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Abstract
An algorithm for computing optimal strategies in pushdown reachability games was given by
Cachat. We show that the information tracked by this algorithm is too coarse and the strategies
constructed are not necessarily optimal. We then show that the algorithm can be refined to
recover optimality. Through a further non-trivial argument the refined algorithm can be run in
2EXPTIME by bounding the play-lengths tracked to those that are at most doubly exponential.
This is optimal in the sense that there exists a game for which the optimal strategy requires a
doubly exponential number of moves to reach a target configuration.

2012 ACM Subject Classification: Theory of computation → Automata over infinite objects

Keywords and Phrases: Pushdown Systems, Reachability Games, Optimal Strategies, Formal
Methods, Context Free

Acknowledgements: We would like to thank the anonymous reviewers for their comments.

1 Introduction

Pushdown systems are popular models for program verification. They are equipped with an
unbounded stack that can model the call stack of a procedural program. That is, the control
flow of first-order recursive programs (such as C and Java programs) can be accurately
modelled [10].

In a pushdown game, configurations of a pushdown system belong to one of two players
(Elvis and the Anarchist). The player who owns a configuration chooses which configuration
the game moves to next. In a reachability game, Elvis wins if he is able to force the play
into a target configuration, while the Anarchist must prevent this from happening.

One may consider a reachability game to be a competition between a program (Elvis)
and its environment (the Anarchist). The program is required to reach a good terminating
configuration under all conditions presented by the (uncontrollable) environment. In this
situation it is interesting to be able to determine the configurations from which Elvis is able
to always win the game, and, moreover, the strategy he should employ. That is, how should
the program behave in order to respond to the given inputs to ensure a correct execution.
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The problem of constructing a winning strategy for Elvis corresponds to synthesising a
complete, correct program from a given program skeleton.

It is known that the players have positional winning strategies in a pushdown reachability
game. That is a winning strategy needs only to have access to the current state of the
game (as opposed to the entire history of play) [16]. A variety of methods are known for
constructing winning strategies in pushdown reachability games [15, 4, 14, 12, 11, 8, 5]. One
such method introduced by Cachat computes the optimal strategy [3]. That is, the strategy
that will reach a target configuration in the fewest number of steps. Such a strategy has
obvious applications in the synthesis of efficient programs.

Cachat’s algorithm is based on the saturation technique. Saturation is a technique that,
beginning from a finite automaton representing a set of configurations, repeatedly adds
new transitions to the automaton. The goal is to expand the representation to include all
configurations either reachable from, or that can reach, the initial set.

It was shown by Büchi that the set of configurations reachable from the initial config-
uration of a pushdown system form a regular language and hence can be represented by
a finite state automaton [2]. While Büchi’s procedure is exponential, Caucal showed that
this problem can be solved in polynomial time [6]. The improved algorithm is a saturation
process where transitions are incrementally added to a finite automaton. This technique
was simplified and adapted to the model-checking setting by Bouajjani et al. in [1] and
independently by Finkel et al. in [7]. In particular, it was shown that the set of predecessors
of a regular set of target configurations is also regular. In the same work, the saturation
method was shown to work for pushdown reachability games, though the complexity in-
creases to EXPTIME, for which the problem is complete. Cachat builds on this algorithm
by annotating each transition added to the finite automaton with a corresponding move in
the pushdown game, as well as a weight indicating its “distance” from the target set.

Unfortunately, Cachat’s algorithm contains a non-trivial error. In short, by keeping
only a single weight per transition, Cachat loses important information about the cost of
the different paths of execution through which the Anarchist may force play. This leads
to the algorithm computing non-optimal weights for some choices of Elvis, meaning the
recommended moves may no longer be optimal. In this work we present the following
contributions:

A counter-example showing how Cachat’s algorithm may compute non-optimal strategies.

A corrected saturation-based algorithm using weights that are fine-grained enough to
compute optimal strategies precisely.
Termination of this algorithm relies on well-quasi orders and we do not have an element-
ary bound on its runtime.

A non-trivial proof that the above algorithm can be restricted to only include weights
that are doubly exponential in size (whilst still computing optimal strategies). With
such a restriction optimal strategies can be computed in 2EXPTIME.

A matching lower bound giving a game in which Elvis’s optimal strategy requires a
doubly exponential number of moves to reach a target configuration.

We give preliminaries in Section 2 and the basic saturation algorithm in Section 3.
Cachat’s algorithm for optimal strategies appears in Section 4 along with our counter-
example. We correct the algorithm in Section 5 with the complexity results in Section 6.
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2 Preliminaries

2.1 Alternating Finite Automata
To analyse two player games we will make use of alternating finite automata to represent sets
of configurations of a pushdown system. For convenience, we will often refer to alternating
finite automata simply as automata.

▶ Definition 2.1 (Alternating Automata). An alternating automaton is a tuple A = (S, Σ, F , δ)
where S is a finite set of states, Σ is a finite alphabet, F ⊆ S is the set of accepting states,
and δ ⊆ S × Σ × 2S is a transition relation.

We write s
A−→ S for a transition (s, A, S) in δ. To simplify the presentation, we will

assume that S is always non-empty. A run of an alternating automaton over w = A1 . . . Aℓ ∈
Γ∗ is an unordered unranked tree of depth ℓ with nodes labelled by states in S and edges
labelled by transitions in δ such that for each node η at depth 0 ≤ i ≤ ℓ − 1 labelled s there
is a transition τ = s

Ai+1−−−→ {s1, . . . , sm} and η has children η1, . . . , ηm labelled s1, . . . , sm

respectively and each edge (η, ηj) for all 1 ≤ j ≤ m is labelled by τ .
If the root of the run is labelled by s and the set of states appearing at the leaves of the

run is S, we say that the run starts with s and ends in S. The run is accepting if S ⊆ F .
For a state s, the set Ls(A) contains all words over which there is an accepting run of A
from s.

A branch in a run is a sequence of nodes η0 · · · ηℓ with η0 the root of the run, ηℓ a leaf
and for each 1 ≤ i ≤ ℓ, we have ηi is a child of ηi−1.

For a word w ∈ Σ∗, a state s and a set of states S, we write
[
s

w=⇒
A

S
]

for the set of all

runs of A starting from s and ending precisely with S and s
w=⇒
A

S to denote the existence of
a run of A over w starting from s and ending precisely in S.

2.2 Pushdown Reachability Games
A pushdown reachability game is played between two players on the configuration graph of
a pushdown system. The owner of a configuration is indicated by its state and the set of
target configurations is accepted by an alternating finite automaton.

▶ Definition 2.2 (Pushdown Reachability Games). A two-player pushdown reachability game
is a tuple G = (Q, Γ, ∆, A) such that Q is a finite set of control states partitioned Q =
QE ⊎ QA into Elvis and the Anarchist states respectively, Γ is the finite stack alphabet,
∆ ⊆ (Q × Γ) ×

(
Q × Γ≤2)

is the set of transitions, and A is an alternating finite automaton
(S, Γ, F , δ) with Q ⊆ S.

We write (q, A) → (p, w) for the transition ((q, A) , (p, w)) in ∆. A configuration is a
tuple (q, w) where q is a state in Q and w is a stack content in Γ∗. Let CG be the set
of configurations of G. In the configuration (q, Aw), it is possible to apply a transition
(q, A) → (p, u) to go to the configuration (p, uw). A configuration (q, w) is final if the stack
content w is accepted by A from the state q (i.e. w ∈ Lq(A)).

A play of a pushdown game is a (possibly infinite) sequence (q0, w0) , (q1, w1) , . . . where
(q0, w0) is some starting configuration and (qi+1, wi+1) (if defined) is obtained from (qi, wi)
via some transition (qi, A) → (qi+1, w) ∈ ∆. In the case where qi ∈ QE , it is Elvis who
chooses the transition to apply, otherwise the Anarchist chooses the transition.

Elvis wins the game if there is some i such that (qi, wi) is final or if qi belongs to the
Anarchist and (qi, wi) does not have any successors. Otherwise, the Anarchist wins the play.
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A strategy for Elvis is a partial function σ : C∗
G → ∆ which may assign to each play

(q0, w0) , . . . , (qℓ, wℓ) with qℓ ∈ QE a transition in ∆ applicable to the configuration (qℓ, wℓ).
A given play (q0, w0) , (q1, w1) , . . . is played according to σ if for all i such that qi ∈ QE

and (qi, wi) has a successor in the play, we have σ((q0, w0) , . . . , (qi, wi)) = r and (qi, wi) →
(qi+1, wi+1) via transition r. A strategy is winning for Elvis from a configuration (q0, w0) if
all maximal plays starting from (q0, w0) and according to σ are winning for Elvis. A strategy
is called positional if its value only depends on the last configuration of the play. Hence a
positional strategy is fully described by a mapping from the set of configurations belonging
to Elvis to ∆. Winning strategies for the Anarchist are defined analogously.

The winning region W of a pushdown reachability game is the set of all configurations
from which Elvis has a winning strategy.

It is well-known (see [9]) that W = Pre∗
G(A) defined as Pre∗

G(A) =
∪

i<ω

Prei
G(A) where

Pre0
G(A) = {(q, w) | w ∈ Lq(A)}

Prei+1
G (A) = Prei

G(A) ∪{
(q, w) | q ∈ QE ∧ ∃ (q, w) → (q′, w′) . (q′, w′) ∈ Prei

G(A)
}

∪{
(q, w) | q ∈ QA ∧ ∀ (q, w) → (q′, w′) . (q′, w′) ∈ Prei

G(A)
}

.

The rank rank(p, w) of a configuration (p, w) in W is the smallest i such that (p, w) ∈
Prei

G(A). Intuitively the rank captures the distance for Elvis to a final configuration.

▶ Definition 2.3 (Optimal Strategies). A strategy for Elvis is optimal if, for plays ending
in (p, w) in the winning region of Elvis, with p ∈ QE , it prescribes a move to (p′, w′) that
minimises rank(p′, w′) amongst all possible moves.

Optimal strategies are positional and winning from all configurations in W .

3 The Saturation Algorithm

In [1], Bouajjani et al. present an algorithm that given a pushdown reachability game
(Q, Γ, ∆, A) with an automaton A = (S, Γ, F , δ), constructs a new automaton B accepting
Pre∗

G(A). The requirements3 on A are that no transition in δ goes back to a state in Q.
This is required to ensure that the invariants maintained by the algorithm hold initially.

The algorithm proceeds by adding transitions to A until no new transition can be added.
The resulting automaton B accepts Pre∗

G(A). That is w ∈ Lq(B) iff (q, w) ∈ Pre∗
G(A).

The intuition of the algorithm can be seen as follows. Suppose q is a state of Elvis, there
is a rule (q, A) → (p, w) ∈ ∆, and the configuration (p, ww′) is accepted by the automaton
by a run beginning with p

w=⇒ S. The configuration (q, Aw′) should also be accepted since
an application of the rule reaches (p, ww′) from which a target configuration can be reached.
Thus, a transition q

A−→ S is added, meaning (q, Aw′) can now be accepted using the run
we know exists over w′ from S. For a move of the Anarchist we use alternation to gather
together runs from all possible next configurations.

The algorithm constructs a finite sequence (Ai)i∈[0,N ] of automata. The automaton A0 is
A. Each Ai is of the form (S, F , δi), meaning that they only differ by their set of transitions.
The construction guarantees that for all i ∈ [0, N −1] we have δi ⊆ δi+1. It terminates when
δi+1 = δi. This occurs since the set of possible transitions is finite.

The set δi+1 is obtained from δi as the smallest set of transitions such that

3 This requirement is easily met by adding a copy of each state in Q if necessary.
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1. δi ⊆ δi+1, and
2. for each q ∈ QE , if (q, A) → (p, w) ∈ ∆ and p

w=⇒
Ai

S, then q
A−→ S ∈ δi+1, and

3. for each q ∈ QA and A ∈ Γ let

(q, A) → (p1, u1) , . . . , (q, A) → (pn, un)

be all rules from (q, A) in ∆. For all sets S1, . . . , Sn of states such that:

p1
u1=⇒
Ai

S1, . . . , pn
un=⇒
Ai

Sn we have q
A−→

∪
j

Sj ∈ δi+1 .

One can prove that (p, w) ∈ Pre∗
G(A) iff w ∈ Lp(B) to obtain regularity of the winning

region. Since an alternating automaton has at most exponentially many transitions in the
number of states (and we do not add any new states), we have that B is constructible in
EXPTIME.

4 Cachat’s Algorithm

In Section 4.1, we describe Cachat’s min-rank algorithm [3, 4]. This algorithm constructs a
weighted alternating automaton which is used to associate to every accepted configuration
a weight. We will see in Section 4.2 that this weight is an upper-bound on the rank of the
configuration. In Section 4.3, we will show that contrary to Cachat’s claim, it is not equal to
the rank of the configuration and hence the associated strategy is not an optimal strategy.

4.1 Saturation Algorithm with Weights
Cachat’s algorithm proceeds by annotating new transitions of the saturated automaton with
two pieces of information: a weight in N and a rule of the pushdown system. Intuitively
if a transition q

A−→ S is introduced by the saturation algorithm this means that, for every
configuration (q, Aw), Elvis has a strategy to win without ever popping the A or to ensure
that the A is popped and that the resulting state belongs to S. The weight of the transition
is meant to capture the length of the longest play under an optimal strategy for Elvis. We
will see that it is only an upper-bound on this length. The rule in the annotation is the one
responsible for the introduction of the transition in the saturation algorithm.

Before presenting the algorithm, we need to define the weight of a run and of a set of runs
when the transitions of the automaton are given weights by a function W. The weight of a
run ρ, denoted by W∗(ρ) is the maximum weight of a branch in the run where the weight
of a branch is simply the sum of the weights of the transitions appearing in this branch. By
convention, a run of depth 0 has weight 0.

For a word w ∈ Σ∗, a state s and a set of states S such that s
w=⇒
A

S, we take:

W∗(s w=⇒
A

S) = min
{

W∗(ρ) | ρ ∈
[
s

w=⇒
A

S
]}

The saturation function is updated to assign weights to new transitions based on the
maximum weights of the runs it is based on. Formally a function α is defined which associates
to each transition of the saturated automaton a tuple consisting of a weight and a rule of
the pushdown system. For convenience, we use # to indicate the absence of an associated
rule (for transitions of the initial automaton and moves of the Anarchist). Moreover, we
denote by W the projection of α on the weight component.
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Given some initial reachability target set represented by an automaton A0 = A =
(S, Γ, δ0, F), we initially define α(τ) = (0, #) for all τ ∈ δ0.

The annotation function α is updated as new transitions are added. At each iteration,
we define Ai+1 = (S, Γ, δi+1, F) where δi+1 is the smallest set of transitions such that
1. δi ⊆ δi+1, and
2. for each q ∈ QE , if r = (q, A) → (p, w) ∈ ∆ and p

w=⇒
Ai

S then τ = q
A−→ S ∈ δi+1 and

furthermore, we assign

α(τ) =
(

1 + W∗
(

p
w=⇒
Ai

S

)
, r

)
.

3. for each q ∈ QA and A ∈ Γ let (q, A) → (p1, u1) , . . . , (q, A) → (pm, um) be all rules from
(q, A) in ∆. For each set of runs p1

u1=⇒
Ai

S1, . . . , pn
um==⇒
Ai

Sm we have τ = q
A−→

∪
j

Sj ∈ δi+1

and furthermore, we assign

α(τ) =
(

1 + max
1≤j≤m

(
W∗

(
pj

uj=⇒
Ai

Sj

))
, #

)
Cachat writes that the algorithm terminates when “no new transitions can be added”.

The formulation of the algorithm seems to indicate that the weights are final and that the
algorithm terminates when all transitions have been added. It is possible to construct an
example in which the weight of a transition would decrease from its initial value. It would
be easy to adapt the algorithm to allow the weight of the transitions to decrease after their
initial introduction but this would not fix the deeper problem pointed out in Section 4.3.
In the case where there is only one player (i.e. all states belong to Elvis), it is possible to
ensure the weight of transitions are final by adding transitions one by one: at each round
the transition with the smallest possible weight is created [13, p. 63]. In the following, we
will consider that the algorithms stops when the transition structure is stable (i.e. δi+1 = δi)
and that a transition τ is added to δi+1 only if does not belong to δi.

4.2 Min-Rank Strategy
We now assume that B is the saturated automaton produced by the previous algorithm and
that α is the corresponding annotation function. Recall W is the projection of α on the
weight component.

First we remark that as the saturated automaton B is identical to the one obtained in
the original saturation algorithm, B accepts the winning region of Elvis. Hence the weight
of a configuration (q, w) in the winning region can be defined as the minimal weight for an
accepting run for this configuration:

W∗(q, w) = min
(

W∗
(

q
w=⇒
B

S
)

| S ⊆ F and q
w=⇒
B

S
)

.

Cachat defines what he calls the min-rank positional strategy for Elvis. In this strategy
Elvis plays, at a configuration (q, w) ∈ W (which he owns), the move corresponding to
the rule annotating the first transition in any accepting run of B on w starting with p of
minimal weight W∗(q, w). If the rule annotating the top-most transition is undefined then
the configuration is final and no moves needs to be played.

As stated by Cachat, the move outputted by the strategy can be computed in time linear
in the length of the input configuration and exponential in the size of the pushdown game
(with an exponential precomputation in the size of the game). The algorithm consists in
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reading w from right to left while maintaining for each state q the weight of the minimal
run accepting the stack content from q. This information can be updated in O(|B|) upon
reading a new stack symbol.

From the definition of the algorithm, it can be shown that for all configurations (q, w) ∈
W :

if (q, w) is owned by the Anarchist, then for all configurations (q′, w′) with (q, w) →
(q′, w′), we have W∗(q, w) > W∗(q′, w′).
if (q, w) is owned by Elvis, then for a configuration (q′, w′) prescribed by the min-rank
positional strategy (if it exists) then W∗(q, w) > W∗(q′, w′) .

These properties allow the following properties of the min-rank strategy to be proved.

▶ Theorem 4.1. [3] The min-rank strategy is positional and winning from all configurations
in Elvis’s winning region.

In [3], Cachat in addition claims that the min-rank strategy is optimal, which is not the
case. The mistake lies in [3, Proposition 6] where Cachat’s claims in that the weight of a
configuration (q, w) ∈ W is equal to the rank of this configuration. However, this turns out
not to be true as we will see in the next section. Cachat’s proof [4, p. 34] in fact shows that
W∗(p, w) is an upper bound on rank(p, w), but not the converse inequality.

▶ Proposition 4.2 ([3]). For any configuration (q, w) ∈ Pre∗
G(A) we have rank(q, w) ≤

W∗(q, w).

From this, we can obtain the following corollary which we will need in the sequel.

▶ Corollary 4.3 (Upper Bound). Take a pushdown game G = (Q, Γ, ∆, A) with an alternating
automaton A = (S, Γ, F , δ) and let B be the result of Cachat’s saturation algorithm. For
C = 2|Q|·|Γ|·2|S| , we have:

for all transitions q
A−→ S in B, its weight is bounded by C, and

for any configuration (p, w) ∈ Pre∗
G(A) we have rank(p, w) ≤ C · |w|.

Proof. At each iteration of the saturation, the weight of a new transition is at most 1 + 2k

where k is the maximum weight appearing on a transition in the previous iteration. A direct
induction shows that for all i ≥ 0, the maximum weight of a transition in δi is at most 2i −1.
As there are at most as many iterations as there are possible transitions of the saturated
automaton, after at most |Q| · |Γ| ·2|S| iterations, no new transitions will be added. It follows
that the weight of a transition in the saturated automaton is at most 2|Q|·|Γ|·2|S| which is
the announced constant.

Now consider a configuration (q, w) ∈ Pre∗
G(A). From Proposition 4.2, we know that

rank(q, w) is bounded by the weight of any accepting run of B on w starting from q. The
cost of such a run is a most C · |w| which concludes. ◀

4.3 Non-optimality of the Min-Rank Strategy
We give a counter-example in which the weight of configurations are strictly greater than
their rank. Then we adapt this counter-example into a game where the min-rank strategy
is not optimal. The goal of our counter example is to introduce a transition q

A−→ {r, s}
corresponding to a situation in the game where

the cost of a play to r is low, but the play from r to a target configuration is long, and
the cost of a play to s is high, but the play from s to a target configuration is short.
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Our game has one control state p belonging to the Anarchist and all other states q, q′, r, r′, s,
and f belong to Elvis. The goal is to reach a configuration (f, ⊥). We give the moves below,
and show in Figure 1 the game graph from (p, AA⊥). No matter how the Anarchist plays,
it will take four steps to reach (f, ⊥).

The moves available to the Anarchist are

r1 = (p, A) → (r, ε) and r2 = (p, A) → (q, AA)

and the remaining moves are available to Elvis and consist of

r3 = (q, A) → (q′, ε) r4 = (q′, A) → (s, ε) r5 = (s, A) → (f, ε)
r6 = (r, A) → (r, AA) r7 = (r, A) → (r′, ε) r8 = (r′, A) → (f, ε) .

We start with A0 containing only the transition f
⊥−−−→

(0,#)
qf where qf is the only accepting

state, and (0, #) is the annotation.
We then begin saturation. The pop rules r3, r4, r5, r7, and r8 from states belonging to

Elvis immediately lead to the introduction of new transitions. These can be seen in Figure 2
where the annotations show which rule lead to each new transition. The transitions from p

and r are described below.
First, we can deal with the push at control state r using r6. This leads to the introduction

of a transition r
A−−−→

(3,r6)
f because of the run r

A−−−→
(1,r7)

r′ A−−−→
(1,r8)

f . Next, both rules from p need

to be considered simultaneously. That is we introduce a transition p
A−−−→

(3,#)
{r, s} because

of the rule r1 which is a pop rule from p to r and r2 and the run q
A−−−→

(1,r3)
q′ A−−−→

(1,r4)
s. No

more transitions can be added. The result is shown in Figure 2. The alternating transition
is shown with a split arrow.

Given this automaton, we consider the accepting run of (p, AA⊥) shown in Figure 3.
Note that the weight of this run is 6, but the longest run that the Anarchist can enforce is
4.

One can extend this to a full counter example to the optimality of Cachat’s algorithm
as follows. From an initial configuration (p0, AAA⊥) we give Elvis the choice of moving to
(p, AA⊥) via a pop, or to another configuration (p1, AA⊥) from which 5 steps are required
to reach (f, ⊥). Since the rank of (p, AA⊥) is estimated to be 6 rather than 4, the strategy
will choose to move to (p1, AA⊥) rather than (p, AA⊥), leading to a play that is not optimal.

To be more explicit, in the full counter example, the game has one control state p

belonging to the Anarchist and all other states q, q′, r, r′, s, and f as well as p0, p1, p2, p3, p4,
and p5 belong to Elvis. The goal is to reach a configuration (f, ⊥). The moves available to
the Anarchist are as before

r1 = (p, A) → (r, ε) and r2 = (p, A) → (q, AA)

and the remaining moves are available to Elvis and consist of the previous rules

r3 = (q, A) → (q′, ε) r4 = (q′, A) → (s, ε) r5 = (s, A) → (f, ε)
r6 = (r, A) → (r, AA) r7 = (r, A) → (r′, ε) r8 = (r′, A) → (f, ε) .

as well as

r9 = (p0, A) → (p, ε) r10 = (p0, A) → (p1, ε) r11 = (p1, A) → (p2, A)
r12 = (p2, A) → (p3, A) r13 = (p3, A) → (p4, A) r14 = (p4, A) → (p5, ε)
r15 = (p5, A) → (f, ε) .
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(p, AA⊥)

(r, A⊥) (r, AA⊥) (r′, A⊥)

(f, ⊥)

(q, AAA⊥) (q′, AA⊥) (s, A⊥)

Figure 1. A game showing a counter example to the algorithm of Cachat.

p

q q′ s

f

r′r

qf

A

(1, r3)
A

(1, r4)

A

(1,
r 5)

A

(1, r7)

A
(3, r6)

A(1, r8 ) ⊥
(0, #)

A

(3, #)

Figure 2. The saturated automaton.

p

s

r f

f

qf

qf
A

(1, r5)

A

(3, r7)
⊥

(0, #)

⊥
(0, #)

A

(3, #)

Figure 3. The accepting run of (p, aa⊥).

p

s

r f

f

qf

qf
A

(1, r5)

A

(3, r7)
⊥

(0, #)

⊥
(0, #)

A (1,
#)

(3,#)

Figure 4. A run of (p, aa⊥) with fine-grained weights.
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At (p0, AAA⊥) Elvis has two possible moves. The first is to (p, AA⊥) which, as shown
above, has a calculated rank of 6. The second is to (p1, AA⊥) which one can easily verify
has a rank of 5. Thus, Cachat’s strategy is to move to (p1, AA⊥) which is not optimal.

This overapproximation occurs because the information stored on the transition from p

is too coarse. The weight of 3 comes from the weight of the run to s. The weight of the
run to r is 1. Thus, if we were to store a weight for each control state we would obtain two
weights on the transition from p. This would allow us to identify that the true cost of the
run is 4. This can be seen in Figure 4 and is the basis of our corrected algorithm.

5 Computing Optimal Strategies

We refine Cachat’s algorithm to compute optimal strategies in pushdown reachability games.
The key idea is to replace simple annotations α

(
s

A−→ S
)

= (d, r) with a more fine-grained
version, which assigns a separate weight to each state in S. For this, we include annotations
in the definition of a transition. That is, a transition is a tuple (s, A, S, D, r) where s is a
state in S, A is a character in Γ, S ⊆ S, D : S 7→ N is a weight function, and r is a rule of
G. We write such transitions as s

A−−→
D,r

S. As before, we calculate the weights of runs.

5.1 Profile of a run

In an automaton run ρ with annotated transitions, we define the weight of a branch induct-
ively

W∗(η0) = 0 and W∗(η0 · · · ηℓ) = D(s1) + W∗(η1 · · · ηℓ)

where D is the weight function the transition labeling (η0, η1) and s1 is the state labeling
η1. We define a run profile.

▶ Definition 5.1 (Profiles). Given a run ρ over a word w, the profile of ρ is given by
P(ρ) = (S, D) where S is the set of states in S labelling leaves of ρ and D : S → N is the
function such that, for all s ∈ S, we have that D(s) is the maximum weight of a branch
from the root node to a leaf labelled s. Moreover, we define

(1 + D)(s) = 1 + D(s) and max(D1, . . . , Dm)(s) = max
1≤j≤m

(Dj(s)) .

Finally, given (S, D) and (S, D′), we write D ≤ D′ when for all s ∈ S we have D(s) ≤ D(s′).
By Dickson’s Lemma, ≤ is a well-quasi-ordering on the weights.

5.2 Saturation

We use the saturation algorithm with run profiles rather than Cachat’s annotations. At each
iteration, we set Ai+1 = (S, Γ, δi+1, F) where δi+1 is the smallest set of transitions with
1. δi ⊆ δi+1, and
2. for each q ∈ QE , if r = (q, A) → (p, w) ∈ ∆ and ρ is a run of Ai over w from p with

profile P(ρ) = (S, D) then

τ = q
A−−−−→

1+D,r
S ∈ δi+1 .

10



3. for each q ∈ QA and A ∈ Γ let (q, A) → (p1, u1) , . . . , (q, A) → (pm, um) be all rules from
(q, A) in ∆. For each set ρ1, . . . , ρm of runs of Ai such that for each 1 ≤ j ≤ m the run
ρj is a run over uj with root note labelled sj and profile (Sj , Dj), we have

τ = q
A−−−→

D′,#

∪
j

Sj ∈ δi+1

where D′ = 1 + max(D1, . . . , Dm).
The algorithm terminates at the first i such that for all s

A−−→
D,r

S ∈ δi+1 there exists s
A−−−→

D′,r′

S ∈ δi with D′ ≤ D. Equivalently, the algorithm terminates when the set of transitions
with a minimal weights stabilizes.

▶ Lemma 5.2. The saturation algorithm terminates and computes Pre∗
G(A).

Proof. We have Pre∗
G(A) from saturation without weights. We terminate as the set of

possible transitions (without weight) is finite and ≤ is a well-quasi-ordering on the weights.
◀

5.3 Defined Strategy
We define our optimal strategy σO as follows. Let A′ be the saturated automaton and let
AccRuns(q, w) be the set of accepting runs of A′ over w from q. We define

W∗(q, w) = min
ρ∈AccRuns(q,w)

 max
P(ρ)=(S,D),

s∈S

(D(s))

 .

From each configuration (q, w) in the winning region of Elvis, if it is the move of Elvis,
he plays the move which leads to the configuration (q′, w′) that minimises the value of
W∗(q′, w′). In particular, let q

A−−→
D,r

S′ be the first transition on a run with weight W∗(q, w).
If it is Elvis’s move, he should play the rule r. If r = #, then either Elvis has already reached
a target configuration or it is the Anarchist’s move. Note, this strategy is non-deterministic
since there may be multiple choices of minimal run. In order to define a strategy that is a
function, we can fix an ordering on the moves of the game, and always choose the smallest.
Note, moreover, that σO is positional.

▶ Lemma 5.3. The strategy σO is an optimal winning strategy.

6 Optimal Computation of Optimal Strategies

We show how to reduce the complexity to 2EXPTIME as well as give a lower bound example
showing that a doubly exponential number of moves is optimal. For this we will first show
that we can bound the value of the weights appearing in minimal transitions by a constant
K which is doubly exponential in the size of the pushdown game. Then we will restrict the
saturation to only consider transitions with weights at most K. Finally we will give a lower
bound showing that the constant K needs to be doubly exponential.

6.1 Bounding Play Lengths
We show that there exists a constant K such that any point-wise minimal transitions has
all its weights below K. For this we need a stronger result below.
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▶ Lemma 6.1. Let K = 2|Q|·|S|·|Γ|·2|S|+|S|. For all transitions q
A−−→

D,r
S such that for some

s ∈ S we have D(s) > K then there exists a transition q
A−−−→

D′,r′
S such that D′ ≤ D and

D′(s) ≤ K for all s ∈ S.

The proof of Lemma 6.1 is non-trivial. To give the idea of the proof, we consider the
case of a pushdown game whose target is the empty stack. Intuitively we proceed as follows.
Let C be the bound obtained in Corollary 4.3. Fix a transition q

A−−→
D,r

S of the saturated
automaton. We consider the reduced game, which broadly corresponds to the game starting
with (q, A) and where Elvis aims to empty the stack whilst reaching one of the control states
in S. Let σ be a strategy for Elvis associated with the transition in the sense that it ensures
that any play following σ and ending in s ∈ S has length at most D(s).

The simplest case is when D(s) ≥ C for all s ∈ S. Then we can find a transition by
Cachat that improves on all points. Otherwise, there is at least one D(s) < C. We make a
new strategy which plays according to σ for D(s) moves. If we have not reached s in this
time, we know that playing by σ will never reach s. In particular, there exists a strategy to
reach S \ {s}. Moreover, we have increased the stack height by at most C. Thus, we know
from Cachat that we can empty the stack and reach any state in S \ {s} in C · C moves
(that is at most C moves per stack character that needs to be removed). We repeat the
above argument but this time remove some state s′ with D(s′) < C2. We play until we are
sure not to reach s′, increasing the stack height by at most C2. This means we can reach
S \ {s, s′} in C · (C + C2) moves and so on. The existence of the strategy in turns implies
the existence of a transition in the saturated automaton. In this way, we obtain the bound
K = 2|S| · C |S|.

▶ Remark. We know from Corollary 4.3 (Upper Bound) that there is a doubly exponential
bound C on the weight of individual transitions. It is therefore tempting to consider this
bound as a proof of the sufficiency of the saturation algorithm with shortcuts described in
Section 6.2. However, the bound obtained from Cachat does not guarantee a priori that
for every transition outside of the bound, there is a transition within the bound that is a
pointwise improvement. For example, it is conceivable that Elvis may have two strategies
for reaching either the state q1 or q2 from q whilst removing A from the stack. The first,
corresponding to Cachat’s bound, may give a play length of 2 whether the Anarchist forces
play to q1 or q2. The second, which may violate Cachat’s bound, may give a play length of
1 if the Anarchist forces play to q1, but an extremely large play length (violating Cachat’s
bound) if the Anarchist forces play to q2. Let’s say this large play length is 100.

Now, consider a configuration (q, Aw). Suppose (q1, w) requires 100 steps to reach a
target configuration, and (q2, w) is a target configuration. The strategy corresponding to
the within-bounds transition has rank 102, whilst the strategy corresponding to the out-of-
bounds transition has rank 101. Thus, we have not dismissed the need for out-of-bounds
transitions.

6.2 Shortcutting Saturation

We adjust the saturation algorithm by insisting that a transition s
A−−→

D,r
S only appears in

δi+1 if for all s ∈ S we have D(s) ≤ K. Lemma 6.1 guarantees that the set of point-wise
minimal transitions is not affected by this restriction.

With this restriction, the worst case running time of saturation becomes doubly expo-
nential. The number of possible weight functions is K |S| and hence the number of possible
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transitions is doubly exponential. Since at least one transition must be added during each
step of the saturation, the algorithm must terminate in 2EXPTIME.

Like Cachat using a backward algorithm, the move for this strategy on (q, w) can be
computed in time linear in the length of w and doubly exponential in the size of the pushdown
game (assuming that the saturated automaton has been computed). We read w from right
to left maintaining for each state s the value W∗(s, u) (if it exists) where u is the word read
so far. This information can be updated in O(|B|) upon reading a new letter and allows the
first transition of an accepting run of minimal weight to be found.

6.3 Lower Bound

We give an example game where the shortest run to the target set is doubly exponential,
hence showing that the bound K needs to be doubly exponential. The intuition is simple.
First, suppose we wanted to force an exponential-length run. In this case we could store a
binary number of n digits on the stack, with the least significant bit at the top. E.g. the
number 3 would be encoded in a configuration (q0, 11000) when n = 5. To increment the
number, we pop 1 characters from the stack until we find the first 0. We record in the control
state how many pops are needed. In this case we need two pops and reach (q2, 000). Then,
we replace the topmost 0 with a 1 and push 0s onto the stack until the height is n again. In
our example, we reach (q0, 00100). The goal is to reach a stack with only 1 character, from
a stack with only 0. This requires 2n steps and can be done even in a single-player game.

To generate a doubly exponential run, we follow the same outline, but require the binary
encoding to be exponentially long. We cannot use only the control states to enforce this
length since it would require an exponential number of them. However, when rebuilding
the stack during the increment, we can build a game which forces Elvis to construct a stack
of at least exponential height. To do this, after changing the first 0 to 1 Elvis must push
any number of 0 characters. Once he is done the Anarchist may accept that the stack is
large enough, or challenge the height. To challenge the height we use the fact that the least
common divisor of the first n prime numbers is exponential in n. Hence, the Anarchist can
pick any of the first n primes, say p, and start a subgame with control states q0, . . . , qp−1.
From each of these control states qi the only move is a pop to q(i+1 mod p). This sub-game
is won only if q0 is reached when the bottom of the stack is reached. Consequently, Elvis
must have built the stack up to a multiple of the least common divisor of the first n primes.
Note, Elvis may build a stack that is taller than the least common divisor, but this only
makes reaching the target state harder.

7 Conclusion

We have studied optimal strategy construction for pushdown reachability games. Initial
results due to Cachat [3] unfortunately were too coarse in their analysis and the claimed
optimality is in fact an over-approximation. We showed that a refinement of Cachat’s al-
gorithm can be made to compute the optimal strategy accurately; however, the additional
information required makes it difficult to obtain good complexity results. We gave a non-
trivial argument that the algorithm can be refined further to obtain a 2EXPTIME algorithm.
Moreover, the doubly exponential weights computed by the algorithm are optimal as demon-
strated by a game where the winning strategy requires a doubly exponential number of moves
to reach a target configuration.
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q1 q2 q3 q4 q5
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p4 p3 p2 p1

A

(1, r1)
A

(1, r2)
A

(1, r3)
A

(1, r4)

A
(1

, r
5)

Figure 5. The automaton after the first saturation step.

have high weights, while transitions from the pi states will build up more slowly, but with
low weights. This will eventually lead to a transition between q1 and q5 that improves upon
an existing transition after saturation without weights would have terminated.

The game has the following rules.

Pop Rules:

r1 = (q1, A) → (q2, ε)
r2 = (q2, A) → (q3, ε)
r3 = (q3, A) → (q4, ε)
r4 = (q4, A) → (q5, ε)

r5 = (p1, A) → (q5, ε)

Push Rules:

r6 = (q1, A) → (q1, AA)
r7 = (q3, A) → (q3, AA)

Rewrite Rules:

r8 = (p2, A) → (p1, A)
r9 = (p3, A) → (p2, A)

r10 = (p4, A) → (p3, A)

r11 = (q1, A) → (p4, A)
r12 = (p, A) → (q1, A)

Initially A0 contains the states q1, . . . , q5, p, p1, . . . , p4 and no transitions. Note that it
does not matter what the final states of the automaton are.

After one round of saturation, we can only add transitions corresponding to the pop
rules (since they do not rely on runs existing in the automaton). We get Figure 5.

After the next round of saturation we obtain Figure 6, with the previously existing
transitions in grey. In this step we start using the push and the rewrite rules to obtain the
new transitions. The rule used to obtain each transition is given in the annotations.

The third round of saturation obtains the automaton shown in Figure 7. The new
transitions are again derived using the push and rewrite rules as well as the new transitions
from the previous saturation step. Of note in this step is the transition from q1 to q5 whose
weight is 7. This transition was introduced quickly using push rules. Its weight will be later
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Figure 6. The automaton after the second saturation step.
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Figure 7. The automaton after the third saturation step.

improved using the rewrite rules between the pi, although this improved weight is obtained
more slowly.

After the fourth round of saturation we reach the transition structure that will be stable.
This is shown in Figure 8. Notice in particular that we obtain the first transition from
p4. This will be used in the next round to improve the weight of the transition from q1 to
q5. Notice also that we have a transition from p to q5 derived from the rule r12 and the
transition from q1 to q5. Hence, any improvement to the q1 to q5 transition will lead to an
improvement in the weight of the p to q5 transition in a later saturation step.

After step five we have Figure 9. As promised, the transition structure has not changed.
However, because of the transition from p4 we can derive a new transition between q1 and
q5 using rule r11. This improves the previously obtained weight of the transition from q1 to
q5. However, since the transition structure has not changed, the saturation algorithm would
terminate here.

Unfortunately, if we were to run the saturation step for an additional iteration after
termination should have occurred, we are able to improve the weights on the transitions
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Figure 8. The automaton after the fourth saturation step.
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Figure 9. The automaton after the fifth saturation step.
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Figure 10. The automaton after the sixth saturation step.

further. This is shown in Figure 10. In particular, using the improved weight on the
transition from q1 to q5 in combination with rule r12, we can improve the weight of the
transition from p to q5 from 8 to 6. Thus it is not enough to terminate when the transition
structure stabilises if one wants to calculate the best possible weight for a transition.

B Proofs for Computing Optimal Strategies

We show Lemma 5.3. That is σO is an optimal winning strategy. We give the outline of the
proof first. It relies on soundness and completeness guarantees given in subsequent sections.

Proof. We need to show that for any play π according to σO and any configuration (q, w) ∈
Pre∗

G(A) appearing in π and belonging to Elvis, then the move r recommended by σO leads
to a configuration (q′, w′) where rank(q′, w′) is minimal amongst all successors of (q, w).

We first show that for any (q, w) ∈ Pre∗
G(A) we have

rank(q, w) = W∗(q, w) .
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This follows from Lemma B.3 and Lemma B.4 below, alongside the observation that RedF (G)
(defined in the sequel) is the same game as G. This is explained below.

To show rank(q, w) ≤ W∗(q, w) we use soundness (Lemma B.3). If W∗(q, w) = d then
there is some run over w from q with profile (S, D) in the reduced game RedF (G) with
S ⊆ F and D(s) ≤ d for all s ∈ S. By soundness (Lemma B.3) we know there is a strategy
with profile (S, D) and hence rank(q, w) is at most d as required.

To show rank(q, w) ≥ W∗(q, w) we use completeness (Lemma B.4). If rank(q, w) = d

then there is a strategy σ for Elvis with profile (S, D) in the reduced game RedF (G). By
completeness (Lemma B.4) there is a run over w from q with profile (S′, D′) with S′ ⊆ S and
D′ ≤ D. Hence the maximum weight assigned by D′ is less than or equal to the maximum
weight assigned by D and thus W∗(q, w) ≤ rank(q, w).

It remains to show that the move recommended by σO is indeed optimal. Let (q, Aw)
be a configuration belonging to Elvis and (q1, w1w) , . . . , (qn, wnw) be the possible next
configurations via moves r1, . . . , rn respectively. Without loss of generality, let r1 be the
move recommended by σO from (q, Aw). We show rank(q1, w1w) ≤ rank(qi, wiw) for all
1 ≤ i ≤ n.

For each i, let ρi be a minimising run of A′ over wiw from qi with profile (Si, Di).
Additionally, let ρwi

i be the initial part of ρi reading wi with profile (Swi
i , Dwi

i ) and for each
s ∈ Swi

i let ρs
i be the continuation of ρi from the leaf s of ρwi

i . Finally, let (Ss
i , Ds

i ) be the
profile of ρs

i . Note that

rank(qi, wiw) = max
s∈Si

(
Dwi

i (s) + max
s′∈Ss

i

(Ds
i (s′))

)
.

By definition of the saturation algorithm, any minimising run over Aw from q (if (q, Aw)
is not already accepted by A) is derived by introducing a transition q

A−−−−−−→
1+D

wi
i

,ri

Si from a

run ρwi
i . When combined with ρs

i for each s ∈ Si we obtain a run from q over w such that
the maximum weight of any branch is

max
s∈Si

(
1 + Dwi

i (s) + max
s′∈Ss

i

(Ds
i (s′))

)
.

Note, we cannot construct a better run using parts of a non-minimising run over wiw since
it would allow us to also construct a better run over wiw, contradicting our assumption that
the run was minimal.

Thus, if σO recommends r1 it means the run over Aw derived from q
A−−−−−−→

1+D
w1
1 ,r1

S1 is

minimising, and thus, it necessarily follows

max
s∈S1

(
Dw1

1 (s) + max
s′∈Ss

1

(Ds
1(s′))

)
≤ max

s∈Si

(
Dwi

i (s) + max
s′∈Ss

i

(Ds
i (s′))

)
for all i, which means ρ1 is the minimal run and (q1, w1w) has the smallest rank. Thus σO

is optimal. ◀

B.1 Soundness and Completeness
To show soundness and completeness, we use the notion of reduced games.

▶ Definition B.1 (RedS(G)). Given a pushdown game

G = (Q, Γ, ∆, A)
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a set of states S of A, the reduced game RedS(G) is the pushdown game (Q, Γ, ∆, A′) where
A′ is the automaton accepting the set of configurations (q, w) where q

w=⇒
A

S′ ⊆ S.

In a reduced game, notice that, since A has no incoming transitions to any state q ∈ Q,
then either S′ = {q} for some q ∈ Q, or S′ ∩ Q = ∅. Moreover, if S′ = {q} then w = ε.
In other words, Elvis has to either empty the stack while reaching some state q ∈ S ∩ Q or
reach some configuration (q, w) from which there is a run of A from q to some S′ ⊆ S \ Q
such that this run does not contain any other q′ ∈ Q. Observe that A′ is polynomial in the
size of A. Also observe that a winning strategy for Elvis in the reduced game RedF (G) is
also a winning strategy in the original game G, and vice-versa.

For a winning strategy σ of Elvis in a reduced game RedS(G) from a configuration
(q, w), we define the strategy profile as follows. Notice below that, when S = {q′}, the
weight function gives the length of the maximal play (according to σ) that pops the stack
contents w while reaching the control state q′.

▶ Definition B.2 (Profσ). Given a winning strategy σ of Elvis in RedS(G) from a config-
uration (q, w) where the target automaton of G is A with states S, we define the strategy
profile Profσ of σ as a pair (S′, D) where S′ ⊆ S is the set of all s ∈ S that may be reached
by σ and D : S′ → N is the function such that for all s ∈ S′, the value of D(s) is the length
of the maximal play – in the set of plays from (q, w) – to some (q′, w′) with q′ w′

=⇒
A

S′′ ⊆ S′

and s ∈ S′′.

For convenience, for a profile (S, D) and all s ∈ S we will refer to D(s) as the number
of steps required to reach s. Moreover, we will abuse notation and write Profσ(s) = j when
Profσ = (S, D) and D(s) = j.

This terminology derives from the case where s ∈ Q. Profiles of winning strategies for
Elvis in the reduced game exactly characterises transitions in the (annotated) saturated
automaton. Notice also that strategy profiles and run profiles have the same type. We say
(S, D) ≤ (S′, D′) whenever S ≤ S′ and for all s ∈ S we have D(s) ≤ D′(s). Furthermore,
(S, D) = (S′, D′) when (S, D) ≤ (S′, D′) and (S, D) ≥ (S′, D′).

▶ Lemma B.3 (Soundness). Given a pushdown game

G = (Q, Γ, ⊥, ∆, A)

let A′ be the fixed point of the saturation algorithm. If we have a run ρ of A′ over a word
w with profile P(ρ) = (S, D) then there is a winning strategy σ from (q, w) for Elvis in the
reduced game RedS(G) such that Profσ = (S, D).

Proof. The proof proceeds by induction over the number of iterations of the saturation
algorithm. Initially we have A0 = A and the lemma trivially holds (the strategy is to do
nothing). Let Ai be transition-sound. We show the same holds for Ai+1. Thus, by induction,
it holds for A′.

We begin by showing the property for each new transition of Ai+1 before extending the
argument to full runs. Hence, let q

A−−→
D,τ

S be a new transition in Ai+1. We consider the
case where the transition was added from an the Anarchist position. The case for Elvis is a
simplification of this proof.

Let (q, A) → (q1, w1), . . . , (q, A) → (qm, wm) be the transitions from q with character
A. For each of these moves, there was a run ρ over wi with profile (Si, Di) for some Di

where Si =
∪
q′

Sq′,i. By induction, we have a strategy σi such that in the reduced game
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RedS′
i
(G) from (qi, wi) we have Profσi

= (Si, Di). Moreover, D = 1 + max(D1, . . . , Dm)
where Profσi = (Si, Di) and we have S =

∪
i

Si. Thus, for each move of the Anarchist, we

have a strategy σi with profile (Si, Di). Thus, we can combine these into a strategy σ that
reacts to all moves of the Anarchist from (q, A) and has a profile (S, D) as required.

In the opposite case where q is an Elvis position, we simply have to show that for some
i, the ith move leads to a configuration with a winning strategy and Si = S.

We now argue the case for runs, given that each transition is sound. We proceed by
induction over the length of the run. In the base case we have either the empty word, in
which case the strategy is to do nothing, or a single transition and are done by the above. In
the inductive case we have a word Bw′, a transition q

B−−−→
D′,r′

S′ and runs ρq′ from q′ over w′

for each q′ ∈ S′ with profiles (Sq′ , Dq′). Moreover, this transition combined with the runs
forms a run for which the profile is (S, D) for some D where S =

∪
q′

Sq′ . By induction, we

have strategies σ′ and σq′ for each q′ ∈ S′ such that in the reduced game RedS′(G) from
(q, B) we have Profσ′ = (S′, D′) and for each q′, in the reduced game RedS(G) from (q′, w),
we have Profσq′ = (Sq′ , Dq′).

We define σ as follows. From (q, Bw) Elvis plays the strategy σ′ until the game is won or
B has been removed from the stack. In the former case, we have reached a set of s ∈ S′ \ Q
and the game is done (there is a run over B to s and, by a assumption, a run over w from
s). In the latter case, we have reached some q′ ∈ S′ ∩Q. In this case, we play using σq′ from
(q′, w) which is guaranteed to win the game. One can verify that from (q, Bw) this strategy
has profile (S, D) as above. ◀

Notice that we cannot have a transition for every possible strategy in a reduced game
since a strategy may arbitrarily delay meeting its target, leading to an unbounded number of
transitions. However, we can show that, for every strategy, there is a “better” transition in
the automaton. Via Lemma B.3 (Soundness) we know that this “better” transition implies
the existence of a more optimal strategy.

▶ Lemma B.4 (Completeness). Given a pushdown game

G = (Q, Γ, ⊥, ∆, A)

let A′ be the fixed point of the saturation algorithm. For any word w, whenever there is a
winning strategy σ from (q, w) for Elvis in the reduced game RedS(G) we have a run ρ from
q over w in A′ with profile P(ρ) = (S′, D) such that (S′, D) ≤ Profσ.

Proof. We proceed by induction over the maximum value of Profσ(s) for s ∈ S. When the
maximum value is 0 there is already a transition q

A−−−→
D,#

S′ of A with S′ ⊆ S, D(s) = 0 for

all s ∈ S′, and, moreover, S ∩ Q = ∅. Otherwise the value is greater than 0 and we proceed
by induction over the length of the word.

First, take w = A for some A. We consider the difficult case when it is the Anarchist’s
move. Let σ be a winning strategy of Elvis in the game RedS(G) from the configuration
(q, A). In the case of a move of Elvis, the proof is analogous, but only one successor con-
figuration needs to be considered. From (q, A) suppose the Anarchist can chose between
moves to any of the configurations (q1, w1), . . . , (qm, wm). We consider each 1 ≤ i ≤ m in
turn and obtain the component parts from which the transition corresponding to σ will be
constructed. For each i we can obtain a set of states Si and a weight function Di analogous
to the same sets used in the saturation algorithm. This is because for each i the move is
(q, A) → (qi, wi) and we reach a configuration (qi, wi) from which we can play σ to win the
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reduced game and the maximum value of the strategy profile for any s ∈ S is reduced by
1. Hence, by induction, there is a run of A′ from qi over wi with profile (Si, Di) for some
Si ⊆ S with 1 + Di ≤ D.

From the definition of the saturation algorithm, we obtain from the above the existence
of a transition q

A−−→
D,r

S′ where S′ =
∪
i

Si such that D = 1 + max(D1, . . . , Dm). Moreover,

we have (S′, D) ≤ Profσ as required.
In the case of full runs, when w = ε the strategy is to make no move and we must have

q ∈ F meaning the empty run suffices. When w = A we have the case above. Hence, suppose
w = Aw′. Suppose we have a winning strategy σ from (q, Aw′). This strategy has two parts.
The first is a winning strategy σA from (q, A) in another reduced game RedS′(G) for some
S′ (the points where σ either pops A, or reaches a config with stack w′′w′ where the run
of A reading w′′w′ crosses after reading w′′). Necessarily, the strategy in this game has a
maximum profile value that is smaller than the maximum in Profσ and thus by induction
we have a transition q

A−−−→
D′,r′

S′′ in A′ where (S′′, D′) ≤ ProfσA
.

Similarly, for each q′ ∈ S′ ∩ Q where (q′, w′) may be reached by σ we have an induced
winning strategy σq′ in RedS(G). For σq′ we take the extension of σ from the longest play
that may reach (q′, w′). This ensures our final strategy is not worse than σ in any element.
Note, we have S =

∪
q′ Sq′,i where the profile from (q′, w′⊥) of σq′ is Profσq′ = (Sq′ , Dq′)

for each q′. Moreover, the strategy requires fewer moves than from (q, Aw′) and hence by
induction we have runs ρq′ of A′ from q′ over w′ for each q′ with profiles

(
S′

q′ , D′
q′

)
where(

S′
q′ , D′

q′

)
≤ Profσq′ .

Combining the above transitions, we have a run of A′ from q over Aw′ with profile
(S, D) ≤ Profσ. ◀

C Proofs for Optimal Computation of Optimal Strategies

C.1 Upper Bound

We show Lemma 6.1. That is whenever we have a transition q
A−−→

D,r
S such that for some

s ∈ S we have D(s) > K then there exists a transition q
A−−−→

D′,r′
S such that D′ ≤ D and

D′(s) ≤ K for all s ∈ S.

Proof. We prove the lemma as follows. First we show that the existence of a transition
τ = q

A−−→
D,r

S in Ai for some i implies the existence of a strategy that is a pointwise
improvement on the strategy associated with τ , and moreover, is guaranteed to reach all
states in S in fewer than K steps. Once we have established the existence of such a strategy,
it follows from Lemma B.4 (Completeness) that the required transition exists.

In the sequel, let C be the bound obtained from Cachat’s algorithm, plus one for technical
convenience. In fact, we can choose a doubly exponential bound C that bounds the weight
of any transition in an automaton constructed by Cachat’s algorithm for any reduced game
RedS′(G) by simply enumerating all S′ and using the fact that the size of the reduced game
is polynomial in the size of G. Then, let

K = 2|S| · C |S| .

Notice that this is doubly exponential as the exponent multiplies into the double exponential
in C.
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To proceed with the proof, take a transition q
A−−→

D,r
S. By soundness, we know there

is a strategy σ of Elvis from (q, A) such that Profσ = (S, D). We define recursively a new
strategy Improve(σ, π, i, S) which aims to continue a play π of length at most 2i−1 · Ci−1

with i ≤ |S| with the goal of reaching some state in S while improving the profile of σ

for each s and keeping the length of π below K. Note, Improve(σ, π, i, S) requires that σ

is winning with the goal S when continuing π. Ultimately, the strategy we define plays
Improve(σ, (q, A) , 1, S). We now define Improve(σ, π, i, S) by induction over the size of S.

In the base case, S = {s} for some s. If D(s) ≤ K we can simply use σ. Otherwise, let
the configuration at the end of π have stack w. We can thus use Cachat’s bound directly to
obtain a strategy σ′ that reaches s in at most |w| · C steps. Since the length of π is at most
2i−1 · Ci−1 with i ≤ |S| we have that |w| ≤ 2i−1 · Ci−1 and thus any play is of length at most

2i−1 · Ci−1 + 2i−1 · Ci−1 · C =
2i−1 · Ci−1 + 2i−1 · Ci ≤

2 · 2i−1 · Ci ≤
2i · Ci ≤ 2|S| · C |S| = K .

Otherwise, we have |S| > 1. We can stratify S into two sets

S≤ =
{

s ∈ S | D(s) ≤ 2i · Ci
}

S> =
{

s ∈ S | D(s) > 2i · Ci
}

.

There are two cases.
If S≤ is empty then we can use the strategy given by Cachat directly. That is, from

Cachat we can obtain a strategy σ′ that reaches S in at most |w| · C steps where w is the
stack contents at the end of π. Since the length of π is at most 2i−1 · Ci−1 with i ≤ |S| we
have that |w| ≤ 2i−1 ·Ci−1 and thus the play is extended by at most 2i−1 ·Ci−1 ·C = 2i−1 ·Ci.
Note, this means (as above) that the total play length is at most

2i−1 · Ci−1 + 2i−1 · Ci ≤
2 · 2i−1 · Ci ≤ 2i · Ci ≤ K

on reaching any s ∈ S. Note, moreover, that since S≤ was empty, this strategy improves σ

for all states s. Thus we are done.
If S≤ is not empty the strategy proceeds as follows. Let s be the state in S≤ with the

maximum D(s). The new strategy continues with σ for D(s) moves. This leads to a play π′.
If π′ has not reached S, then continuing with σ is sure to lead us to S>. Thus Elvis wins the
reduced game RedS>

(G) from the configuration ending π′. Note, the length of π′ is bound
by 2i · Ci since we are still playing σ. We can thus continue with Improve(σ, π′, i + 1, S>).
We know that this procedure will terminate in at most |S| calls as the size of S is reduced
by at least 1 at each level of recursion. Moreover, we know recursively that the strategy will
reach S in at most K steps, and is a pointwise improvement over σ.

Thus, the strategy Improve(σ, (q, A) , 1, S) shows the existence of a doubly exponentially
bound strategy that improves σ. From we have a transition q

A−−−→
D′,r′

S. with D′ bounded
by both D and K. ◀

C.2 Lower Bound
We give the formal definition of the lower bound game. Let p1, . . . , pn be the first n prime
numbers. In the following qI is the initial control state, q+ means the counter is to be
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incremented, q↑ means the counter is to be rebuilt, and q? allows the Anarchist to check the
stack is large enough. The remaining states qp

i are for checking the stack height modulo p.
For the set of transitions ∆I initialises the stack, ∆G are the moves for normal play, and
∆C are the moves for checking the stack height.

▶ Definition C.1 (Lower Bound Game). We define the game GL = (Q, Γ, ∆, A) where

Q = QE ⊎ QA

QE = {qI , q+, q↑} ∪
{qp

i | p ∈ {p1, . . . , pn} ∧ 0 ≤ i < p}
QA = {q?}

Γ = {0, 1, ⊥}

∆ = ∆I ∪ ∆G ∪ ∆C

and

∆I = {(qI , ⊥) → (q↑, 0⊥)}

∆G =


(q+, 1) → (q+, ε) ,

(q+, 1) → (q↑, 0)
(q↑, 0) → (q↑, 00) ,

(q↑, 0) → (q?, 0) ,

(q?, 0) → (q+, 0)


∆C = {(q?, 0) → (qp

0 , 0) | p ∈ {p1, . . . , pn}} ∪{
(qp

i , b) →
(

qp
(i+1 mod p), ε

)
| 0 ≤ i < p ∧ b ∈ {0, 1}

}
and A accepts only (qp

0 , ⊥) for all p ∈ {p1, . . . , pn} and (q+, w) for all w ∈ 1∗⊥.

▶ Proposition C.2. The shortest winning play of GL from (qI , ⊥) for Elvis is doubly expo-
nential in the size of GL.

Proof. Let P be the product of p1, . . . , pn. Since p1, . . . , pn are prime, P > 2n. Moreover,
since by the prime number theorem pn ∼ n · log n, the number of states of GL is polynomial
in n.

From (qI , ⊥) the only move is to (q↑, 0⊥). We argue that Elvis must play to (q↑, 0m⊥)
for some common multiple m of p1, . . . , pn. First note that Elvis can only increase the stack
size so cannot play to

(
q↑, 00⊥

)
. Suppose he pushes 0s to some (q↑, 0m⊥) where m is not a

multiple of p1, . . . , pn. In this case, since Elvis must move to (q?, 0m⊥) then the Anarchist
will play to (qp

0 , 0m⊥) where m mod p ̸= 0 for some p ∈ {p1, . . . , pn}. Such a p must exist
since m is not a multiple of p1, . . . , pn. From this configuration Elvis loses since he must
pop the stack and will reach (qp

i , ⊥) for some i ̸= 0, from which there are no possible moves.
Hence, a configuration accepted by A will not be reached.

If Elvis moves to (q↑, 0m⊥) for some multiple of p1, . . . , pn then any move to (qp
0 , 0m⊥)

by the Anarchist will result in a loss for the Anarchist. The remaining alternative for the
Anarchist is to move to (q+, 0m⊥). First assume m is the smallest positive multiple, which
is P . We will discuss the case m > P afterwards.

For any w ∈ {0, 1}P for k > 0 let num(w) be the number encoded (in binary, least
significant bit first) by w.

From any configuration (q+, w⊥) where w ∈ {0, 1}P one can verify that Elvis must play
to (q?, w′⊥) where num(w′) = num(w) + 1. This is because the play through q+ to q↑ finds
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the least significant 0, increments it to 1 and then has to rebuild the stack with only 0s.
This is an algorithm for incrementing a binary number. During the pop phase Elvis has no
choices to make. During the stack rebuild, Elvis can only push 0s and stop at any point
and move to q?. However, as argued above, he must at least build the stack height to P .
Assuming Elvis does not overbuild the stack, he necessarily reaches (q?, w′⊥). From here
the Anarchist can move to q+ and continue the game, or to some qp

i from which they will
lose.

Continuing in this fashion,
(
q+, 1P ⊥

)
will be reached in a doubly exponential number of

moves.
We have not yet considered the case when Elvis builds the stack to m > P . However,

in this case, Elvis pushes at least p more 0s onto the stack, where p is the minimum of
p1, . . . , pn. As argued above, these must be incremented to 1p which requires a number of
moves exponential in p. Hence, if Elvis overbuilds the stack, he is not playing optimally. ◀
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