2 V 
�'1(q) for all q 2 Q we havea0w 2 V 
�'1(I1(p0)). Sin
e hp0; a0wi ,! hp; abwi we have hp; abwi satis�es '1and hen
e bw 2 V 
�'1(p;�; 
; a) and the transition is sound.For the remaining states, take a new transition ((p;�'1; 
); a;Q). There arethree 
ases.If the transition was derived from some (p0; a0) 2 Pop(p) and the run I1(p0) a0a��!A1Q, then suppose for some w, w 2 V 
�'1(q) for all q 2 Q. By valuation soundness ofA1 we know a0aw 2 V 
�'1(I1(p0)) and hen
e, sin
e there is a transition hp0; a0awi,a 
on�guration satisfying '1, to hp; awi we obtain aw 2 V 
�'1(p;�'1; 
) as re-quired.If the transition was derived from some (p0; a0) 2 Rew(p; a) and the runI1(p0) a0��!A1 Q, then suppose for some w, w 2 V 
�'1(q) for all q 2 Q. By valuationsoundness of A1 we know a0w 2 V 
�'1(I1(p0)) and hen
e, sin
e there is a transitionhp0; a0wi, a 
on�guration satisfying '1, to hp; awi we obtain aw 2 V 
�'1(p;�'1; 
)as required.Finally, if Q = �(p;�; 
; a)	 then soundness is immediate from the de�nitionof V 
�'1 .Lemma 3 (Valuation Completeness). The algorithm is V -
omplete.Proof. Case Ba
kBox(A;'1; 
;P):We are given that A is valuation 
omplete with respe
t to some valuation V ,and by indu
tion we have 
ompleteness of the result A1 of the re
ursive 
all withrespe
t to V 
'1 . We show A0 is 
omplete with respe
t to V 
�'1 .As in the soundness proof, we begin with the states (p;�'1; 
; a). In the
ase Push(p; a; b) = ; for some b, we either have b =? and the transition from(p;�'1; 
; a) to nq"fo witnesses 
ompleteness, or we have a 6=? and the transitionto fq�g witnesses 
ompleteness.Otherwise Push(p; a; b) = f(p1; a1); : : : ; (pn; an)g. Take some bw su
h thatabw 2 V 
�'1(p;�'1; 
; a). Then we have ajw 2 V 
�'1(pj ; '1; 
) for all 1 � j � n.From 
ompleteness of A1 we have a transition I1(pj) aj�! Qj with w 2 V 
�'1(q)for all q 2 Qj . Hen
e, we have a 
omplete b-transition from (p;�'1; 
; a) asrequired. 6



For the states of the form (p;�'1; 
) we �rst deal with the 
ase when for all bwe have Pre(p; a; b) = ;. In this 
ase we immediately have transitions witnessing
ompleteness.Otherwise, take some abw 2 V 
�'1(p;�'1; 
). Then, for all (p0; a0) 2 Pop(p),we have a0abw 2 V 
�'1(I1(p0)); and for all (p0; a0) 2 Rew(p; a) we have a0bw 2V 
�'1(I1(p0)); and for all (p0; a0) 2 Push(p; a; b) we have a0w 2 V 
�'1I1(p0). From
ompleteness of A1 we have a 
omplete run I1(p0) a0��!A1 Q0 a��!A1 Q for ea
h (p0; a0) 2Pop(p) and a 
omplete run I1(p0) a0��!A1 Q for ea
h (p0; a0) 2 Rew(p; a). Sin
ewe know bw 2 V 
�'1(p;�'1; 
; a) there must be some 
omplete transition from(p;�'1; 
) as required.The only 
ase not 
overed by the above is the 
ase ?2 V 
�'1(p;�; '1; 
).In this 
ase there are no push transitions rea
hing this 
on�guration. That isPush(p;?; b) = ; for all b. Note also that we equated all (p;�'1; 
;?) with q"f .Hen
e, from the pop and rewrite 
ases above, and that (p;�'1; 
;?) = q"f wehave 
ompleteness as required.Case Ba
kDiamond(A;'1; 
;P):We are given that A is valuation 
omplete with respe
t to some valuation V ,and by indu
tion we have 
ompleteness of the result A1 of the re
ursive 
all withrespe
t to V 
'1 . We show A0 is 
omplete with respe
t to V 
�'1 . There are three
ases.Assume some aw su
h that aw 2 V 
�'1(p;�'1; 
) by virtue of some (p0; a0) 2Pop(p) su
h that we have hp0; a0awi 2 V 
�'1(I1(p0)). By 
ompleteness of A1 wehave a run I1(p0) a0a��!A1 Q su
h hat for all q 2 Q, w 2 V 
�'1(q). Hen
e, thetransition ((p;�'1; 
); a;Q) witnesses 
ompleteness.Otherwise, take some aw su
h that aw 2 V 
�'1(p;�'1; 
) from some (p0; a0) 2Rew(p; a) su
h that we have hp0; a0wi 2 V 
�'1(I1(p0)). By 
ompleteness of A1we have a run I1(p0) a0��!A1 Q su
h that for all q 2 Q, w 2 V 
�'1(q). Hen
e, thetransition ((p;�'1; 
); a;Q) witnesses 
ompleteness.Finally, take some abw su
h that abw 2 V 
�'1(p;�'1; 
) from some (p0; a0) 2Push(p; a; b) su
h that we have hp0; a0wi 2 V 
�'1(I1(p0)). By 
ompleteness ofA1 we have a run I1(p0) a0��!A1 Q su
h that for all q 2 Q, w 2 V 
�'1(q). Hen
e,the transitions ((p;�'1; 
); a;�(p;�; 
; a)	) and ((p;�'1; 
; a); a;Q) witness 
om-pleteness. 7



6 Con
lusion and Future WorkIn previous work, we have introdu
ed a saturation method for dire
tly 
omputingthe denotation of a modal �-
al
ulus formula over the 
on�guration graph ofa pushdown system. Here, we have shown how to extend this work to allowba
kwards modalities.Referen
es1. J. C. Brad�eld and C. P. Stirling. Modal logi
s and mu-
al
uli: An introdu
tion. InHandbook of Pro
ess Algebra, pages 293{330, 2001.2. M. Hague and C.-H. L. Ong. A saturation method for the modal mu-
al
ulus overpushdown systems, 2010. To appear in Information and Computation.
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