
A Saturation Method for the ModalMu-Calulus with Bakwards Modalities overPushdown SystemsM. Hague and C.-H. L. OngOxford University Computing LaboratoryMatthew.Hague�omlab.ox.a.uk Luke.Ong�omlab.ox.a.ukAbstrat. We present an extension of an algorithm for omputing di-retly the denotation of a modal �-alulus formula � over the on�gu-ration graph of a pushdown system to allow bakwards modalities. Ourmethod gives the �rst extension of the saturation tehnique to the fullmodal �-alulus with bakwards modalities.1 IntrodutionReently we introdued a saturation method for diretly omputing the denota-tion of a modal �-alulus formula over the on�guration graph of a pushdownsystem [2℄. Here we show how this algorithm an be extended to allow bakwardsmodalities. This artile is intended as a ompanion to our previous work, and assuh, does not repeat many of the details.2 PreliminariesSine we extend our de�nition of modal �-alulus, we give the full details here.The reader is direted to our previous work for the remaining preliminaries [2℄.Given a set of propositions AP and a disjoint set of variables Z , formulas ofthe modal �-alulus are de�ned as follows (with x 2 AP and Z 2 Z):' := x j :x j Z j ' ^ ' j ' _ ' j �' j �' j �Z:' j �Z:' :Thus we assume that the formulas are in positive form, in the sense that negationis only applied to atomi propositions. Over a pushdown system, the semantis ofa formula ' are given with respet to a valuation V : Z ! P(C) whih maps eahfree variable to its set of satisfying on�gurations and an environment � : AP !P(C) mapping eah atomi proposition to its set of satisfying on�gurations. We



then have,
JxKPV = �(x)

J:xKPV = C n �(x)
JZKPV = V (Z)

J'1 ^ '2KPV = J'1KPV \ J'2KPV
J'1 _ '2KPV = J'1KPV [ J'2KPV

J�'KPV = �  2 C �� 80: ,! 0 ) 0 2 J'KPV 	
J�'KPV = �  2 C �� 90: ,! 0 ^ 0 2 J'KPV 	
J�'KPV = �  2 C �� 80:0 ,! ) 0 2 J'KPV 	
J�'KPV = �  2 C �� 90:0 ,!  ^ 0 2 J'KPV 	

J�Z:'KPV = Tn S � C ��� J'KPV [Z 7!S℄ � S o
J�Z:'KPV = Sn S � C ��� S � J'KPV [Z 7!S℄ owhere V [Z 7! S℄ updates the valuation V to map the variable Z to the set S.The operators�' and �' assert that ' holds after all possible transitions andafter some transition respetively; � and � are their bakwards time ounter-parts; and the � and � operators speify greatest and least �xed points. Anotherinterpretation of these operators is given below. For a full disussion of the modal�-alulus we refer the reader to a survey by Brad�eld and Stirling [1℄.3 The AlgorithmWithout loss of generality, assume all pushdown ommands are p a! p0 ", p a!p0 b, or p a! p0 bb0.The extensions to our earlier work [2℄ are given in Proedures 1 and 2. Werefer the reader to the original artile for a desription of the notations used.For a ontrol state p and haraters a; b, let Pop(p) = f (p0; a0) j p0 a0 ! p " g,andRew(p; a) = f (p0; a0) j p0 a0 ! p b g, Push(p; a; b) = f (p0; a0) j p0 a0 ! p ab g,and together Pre(p; a; b) = Pop(p) [ Rew(p; a) [ Push(p; a; b).4 TerminationThe new proedures de�ned here add extra ases to the termination proof [2℄.We show these ases here and refer the reader to the original artile for anexplanation of the notation and onepts.Lemma 1 (Termination). The algorithm satis�es the following properties.1. Eah subroutine introdues a �xed set of new states, independent of the au-tomaton A given as input (but may depend on the other parameters). Tran-sitions are only added to these new states.2. For two input automata A1 and A2 (giving valuations of the same environ-ments) suh that A1 � A2, then the returned automata A01 and A02, respe-tively, satisfy A01 � A02.3. The algorithm terminates. 2



Proedure 1 BakBox(A;'1; ;P)((Q1; �;�1; ;F1); I1) = Dispath(A;'1; ;P)A0 = (Q1 [ I [Qint; �;�1 [�0; ;F1)where I = � (p;�'1; ) j p 2 P 	and Qint = � (p;�'1; ; a) j p 2 P ^ a 2 � 	and �0 =8>>>>>>>>>>>>><>>>>>>>>>>>>>: ((p;�'1; ); a;Q) �������������������
Q = �(p;�'1; ; a)	 [Qpop [Qrew ^Pop(p) = f(p1; a1); : : : ; (pn; an)g ^V1�j�n�I1(pj) aj��!�1 Q0j a��!�1 Qpopj � ^Qpop = Qpop1 [ � � � [Qpopn ^Rew(p; a) = f(p01; a01); : : : ; (p0n0 ; a0n0)g ^V1�j�n0 �I1(p0j) a0j��!�1 Qrewj � ^Qrew = Qrew1 [ � � � [Qrewn

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;[8>><>>: �(p;�'1; ; a); b; Q� �������� Pre(p; a; b) = f(p1; a1); : : : ; (pn; an)g^V1�j�n�I1(pj) aj��!�1 Qpushj �^Q = Qpush1 [ � � � [Qpushn 9>>=>>;[� �(p;�'1; ); a; fq�g� j 8b:P re(p; a; b) = ; 	[� �(p;�'1; );?;�q"f	� j 8a:Pre(p;?; a) = ; 	[� �(p;�'1; ; a); b; fq�g� �� Push(p; a; b) = ; 	[� �(p;�'1; ; a);?;�q"f	� �� Push(p; a;?) = ; 	return (A0; I)
Proedure 2 BakDiamond(A;'1; ;P)((Q1; �;�1; ;F1); I1) = Dispath(A;'1; ;P)A0 = (Q1 [ I [Qint; �;�1 [�0; ;F1)where I = � (p;�'1; ) j p 2 P 	and Qint = � (p;�'1; ; a) j p 2 P ^ a 2 � 	
and �0 = 8<: ((p;�'1; ); a;Q) ������ (p0; a0) 2 Pop(p)^I1(p0) a0��!�1 Q0 a��!�1 Q 9=;[8<: ((p;�'1; ); a;Q) ������ (p0; a0) 2 Rew(p; a)^I1(p0) a0��!�1 Q 9=;[�((p;�'1; ); a;�(p;�'1; ; a)	)	[8<: ((p;�'1; ; a); b; Q) ������ (p0; a0) 2 Push(p; a; b)^I1(p0) a0��!�1 Q 9=; .return (A0; I) 3



Proof. The �rst of these onditions is trivially satis�ed by all onstrutions,hene we omit the proofs. Similarly, termination is trivial. The seond and thirdonditions will be shown by mutual indution over the reursion (struture ofthe formula). The new ases follow.Case BakBox(A;'1; ;P) and BakDiamond(A;'1; ;P):It an be observed that all new transitions in A are derived from transitionsI(p0) a�!A Q (or are independent of A and A0). Sine A � A0 it follows that alltransitions have a ounterpart I(p0) a�!A0 Q0 with Q0 � Q. Hene the propertyfollows in a similar manner to the previous ases.4.1 ComplexityThe new proedures hange the omplexity of the algorithm slightly, althoughthe algorithm remains in EXPTIME. In partiular, the algorithm is now expo-nential in the number of ontrol states, the size of the stak alphabet and the sizeof the formula. Let m be the nesting depth of the �xed points of the formula andn be the number of states in AV . We introdue at most k = O (jPj � j�j �m � j�j)states to the automaton. Hene, there are at most O (n+ k) states in the au-tomaton during any stage of the algorithm. The �xed point omputations iterateup to an O �2O(n+k)� number of times. Eah iteration has a reursive all, whihtakes up to O �2O(n+k)� time. Hene the algorithm is O �2O(n+k)� overall.5 CorretnessWe extend the proofs of orretness. We refer the reader to our previous workfor the full details [2℄.De�nition 1 (Corretness Conditions). The orretness onditions are asfollows. Let A be the input automaton, ' be the input formula1,  be the inputlevel and A0 be the result.1. We only introdue level  states.2. If A is V -sound, A0 is V '-sound.3. If A is V -omplete, A0 is V '-omplete.The �rst ondition is obvious. The remaining onditions are shown by indu-tion and require the addition of proof ases for the new proedures.Lemma 2 (Valuation Soundness). The algorithm is V -sound.1 For ases suh as And(A;'1; '2; ;P) we take, as appropriate ' = '1 ^ '2.4



Proof. Case BakBox(A;'1; ;P):We assume that A is valuation sound with respet to some valuation V . Byindution the result A1 of the reursive all is valuation sound with respet toV '1 . We show that A0 is valuation sound with respet to V �'1 .We observe that no (p0;�'1; ) are reahable from a state (p;�'; ; a), henewe show soundness for the latter states �rst.The �rst ase is for some b with Push(p; a; b) = ;. In this ase, the valuationof (p;�'; ; a) ontains all words of the form bw. Hene soundness is immediatelysatis�ed.Otherwise, Push(p; a; b) = f(p1; a1); : : : ; (pn; an)g suh that for all 1 � j � n,hpj ; aiwi ,! hp; abwi. Take a new transition ((p;�'1; ; a); b; Q) derived from theruns I1(pj) aj��!A1 Qj for all 1 � j � n, with Q = Q1[Qn. Suppose for some w, w 2V �'1(q) for all q 2 Q. By valuation soundness of A1 we know ajw 2 V �'1(I1(pj))and hene, sine all transitions to hp; abwi are from on�gurations satisfying '1,we have bw 2 V �'1(p;�'1; ; a) as required.The remaining states are of the form (p;�'1; ). We �rst deal with the asewhen for all b we have Pre(p; a; b) = ;. In this ase, the valuation of �'1 ontainsall words of the form aw for some w. Hene, all added transitions are triviallysound.Otherwise, take a new transition ((p;�'1; ); a;Q) derived from some b,the value of Pop(p) = f(p1; a1); : : : ; (pn; an)g and for all 1 � j � n, theruns I1(pj) wj��!A1 Q0j b��!A1 Qpopj , with Qpop = Qpop1 [ Qpopn , and the value ofRew(p;=) f(p01; a01); : : : ; (p0n0 ; a0n0)g and for all 1 � j � n0, the runs I1(p0j) a0j��!A1Qrewj , with Qrew = Qrew1 [Qrewn . Finally, Q = �(p;�'1; ; a; b)	 [Qpop [Qrew.Suppose for some w, w 2 V �'1(q) for all q 2 Qpop. By valuation soundnessof A1 we know ajaw 2 V �'1(I1(pj)) and hene all pop transitions leading tohp; awi are from on�gurations satisfying '1.Now suppose for some aw, aw 2 V �'1(q) for all q 2 Qrew. By valuationsoundness of A1 we know ajw 2 V �'1(I1(pj)) and hene all rewrite transitionsleading to hp; awi are from on�gurations satisfying '1.Finally, onsider some bw in the valuation of (p;�'1; ; a). From the sound-ness of this state, shown above, we have that all push transitions leading tohp; abwi are from on�gurations satisfying '1.Putting the three ases together, we have for all abw 2 V �'1(p;�'1; ) asrequired.The above ases do not over the ase ?2 V �'1(p;�'1; ). However, sineno push transition an reah this stak, we just require the �rst two ases andthat (p;�'1; ;?) = q"f . 5



Case BakDiamond(A;'1; ;P):We assume that A is valuation sound with respet to some valuation V . Byindution the result A1 of the reursive all is valuation sound with respet toV '1 . We show that A0 is valuation sound with respet to V �'1 .We begin with the states (p;�; ; a). Take a transition ((p;�; ; a); b; Q).Then there is some (p0; a0) 2 Push(p; a; b) suh that I1(p0) a0�! QA1. From thesoundness of A1 we know for all w with w 2 V �'1(q) for all q 2 Q we havea0w 2 V �'1(I1(p0)). Sine hp0; a0wi ,! hp; abwi we have hp; abwi satis�es '1and hene bw 2 V �'1(p;�; ; a) and the transition is sound.For the remaining states, take a new transition ((p;�'1; ); a;Q). There arethree ases.If the transition was derived from some (p0; a0) 2 Pop(p) and the run I1(p0) a0a��!A1Q, then suppose for some w, w 2 V �'1(q) for all q 2 Q. By valuation soundness ofA1 we know a0aw 2 V �'1(I1(p0)) and hene, sine there is a transition hp0; a0awi,a on�guration satisfying '1, to hp; awi we obtain aw 2 V �'1(p;�'1; ) as re-quired.If the transition was derived from some (p0; a0) 2 Rew(p; a) and the runI1(p0) a0��!A1 Q, then suppose for some w, w 2 V �'1(q) for all q 2 Q. By valuationsoundness of A1 we know a0w 2 V �'1(I1(p0)) and hene, sine there is a transitionhp0; a0wi, a on�guration satisfying '1, to hp; awi we obtain aw 2 V �'1(p;�'1; )as required.Finally, if Q = �(p;�; ; a)	 then soundness is immediate from the de�nitionof V �'1 .Lemma 3 (Valuation Completeness). The algorithm is V -omplete.Proof. Case BakBox(A;'1; ;P):We are given that A is valuation omplete with respet to some valuation V ,and by indution we have ompleteness of the result A1 of the reursive all withrespet to V '1 . We show A0 is omplete with respet to V �'1 .As in the soundness proof, we begin with the states (p;�'1; ; a). In thease Push(p; a; b) = ; for some b, we either have b =? and the transition from(p;�'1; ; a) to nq"fo witnesses ompleteness, or we have a 6=? and the transitionto fq�g witnesses ompleteness.Otherwise Push(p; a; b) = f(p1; a1); : : : ; (pn; an)g. Take some bw suh thatabw 2 V �'1(p;�'1; ; a). Then we have ajw 2 V �'1(pj ; '1; ) for all 1 � j � n.From ompleteness of A1 we have a transition I1(pj) aj�! Qj with w 2 V �'1(q)for all q 2 Qj . Hene, we have a omplete b-transition from (p;�'1; ; a) asrequired. 6



For the states of the form (p;�'1; ) we �rst deal with the ase when for all bwe have Pre(p; a; b) = ;. In this ase we immediately have transitions witnessingompleteness.Otherwise, take some abw 2 V �'1(p;�'1; ). Then, for all (p0; a0) 2 Pop(p),we have a0abw 2 V �'1(I1(p0)); and for all (p0; a0) 2 Rew(p; a) we have a0bw 2V �'1(I1(p0)); and for all (p0; a0) 2 Push(p; a; b) we have a0w 2 V �'1I1(p0). Fromompleteness of A1 we have a omplete run I1(p0) a0��!A1 Q0 a��!A1 Q for eah (p0; a0) 2Pop(p) and a omplete run I1(p0) a0��!A1 Q for eah (p0; a0) 2 Rew(p; a). Sinewe know bw 2 V �'1(p;�'1; ; a) there must be some omplete transition from(p;�'1; ) as required.The only ase not overed by the above is the ase ?2 V �'1(p;�; '1; ).In this ase there are no push transitions reahing this on�guration. That isPush(p;?; b) = ; for all b. Note also that we equated all (p;�'1; ;?) with q"f .Hene, from the pop and rewrite ases above, and that (p;�'1; ;?) = q"f wehave ompleteness as required.Case BakDiamond(A;'1; ;P):We are given that A is valuation omplete with respet to some valuation V ,and by indution we have ompleteness of the result A1 of the reursive all withrespet to V '1 . We show A0 is omplete with respet to V �'1 . There are threeases.Assume some aw suh that aw 2 V �'1(p;�'1; ) by virtue of some (p0; a0) 2Pop(p) suh that we have hp0; a0awi 2 V �'1(I1(p0)). By ompleteness of A1 wehave a run I1(p0) a0a��!A1 Q suh hat for all q 2 Q, w 2 V �'1(q). Hene, thetransition ((p;�'1; ); a;Q) witnesses ompleteness.Otherwise, take some aw suh that aw 2 V �'1(p;�'1; ) from some (p0; a0) 2Rew(p; a) suh that we have hp0; a0wi 2 V �'1(I1(p0)). By ompleteness of A1we have a run I1(p0) a0��!A1 Q suh that for all q 2 Q, w 2 V �'1(q). Hene, thetransition ((p;�'1; ); a;Q) witnesses ompleteness.Finally, take some abw suh that abw 2 V �'1(p;�'1; ) from some (p0; a0) 2Push(p; a; b) suh that we have hp0; a0wi 2 V �'1(I1(p0)). By ompleteness ofA1 we have a run I1(p0) a0��!A1 Q suh that for all q 2 Q, w 2 V �'1(q). Hene,the transitions ((p;�'1; ); a;�(p;�; ; a)	) and ((p;�'1; ; a); a;Q) witness om-pleteness. 7



6 Conlusion and Future WorkIn previous work, we have introdued a saturation method for diretly omputingthe denotation of a modal �-alulus formula over the on�guration graph ofa pushdown system. Here, we have shown how to extend this work to allowbakwards modalities.Referenes1. J. C. Brad�eld and C. P. Stirling. Modal logis and mu-aluli: An introdution. InHandbook of Proess Algebra, pages 293{330, 2001.2. M. Hague and C.-H. L. Ong. A saturation method for the modal mu-alulus overpushdown systems, 2010. To appear in Information and Computation.
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