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Abstract
We show the diagonal problem for higher-order pushdown au-
tomata (HOPDA), and hence the simultaneous unboundedness
problem, is decidable. From recent work by Zetzsche this means
that we can construct the downward closure of the set of words
accepted by a given HOPDA. This also means we can construct
the downward closure of the Parikh image of a HOPDA. Both of
these consequences play an important rôle in verifying concurrent
higher-order programs expressed as HOPDA or safe higher-order
recursion schemes.
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1. Introduction
Recent work by Zetzsche [41] has given a new technique for com-
puting the downward closure of classes of languages. The down-
ward closure ↓(L) of a language L is the set of all subwords of
words in L (e.g. aa is a subword of babab). It is well known that
the downward closure is regular for any language [20]. However,
there are only a few classes of languages for which it is known how
to compute this closure. In general it is not possible to compute the
downward closure since it would easily lead to a solution to the
halting problem for Turing machines.

However, once a regular representation of the downward closure
has been obtained, it can be used in all kinds of analysis, since reg-
ular languages are well behaved under all kinds of transformations.
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For example, consider a system that waits for messages from a
complex environment. This complex environment can be abstracted
by the downward closure of the messages it sends or processes it
spawns. This corresponds to a lossy system where some messages
may be ignored (or go missing), or some processes may simply not
contribute to the remainder of the execution. In many settings – e.g.
the analysis of safety properties of certain kinds of systems – un-
read messages or unscheduled processes do not effect the precision
of the analysis. Since many types of system permit synchronisation
with a regular language, this environment abstraction can often be
built into the system being analysed.

Many popular languages such as JavaScript, Python, Ruby, and
even C++, include higher-order features – which are increasingly
important given the popularity of event-based programs and asyn-
chronous programs based on a continuation or callback style of pro-
gramming. Hence, the modelling of higher-order function calls is
becoming key to analysing modern day programs.

A popular approach to verifying higher-order programs is that
of recursion schemes and several tools and practical techniques
have been developed [5, 8, 24, 25, 27, 31, 35, 39]. Recursion
schemes have an automaton model in the form of collapsible
pushdown automata (CPDA) [18] which generalises an order-2
model called 2-PDA with links [1] or, equivalently, panic au-
tomata [23]. When these recursion schemes satisfy a syntactical
condition called safety, a restriction of CPDA called higher-order
pushdown automata (HOPDA or n-PDA for order-n HOPDA) is
sufficient [22, 30]. HOPDA can be considered an extension of push-
down automata to a “stack of stacks” structure. It remains open as
to whether CPDA are strictly more expressive than nondeterminis-
tic HOPDA when generating languages of words. It is known that,
at order 2, nondeterministic HOPDA and CPDA generate the same
word languages [1]. However, there exists a language generated
by a deterministic order-2 CPDA that cannot be generated by a
deterministic HOPDA of any order [32].

It is well known that concurrency and first-order recursion very
quickly leads to undecidability (e.g. [34]). Hence, much recent
research has focussed on decidable abstractions and restrictions
(e.g. [4, 10, 12, 13, 16, 21, 28, 29, 37]). Recently, these results
have been extended to concurrent versions of CPDA and recursion
schemes (e.g. [15, 26, 33, 36]). Many approaches rely on com-
bining representations of the Parikh image of individual automata
(e.g. [12, 16, 17]). However, combining Parikh images of HOPDA
quickly leads to undecidability (e.g. [17]). In many cases, the down-
ward closure of the Parikh image is an adequate abstraction.

Computing downward closures appears to be a hard problem.
Recently Zetzsche introduced a new general technique for classes
of automata effectively closed under rational transductions – also
referred to as a full trio. For these automata the downward closure



is computable iff the simultaneous unboundedness problem (SUP)
is decidable.

DEFINITION 1.1 (SUP [41]). Given a language L ⊆ a∗
1 . . . a

∗
α

does ↓(L) = a∗
1 . . . a

∗
α?

THEOREM 1.1. [41, Theorem 1] Let C be class of languages that
is a full trio. Then downward closures are computable for C if and
only if the SUP is decidable for C.

Zetzsche used this result to obtain the downward closure of lan-
guages definable by 2-PDA, or equivalently, languages definable by
indexed grammars [2]. Moreover, for classes of languages closed
under rational transductions, Zetzsche shows that the simultaneous
unboundedness problem is decidable iff the diagonal problem is de-
cidable. The diagonal problem was introduced by Czerwiński and
Martens [11]. Intuitively, it is a relaxation of the SUP that is insen-
sitive to the order the characters are output. For a word w, let |w|a
be the number of occurrences of a in w.

DEFINITION 1.2 (Diagonal Problem [11]). Given language L we
define

Diagonala1,...,aα
(L) = ∀m.∃w ∈ L.∀1 ≤ i ≤ α.|w|ai ≥ m .

The diagonal problem asks if Diagonala1,...,aα
(L) holds of L.

COROLLARY 1.1 (Diagonal Problem and Downward Closures).
Let C be class of languages that is a full trio. Then downward clo-
sures are computable for C if and only if the diagonal problem is
decidable for C.

Proof. The only-if direction follows from Theorem 1.1 since given
a language L ⊆ a∗

1 . . . a
∗
α the diagonal problem is immediately

equivalent to the SUP. In the if direction, the result follows since
L satisfies the diagonal problem iff ↓(L) also satisfies the diago-
nal problem. Since the diagonal problem is decidable for regular
languages and ↓(L) is regular, we have the result. □

In this work, we generalise Zetzsche’s result for 2-PDA to the
general case of n-PDA. We show that the diagonal problem is de-
cidable. Since HOPDA are closed under rational transductions, we
obtain decidability of the simultaneous unboundedness problem,
and hence a method for constructing the downward closure of a
language defined by a HOPDA.

COROLLARY 1.2 (Downward Closures). Let P be an n-PDA. The
downward closure ↓(L(P )) is computable.

Proof. From Theorem 6.3 (proved in the sequel), we know that
the diagonal problem for HOPDA is decidable. Thus, using Corol-
lary 1.1, we can construct the downward closure of P . □

This result provides an abstraction upon which new results may
be based. It also has several immediate consequences:

1. decidability of separability by piecewise testable languages,
from Czerwiński and Martens [11],

2. decidability of reachability for parameterised concurrent sys-
tems of HOPDA communicating asynchronously via a shared
global register, from La Torre et al. [38],

3. decidability of finiteness of a language defined by a HOPDA,
and

4. computability of the downward closure of the Parikh image of
a HOPDA.

We present our decidability proof in two stages. First we show
how to decide Diagonala(P ) for a single character and HOPDA
P in Sections 3 and 4. In Sections 5, 6, and 7 we generalise our
techniques to the full diagonal problem.

In Section 3.1 we give an outline of the proof techniques for
deciding Diagonala(P ). In short, the outermost stacks of an n-PDA
are created and destroyed using pushn and popn operations. These
pushn and popn operations along a run of an n-PDA are “well-
bracketed” (each pushn has a matching popn and these matchings
don’t overlap). The essence of the idea is to take a standard tree
decomposition of these well-bracketed runs and observe that each
branch of such a tree can be executed by an (n− 1)-PDA. We
augment this (n− 1)-PDA with “regular tests” that allow it to
know if, each time a branch is chosen, the alternative branch could
have output some a characters. If this is true, then the (n− 1)-PDA
outputs a single a to account for these missed characters. We prove
that, although the (n− 1)-PDA outputs far fewer characters, it can
still output an unbounded number iff the n-PDA could. Hence,
by repeating this reduction, we obtain a 1-PDA, for which the
diagonal problem is decidable since it is known how to compute
their downward closures [9, 40].

In Section 6.1 we outline the generalisation of the proof to the
full problem Diagonala1,...,aα

(P ). The key difficulty is that it is
no longer enough for the (n− 1)-PDA to follow only a single
branch of the tree decomposition: it may need up to one branch for
each of the a1, . . . , aα. Hence, we define HOPDA that can output
trees with a bounded number (α) of branches. We then show that
our reduction can generalise to HOPDA outputting trees (relying
essentially on the fact that the number of branches is bounded).

2. Preliminaries
2.1 Downward Closures

Given two words w = γ1 . . . γm ∈ Σ∗ and w′ = σ1 . . . σl ∈ Σ∗

for some alphabet Σ, we write w ≤ w′ iff there exist i1 < . . . < im
such that for all 1 ≤ j ≤ m we have γj = σij . Given a set
of words L ⊆ Σ∗, we denote its downward closure ↓(L) =
{w | w ≤ w′ ∈ L}.

2.2 Trees

A Σ-labelled finite tree is a tuple T = (D,λ) where Σ is a set
of node labels, and D ⊂ N∗ is a finite set of nodes that is prefix-
closed, that is, η δ ∈ D implies η ∈ D, and λ : D → Σ is a
function labelling the nodes of the tree.

We write ε to denote the root of a tree (the empty sequence). We
also write

a[T1, . . . , Tm]

to denote the tree whose root node is labelled a and has children
T1, . . . , Tm. That is, we define a[T1, . . . , Tm] = (D′, λ′) when for
each δ we have Tδ = (Dδ, λδ) and D′ = {δη | η ∈ Dδ } ∪ {ε}
and

λ′(η) =

{
a η = ε

λδ(η
′) η = δη′ .

Also, let T [a] denote the tree ({ε} , λ) where λ(ε) = a. A branch
in T = (D,λ) is a sequence of nodes of T , η1 · · · ηn, such that
η1 = ϵ, ηn = δ1 δ2 · · · δn−1 is maximal in D, and ηj+1 = ηj δj
for each 1 ≤ j ≤ n− 1.

2.3 HOPDA

HOPDA are a generalisation of pushdown systems to a stack-of-
stacks structure. An order-n stack is a stack of order-(n−1) stacks.
An order-n push operation pushes a new order-(n − 1) stack onto
the stack that is a copy of the existing topmost order-(n− 1) stack.
Rewrite operations update the character that is at the top of the
topmost stacks.



DEFINITION 2.1 (Order-n Stacks). The set of order-n stacks SΓ
n

over a given stack alphabet Γ is defined inductively as follows.

SΓ
0 = Γ

SΓ
k+1 =

{
[s1 . . . sm]k+1

∣∣ ∀i.si ∈ SΓ
k

}
.

Stacks are written with the top part of the stack to the left. We define
several operations.

topk

(
[s1 . . . sm]k

)
= s1

topk

(
[s1 . . . sm]n

)
= topk(s1) n > k

rewγ

(
[γ1 . . . γm]1

)
= [γ γ2 . . . γm]1

rewγ

(
[s1 . . . sm]n

)
= [rewγ(s1) s2 . . . sm]n n > 1

pushk

(
[s1 . . . sm]k

)
= [s1 s1 . . . sm]k

pushk

(
[s1 . . . sm]n

)
= [pushk(s1) s2, . . . , sm]n n > k

popk

(
[s1 . . . sm]k

)
= [s2 . . . sm]k

popk

(
[s1 . . . sm]n

)
= [popk( s1) s2, . . . , sm]n n > k

and set

Opsn = {rewγ | γ ∈ Γ} ∪ {pushk, popk | 1 ≤ k ≤ n}
to be the set of order-n stack operations.

For example

push2

([
[γ σ]1

]
2

)
=

[
[γ σ]1 [γ σ]1

]
2

rewσ

([
[γ σ]1 [γ σ]1

]
2

)
=

[
[σ σ]1 [γ σ]1

]
2
.

DEFINITION 2.2 (HOPDA or n-PDA). An order-n higher order
pushdown automaton (HOPDA or n-PDA) is given by a tuple
(P,Σ,Γ,R,F , pin, γin) where P is a finite set of control states, Σ
is a finite output alphabet (that contains the empty word character
ϵ), Γ is a finite stack alphabet, R ⊆ P×Γ×Σ×Opsn×P is a set
of transition rules, F is a set of accepting control states, pin ∈ P
is the initial control state, and γin ∈ Γ is the initial stack character.

We write (p, γ)
a−→ (p′, o) for a rule (p, γ, a, o, p′) ∈ R.

A configuration of an n-PDA is a tuple ⟨p, s⟩ where p ∈ P and
s is an order-n stack over Γ. We have a transition ⟨p, s⟩ a−→ ⟨p′, s′⟩
whenever we have (p, γ)

a−→ (p′, o), top1(s) = γ, and s′ = o(s).
A run over a word w ∈ Σ∗ is a sequence of configurations

c0
a1−→ · · · am−−→ cm such that the word a1 . . . am is w. It is an

accepting run if c0 = ⟨pin, JγinKn⟩ — where we write JγKn for[
· · · [γ]1 · · ·

]
n

— and where cm = ⟨p, s⟩ with p ∈ F . Further-
more, for a set of configurations C, we define

Pre∗P (C)

to be the set of configurations c such that there is a run over some
word from c to c′ ∈ C. When C is defined as the language of some
automaton A accepting configurations, we abuse notation and write
Pre∗P (A) instead of Pre∗P (L(A)).

For convenience, we sometimes allow a set of characters to be
output instead of only one. This is to be interpreted as outputing
each of the characters in the set once (in some arbitrary order).
We also allow sequences of operations o1; . . . ; om in the rules
instead of single operations. When using sequences we allow a test
operation γ? that only allows the sequence to proceed if the top1

character of the stack is γ. All of these extensions can be encoded
by introducing intermediate control states.

2.3.1 Regular Sets of Stacks
We will need to represent sets of stacks. To do this we will use
automata to recognise stacks. We define the stack automaton model
of Broadbent et al. [6] restricted to HOPDA rather than CPDA.
We will sometimes call these bottom-up stack automata or simply

automata. The automata operate over stacks interpreted as words,
hence the opening and closing braces of the stacks appear as part
of the input. We annotate these braces with the order of the stack
the braces belong to. Let Γ[] = {[n−1, . . . , [1, ]1, . . . , ]n−1} ⊎ Γ.
Note, we don’t include [n, ]n since these appear exclusively at the
start and end of the stack.

DEFINITION 2.3 (Bottom-up Stack Automata). A tuple A is a
bottom-up stack automaton when A is (Q,Γ, qin,QF ,∆) where
Q is a finite set of states, Γ is a finite input alphabet, qin ∈ Q is the
initial state and ∆ : (Q× Γ) → Q is a deterministic transition
function.

Representing higher order stacks as a linear word graph, where
the start of an order-k stack is an edge labelled [k and the end of
an order-k stack is an edge labelled ]k, a run of a bottom-up stack
automaton is a labelling of the nodes of the graph with states in Q
such that

1. the rightmost (final) node is labelled by qin, and

2. whenever we have for any γ ∈ Γ[], and pair of labelled nodes
with an edge q

γ−→ q′ then q = ∆(q′, γ).

The run is accepting if the leftmost (initial) node is labelled by
q ∈ QF . An example run over the word graph representation of[[
[γ σ]1 [σ]1

]
2

[
[σ]1

]
2

]
3

is given in Figure 1.
Let L(A) be the set of stacks with accepting runs of A. Some-

times, for convenience, if we have a configuration c = ⟨p, s⟩ of a
HOPDA, we will write c ∈ L(A) when s ∈ L(A).

3. The Single Character Case
We assume Σ = {a, ε} and use b to range over Σ. This can be
obtained by simply replacing all other characters with ε. We also
assume that all rules of the form (p, γ)

b−→ (p′, o) with o = pushn

or o = popn have b = ε. We can enforce this using intermediate
control states to first apply o in one step, and then in another output
b (the stack operation on the second step will be rewγ where γ is
the current top character). We start with an outline of the proof, and
then explain each step in detail.

For convenience, we assume acceptance is by reaching a unique
control state in F with an empty stack (i.e. the lowermost stack was
removed with a popn and F = {pf}). This can easily be obtained
by adding a rule to a new accepting state whenever we have a rule
leading to a control state in F . From this new state we can loop and
perform popn operations until the stack is empty.

3.1 Outline of Proof
The approach is to take an n-PDA P and produce an (n− 1)-PDA
P−1 that satisfies the diagonal problem iff P does. The idea behind
this reduction is that an (accepting) run of P can be decomposed
into a tree with out-degree at most 2: each pushn has a matching
popn that brings the stack back to be the same as it was before
the pushn; we cut the run at the popn and hang the tail next to the
pushn and repeat this to form a tree from a run. This is illustrated
in Figure 2 where nodes are labelled by their configurations, and
the pushn and popn points are marked. The dotted arcs connect
nodes matched by their pushes and pops – these nodes have the
same stacks. Notice that at each branching point, the left and right
subtrees start with the same order-(n − 1) stacks on top. Notice
also that for each branch, none of its transitions remove the top-
most order-(n− 1) stack. Hence, we can produce an (n− 1)-PDA
that picks a branch of this tree decomposition to execute and only
needs to keep track of the topmost order-(n − 1) stack of the n-
PDA. When picking a branch to execute, the (n− 1)-PDA outputs
a single a if the branch not chosen could have output some a char-
acters. We prove that this is enough to maintain unboundedness.



qf q13 q12 q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 qin
[2 [1 γ σ ]1 [1 σ ]1 ]2 [2 [1 σ ]1 ]2

Figure 1: A run over
[[
[γ σ]1 [σ]1

]
2

[
[σ]1

]
2

]
3

⟨p1, [s1]n⟩

⟨p2, [s2]n⟩

⟨p3, [s2 s2]n⟩

⟨p4, [s3 s2]n⟩

⟨p5, [s3 s3 s2]n⟩

⟨p6, [s4 s3 s2]n⟩

⟨p7, [s3 s2]n⟩

⟨p8, [s2]n⟩

⟨p9, [s5]n⟩

pushn

pushn

popn

popn

(a) a run of P with pushns and popns marked.

⟨p1, [s1]n⟩

⟨p2, [s2]n⟩

⟨p3, [s2 s2]n⟩ ⟨p8, [s2]n⟩

⟨p4, [s3 s2]n⟩ ⟨p9, [s5]n⟩

⟨p5, [s3 s3 s2]n⟩ ⟨p7, [s3 s2]n⟩

⟨p6, [s4 s3 s2]n⟩

(b) The tree decomposition of the run

Figure 2: Tree decompositions of runs.

In more detail, we perform the following steps.

1. Instrument P to record whether an a character has been out-
put. Then, using known reachability results, obtain regular sets
of configurations from which the current topn stack can be
popped, and moreover, we can know whether an a is output
on the way. These tests can be seen as a generalisation of
pushdown systems with regular tests introduced by Esparza et
al. [14].

2. From an n-PDA P , we define an (n− 1)-PDA with tests P−1

and then an (n− 1)-PDA P ′ such that

Diagonala(P ) ⇐⇒ Diagonala
(
P ′) .

The tests will be used to check the branches of the tree decom-
position not explored by P−1.

3. By repeated applications of the above reduction, we obtain
an 1-PDA P for which Diagonala(P ) is decidable since the
downward closure of a context-free grammar (equivalent to
1-PDA) is computable [9, 40] and this is equivalent to the
diagonal problem.

The (n− 1)-PDA with tests P−1 will simulate the n-PDA P in the
following way.

• All operations except for pushn and popn will be simulated
directly.

• In lieu of performing a pushn, P−1 will choose to simulate the
run of P between the push and its corresponding popn, or the
run of P after the corresponding popn has taken place.

Tests will be used to determine which control state could
appear after the corresponding popn.

If the part of the run not being simulated output some as,
then P will output a single a in place of the omitted as.

Although P−1 will output far fewer a characters than P (since it
does not execute the full run), we show that it still outputs enough
as for the language to remain unbounded.

We thus have the following theorem.

THEOREM 3.1 (Decidability of the Diagonal Problem). Given an
n-PDA P and output character a, whether Diagonala(P ) holds
is decidable.

Proof. We construct via Lemma 3.2 an (n− 1)-PDA P ′ such that
Diagonala(P ) iff Diagonala(P

′). We repeat this step until we have
a 1-PDA. It is known that Diagonala(P ) for an 1-PDA is decidable
since it is possible to compute the downward closure [9, 40]. □

3.2 HOPDA with Tests
When executing a branch of the tree decomposition, to be able to
ensure the branch is correct and whether we should output an extra
a we need to know how the system could have behaved on the
skipped branch. To do this we add tests to the HOPDA that allow
it to know if the current stack belongs to a given regular set. We



show in the following sections that the properties required for our
reduction can be represented as regular sets of stacks. Although we
take Broadbent et al.’s logical reflection as the basis of our proof,
HOPDA with tests can be seen as a generalisation of pushdown
systems with regular valuations due to Esparza et al. [14].

DEFINITION 3.1 (n-PDA with Tests). Given a sequence of au-
tomata A1, . . . , Am recognising regular sets of stacks, an n-
PDA with tests is a tuple P = (P,Σ,Γ,R,F , pin, γin) where
P,Σ,Γ,F , pin, and γin are as in HOPDA, and

R ⊆ P × Γ× {A1, . . . , Am} × Σ× Opsn ×P
is a set of transition rules.

We write (p, γ,Ai)
b−→ (p′, o) for (p, γ,Ai, b, o, p

′) ∈ R. We have
a transition ⟨p, s⟩ b−→ ⟨p′, s′⟩ whenever (p, γ, Ai)

b−→ (p′, o) ∈ R
and top1(s) = γ, s ∈ L(Ai), and s′ = o(s).

We know from Broadbent et al. that these tests do not add
any extra power to HOPDA. Intuitively, we can embed runs of the
automata into the stack during runs of the HOPDA.

THEOREM 3.2 (Removing Tests). [6, Theorem 3 (adapted)] For
every n-PDA with tests P , we can compute an n-PDA P ′ with
L(P ) = L(P ′).

Proof. This is a straightforward adaptation of Broadbent et al. [6].
A more general theorem is proved in Theorem 6.1. □

3.2.1 Marking Outputs

When the HOPDA is in a configuration of the form ⟨p, [s]n⟩ – i.e.
the outermost stack contains only a single order-(n−1) stack – we
require the HOPDA to be able to know whether,

• for a given p1 and p2, there is a run from ⟨p1, [s]n⟩ to ⟨p2, []n⟩
(that is, the HOPDA empties the stack), and

• whether, during the run, an a is output.

Given P , we first augment P to record whether an a has been
produced. This can be done simply by recording in the control state
whether a has been output.

DEFINITION 3.2 (Pa). Given P = (P,Σ,Γ,R,F , pin, γin) we
define

Pa = (P ∪ Pa,Σ,Γ,R∪Ra,F ∪ Fa, pin, γin)

where
Pa = {pa | p ∈ P }
Ra =

{
(pa, γ)

b−→ (p′a, o)
∣∣∣ (p, γ) b−→ (p′, o) ∈ R

}
∪{

(p, γ)
a−→ (p′a, o)

∣∣∣ (p, γ) a−→ (p′, o) ∈ R
}

Fa = {pa | p ∈ F }

It is easy to see that P and Pa accept the same languages, and
that Pa is only in a control state pa if an a has been output.

3.2.2 Building the Automata

Fix some P = (P,Σ,Γ,R,F) and Pa = (Pa,Σ,Γ,Ra,Fa).
To obtain a HOPDA with tests, we need, for each p1, p2 ∈ P
the following automata. Note, we define these automata to accept
order-(n − 1) stacks since they will be used in an (n− 1)-PDA
with tests.

1. Ap1,p2 accepting all stacks s such that there is a run of P from
⟨p1, [s]n⟩ to ⟨p2, []n⟩,

2. Aa
p1,p2 accepting all stacks s such that there is a run of P from

⟨p1, [s]n⟩ to ⟨p2, []n⟩ that outputs at least one a.

To do this we will use a reachability result due to Broadbent et al.
that appeared in ICALP 2012 [7]. This result uses an automata rep-
resentation of sets of configurations. However, these automata are
slightly different in that they read full configurations “top down”,
whereas the automata of Theorem 3.2 (Removing Tests) read only
stacks “bottom up”.

It is known that these two representations are effectively equiv-
alent, and that both form an effective boolean algebra [6, 7]. In
particular, for a top-down automaton A and a control state p we
can build a bottom-up stack automaton B such that ⟨p, s⟩ ∈ L(A)
iff s ∈ L(B) and vice versa. We recall the reachability result.

THEOREM 3.3. [7, Theorem 1 (specialised)] Given an HOPDA P
and a top-down automaton A, we can construct an automaton A′

accepting Pre∗P (A).

Let Ap,γ be a top-down automaton accepting configurations of
the form ⟨p, [s]n⟩ where top1(s) = γ. Next, let

Ap =
∪

(p′,γ)
ε−→(p,popn)∈R

Ap′,γ

and
Aa

p =
∪

(p′,γ)
ε−→(p,popn)∈R

Ap′a,γ

I.e. Ap and Aa
p accept configurations of Pa from which it is possi-

ble to perform a popn operation to p and reach the empty stack.

DEFINITION 3.3 (Ap1,p2 and Aa
p1,p2 ). Using the preceding nota-

tion, given p1 and p2 we define bottom-up automata

• Ap1,p2 where L(Ap1,p2) =
{
s
∣∣ ⟨p1, [s]n⟩ ∈ Pre∗P (Ap2)

}
.

• Aa
p1,p2 where L

(
Aa

p1,p2

)
=
{
s
∣∣ ⟨p1, [s]n⟩ ∈ Pre∗Pa

(
Aa

p2

)}
.

It is easy to see both Ap1,p2 and Aa
p1,p2 are regular and repre-

sentable by bottom-up automata since both

Pre∗P (Ap2) and Pre∗Pa

(
Aa

p2

)
are regular from Theorem 3.3, and bottom-up and top-down au-
tomata are effectively equivalent. To enforce only stacks of the
form [s]n we intersect with an automaton A1 accepting all stacks
containing a single order-(n− 1) stack (this is clearly regular).

3.3 Reduction to Lower Orders
We are now ready to complete the reduction. Correctness is shown
in Section 4. Let Att be the automaton accepting all stacks. In
the following definition, a control state (p1, p2) means that we are
currently in control state p1 and are aiming to empty the stack on
reaching p2, and the rules Rsim simulate all operations apart from
pushn and popn directly, Rfin detect when the run is accepting,
Rpush follow the push branch of the tree decomposition, using tests
to ensure the existence of the pop branch, and Rpop follow the
pop branch of the tree decomposition, also using tests to check the
existence of the push branch.

DEFINITION 3.4 (P−1). Given an n-PDA P described by the tu-
ple (P,Σ,Γ,R, {pf} , pin, γin) as well as families of automata
(Ap1,p2)p1,p2∈P and

(
Aa

p1,p2

)
p1,p2∈P we define an (n− 1)-PDA

with tests

P−1 = (P−1,Σ,Γ,R−1,F−1, (pin, pf ) , γin)

where
P−1 = {(p1, p2) | p1, p2 ∈ P } ⊎ {f}
R−1 = Rsim ∪Rfin ∪Rpush ∪Rpop

F−1 = {f}
and we define



• Rsim is the set containing all rules of the form

((p1, p2), γ, Att)
b−→
((
p′1, p2

)
, o
)

for all (p1, γ)
b−→ (p′1, o) ∈ R with o /∈ {pushn, popn} and

p2 ∈ P , and
• Rfin is the set containing all rules of the form

((p1, p2), γ, Att)
ε−→ (f, rewγ)

for all (p1, γ)
ε−→ (p2, popn) ∈ R, and

• Rpush is the smallest set of rules containing all rules of the form

((p1, p2), γ, Ap,p2)
ε−→
((
p′1, p

)
, rewγ

)
for all (p1, γ)

ε−→ (p′1, pushn) ∈ R and p, p2 ∈ P , and all
rules of the form(

(p1, p2), γ, A
a
p,p2

) a−→
((
p′1, p

)
, rewγ

)
for all (p1, γ)

ε−→ (p′1, pushn) ∈ R and p, p2 ∈ P , and
• Rpop is the set containing all rules of the form(

(p1, p2), γ, Ap′1,p

)
ε−→ ((p, p2), rewγ)

for all (p1, γ)
ε−→ (p′1, pushn) ∈ R and p, p2 ∈ P and all rules

of the form (
(p1, p2), γ, A

a
p′1,p

)
a−→ ((p, p2), rewγ)

for all (p1, γ)
ε−→ (p′1, pushn) ∈ R and p, p2 ∈ P .

In the next section, we show the reduction is correct.

LEMMA 3.1 (Correctness of P−1).

Diagonala(P ) ⇐⇒ Diagonala(P−1)

To complete the reduction, we convert the HOPDA with tests
into a HOPDA without tests.

LEMMA 3.2 (Reduction to Lower Orders). For every n-PDA P
we can construct an (n− 1)-PDA P ′ such that

Diagonala(P ) ⇐⇒ Diagonala
(
P ′) .

Proof. From Definition 3.4 (P−1) and Lemma 3.1 (Correctness of
P−1), we obtain from P an (n− 1)-PDA with tests P−1 satisfying
the conditions of the lemma. To complete the proof, we invoke
Theorem 3.2 (Removing Tests) to find P ′ as required. □

4. Correctness of Reduction
This section is dedicated to the proof of Lemma 3.1 (Correctness
of P−1).

The idea of the proof is that each run of P can be decomposed
into a tree: each pushn operation creates a node whose left child is
the run up to the matching popn, and whose right child is the run
after the matching popn. All other operations create a node with a
single child which is the successor configuration.

Each branch of such a tree corresponds to a run of P−1. To
prove that P−1 can output an unbounded number of as we prove
that any tree containing m edges outputting a must have a branch
along which P−1 would output log(m) a characters. Thus, if P can
output an unbounded number of a characters, so can P−1.

4.1 Tree Decomposition of Runs
Given a run

ρ = c0
b1−→ c1

b2−→ · · · bm−−→ cm

of P where each pushn operation has a matching popn, we can
construct a tree representation of ρ inductively. That is, we define
Tree(c) = T [ε] for the single-configuration run c, and, when

ρ = c
b−→ ρ′

where the first rule applied does not contain a pushn operation, we
have

Tree(ρ) = b
[
Tree

(
ρ′
)]

and, when
ρ = c0

ε−→ ρ1
ε−→ ρ2

with c1 being the first configuration of ρ2 and where the first
rule applied in ρ contains a pushn operation, c0 = ⟨p, s⟩ and
c1 = ⟨p′, s⟩ for some p, p′, s and there is no configuration in ρ1
of the form ⟨p′′, s⟩, then

Tree(ρ) = ε[Tree(ρ1),Tree(ρ2)] .

An accepting run of P has the form ρ
ε−→ c where ρ has the

property that all pushn operations have a matching popn and the
final transition is a popn operation to c = ⟨p, []n⟩ for some p ∈ F .
Hence, we define the tree decomposition of an accepting run to be

Tree
(
ρ

ε−→ c
)
= ε[Tree(ρ), T [ε]] .

4.2 Scoring Trees
In the above tree decomposition of runs, the tree branches at
each instance of a pushn operation. This mimics the behaviour of
P−1, which performs such branching non-deterministically. Hence,
given a run ρ of P , each branch of Tree(ρ) corresponds to a run of
P−1.

We formalise this intuition in the following section. In this
section, we assign scores to each subtree T of Tree(ρ). These
scores correspond directly to the largest number of a characters
that P−1 can output while simulating a branch of T .

Note, in the following definition, we exploit the fact that only
nodes with exactly one child may have a label other than ε. We also
give a general definition applicable to trees with out-degree larger
than 2. This is needed in the simultaneous unboundedness section.
For the moment, we only have trees with out-degree at most 2.

Let

b =

{
0 b = ε

1 b = a
and m =

{
0 m = 0

1 m > 0
.

Then, Score(T ) =
0 T = T [ε]

Score(T1) + b T = b[T1]

max
1≤i≤m

(
Score(Ti) +

∑
j ̸=i

Score(Tj)

)
T = ε[T1, . . . , Tm]

We then have the following lemma for trees with out-degree 2.

LEMMA 4.1 (Minimum Scores). Given a tree T containing m
nodes labelled a, we have

Score(T ) ≥ log(m)

Proof. The proof is by induction over m. In the base case m = 1
and there is a single node η in T labelled a. By definition, the
subtree T ′ rooted at η has Score(T ′) = 1. Since the score of a
tree is bounded from below by the score of any of its subtrees, we
have Score(T ) ≥ log(1) as required.

Now, assume m > 1. Find the smallest subtree T ′ of T con-
taining m nodes labelled a. We necessarily have either

1. T ′ = a[T1], or



ε

a1 a2

...
...

a1 a2

ε ε

Figure 3: An example showing that following a single branch does
not work for simultaneous unboundedness.

2. T ′ = ε[T1, T2] where T1 and T2 each have at least one node
each labelled a.

In case (1) we have by induction

Score
(
T ′) = 1 + log(m− 1) ≥ log(m)

In case (2) we have

Score
(
T ′) = max

(
Score(T1) + Score(T2),

Score(T2) + Score(T1)

)
.

We pick whichever of T1 and T2 has the most nodes labelled a.
This tree has at least ⌈m/2⌉ nodes labelled a. Note, since both
trees contain nodes labelled a, the right-hand side of the addition is
always 1. Hence, we need to show

log(⌈m/2⌉) + 1 ≥ log(m)

which follows from

log(m)− log(⌈m/2⌉) = log
(

m
⌈m/2⌉

)
≤

log
(

m
m/2

)
= log(2) = 1 .

By our choice of T ′ we thus have Score(T ) = Score(T ′) ≥
log(m) as required. □

4.3 Completing the Proof
To complete the proof we show the following lemmas, whose
proofs are given in the full version [19]. These lemmas simply
formalise the connection between runs of P and runs of P−1.

LEMMA 4.2 (Scores to Runs). Given an accepting run ρ of P , if
Score(Tree(ρ)) = m then am ∈ L(P−1).

LEMMA 4.3 (P−1 to P ). If Diagonala(P−1) then Diagonala(P ).

5. Multiple Characters
We generalise the previous result to the full diagonal problem.
Naı̈vely, the previous approach cannot work. Consider the HOPDA
executing

pushm
1 ; pushn; popm

1 ; popn; popm
1

where the first sequence of pop1 operations output a1 and the
second sequence output a2.

The corresponding run trees are of the form given in Figure 3.
In particular, P−1 can only choose one branch, hence all runs of
P−1 produce a bounded number of a1s or a bounded number of
a2s. They cannot be simultaneously unbounded.

For P−1 to be able to output both an unbounded number of a1

and a2 characters, it must be able to output two branches of the tree.
To this end, we define a notion of α-branch HOPDA, which output
trees with up to α branches. We then show that the reduction from
n-PDA to (n− 1)-PDA can be generalised to α-branch HOPDA.

5.1 Branching HOPDA
We define n-PDA outputting trees with at most α branches, denoted
(n, α)-PDA. Note, an n-PDA that outputs a word is an (n, 1)-PDA.
Indeed, any (n, α)-PDA is also an (n, α′)-PDA whenever α ≤ α′.

DEFINITION 5.1 ((n, α)-PDA). We define an order-n α-branch
pushdown automaton ((n, α)-PDA) to be given by a tuple P =
(P,Σ,Γ,R,F , pin, γin, θ) where P , Σ, Γ, F , pin, and γin are as
in HOPDA. The set of rules R ⊆

∪
1≤m≤α

P×Γ×Σ×Opsn×Pm

together with a mapping θ : P → {1, . . . , α} such that for all
(p, γ, b, o, p1, . . . , pm) ∈ R we have θ(p) ≥ θ(p1)+ · · ·+θ(pm).

We use the notation (p, γ)
b−→ (p1, . . . , pm, o) to denote a rule

(p, γ, b, o, p1, . . . , pm) ∈ R. Intuitively, such a rule generates a
node of a tree with m children. The purpose of the mapping θ is
to bound the number of branches that this tree may have. Hence,
at each branching rule, the quota of branches is split between the
different subtrees. The existence of such a mapping implies this
information is implicit in the control states and an (n, α)-PDA can
only output trees with at most α branches.

From the initial configuration c0 = ⟨pin, JγinKn⟩ a run of an
(n, α)-PDA is a tree T = (D,λ) whose nodes are labelled with
n-PDA configurations, and generates an output tree T ′ = (D,λ′)
whose nodes are labelled with symbols from the output alphabet.
Precisely

• λ(ε) = c0, and
• for a node η with children η1, . . . , ηm and λ(η) = ⟨p, s⟩ there

is a rule (p, γ)
b−→ (p1, . . . , pm, o) such that for all 1 ≤ i ≤ m

we have λ(ηi) = ⟨pi, s′⟩ where top1(s) = γ, s′ = o(s).
Moreover we have λ′(η) = b.

• For all leaf nodes η we have λ′(η) = ε.

The run is accepting if for all leaf nodes η we have λ(η) = ⟨p, []n⟩
and p ∈ F . Let L(P ) be the set of output trees of P .

Given an output tree T we write |T |a to denote the number of
nodes labelled a in T . For an (n, α)-PDA P , we define

Diagonala1,...,aα
(P ) =

∀m.∃T ∈ L(P ).∀1 ≤ i ≤ α.|T |ai ≥ m .

6. Reduction For Simultaneous Unboundedness
Given an (n, α)-PDA P we construct an (n− 1, α)-PDA P−1 such
that

Diagonala1,...,aα
(P ) ⇐⇒ Diagonala1,...,aα

(P−1) .

Moreover, we show Diagonala1,...,aα
(P ) is decidable for a (0, α)-

PDA (i.e. a regular automaton outputting an α-branch tree) P .
For simplicity, we assume for all rules (p, γ) b−→ (p1, . . . , pm, o)

if m > 1 then o = rewγ (i.e. the stack is unchanged). Additionally
we have b = ε.

We also make analogous assumptions to the single character
case. That is, we assume Σ = {a1, . . . , aα, ε} and use b to range
over Σ. Moreover, all rules of the form (p, γ)

b−→ (p′, o) with
o = pushn or o = popn have b = ε. Finally, we assume acceptance
is by reaching a unique control state in F with an empty stack.

6.1 Some Intuition
We briefly sketch the intuition behind the algorithm. We illustrate
the reduction from (n, α)-PDA to (n− 1, α)-PDA in Figure 4.

• We begin with an n-PDA which we first interpret as an (n, α)-
PDA. This is possible because an (n, α)-PDA can produce
at most α branches. Thus, an n-PDA — which produces a



single branch — is also a (n, α)-PDA. We work with HOPDA
producing α branches because, after each reduction step, we
will need to output one branch for each character in a1, . . . , aα.

• We have an (n, α)-PDA P that outputs a tree with at most
α branches. In Figure 4 we show part of a run tree with 2
branches. The pushn and popn operations are shown on the
edges of the tree. Nodes are numbered to help identify them
during the different transformations.

• We “decompose” this tree into another tree where the branches
appearing after the popn operations are hung from the same
parent as their matching pushn. This is shown in the middle
of Figure 4. Notice that this tree has an unbounded number of
branches (it branches at each pushn). However, we know that
the maximum out-degree of any of its nodes is (α + 1) since
the source of a pushn-labelled edge has one child, and we add
at most α extra children corresponding to the popn on each of
its at most α branches.

• We prove a generalisation of Lemma 4.1 (Minimum Scores)
that shows a run tree with at least m instances of a character
a has a branch with a score of at least log(α+1)(m). Thus, we
need to select one branch for each a we wish to output.

• We build an (n− 1, α)-PDA P−1 that non-deterministically
picks out the highest scoring branches for each a. This is shown
on the right of Figure 4.

6.2 Branching HOPDA with Regular Tests
As before, we instrument our HOPDA with tests. Removing these
tests requires a simple adaptation of Broadbent et al. [6].

DEFINITION 6.1 ((n, α)-PDA with Tests). Given a sequence of
automata A1, . . . , Am, an (n, α)-PDA with tests is given by a
tuple P = (P,Σ,Γ,R,F , pin, γin, θ) where P , Σ, Γ, F , pin,
γin are as in HOPDA. The set of rules R ⊆

∪
1≤m≤α

P × Γ ×

{A1, . . . , Am} × Σ × Opsn × Pm together with a mapping θ :
P → {1, . . . , α} such that for all (p, γ,A, b, o, p1, . . . , pm) ∈ R
we have θ(p) ≥ θ(p1) + · · ·+ θ(pm).

We use the notation (p, γ,A)
b−→ (p1, . . . , pm, o) to denote a

rule (p, γ,A, b, o, p1, . . . , pm) ∈ R.
From the initial configuration c0 = ⟨pin, JγinKn⟩ a run of an

(n, α)-PDA with tests is a tree T = (D,λ) and generates an output
tree ρ = (D,λ′) where

• λ(ε) = c0, and
• for a node η with children η1, . . . , ηm and λ(η) = ⟨p, s⟩ there

is a rule (p, γ, A)
b−→ (p1, . . . , pm, o) such that s ∈ L(A)

and for all 1 ≤ i ≤ m we have λ(ηi) = ⟨pi, s′⟩ where
top1(s) = γ, and s′ = o(s). Moreover we have λ′(η) = b.

• For all leaf nodes η we have λ′(η) = ε.

The run is accepting if for all leaf nodes η we have λ(η) = ⟨p, []n⟩
and p ∈ F . Let L(P ) be the set of output trees of P .

THEOREM 6.1 (Removing Tests). [6, Theorem 3 (adapted)] For
every (n, α)-PDA with tests P , we can compute an (n, α)-PDA
P ′ with L(P ) = L(P ′).

The adapted proof of the above theorem is given in the full ver-
sion [19].

6.3 Building The Automata
Previously we built automata Ap1,p2 to indicate that from p1,
the current top stack could be removed, arriving at p2. This is
fine for words, however, we now have α-branch trees. It is no

longer enough to specify a single control state: the top stack may
be popped once on each branch of the tree, hence for a control
state p we need to recognise configurations with control state p
from which there is a run tree where the leaves of the trees are
labelled with configurations with control states p1, . . . , pm and
empty stacks. Moreover we need to recognise the set O of char-
acters output by the run tree. More precisely, for these automata
we write

AO
p,p1,...,pm

where θ(p) ≥ θ(p1) + · · · + θ(pm) and O ⊆ {a1, . . . , aα}. We
have s ∈ L

(
AO

p,p1,...,pm

)
iff there is a run tree T with the root

labelled ⟨p, [s]n⟩ and m leaf nodes labelled ⟨p1, []n⟩, . . . , ⟨pm, []n⟩
respectively. Moreover, we have a ∈ O iff the corresponding
output tree T ′ has |T ′|a > 0.

6.3.1 Alternating HOPDA
To construct the required stack automata, we need to do reacha-
bility analysis of (n, α)-PDA. We show that such analyses can be
rephrased in terms of alternating higher-order pushdown systems
(HOPDS), for which the required algorithms are already known [7].
Note, we refer to these machines as “systems” rather than “au-
tomata” because they do not output a language.

DEFINITION 6.2 (Alternating HOPDS). An alternating order-n
pushdown system is a tuple P = (P,Γ,R) where P is a finite
set of control states, Γ is a finite stack alphabet, and

R ⊆ (P × Γ× Opsn × P) ∪
(
P × Γ× 2P

)
is a set of transition rules.

We write (p, γ) → (p, o) to denote (p, γ, o, p) ∈ R and
(p, γ) → p1, . . . , pm to denote (p, γ, {p1, . . . , pm}) ∈ R.

An run of an alternating HOPDS may split into several configu-
rations, each of which must reach a target state. Hence, the branch-
ing of the alternating HOPDS mimics the branching of the (n, α)-
PDA. Given a set C of configurations, we define Pre∗P (C) to be the
smallest set C′ such that

C′ = C ∪⟨p, s⟩

∣∣∣∣∣∣
(p, γ) → (p′, o) ∈ R ∧

top1(s) = γ ∧
⟨p′, o(s)⟩ ∈ C′

 ∪⟨p, s⟩

∣∣∣∣∣∣
(p, γ) → p1, . . . , pm ∈ R ∧

top1(s) = γ ∧
∀i.⟨pi, s⟩ ∈ C′

 .

6.3.2 Constructing the Tests

In order to use standard results to obtain AO
p,p1,...,pm we construct

an alternating HOPDS P⋄ and automaton A such that checking
c ∈ Pre∗P⋄(A) for a suitably constructed c allows us to check
whether s ∈ L

(
AO

p,p1,...,pm

)
.

The alternating HOPDS P⋄ will mimic the branching of P with
alternating transitions1 (p, γ) → p1, . . . , pm of P⋄. It will maintain
in its control states information about which characters have been
output, as well as which control states should appear on the leaves
of the branches. This final piece of information prevents all copies
of the alternating HOPDS from verifying the same branch of P .

DEFINITION 6.3 (P⋄). Given an (n, α)-PDA P described by the
tuple (P,Σ,Γ,R,F , pin, γin), of P , we define

P⋄ = (P⋄,Γ,R⋄)

1 We slightly alter the alternation rule from ICALP 2012 [7] by matching
the top stack character as well as the control state. This is a benign alteration
since it one can track the top of stack character in the control state.
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Figure 4: Illustrating the reduction steps.

where

P⋄ =

(p,O, p1, . . . , pm)

∣∣∣∣∣∣
1 ≤ m ≤ α ∧

O ⊆ {a1, . . . , aα} ∧
p1, . . . , pm ∈ P


and R⋄ is the set of rules containing, for each

(p, γ)
b−→
(
p′, o

)
∈ R

all rules

((p,O, p1, . . . , pi), γ) → ((p1, O \ {b} , p1, . . . , pi), o)
and for each

(p, γ)
ε−→ (p1, . . . , pm, rewγ) ∈ R

with m > 1 all alternating rules

((
p,O, p′1, . . . , p

′
i

)
, γ
)
→

(
p1, O1, p

1
1, . . . , p

1
i1

)
,

. . .
(pm, Om, pm1 , . . . , pmim)

where p′1, . . . , p
′
i is a permutation of p11, . . . , p

1
i1 , . . . p

m
1 , . . . , pmim

and O = O1 ∪ · · · ∪Om.

In the above definition, the permutation condition ensures that
the target control states are properly distributed amongst the newly
created branches.

LEMMA 6.1. We have s ∈ L
(
AO

p,p1,...,pm

)
iff

⟨(p,O, p1, . . . , pm), [s]n⟩ ∈ Pre∗P⋄(A)

where A is such that

L(A) =
{
⟨(p, ∅, p), []n⟩ | p ∈ {p1, . . . , pm}

}
.

The proof of the above lemma is given in the full version [19].
It is known that Pre∗P (A) is computable for alternating HOPDS.

THEOREM 6.2. [7, Theorem 1 (specialised)] Given an alternating
HOPDS P and a top-down automaton A, we can construct an
automaton A′ accepting Pre∗P (A).

Hence, we can now build AO
p,p1,...,pm from the control state p

and top-down automaton representation of Pre∗P⋄(A) since we can
effectively translate from top-down to bottom-up stack automata.

6.4 Reduction to Lower Orders
We generalise our reduction to (n, α)-PDA. Let Att be the au-
tomata accepting all configurations. Note, in the following defini-
tion we allow all transitions (including branching) to be labelled by
sets of output characters. To maintain our assumed normal form we
have to replace these transitions using intermediate control states to

ensure all branching transitions are labelled by ε and all transitions
labelled O are replaced by a sequence of transitions outputting a
single instance of each character in O.

The construction follows the intuition of the single character
case, but with a lot more bookkeeping. Given an (n, α)-PDA P
we define an (n− 1, α)-PDA with tests P−1 such that P satisfies
the diagonal problem iff P−1 also satisfies the diagonal problem.
The main control states of P−1 take the form

(p, p1, . . . , pm, O,B)

where p, p1, . . . , pm are control states of P and both O and B are
sets of output characters. We explain the purpose of each of these
components.

We will define P−1 to generate up to m branches of the tree
decomposition of a run of P . In particular, for each of the characters
a ∈ {a1, . . . , aα} there will be a branch of the run of P−1

responsible for outputting “enough” of the character a to satisfy
the diagonal problem. Note that two characters a and a′ may share
the same branch. When a control state of the above form appears
on a node of the run tree, the final component B makes explicit
which characters the subtree rooted at that node is responsible for
generating in large numbers. Thus, the initial control state will have
B = {a1, . . . , aα} since all characters must be generated from
this node. However, when the output tree branches – i.e. a node has
more than one child – the contents of B will be partitioned amongst
the children. That is, the responsibility of the parent to output
enough of the characters in B is divided amongst its children.

The remaining components play the role of a test AO
p,p1,...,pm .

That is, the current node is simulating the control state p of P ,
and is required to produce m branches, where the stack is emptied
on each leaf and the control states appearing on these leaves are
p1, . . . , pm. Moreover, the tree should output at least one of each
character in O.

Note, P−1 also has (external) tests of the form AO
p,p1,...,pm that

it can use to make decisions, just like in the single character case.
However, it also performs tests “online” in its control states. This
is necessary because the tests were used to check what could have
happened on branches not followed by P−1. In the single character
case, there was only one branch, hence P−1 would uses tests to
check all the branches not followed, and then continue down a
single branch of the tree. In the multi-character case the situation is
different. Suppose a subtree rooted at a given node was responsible
for outputting enough of both a1 and a2. Amongst the possible
children of this node we may select two children: one for outputting
enough a1 characters, and one for outputting enough a2 characters.
The alternatives not taken will be checked using tests as before.
However, the child responsible for outputting a1 may have also
wanted to run a test on the child responsible for outputting a2. Thus,



as well as having to output enough a2 characters, this latter child
will also have to run the test required by the former. Thus, we have
to build these tests into the control state. As a sanity condition we
enforce O ∩ B = ∅ since a branch outputting a should never ask
itself if it is able to produce at least one a.

We explain the rules of P−1 intuitively. It will be beneficial to
refer to the formal definition (below) while reading the explana-
tions. The case for Rpush is illustrated in Figure 5 since it covers
most of the situations appearing in the other rules as well.

• The rules in Rinit guess how many branches will be needed to
output enough of each a. (This might be less than α since one
branch might account for several characters.)

• The rules in Rfin check whether the run can be finished (always
via a popn since we are aiming for the empty stack). This is true
if we only have one branch to complete (just reach p′) and we
have no more characters that we’re obliged to output.

• The rules in Rsim simulate a non-branching operation. They do
this faithfully, simply passing along all information (updating
O if a character is output by the simulated transition).

• The rules in Rbr are the first of the complicated rules. This
is mainly a matter of notation. The reasoning behind the
rules is that we’re at a point where the tree splits into l dif-
ferent branches. These have control states p′1, . . . , p

′
l respec-

tively. We non-deterministically guess which of these branches
should output which of the characters in B. Thus, we split
B into B1, . . . , Bi. This means we are exploring i branches.
Let x1, . . . , xi be the control states on these branches. The
remaining branches we handle using tests on the stack. Let
y1, . . . , yj be the control states appearing on these branches.
We require that all of p′1, . . . , p′l are accounted for, so we assert
that p′1, . . . , p′l is a permutation of x1, . . . , xi, y1, . . . , yj .
Similarly, in the current subtree we are obliged to pop to leaf
nodes containing the control states p1, . . . , pm. We split these
obligations between the branches we are exploring and those
we are handling using tests. We use another permutation check
to ensure the obligations have been distributed properly.
Finally, we are required to output characters in O. We may
also, in choosing a particular branch for a character a, need to
output a to account for instances appearing on a missed branch.
Hence we also output O′ to account for these. We distribute
the obligations O and O′ amongst the different branches using
X1, . . . , Xi and Y1, . . . , Yj .

• The rules in Rpush and Rpop follow the same intuition as in
the single character case, except we have the branching to deal
with. In particular, at a push we have one branch correspond-
ing to exploring what happens between the push and the cor-
responding pops, and a branch for each of the corresponding
pops. We choose a selection of these branches to track with the
HOPDA and a selection to handle using tests. The difference
between Rpush and Rpop is that the former explores the branch
of the push using the HOPDA and the latter uses a test.
In these rules, after the push we’re in control state p′ and
we guess that we will pop to control states p′1, . . . , p

′
l. Hence

we have a branch or a test to ensure that this happens. The
remaining branches and tests are for what happens after the
pops. The start from the states p′1, . . . , p′l and must, in total, pop
to the original pop obligation p1, . . . , pm. Hence, we distribute
these tasks in the same way as the Rbr.

Before giving the formal definition, we summarise the discus-
sion above by recalling the meaning of the various components. A
control state (p, p1, . . . , pm, O,B) means we’re currently simulat-
ing a node at control state p that is required to produce m branches

terminating in control states p1, . . . , pm respectively, that the pro-
duced tree should output at least one of each character in O and the
entire subtree should output enough of each character in B to sat-
isfy the diagonal problem. In the definition below, the set O′ is the
set of new single character output obligations produced when the
automaton decides which branches to follow faithfully and which
to test (for the output of at least one of each character). The sets
X1, . . . , Xi and Y1, . . . , Yj represent the partitioning of the single
character output obligations amongst the tests and new branches.

The correctness of the reduction is stated after the definition. A
discussion of the proof appears in Section 7.

DEFINITION 6.4 (P−1). Given an (n, α)-PDA P described by
(P,Σ,Γ,R, {pf} , pin, γin, θ) and automata AO

p,p1,...,pm for all
1 ≤ m ≤ α, p, p1, . . . , pm ∈ P , and O ⊆ {a1, . . . , aα} we define
an (n− 1, α)-PDA with tests

P−1 =
(
P−1,Σ,Γ,R−1,F−1, p

−1
in , γin, θ−1

)
where P−1 is the set(p, p1, . . . , pm, O,B)

∣∣∣∣∣∣∣
1 ≤ m ≤ α ∧

p, p1, . . . , pm ∈ P ∧
O,B ⊆ {a1, . . . , aα} ∧

O ∩B = ∅

 ⊎

{
p−1

in , f
}

and
R−1 = Rinit ∪Rsim ∪Rbr ∪Rfin ∪Rpush ∪Rpop

F−1 = {f}

and θ−1((p, p1, . . . , pm, O,B)) = |B| and is 1 for all other
control states. We define the sets of rules, where in all cases,
p1, . . . , pm ∈ P and O,O′, B ⊆ {a1, . . . , aα}, to be as follows:

• Rinit is the set containing all rules of the form(
p−1

in , γin
) ε−→ ((pin, pf , . . . , pf , ∅, {a1, . . . , aα}), rewγin)

where |pf , . . . , pf | ≤ α, and
• Rfin is the set containing all rules of the form((

p, p′, ∅, B
)
, γ, Att

) ε−→ (f, rewγ)

for all (p, γ) ε−→ (p′, popn) ∈ R and B ⊆ {a1, . . . , aα}, and
• Rsim is the set containing all rules of the form

((p, p1, . . . , pm, O,B), γ, Att)y {b} ∩B

((p′, p1, . . . , pm, O \ {b}, B), o)

for (p, γ) b−→ (p′, o) ∈ R, and o /∈ {pushn, popn}, and
• Rbr is the set containing all rules of the form(p, p1, . . . , pm, O,B), γ,

AY1
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A
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ij
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1
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)
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. . . ,(
xi, x

i
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i
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) , rewγ


where

(p, γ)
ε−→
(
p′1, . . . , p

′
l, rewγ

)
∈ R



p

p′
pushn

(p′, p′1, . . . , p
′
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Figure 5: Illustrating the rules in Rpush.

and p′1, . . . p
′
l is a permutation of

x1, . . . , xi, y1, . . . , yj

and p1, . . . , pm is a permutation of

x1
1, . . . , x

1
j1 , . . . x

i
1, . . . , x

i
jiy

1
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1
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j
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j
ij

and

O ∪O′ = X1 ∪ · · · ∪Xi ∪ Y1 ∪ · · · ∪ Yj

and B = B1 ∪ · · · ∪Bi.
• Rpush is the set containing all rules of the form(p, p1, . . . , pm, O,B), γ,
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1,...,y

j
ij


y O′ ∩B
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x1, x
1
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1
j1 , X1, B1

)
,

. . . ,(
xi, x

i
1, . . . , x

i
ji , Xi, Bi

) , rewγ


where

(p, γ)
ε−→
(
p′, pushn

)
and p′1, . . . p

′
l is a permutation of

x1, . . . , xi, y1, . . . , yj

and p1, . . . , pm is a permutation of

x1
1, . . . , x

1
j1 , . . . x

i
1, . . . , x

i
jiy

1
1 , . . . , y

1
i1 , . . . y

j
1, . . . , y

j
ij

and

O ∪O′ = X ∪X1 ∪ · · · ∪Xi ∪ Y1 ∪ · · · ∪ Yj

and B = B0 ∪ · · · ∪Bi.

• we have Rpop is the set containing all rules of the form(p, p1, . . . , pm, O,B), γ,

AY
p′,p′1,...,p

′
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∩
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yj ,y
j
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1
j1 , X1, B1

)
,

. . . ,(
xi, x

i
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) , rewγ


where

(p, γ)
ε−→
(
p′, pushn

)
and p′1, . . . p

′
l is a permutation of

x1, . . . , xi, y1, . . . , yj

and p1, . . . , pm is a permutation of

x1
1, . . . , x

1
j1 , . . . x

i
1, . . . , x

i
jiy

1
1 , . . . , y

1
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j
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and

O ∪O′ = Y ∪X1 ∪ · · · ∪Xi ∪ Y1 ∪ · · · ∪ Yj

and B = B1 ∪ · · · ∪Bi.

In Section 7 we show that the reduction is correct.

LEMMA 6.2 (Correctness of P−1).

Diagonala1,...,aα
(P ) ⇐⇒ Diagonala1,...,aα

(P−1)

To complete the reduction, we convert the (n, α)-PDA with
tests into a (n, α)-PDA without tests.

LEMMA 6.3 (Reduction to Lower Orders). For every (n, α)-PDA
P we can build an order-(n− 1) α-branch HOPDA P ′ such that

Diagonala1,...,aα
(P ) ⇐⇒ Diagonala1,...,aα

(
P ′) .

Proof. From Definition 6.4 (P−1) and Lemma 6.2 (Correctness
of P−1), we obtain from P an (n− 1, α)-PDA with tests P−1



satisfying the conditions of the lemma. To complete the proof, we
invoke Theorem 6.1 (Removing Tests) to find P ′ as required. □

We show correctness of the reduction in Section 7. First we
show that we have decidability once we have reduced to order-0.

6.5 Decidability at Order-0
We show that the problem becomes decidable for a 0-PDA P . This
is essentially a finite state machine and we can linearise the trees
generated by saving the list of states that have been branched to in
the control state. After one branch has completed, we run the next
in the list, until all branches have completed. Hence, a tree of P
becomes a run of the linearised 0-PDA, and vice-versa. Since each
output tree has a bounded number of branches, the list length is
bounded. Thus, we convert P into a finite state word automaton,
for which the diagonal problem is decidable. Note, this result can
also be obtained from the decidability of the diagonal problem for
pushdown automata. The details are given in the full version [19].

6.6 Decidability of The Diagonal Problem
THEOREM 6.3 (Decidability of the Diagonal Problem). For an n-
PDA P and output characters a1, . . . , aα, it is decidable whether
Diagonala1,...,aα

(P ).

Proof. We first interpret P as an (n, α)-PDA and then construct
via Lemma 6.3 (Reduction to Lower Orders) an (n− 1, α)-PDA
P ′ such that Diagonala1,...,aα

(P ) iff Diagonala1,...,aα
(P ′). We re-

peat this step until we have an (0, α)-PDA. Then, from decidability
at order-0 we obtain decidability as required. □

7. Correctness for Simultaneous Unboundedness
In this section we prove Lemma 6.2 (Correctness of P−1). The
proof follows the same outline as the single character case. To
show there is a run with at least m of each character, we take via
Lemma 7.1 (Section 7.2), m′ = (α + 1)m, and a run of P out-
putting at least this many of each character. Then from Lemma 7.2
(Section 7.3) a run of P−1 outputting at least m of each character as
required. The other direction is shown in Lemma 7.3 (Section 7.3).

We first generalise our tree decomposition and notion of scores.
We then show that every α-branch subtree of a tree decomposition
generates a run tree of P−1 matching the scores of the tree. Finally
we prove the opposite direction.

7.1 Tree Decomposition of Output Trees
Given an output tree T of P where each pushn operation has a
matching popn on all branches, we can construct a decomposed
tree representation of the run inductively as follows. We define
Tree(T [ε]) = T [ε] and, when

T = b[T1, . . . , Tm]

where the rule applied at the root does not contain a pushn opera-
tion, we have

Tree(T ) = b[Tree(T1), . . . ,Tree(Tm)] .

In the final case, let
T = ε

[
T ′]

where the rule applied at the root contains a pushn operation and
the corresponding popn operations occur at nodes η1, . . . , ηm.

Note, if the output trees had an arbitrary number of branches,
m may be unbounded. In our case, m ≤ α, without which our
reduction would fail: P−1 would be unable to accurately count the
number of popn nodes. In fact, our trees would have unbounded out
degree and Lemma 4.1 (Minimum Scores) would not generalise.

Let T1, . . . , Tm be the output trees rooted at η1, . . . , ηm respec-
tively and let T ′ be T with these subtrees removed. Observe all

branches of T are cut by this operation since the pushn must be
matched on all branches. We define

Tree(T ) = ε
[
Tree

(
T ′),Tree(T1), . . . ,Tree(Tm)

]
.

An accepting run of P has an extra popn operation at the end of
each branch leading to the empty stack. Let T ′ be the tree obtained
by removing the final popn-induced edge leading to the leaves of
each branch. The tree decomposition of an accepting run is

Tree(T ) = ε
[
Tree

(
T ′), T [ε], . . . , T [ε]]

where there are as many T [ε] as there are leaves of T .
Notice that our trees have out-degree at most (α+ 1).

7.2 Scoring Trees
We score branches in the same way as the single character case.
We simply define Scorea(ρ) to be Score(ρ) when a is considered
as the only output character (all others are replaced with ε).

We have to slightly modify our minimum score lemma to ac-
commodate the increased out-degree of the nodes in the trees.

LEMMA 7.1 (Minimum Scores). Given a tree T with maximum
out-degree (α + 1), containing, for each a ∈ {a1, . . . , aα}, at
least m nodes labelled a, for each a ∈ {a1, . . . , aα} we have

Scorea(T ) ≥ log(α+1)(m)

Proof. This is a simple extension of the proof of Lemma 4.1 (Min-
imum Scores). We simply replace the two-child case with a tree
with up to (α + 1) children. In this case, we have to use log(α+1)

rather than log to maintain the lemma. □

7.3 Completing the proof
As in the single character case, we complete the proof with the fol-
lowing two lemmas, shown in the full version [19]. As before, these
lemmas simply formalise the fact that P−1 runs along branches of
a tree decomposition of a run of P .

LEMMA 7.2 (Scores to Runs). Given an accepting output tree ρ of
P , if for all a ∈ {a1, . . . , aα} we have Scorea(Tree(ρ)) ≥ m, then
∃T ∈ L(P−1) with |T |a ≥ m for all a ∈ {a1, . . . , aα}.

LEMMA 7.3 (P−1 to P ). We have

Diagonala1,...,aα
(P−1) ⇒ Diagonala1,...,aα

(P ) .

8. Conclusions
We have shown, using a recent result by Zetzsche, that the down-
ward closures of languages defined by HOPDA are computable.
We believe this to be a useful foundational result upon which new
analyses may be based. Our result already has several immediate
consequences, including separation by piecewise testability and
asynchronous parameterised systems.

Regarding the complexity of the approach. We are unaware of
any complexity bounds implied by Zetzsche’s techniques. Due to
the complexity of the reachability problem for HOPDA, the test
automata may be a tower of exponentials of height n for HOPDA
of order n. These test automata are built into the system before
proceeding to reduce to order (n− 1). Thus, we may reach a tower
of exponentials of height O(n2).

A natural next step is to consider collapsible pushdown systems,
which are equivalent to recursion schemes (without the safety con-
straint). However, it is not currently clear how to generalise our
techniques due to the non-local behaviour introduced by collapse.
We may also try to adapt our techniques to a higher-order version
of BS-automata [3], which may be used, e.g., to check boundedness
of resource usage for higher-order programs.
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