
Strings at MOSCA

Matthew Hague1

Royal Holloway, University of London

Abstract

The first edition of MOSCA, the Meeting on String Constraints and Applications was
held in May 2019 in the otherworldly location of Bertinoro [15]. For one week, 43 partici-
pants presented surveys and discussed recent research into the analysis of string constraints.

The following article is an overview of some of the topics discussed. It is broadly split
into two sections: word equations and string constraints for verification. Presentations
that did not fit neatly into this divide are summarised in a final section.

It is worth noting before beginning that the present survey is neither scientific nor
systematic. The author is guilty of rambling at length on his familiar topics, and perhaps
moving on too quickly when the content steps outside of his comfort zone. Thus, the world
view presented is personal, and space allocated does not constitute a critical evaluation of
the material.

1 Word Equations

1.1 Background

there X no there, Y = Y is no Y , there

Word equations are, on their surface, quite simple. In the above equation, a finite alphabet Σ
is assumed, upper case letters are variables that can take string values from Σ∗, and lower case
letters are constants. A solution to a word equation is any assignment of strings in Σ∗ to the
variables that makes the equation true. In the above case, assigning X to the string “is” and
Y to the string “there” results in the required equality.

there is no there, there = there is no there, there .

The first-order theory of word equations was shown by Quine in 1946 to be undecidable [48]
via the first-order theory of arithmetic. Similarly, Markov showed that word equations could
be reduced to Hilbert’s 10th problem—integer solutions to Diophantine equations. However,
he could only show decidability of word equations with two unknowns. Thus, the decidability
of the general case, which would imply the undecidability of Diophantine equations, was left
open.

Undecidability of Diophantine equations was eventually shown by Matiyasevich in 1970 [43]
via the work of Davis, Putnam, and Robinson [17]. However, word equations remained stub-
bornly unsolved, with only further partial progress being made by Hmelevskii [28] in 1971 for
the case of three unknowns. Seminal work in 1977 by Makanin finally showed the problem to
be decidable [41].

Much work has followed, extending Makanin’s result to free groups [42], partially commu-
tative monoids [44, 22], rational constraints [21], and so on.

However, the complexity of the original problem has remained a remarkable open problem.
Makanin’s algorithm for word equations proceeds via a series of rewrites, with a large part of
the difficulty lying in the proof of termination. The complexity of this algorithm has gradually
been improved first to 4-NEXPTIME and then down to EXPSPACE [31, 50, 34, 34, 27].
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Plandowski first showed in 1999 that a solution is possible in PSPACE [46]. This bound
was improved recently by Jez to NSPACE(nlog(n)), using a recompression technique [32]. The
only known lower bound, however, is NP.

Two important extensions to standard word equations allow regular and length constraints.
Regular constraints extend word equations with the ability to assert that the assignment to
an unknown X must occur within some regular language L. This variant was shown decidable
by Schulz in 1990 [50]. Length constraints, however, are less straightforward. Let |X|a = |Y |a
assert that the number of “a” characters in the assignment to X matches that in the assignment
to y. Word equations with such constraints are known to be undecidable [24, 8]. However,
decidability when one may assert linear relations between the lengths of assignments, remains
an important open problem.

1.2 Recompression and Complexity

Together with Rytter, Plandowski introduced the use of compression to the solving of word
equations [47]. Using Lempel-Ziv compression (LZ77), length-minimal solutions can be com-
pressed to a logarithmic of their original size. Using this technique, they were able to show
a 2-NEXPTIME procedure. This was soon overtaken by Gutierrez’s EXPSPACE variation of
Makanin’s algorithm, which does not use compression. Plandowski was later able to obtain the
PSPACE algorithm mentioned above. However, this result also does not use compression so
directly.

Recently, Jez revisited compression and was able to show an NSPACE(nlog(n)) decision
procedure. His approach utilizes a “local recompression” technique on which he had been
working. A key difference in approach is that, while Plandowski’s grammars work top-down,
Jez’s algorithm runs bottom-up.

Given a word

aaababcababbabcba

we can first perform a simple compression of repeated letters

a3babcabab2abcba .

Next, we can begin to identify repeated pairs of letters and replace them with a new letter. In
our example

a3bdcdd2dce

where
d → ab
e → ba .

As such, we are in effect compressing the solution by building a context free grammar. We iterate
the above process, shrinking the size of the solution by a constant factor at each iteration, giving
an exponential factor over n steps.

Unfortunately, it is problematic to run compression on a large pre-existing solution. Thus,
it is natural to compress the equations, rather than the solutions. Such chicanery does not
come for free: pairs of letters may not only appear inside the constant sections of the equation,
but may cross the boundary between constants and variables. This problem is solved using
“local decompression”. Given a pair ab, this technique may replace a variable X with Xa, in
effect pulling the a character out of the solution for X and into the constant part of the word
equation. Thus Xb would become Xab. Compression can then proceed as before.
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1.3 Quadratic Word Equations

1.3.1 Neilsen / Levi

In a quadratic word equation, each variable may be used at most twice. With such a restriction,
Neilsen transformation or Levi’s method gives a simple algorithm for decidability [23].

This method proceeds by searching a graph that can be built on-the-fly. Each node of the
graph is a word equation, and the goal is to reach a node containing the trivial equality ε = ε.
Edges of the graph are given by analysing prefixes. Suppose the current node contains the
equation

XXY Z = baY aZbaa .

In this case we immediately know that X must begin with ba. We perform a number of steps
to construct the next node. First, we rewrite, uniformly, X to baX obtaining

baXbaXY Z = baY aZbaa .

Next the new node is obtained by cancelling the prefix ba from each side.

XbaXY Z = Y aZbaa .

A key point is that the size of the equation does not increase. First we introduced a copy of
the prefix ba before each occurrence of X, leading to an additional two copies of ba. However,
we were also guaranteed to be able to cancel out two instances of ba, making the procedure
neutral.

In the case where there is no prefix, we have a situation such as the

XbaXY Z = Y aZbaa

above. In this case, there are three outgoing edges, for the following possible cases: either X
and Y are equal, or X is a prefix of Y , or vice versa.

The simplest case is when they are equal. We can calculate the next node by first replacing
all instances of Y with X

XbaXXZ = XaZbaa

and then cancelling out the two X prefixes

baXXZ = aZbaa .

Note, although this at first doubles the number of X variables, the maximum number it can
introduce is two. Since the cancellation step removes two Xs, the transformation is at worst
neutral. In the example, observe that the branch cannot lead to a solution: the prefixes of the
two sides cannot be reconciled.

For the remaining cases, we will suppose X is a prefix of Y . The other case is similar. When
X is assumed to be a strict prefix, we replace Y with XY and obtain

XbaXXY Z = XY aZbaa .

This effectively removes the X prefix from Y and makes it explicit in the equation. We can
then cancel the preceding Xs

baXXY Z = Y aZbaa .

This gives us the next node. Note, this is again neutral, both in terms of size and in the number
of X variables.
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To implement the above procedure, one only needs PSPACE. If the trivial equation can be
found, the original equation has a solution. If not, then the original equation has no solution.

For example, consider

XY = Y X .

We take the branch assuming X equals Y and reach

XX = XX

which cancels to X = X. Cancelling prefixes again leads to ε = ε.

1.3.2 Length Constraints

Lin and Majumdar [38] have recently attempted to generalise the above procedure to handle
quadratic word equations with length constraints. A standard approach to handling arithmetic
constraints involves using the decidability of Presburger arithmetic. That is, boolean com-
binations of linear constraints. However, the following example begins to demonstrate that
Presburger alone is not enough.

XY = Y X

Solutions to the above equation can be shown to be of the form X ∈ w∗ and Y ∈ w∗ for some
some word w. Notice, then, that the length of assignments to X and Y must both divide the
length of w. Expanding on the above example, the equation

XabY = Y abX

can be shown to have a length abstraction that can only be defined using a greatest-common-
divisor operation. This is not Presburger definable.

Lin and Majumdar were able to define a class of quadratic word equations for which satis-
fiability is decidable. To do so, they following the Neilsen/Levi approach outlined above. The
state machine defined by that approach was extended with counters that track the effect of each
transition on the length of potential solutions to each variable. In the case when the associ-
ated counter system is “flat”—i.e. no nested loops—Presburger with divisibility is sufficient to
define a length abstraction. Decidability then follows from the decidability of Presburger with
divisibility constraints (of the form x divides y) [35]. Finally, it is conjectured that Presburger
with divisibility is sufficient for the general case of quadratic word equations.

1.4 Fragments

Quadratic word equations are one fragment of general word equations. Many other such frag-
ments can also be defined. Recent work by Day, Manea, and Nowotka has begun to explore such
fragments to shed light on the long-standing gap between the NP lower-bound and PSPACE
upper-bound [19]. Unfortunately, quadratic word equations have the same known complexities
as the general case of word equations, despite a simpler PSPACE upper bound algorithm.

Strictly regular ordered word equations (SROWEs), however, can be shown to be NP-
complete. Such a word equation is quadratic, with the additional constraint that every variable
occurs once on each side of the equality, and in the same order. That is, an SROWE has the
form

u0X1u1 . . . Xnun = v0X1v1 . . . Xnvn .
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In this case, it can be shown that solutions are always short, leading to a simple NP algorithm
for deciding satisfiability. In fact, the complexity remains NP when additional regular, length,
letter-counting, and subword constraints are allowed.

If the requirement that all variables appear on both sides is relaxed, it is no longer possible
to allow additional constraints and remain in NP. By a reduction from the intersection of
regular languages, one can show that non-strictly regular ordered word equations (ROWEs)
with additional regular constraints is PSPACE-complete.

For the case of ROWEs without additional constraints, it is still possible to show NP-
completeness of satisfiability. The algorithm, however, is quite involved and requires new tools
regarding “chains” and “squares” of solutions.

Squares can also be used to identify another NP-complete fragment: that of regular reversed
word equations. In these equations, the ordering is mirrored on either side of the equality.

1.5 Solving using SAT

The tool Woorpje uses SAT to solve word equations when the length of each string is known
to be bounded [18]. With bounded lengths, there is a straight-forward encoding of the problem
into a SAT solver: each position in the string can be encoded using a fixed number of boolean
variables. However, this naive encoding does not work well. The contribution of Woorpje is to
provide a more efficient encoding.

The encoding works by encoding, rather than the words directly, the run of an automaton
that calculates solutions to the equation. This automaton intuitively guesses the solution and
checks equality of both sides of the equation on a character by character basis. Because the
length of any run is bounded (from the bound on solution lengths), a SAT formula can encode
all runs.

Length abstraction is used to make the approach feasible. By abstracting each string by its
length, constraints can be extracted. These constraints can be used to refine the upper bounds
on the lengths of assignments to individual variables. MDDs (Multi-Decision Diagrams) are
used to allow bounds to be refined, effectively on-the-fly, as the length of one string may affect
the bounds of another.

2 Strings for Verification

A word equation is a restricted form of string constraint. One may also wish to allow logical
connectives1 and string relations other than concatenation and equality.

Recent years have seen a meteoric success in the development of constraint solvers. The
unreasonable ability of SAT solvers to process extremely large sets of boolean constraints has
been exploited by SMT solvers to handle constraints over a range of different theories. Typically,
SMT solving has been used to tackle existential Presburger constraints. Current developments,
however, focus on the addition of constraints over string variables.

String constraints turn out to be useful in several real-word applications.

2.1 Symbolic Execution

Symbolic execution [33, 12] attempts to explore as many paths of a program as possible, in
the search for errors. To search all possible paths individually is clearly infeasible. Symbolic

1Satisfiability of a conjunction of word equations may be reduced to a single equation.
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execution is effective because it does not explore concrete variable assignments, but instead
explores paths symbolically. Consider the following toy program.

if (x > 0) {

if (x < 0) {

fail

}

} else {

if (x < 0) {

fail

}

}

This program has as many executions as there are allowed assignments to the variable x.
However, a simple analysis reveals that there are only four true paths. Symbolic execution
would treat the variable x as an unknown, and collect constraints on that variable along each
syntactic path that it explores. In particular, the path to the first fail statement requires the
constraints x < 0 and x > 0 to be satisfied by the value of x. A symbolic execution engine can
forward the intersection of these constraints to a solver, which will reply that no such value of
x exists. Thus, the fail can never be executed, and this path does not represent an error.

The path to the second fail statement collects the constraints x <= 0 and x < 0. These two
constraints can be simultaneously satisfied, and thus the path is an error. A symbolic execution
tool can additionally generate a test case exercising this path using the model provided by the
constraint solver.

Many symbolic execution engines exist, with Klee [9] being a well-known example. A sym-
bolic version of the well-known Java Pathfinder tool, called Symbolic Pathfinder has recently
been developed [45]. It supports multi-threading and string operations, and provides quantita-
tive reasoning. That is, by counting the number of inputs that satisfy a certain condition, one
can estimate the probability of hitting certain states. For this, we need to assume bounds on
string length (otherwise there are infinite possibilities). Quantitative analysis has applications
in security, such as side channel analysis and non-interference, and can be used to estimate
how much information could be leaked. The MT-ABC tool, discussed in Section 2.3.3 provides
solver-level support for quantitative analysis.

Recent work by Kinder et al. shows the importance of strings in the symbolic execution of
JavaScript [40]. The contribution of Kinder et al.’s ExpoSE tool is the handling of JavaScript,
and, in particular its prevalent use of strings and regular expressions. Of 400k JavaScript
applications surveyed by Kinder et al., 35% were found to make use of regular expressions.

String support in constraint satisfaction tools is in its infancy, and consequently Kinder et
al. had to rely on symbolic execution of common string library functions such as “replace”.
In addition, there is a disconnect between regular expressions as discussed in theoretical com-
puter science, and the “regexes” used in programming languages. For example, issues such as
greediness, backreferences, and capture groups all required bespoke solutions to overcome the
limitations of the underlying constraint solver. Thus, their work shows the importance of string
support when analysing programs.

2.1.1 Access Control Rules

An example of string constraint solving used in large-scale industrial practice is that of access
control rules at Amazon Web Services (AWS). Access control rules on a web service are used
to determine who can or cannot access a resource, and the capabilities available to them. For
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example, a customer may be allowed to read a product listing, but should not be able to edit it.
These rules are written by hand and can include tricky logical connectives such as negation as
well as rules based on regular expressions. Hadarean discussed her work in the AWS team which
focusses on ensuring that mistakes in these handwritten rules do not lead to the unintentional
exposure of a vital resource to potentially malicious adversaries. Thus, analysis of strings
satisfying regular expression constraints is important. A key feature of this problem is the need
for rapid analysis, with responses expected within 20ms to meet the high demand of Amazon
users.

2.2 Relations and Functions

Word equations use two kinds of string relation: equality and concatenation. In general, one
may require string constraints using more relations. Relations may be defined in many ways.
One particular representation of interest is that of “transducers”. A transducer is a state
machine that takes one word as input, and produces another as output. Although alternative
models exist, such as streaming string transducers, we will take a simple base model.

A transducer over an alphabet Σ will consist of a finite set of states Q with an initial state
qI and accepting state qF , and a transition relation ∆ ⊆ Q × (Σ ∪ {ε}) × (Σ ∪ {ε}) × Q. We

will write q
a−→
b

q′ for a transition (q, a, b, q′) ∈ ∆. We say a is the input character and b is the

output. Let q
u−→
v

∗
q′ denote a run: a sequence of transitions where the input word read is u and

the output word produced is v. Note, because we allow ε in the input or output of a transition,
it is possible for output to be produced without consuming input, and vice versa. We refer to
these transducers as “asynchronous”.

A transducer defines a relation R ⊆ Σ∗ × Σ∗ where (u, v) ∈ R whenever qI
u−→
v

∗
qF is a run

of the transducer.
For example, the transducer below simply rewrites the word aabb to cc.

qI
a−→
ε

q1
a−→
c

q2
b−→
c

q3
b−→
ε

qF

In general, transducers may be used to represent transformations such as string sanitisation,
HTML encoding, and substring extraction.

Note, the notion of transducers briefly defined above can be generalised to n-ary relations
R(w1, . . . , wn).

2.2.1 Monadic Decomposition

Relations defined by transducers can often be difficult to work with as the input is closely tied
to the output. Recognisable relations are a weaker notion of relation that is more amenable to
decision procedures. A recognisable relation is defined as the finite union of products of regular
languages. That is

R =
⋃

1≤i≤n

Li × L′i .

For example, the relation

R = {(u, v)|u, v ∈ a∗} ∪ {(u, v)|u, v ∈ b∗}

is recognisable because
R = (a∗ × a∗) ∪ (b∗ × b∗) .

7



Strings at MOSCA M. Hague

The equality relation
R = {(u, v)|u = v}

however is not recognisable, but can be easily defined by a transducer.
When considering string constraints, it is easy to see the benefit of recognisable relations:

they can be simply expressed using regular language containment and boolean connectives.
That is R(x, y) iff ∨

i

x ∈ Li ∧ y ∈ L′i .

Transforming a relation into its recognisable form is also known as “monadic decomposition”.
This term stems from the fact that, in the equation above, each clause only refers to a single
variable, x or y. Thus, the variables may be treated separately.

Thus, determining whether a relation defined by a transducer is also recognisable can allow
complete or more efficient decision procedures which may not exist in the general case. In the
case of asynchronous transducers, it is known to be undecidable whether the defined relation
can be monadically decomposed.

However, if the transducer is “synchronous”—i.e. ε does not appear in the transition relation—
then the problem becomes decidable. In fact, even for the case of n-ary relations, the problem
was recently shown by Barcelo et al. [6] to be PSPACE-complete for non-deterministic trans-
ducers, and NLOGSPACE-complete for deterministic ones.

2.2.2 Symbolic Transducers

The above transducer model works over a finite alphabet Σ. This is a standard assumption and
works well for theoretical results. However, consider a transducer that reads a single character
word, and replaces that character with an a. This transducer would require a single transition

qI
b−→
a

qF for each character b ∈ Σ. This is only a linear number of characters. However,

the basic ASCII alphabet contains 128 characters, and modern text processing likely needs to
support Unicode, which, in version 11.0, contains 137,374 characters. Working with individual
characters, then, can slow down an algorithm by a factor between 128 and 137,374—this is
quite a price to pay!

Motivated by such problems, D’Antoni and Veanes have studied “symbolic” automata and
transducers [14, 51]. In this model, transitions are no longer labelled by characters, but are
instead labelled by constraints over a given theory. Each transition would have an input variable
i and an output variable o, and the constraints would assert properties of these two variables.
In the case of the transducer that replaces a single character, we would only need one transition,

qI
>−−→

o=a
qF . Note, the theory need not restrict itself to finite alphabets: the predicates may

treat i and o as integer variables, for example.
This symbolic representation lends itself well to the representation of transductions. Often,

real-world transductions shift characters. Consider a transition that replaces each lower case
character with its upper case version. This can be compactly represented with two transitions:
one for the case of lower case characters, and one for all other characters. Note, 97 is the ASCII
code for ’a’, 122 for ’z’, and 32 is the distance between upper and lower case characters.

q
i≥97∧i≤122−−−−−−−−→

o=i−32
q′ q

i<97∨i>122−−−−−−−−→
o=i

q′

Similar transductions are highly important in security: input to programs often needs to be
“sanitised” to remove malicious character combinations that may leads to injection attacks such
as SQL injection and JavaScript injection.
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When the theory used by the predicates is an effective boolean algebra, symbolic automata
and transducers are generally well-behaved and have good closure and decidability properties.
Extended symbolic automata and transducers, however, lack many desirable properties. These
automata allow a certain amount of lookahead. That is, each predicate does not just refer to
characters in the current transition, but may take into account the upcoming characters as well.
In this case, many desirable properties can be regained with monadic decomposition. Similar
to the monadic decomposition above, a predicate ϕ(x1, . . . , xn) admits a decomposition if it
can be rewritten in as a finite union of the following form.∨

1≤i≤m

ϕ1
i (x1) ∧ . . . ∧ ϕn

i (xn)

If the predicate with lookahead can be rewritten to the above form, the automaton can be
reorganised so that lookahead is no longer needed, recovering the required properties.

2.2.3 Parameterised Synchronicity

In the preceding discussion we touched upon synchronous and asynchronous transducers. In
particular, while testing monadic decomposability of synchronous transducers is PSPACE-
complete, it is undecidable for asynchronous transducers. Descotte, Figueira, and Puppis
consider transducers where the synchronicity is parametric [20]. To explain, let a transition

q
a−→
ε

q′ be represented by a 1, and a transition q
ε−→
a

q′ be represented by a 2. Thus, a 1 means

an input character is read, and a 2 means an output character is produced. A synchronous
transducer can be considered to be synchronised according to the pattern (12)∗. That is, the
transducer reads an input, then produces an output. An asynchronous transducer, however,
follows the most general synchronisation pattern {1, 2}∗. That is, at any moment, either an
input will be read, or an output will be produced. The case of recognisable relations can also be
represented using this idea, with the pattern 1∗2∗. This corresponds to a product L1×L2—first
the input is read (1∗) and checked to be in L1, and then the output is read (2∗) and checked
to be in L2.

Let R(C) denote the relations definable by some transducer under pattern C. Descotte et
al. show that it is decidable whether R(C) ⊆ R(C ′) for given C and C ′. It is also decidable
whether R(C) is closed under operations such as ∪, ∩, ¬, and ∗. Moreover, in some cases, given
a relation R ∈ R(C), it can be decided whether R ∈ R(C ′).

2.2.4 Building Blocks of Regular Functions

Regular languages permit representations as algebra (regular expressions), state machines (au-
tomata), and logic (MSO). Motivated by the desire to replicate this elegant triangle for trans-
ducers, Dave, Gastin, and Krishna provide an algebraic representation of string functions [16].
In particular, they complete the triangle containing functional MSO transductions and either
deterministic two-way transducers or streaming string transducers. The representation they
consider is Regular Transducer Expressions (RTEs). Such expressions are built from the fol-
lowing grammar components.

• Constant strings w. Intuitively, given any input, the function defined by a constant w
always returns w.

• If-then-else L?E : E′ given a regular language L and RTEs E and E′. If the given input
belongs to w, then the output is E(w), else it is E′(w).
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• Hadamard product E � E′ where the output on input w is E(w) · E′(w).

• Unambiguous Cauchy product E�E′ where the output on input w is E(u)·E′(v) whenever
w can be uniquely factorised w = u · v where u is in the domain of E and v is in the
domain of E′. The reverse operator is also permitted, where the output is E′(v) · E(u).

• Unambiguous Kleene-plus E� where the output on input w is E(u1) · · · · ·E(un) whenever
w can be uniquely factorised w = u1 · · · · · un where each uiis in the domain of E. The
reverse operator is also permitted, where the output is E(un) · · · · · E(u1).

• Unambiguous 2-chained Kleene-plus [L, E]2� where the output on input w is E(u1u2) ·
· · · ·E(un−1un) whenever w can be uniquely factorised w = u1 · · · · ·un where each uiis in
L. The reverse operator is also permitted, where the output is E(unun−1) · · · · ·E(u2u1).

For infinite words, the Kleene operators may be replaced by similar ω-operators.

2.3 Solving String Constraints

String constraints can be formed from Boolean combinations of string relations (such as con-
catenation), string tests (such as containment in a regular language), and additional constraints
(such as Presburger constraints over string lengths). The wide variety of possible string con-
straints, coupled with their frequent undecidability, has led to a number of string constraint
solvers, each using different techniques, supporting different features, and with different guar-
antees on completeness. We will discuss a selection of the tools here that were discussed at
MOSCA.

2.3.1 CVC4

CVC4 has been co-developed between Stanford and the University of Iowa [37]. It is a general
purpose constraint solver supporting many theories, such as arithmetic, arrays, bit vectors, and
strings with regular expressions.

Core Solver It builds upon the DPLL(T) architecture used by modern SMT solvers and
provides a theory of strings that supports string variables, integer variables, string constants,
string concatenation, string length, string equality, and linear arithmetic constraints. It is not
known whether such constraints have a decidable satisfiability problem, but it has been observed
that CVC4 runs well in practice.

The first step in such an SMT solver is to treat the problem as a basic SAT instance. Terms
are treated as boolean values only, and a SAT solver looks for a satisfying assignment. For
example, the constraint

x > 10 ∧ ¬(x > 10)

can easily be determined by a SAT solver to be unsatisfiable by treating x > 10 as the name of
a boolean variable, rather than a term over the integers. However, the constraint

x ∈ a∗ ∧ x ∈ b∗

cannot be determined unsatisfiable so directly. The SAT solver will notice that the formula can
be satisfied by making both x ∈ a∗ and x ∈ b∗ true. An SMT solver will then ask a string theory
solver whether these two constraints can be simultaneously satisfied. The string theory solver
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will reply negatively. The SMT solver will then add a lemma to block the assignment, and ask
the SAT solver for another potential solution. In general, of course, this may not terminate.

In CVC4, string and integer constraints may be mixed, and hence the constraints are sent
to both a string solver and an arithmetic solver. CVC4’s arithmetic solver is based on standard
techniques, such as the simplex method. Its string theory solver proceeds through five stages:
length processing, congruence closure, normalisation of equalities, normalisation of disequalities,
and finally cardinality.

In the length processing step, new integer constraints are inferred from the string constraints
which can be sent to the arithmetic solver. For example, the length of the string constant bba
can be fixed to 3, and, a clause x = y · z implies that the length of x equals the sum of the
lengths of y and z.

Next, the congruence closure step groups terms into equivalence classes. For example x = a·y
has the equivalence classes {x, a · y}, {a}, {y}. A conflict can be returned if terms asserted to
be unequal find themselves in the same equivalence class.

The normalisation step on equality iteratively replaces terms with a representative from
the equivalence class it occupies, and then recomputes the congruence closure. This is not
always straightforward. For example given an equivalence class {x · y, x′ · y} the alignment
between x, y, x′, and y′ contains several cases, and may require the splitting of equivalence
representatives. Selecting alignments and splits can be crucial to performance.

The normalisation step on disequalities proceeds analogously, except the alignment is aiming
to find pairs that are not equal, instead of equal.

Finally, the cardinality step makes inferences on the number of possible strings given any
length bounds and the size of the alphabet. A simple example is if the alphabet is size 3, but a
solution would require 4 distinct strings of length 1. In this case, the solution can be discarded.

Extended String Constraints In practice, one often needs to make use of string relations
such as substr9x, 0, “a”) (that asserts that x contains “a” as a substring starting from position
0), contains(x, “a”) (that asserts that x contains “a” as a substring), or replace(x, “a”, “b”)
(that replaces the first occurrence of a string with another).

Both CVC4 and Z3 approach these constraints using a preprocessing step. The idea is
to rewrite these extended terms into the core language. The relation ¬contains(x, “a”) is ap-
proached by CVC4 by using a bounded ∀ and substr constraints

∀i < |x|.¬substr(x, i, “a”) .

Then, if we make the assumption that x has length at most 5, we can replace the ∀ with a
conjunction

¬substr(x, 0, “a”) ∧ · · · ∧ ¬substr(x, 3, “a”) .

Finally, substr can be replaced by concatenation. That is substr(x, i, w) becomes

x = u · w · v ∧ |u| = i .

Such an approach in incomplete and requires a good set of heuristics. Solvers such as CVC4
and Z3 make use of techniques such as context-dependent simplification and lazy expansion to
ensure these rewriting steps can often lead to success.

2.3.2 Z3 and Z3str

There are two forms of support for strings in Z3. The first is the built into standard Z3, while
the second is known as Z3str.
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Z3 Z3 has supported strings since 2009 [7] using the observation that bounded length strings
can be supported as arrays. The string support maintains a state machine containing cur-
rent solutions to variables, unsolved (dis-)equalities, unsolved “contains” clauses, and unsolved
automata memberships. The search for a solution proceeds via a number of steps including
rewriting to a normal form, solving when lengths are known to be bounded, and case splitting
along potential concatenation points.

Z3str Z3str [53] uses an automata-based approach (see next section). It supports linear
arithmetic over string length, membership in regular languages, string-to-number conversion,
and concatenation. It’s algorithm is based on a DPLL(T) procedure. Without string-to-number
conversion, the theory is known to be decidable. When string-to-number conversion is allowed,
the theory becomes undecidable.

A key insight that it uses is that formulas often contain both implicit and explicit length
information, and that this information can be used to speed up the search for a solution. The
solver analyses the current regular language constraints over the variables and maintains a
lower and upper bound estimate of the string length. When these bounds determine the length
of the string, the question can be replaced with character constraints. For variables without
tight bounds, the solver will look for variables constrained by multiple languages. Using an
estimation of the work required, decide the perform some of the language intersections, in the
hope of tightening some bounds.

2.3.3 Automata-Based Solvers

CVC4 supports a basic core fragment and attacks complex string constraints using a rewriting
phase. An alternative approach is to represent string relations as transducers and take an
automata-based approach to the constraint solving problem. We overview several approaches
discussed at MOSCA.

SLOTH The SLOTH tool is based on the use of alternating automata [29]. It supports
“straight-line” conjunctions of string constraints built from regular constraints, concatenation,
and transductions.

The straight-line restriction intuitively corresponds to single-static assignment form. Each
term is of the form

x = f(y1, . . . , yn) .

In an equality x = y · z the value of x depends on the value of y and z. In the straight-line
fragment, these dependencies must not be circular. A non-straight line constraint is

x = y · z ∧ y = x · z

in which x depends on y and vice-versa. Note, the given constraint may be satisfied by assigning
all strings to empty.

The ability to support transductions allows relations such as substr(x, i, w), contains(x,w),
and replace(x,w,w′) to be encoded. Moreover, constraints received from symbolic execution
engines are likely to satisfy the straight-line requirement, since they correspond to program
paths. The DPLL(T) framework can additionally be used to provide some support for disjunc-
tion. Thus, the straight-line fragment can be quite useful in practice.

The fragment considered by SLOTH is known to be decidable [39]. Thus, SLOTH provides
completeness guarantees not provided by CVC4. However, it can be observed that CVC4 is
much faster on the constraints it supports.
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Alternating automata are used as an underlying representation of sets of strings by SLOTH.
In a standard finite automaton, pairs of transitions of the form q

a−→ q1 and q
a−→ q2 can be con-

sidered to be disjunctions: the word is accepted if either the first transition leads to an accepting
run, or the second does. In an alternating automaton, states can be considered existential—
corresponding to the aforementioned disjunctive interpretation—or universal. From a universal
state, such a pair of transitions would require both the first and the second transition to lead
to an accepting run.

The use of alternation leads to exponentially more succinct automata, with a corresponding
increase in the complexity of emptiness checking. While a standard finite automaton can be
checked in LOGSPACE, an alternating automaton requires PSPACE.

In order to make use of alternating automata, SLOTH develops a notion of alternating
transducers, and devises new algorithms for combining constraints into a single automaton,
and then efficiently checking emptiness.

OSTRICH The OSTRICH tool [10] deals with a similar straight-line fragment to SLOTH.
Its basic algorithm is a generic algorithm supporting any string functions that can be shown
to satisfy certain conditions. Transducers and concatenation have these properties, as does the
more complex replaceall(x,w, y) function, where all instances of w in x are replaced by the
contents of the variable y. This goes beyond transducers in which y must be a constant value.

The condition the relations must satisfy is most easily explained for a term x = f(y).
Suppose we have inferred a regular constraint y ∈ L. We require f−1(L) to also be a regular
language. That is, a regular constraint on y can be pulled backwards through f to form a
regular constraint on x. In this way, relations can be eliminated, as shown in the following
example. Beginning with a constraint

y = f(x) ∧ z = f ′(y) ∧ z ∈ L

we can pull L backwards through f ′ to obtain

y = f(x) ∧ y ∈ L′

for some L′. We do this again to obtain

x ∈ L′′ .

Finding a satisfying assignment means testing L′′ for emptiness.
In the general case, string functions may take several arguments. In this case, we require

recognisable relations. Recall, these are finite unions of products of languages⋃
i

Li
1 × · · · × Li

n .

Given a term
y = f(x1, . . . , xn)

and a regular constraint y ∈ L, we require f−1(L) to be a recognisable relation. If this condition
is satisfied by all functions, the algorithm demonstrated above can be used to eliminate string
functions.

The current version of OSTRICH only provides primitive support for integer or length
constraints. Recent, unpublished, work by Zhilin Wu has extended the automata representation
to “integer cost register automata”. Using these automata, it becomes possible to analyse
constraints over string lengths and the positions of substrings in words. In order to maintain
decidability, string/integer functions need to preserve the automaton representation just as in
the case with only string.
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Intersections of Regular Constraints The OSTRICH algorithm can be considered a re-
duction algorithm: constraints over a general set of terms are reduced to the intersection of
regular constraints. Unfortunately, OSTRICH’s algorithm for solving these intersections is a
simple on-the-fly product construction.

Recently, Cox and Leasure have studied the corpus problem [13]. In this problem, we are
given a corpus of regular expressions, and a candidate new regular expression. The expression
should be added to the corpus if it accepts a string that is not already accepted by an existing
expression. That is, for a regular language L and existing languages L1, . . . ,Ln we are interested
in the satisfiability of

x ∈ L ∧ x /∈ L1 ∧ · · · ∧ x /∈ Ln .

Instances of these problems were tested on CVC4, Z3, SLOTH, and OSTRICH, and all tools
showed exponential behaviour on growing problem sizes. To address this problem, the Qzy tool
was built, which shows only quadratic scaling in the number of regular expressions. Qzy uses
the observation that the corpus problem is really a safety-checking problem over a transition
system (or, indeed, several transition systems running in parallel). Thus, the problem can be
tackled using a model checker, implementing an algorithm such as IC3, with several additional
bespoke optimisations.

The study of language inclusion problems and the connection to model checking techniques,
such as anti-chains, has been well studied. The Language Inclusion project collects a large body
of work on this topic [2].

Circuit-based Solving The SLOG and SLENT tools [52] also use model checking techniques
to handle the analysis of string constraints based on automata. SLENT is an extension of SLOG,
which provides support for string lengths. The idea of the approach is to use a circuit-based
representation of automata, where boolean formulas are used to represent the initial states,
final states, and transition relation. Circuits can additionally be used to encode intersection,
union, and string concatenation operations. In addition, replacement, reverse, and prefix and
suffix operations are supported. The resulting circuit is then analysed using Property Directed
Reachability techniques that have been successful in hardware and software model checking.

An additional benefit of this approach is the ability to generate filters. Filters are motivated
by the application of string constraint solving to input santisation. In situations where suitably
crafted malicious inputs may cause undesired behaviour, a filter can be used to identify in
advance whether a given input may be malicious, and prevent the program running on it.

Multi-track Automata and Model Counting In some cases, satisfiability alone is not
enough. For example, if it were required to quantify the probability of an error occurring,
information about the number of possible inputs that could lead to an error is required. Aydin et
al. [5] have developed the tool MT-ABC, which is a model-counting string constraint solver.

For quantitative analysis, the number of models is counted with respect to a bound on the
string length. This avoids the problem of an infinite number of solutions.

The tool supports a large range of string functions, including length constraints. It uses
automata to represent sets of strings. By constructing an automaton that represents the set of
strings satisfying the constraint, model counting reduces to counting the number of accepting
paths up to the given bound.

To faithfully capture relationships between variables, it is not enough to use one automaton
per program variable. For example, equal(x, y) cannot be represented with two automata: one
for x and one for y; both variables need to be considered simultaneously. For this reason,
multi-track automata are used.
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Using this representation, the MT-ABC tool is able to take a constraint as input and produce
as output a function f : N → N. This function takes as an argument a bound on the length
of string variables, and returns the number of solutions to the original constraint whose length
does not exceed the given bound.

Beyond Regular Constraints Abdulla et al. [1] go beyond the string constraints considered
so far. In addition to equalities and disequalities (word equations), transductions, and length
constraints, they allow membership tests of context-free grammars. That is, x ∈ L where L is
no longer regular, but context-free. Such constraints are clearly undecidable (as conjunctions
of context-free grammars have an undecidable emptiness problem). To tackle this problem, the
authors introduce a “flatten and conquer” framework, which uses a counter-example guided
abstraction-refinement loop, that utilises both under- and over-approximation.

Flattening is with with respect to an “abstraction parameter”, which is a pair (n,m) of
natural numbers. The parameter limits the search for solutions to those strings of the form
w∗1 . . . w

∗
n where each wi is of length at most m. Checking intersection of context-free languages

with respect to such languages (known as “bounded languages”) can be reduced to Presburger
constraint solving [25].

The refinement loop proceeds by first using any over-approximation to find a potentially
spurious satisfying assignment. From this assignment, the set of abstraction parameters that
could have generated that word are added to a “waiting” set.

Next, the under-approximation phase iterates through each of the waiting abstraction pa-
rameters, and tests whether there exists a solution with respect to the appropriate flattening.
If a solution exists, it will be genuine. If no solution is found, over-approximation is used to
find more potential abstraction parameters. This loop may not terminate, but can be effective.
It is implemented in the open-source TRAU tool.

2.4 Constraint Programming

In this section we have considered string constraints from an SMT perspective, based on SAT
solving. SAT solving may also be generalised to the area of constraint programming, where
constraints are considered over arbitrary, but finite domains. Primarily, finding solutions to con-
straint programs is based on intelligent backtracking and propagation algorithms, with some
recent uses of clause learning. The use of global constraints, such as AllDifferent means propa-
gation is often more advanced that the unit propagation typically used in SAT solving.

The domain of strings has been a consideration in constraint programming. In order to study
a finite domain, strings are bounded up to a given length b. These strings may be handled in a
number of ways. One might represent strings as arrays of characters, with a suitable padding
character for strings shorter than the bound b. Additionally, one may implement bespoke
propagation algorithms that treat the padding character as special. Alternatively, a special
string data-type may be added. When such a type is added, there is a choice of representation
and the interaction with the propagation loop.

One possible representation is that of “dashed strings”. In this representation, a set of
strings is represented as a sequence of sets of string which may be repeated to form a string of
length given by an interval. For example

{B,b}1,2{ac,dc}3,8

represents strings with one or two B or b characters, following by a three to eight character
string formed by concatenations of ac and dc.
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This approach has been shown to be competitive, and has been implemented in the MiniZinc
tool [3].

3 Omissions

We have discussed a range of topics covered by presentations at MOSCA 2019. Inevitably, there
are some that have been omitted that do not fit the main threads focussed on by the present
article. We briefly mention these here.

Strings are closely related to the topic of graph databases, which were ably summarised in
a survey presentation by Barcelo [4]. Similarly, regular model checking reduces many model
checking problems to the analysis of string representations of program configurations. This
topic was surveyed by Vojnar, its applications to probabilistic concurrent systems discussed by
Lengal [36], and extensions beyond safety by Hong [30].

Chistikov discussed a word problem related to the balancing of well-bracketed words [11]
while Piskac presented recent work into synthesis, showing that programming by example, while
fast, was not always considered helpful by its users [49]. Lengal also discussed work attempting
to improve on MONA for the analysis WS1S, which can be interpreted as a string logic [26].

Finally, the MOSCA meeting hosted a working session on SMT-LIB for strings—a standard
that is currently under active development.
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Rezine, and Philipp Rümmer. Flatten and conquer: a framework for efficient analysis of string
constraints. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 602–617,
2017.

[2] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Seth Fogarty, Lukas Holik, Chih-Duo
Hong, Ondra Lengal, Richard Mayr, Jiri Simacek, Moshe Vardi, and Tomas Vojnar. http://

languageinclusion.org, 2017. [Online; accessed 18-July-2019].

[3] Roberto Amadini, Pierre Flener, Justin Pearson, Joseph D. Scott, Peter J. Stuckey, and Guido
Tack. Minizinc with strings. In Logic-Based Program Synthesis and Transformation - 26th In-
ternational Symposium, LOPSTR 2016, Edinburgh, UK, September 6-8, 2016, Revised Selected
Papers, pages 59–75, 2016.
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