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Abstract—This paper gives a high-level overview of the
string solver OSTRICH version 1.3, a solver entering SMT-
COMP 2023. For more details and theoretical results we re-
fer to the full version of the paper [4] and to the website
https://github.com/uuverifiers/ostrich.

I. OVERVIEW

OSTRICH is a string solver designed for solving constraints
that occur during program analysis. OSTRICH is built on
top of the SMT solver Princess [9] and uses the BRICS
Automata library [1] to handle regular expressions inside the
string formulas. OSTRICH accepts constraints written using
the SMT-LIB theory of strings and supports most operators of
the theory. In addition, OSTRICH can handle transducers and
the string reverse operation, regular expressions that include
capture groups, lazy quantifiers, and anchors. OSTRICH also
allows users to add their own string functions, as long as they
provide an implementation of pre-image computation [4].

In SMT-COMP 2023, OSTRICH will apply several algo-
rithms for solving string constraints, which are introduced in
the next sections.

BW-STR: BACKWARD PROPAGATION SOLVER

The first algorithm implemented in OSTRICH is the back-
ground propagation procedure [4], BW-Str, which guarantees
completeness for input formulas in the straight-line fragment
of the theory of strings. Straight-line formulas are conjunctions
of string constraints that can be represented in the form of
straight-line programs S [4]:

S ::= x := f(x̄) | assert(R(x̄)) | S;S

where f denotes n-ary string functions, for instance concate-
nation, replace, replace-all, reverse, or any function that can
be represented by (one-way or two-way) transducers, and R is
a recognisable relation represented by a collection of tuples of
finite automata.

The main idea of backwards propagation is to systematically
compute pre-images of regular expression constraints under
the functions occurring in a straight-line program, and this way
infer necessary and sufficient constraints on the input variables

for the program to succeed. For a word equation like z = x◦y,
constraints about z are propagated to obtain constraints about
x, y; a non-deterministic choice has to be made in this process
which part of z is assigned to x and which to y, leading to
proof branching.

In addition to backward propagation, the BW-Str solver
also reasons about length constraints and number of letter
occurences1 induced by the various string operations, and
ensures the consistency of such constraints.

Nielsen’s transformation ([7],[5]) is applied before the
backwards propagation is called, and decomposes word equa-
tions into simpler equations while imposing further length
constraints. This enables BW-Str to solve also formulas outside
of the straight-line fragment, although without completeness
guarantees.

Finally, before and during the execution of the string solver
rewriting rules are applied to cover various special cases and
reduce string constraints to regular constraints to leverage the
backward propagation or word equations to leverage Nielsen’s
transformation.

BW-Str performs well in particular for problems with
complex regular expression constraints, and for problems in
the straight-line fragment.

ADT-STR: LIST-BASED SOLVER

The second algorithm ADT-Str implemented in OSTRICH
builds on the decision procedure for algebraic data-types
(ADTs) with size catamorphism implemented in Princess [6].
Algebraic data-types are used to represent strings using the
standard encoding of lists with nil and cons constructors.
The length of a string is computed using the build-in size
function provided by the ADT solver, mapping every construc-
tor term to the number constructor occurrences. Other SMT-
LIB functions on strings, for instance substring, concatenation,
etc., are in ADT-Str encoded using uninterpreted functions and
axioms capturing the recursive definition of the string functions.

1Letter counting can be enabled using option +parikh.



Regular expression matching is implemented using Brzozowski
derivatives [2].

ADT-Str is complementary to BW-Str. Although ADT-Str
does not come with interesting completeness guarantees, it
performs well for computing solutions of string constraints,
and it can easily handle certain functions that are hard for
backward propagation. Those functions include, among others,
string-to-integer conversion, and functions like substring and
indexof that calculate with integer offsets.

CE-STR: COST-ENRICHED SOLVER

The third algorithm CE-Str implemented in OSTRICH is
based on cost-enriched finite automata (CEFAs)[3], which are
automata with a cost function on each transition. The cost
function encodes the string length accepted by the automaton
or other integer values like the result of indexof and the integer
arguments of substring. CEFA can also encode the semantics of
counting operators, resulting in a more compact representation
of the constraints rather than unfolding counting operators into
union and concatenation operators.

The backward propagation procedure of CE-Str is inher-
ited from BW-Str, but the automata representation of it is
changed to CEFA. What’s more, CE-Str combines the Parikh
images[8] of propagated constraints with the input linear integer
arithmetic(LIA) formulae and then solves them by the off-the-
shelf LIA solvers Princess[9], guaranteeing the soundness and
completeness for the straight-line fragment of the theory of
strings.

CE-Str aims at solving string constraints with integer types
efficiently. It is complementary to BW-Str and ADT-Str and
can be used as a fallback solver when the other solvers fail
to solve the constraints. With completeness guarantees, CE-
Str supports more string functions like indexof and substring,
avoiding rewriting them to another operation, which may break
the straight-line fragment.

II. OSTRICH AT SMT-COMP 2023

We are submitting version 1.3 of OSTRICH in the single-
query track divisions QF_S, QF_SLIA, QF_SNIA. This
version is linked against Princess 2023-05-27 and the BRICS
automata library 1.11-8. The submitted version of OSTRICH
is configured to use the options

+parikh +quiet -portfolio=strings

Those options switch on partial Parikh reasoning, disable
diagnostic output, and enable the portfolio consisting of the
backward propagation-based solver (BW-Str), the ADT-based
solver (ADT-Str) and the cost-enriched solver (CE-Str).
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