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Abstract
We study two-player inclusion games played over word-generating higher-order recursion schemes.
While inclusion checks are known to capture verification problems, two-player games generalize
this relationship to program synthesis. In such games, non-terminals of the grammar are con-
trolled by opposing players. The goal of the existential player is to avoid producing a word that
lies outside of a regular language of safe words.

We contribute a new domain that provides a representation of the winning region of such
games. Our domain is based on (functions over) potentially infinite Boolean formulas with words
as atomic propositions. We develop an abstract interpretation framework that we instantiate
to abstract this domain into a domain where the propositions are replaced by states of a finite
automaton. This second domain is therefore finite and we obtain, via standard fixed-point
techniques, a direct algorithm for the analysis of two-player inclusion games. We show, via a
second instantiation of the framework, that our finite domain can be optimized, leading to a
(k + 1)EXP algorithm for order-k recursion schemes. We give a matching lower bound, showing
that our approach is optimal. Since our approach is based on standard Kleene iteration, existing
techniques and tools for fixed-point computations can be applied.
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1 Introduction

Inclusion checking has recently received considerable attention [54, 23, 1, 2, 37]. One of the
reasons is a new verification loop, which invokes inclusion as a subroutine in an iterative
fashion. The loop has been proposed by Podelski et al. for the safety verification of recursive
programs [33], and then been generalized to parallel and parameterized programs [43, 21, 19]
and to liveness [20]. The idea of Podelski’s loop is to iteratively approximate unsound data
flow in the program of interest, and add the approximations to the specification. Consider
a program with control-flow language CF that is supposed to satisfy a safety specification
given by a regular language R. If the check CF ⊆ R succeeds, then the program is correct
as the data flow only restricts the set of computations. If a computation w ∈ CF is found
that lies outside R, then it depends on the data flow whether the program is correct. If data
is handled correctly, w is a counterexample to R. Otherwise, w is generalized to a regular
language S of infeasible computations. We set R = R ∪ S and repeat the procedure.

∗ The full version is available as technical report [29].
† A part of the work was carried out when the author was at Aalto University.
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Podelski’s loop has also been generalized to synthesis [36, 45]. In that setting, the
program is assumed to have two kinds of non-determinism. Some of the non-deterministic
transitions are understood to be controlled by the environment. They provide inputs that
the system has to react to, and are also referred to as demonic non-determinism. In contrast,
the so-called angelic non-determinism are the alternatives of the system to react to an input.
The synthesis problem is to devise a controller that resolves the angelic non-determinism in a
way that a given safety specification is met. Technically, the synthesis problem corresponds
to a two-player perfect information game, and the controller implements a winning strategy
for the system player. When generalizing Podelski’s loop to the synthesis problem, the
inclusion check thus amounts to solving a strategy-synthesis problem.

Our motivation is to synthesize functional programs with Podelski’s loop. We assume
the program to be given as a non-deterministic higher-order recursion scheme where the non-
terminals are assigned to two players. One player is the system player who tries to enforce
the derivation of words that belong to a given regular language. The other player is the
environment, trying to derive a word outside the language. The use of the corresponding
strategy-synthesis algorithm in Podelski’s loop comes with three characteristics: (1) The
algorithm is invoked iteratively, (2) the program is large and the specification is small,
and (3) the specification is non-deterministic. The first point means that the strategy
synthesis should not rely on costly precomputation. Moreover, it should have the chance to
terminate early. The second says that the cost of the computation should depend on the
size of the specification, not on the size of the program. Computations on the program, in
particular iterative ones, should be avoided. Together with the third characteristic, these two
consequences rule out reductions to reachability games. The required determinization would
mean a costly precomputation, and the reduction to reachability would mean a product
with the program. This discussion in particular forbids a reduction of the strategy-synthesis
problem to higher-order model checking [46], which indeed can be achieved (see the full
version [29] for a comparison to intersection types [42]). Instead, we need a strategy synthesis
that can directly deal with non-deterministic specifications.

We show that the winning region of a higher-order inclusion game wrt. a non-
deterministic right-hand side can be computed with a standard fixed-point iteration. Our
contribution is a domain suitable for this computation. The key idea is to use Boolean
formulas whose atomic propositions are the states of the targeted finite automaton. While a
formula-based domain has recently been proposed for context-free inclusion games [36] (and
generalized to infinite words [45]), the generalization to higher-order is new. Consider a non-
terminal that is ground and for which we have computed a formula. The Boolean structure
reflects the alternation among the players in the plays that start from this non-terminal.
The words generated along the plays are abstracted to sets of states from which these words
can be accepted. Determining the winner of the game is done by evaluating the formula
when sets of states containing the initial state are assigned the value true. To our surprise,
the above domain did not give the optimal complexity. Instead, it was possible to further
optimize it by resolving the determinization information. Intuitively, the existential player
can also resolve the non-determinism captured by a set. Crucially, our approach handles the
non-determinism of the specification inside the analysis, without preprocessing.

Besides offering the characteristics that are needed for Podelski’s loop, our development
also contributes to the research program of effective denotational semantics, as recently
proposed by Salvati and Walukiewicz [52] as well as Grellois and Melliès [25, 25], with [5, 49]
being early works in this field. The idea is to solve verification problems by computing
the semantics of a program in a suitable domain. Salvati and Walukiewicz studied the
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expressiveness of greatest fixed-point semantics and their correspondence to automata [52],
and constructions of enriched Scott models for parity conditions [51, 50]. A similar line of
investigation has been followed in recent work by Grellois and Melliès [26, 27]. Hofmann
and Chen considered the verification of more restricted ω-path properties with a focus on
the domain [34]. They show that explicit automata constructions can be avoided and give a
domain that directly captures subsets (so-called patches) of the ω-language. The work has
been generalized to higher order [35]. Our contribution is related in that we focus on the
domain (suitable for capturing plays).

Besides the domain, the correctness proof may be of interest. We employ an exact
fixed-point transfer result as known from abstract interpretation. First, we give a semantic
characterization showing that the winning region can be captured by an infinite model (a
greatest fixed point). This domain has as elements (potentially infinite) sets of (finite)
Boolean formulas. The formulas capture plays (up to a certain depth) and the atomic
propositions are terminal words. The infinite set structure is to avoid infinite syntax. Then
we employ the exact fixed-point transfer result to replace the terminals by states and get rid
of the sets. The final step is another exact fixed-point transfer that justifies the optimization.
We give a matching lower bound. The problem is (k + 1)EXP-complete for order-k schemes.

Related Work. The relationship between recursion schemes and extensions of pushdown
automata has been well studied [16, 17, 38, 30]. This means algorithms for recursion schemes
can be transferred to extensions of pushdown automata and vice versa. In the sequel, we
will use pushdown automata to refer to pushdown automata and their family of extensions.

The decidability of Monadic Second Order Logic (MSO) over trees generated by recursion
schemes was first settled in the restricted case of safe schemes by Knapik et al. [38] and
independently by Caucal [14]. This result was generalized to all schemes by Ong [46]. Both
of these results consider deterministic schemes only.

Related results have also been obtained in the consideration of games played over the
configuration graphs of pushdown automata [53, 13, 39, 30]. Of particular interest are
saturation methods for pushdown games [7, 22, 12, 8, 31, 32, 9]. In these works, automata
representing sets of winning configurations are constructed using fixed-point computations.

A related approach pioneered by Kobayashi et al. operating directly on schemes is that
of intersection types [41, 42], where types embedding a property automaton are assigned to
terms of a scheme. Recently, saturation techniques were transferred to intersection types by
Broadbent and Kobayashi [10]. The typing algorithm is then a least fixed-point computation
analogous to an optimized version of our Kleene iteration, restricted to deterministic schemes.
This has led to one of the most competitive model-checking tools for schemes [40].

One may reduce our language inclusion problems to many of the above works. E.g. from
an inclusion game for schemes, we may build a game over an equivalent kind of pushdown
automaton and take the product with a determinization of the NFA. This obtains a reach-
ability game over a pushdown automaton that can be solved by any of the above methods.
However, such constructions are undesirable for iterative invocations as in Podelski’s loop.

We already discussed the relationship to model-theoretic verification algorithms. Ab-
stract interpretation has also been used by Ramsay [48], Salvati and Walukiewicz [51, 50],
and Grellois and Melliès [25, 24] for verification. The former used a Galois connection be-
tween safety properties (concrete) and equivalence classes of intersection types (abstract) to
recreate decidability results known in the literature. The latter two strands gives a seman-
tics capable of computing properties expressed in MSO. Indeed, abstract interpretation has
long been used for static analysis of higher-order programs [3].

MFCS 2017
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2 Preliminaries

Complete Partial Orders. Let (D, ≤) be a partial order with set D and (partial) ordering
≤ on D. We call (D, ≤) pointed if there is a greatest element, called the top element and
denoted by ⊤ ∈ D. A descending chain in D is a sequence (di)i∈N of elements in D with
di ≥ di+1. We call (D, ≤) ω-complete if every descending chain has a greatest lower bound,
called the meet or the infimum, and denoted by

d
i∈N di. If (D, ≤) is pointed and ω-complete,

we call it a pointed ω-complete partial order (cppo). In the following, we will only consider
partial orders that are cppos. Note, cppo is usually used to refer to the dual concept, i.e.
partial orders with a least element and least upper bounds for ascending chains.

A function f : D → D is ⊓-continuous if for all descending chains (di)i∈N we have
f(

d
i∈N di) =

d
i∈N f(di). We call a function f : D → D monotonic if for all d, d′ ∈ D,

d ≤ d′ implies f(d) ≤ f(d′). Any function that is ⊓-continuous is also monotonic. For a
monotonic function, ⊤ ≥ f(⊤) ≥ f2(⊤) = f(f(⊤)) ≥ f3(⊤) ≥ . . . is a descending chain.

If the function is ⊓-continuous, then
d

i∈N f i(⊤) is by Kleene’s theorem the greatest fixed
point of f , i.e. f(

d
i∈N f i(⊤)) =

d
i∈N f i(⊤) and

d
i∈N f i(⊤) is larger than any other element

d with f(d) = d. We also say
d

i∈N f i(⊤) is the greatest solution to the equation x = f(x).
A lattice satisfies the descending chain condition (DCC) if every descending chain has to

be stationary at some point. In this case
d

i∈N f i(⊤) =
di0

i=0 f i(⊤) for some index i0 in N.
With this, we can compute the greatest fixed point: Starting with ⊤, we iteratively apply
f until the result does not change. This process is called Kleene iteration. Note that finite
cppos, i.e. with finitely many elements in D, trivially satisfy the descending chain condition.

Finite Automata. A non-deterministic finite automaton (NFA) is a tuple
A = (QNFA, Γ, δ, q0, Qf ) where QNFA is a finite set of states, Γ is a finite alphabet,
δ ⊆ QNFA × Γ × QNFA is a (non-deterministic) transition relation, q0 ∈ QNFA is the initial
state, and Qf ⊆ QNFA is a set of final states. We write q

a→ q′ to denote (q, a, q′) ∈ δ.
Moreover, given a word w = a1 · · · aℓ, we write q

w→ q′ whenever there is a sequence of
transitions, also called run, q1

a1→ q2
a2→ · · · aℓ→ qℓ+1 with q1 = q and qℓ+1 = q′. The run is

accepting if q = q0 and q′ ∈ Qf . The language of A is L(A) = {w | q0
w→ q ∈ Qf } .

3 Higher-Order Recursion Schemes

We introduce higher-order recursion schemes, schemes for short, following the presentation
in [28]. Schemes can be understood as grammars generating the computation trees of pro-
grams in a functional language. As is common in functional languages, we need a typing
discipline. To avoid confusion with type-based approaches to higher-order model check-
ing [41, 47, 42], we refer to types as kinds. Kinds define the functionality of terms, without
specifying the data domain. Technically, the only data domain is the ground kind o, from
which (potentially higher-order) function kinds are derived by composition:

κ ::= o | (κ1 → κ2) .

We usually omit the brackets and assume that the arrow associates to the right. The
number of arguments to a kind is called the arity. The order defines the functionality of
the arguments: A first-order kind defines functions that act on values, a second-order kind
functions that expect functions as parameters. Formally, we have

arity(o) = 0, order(o) = 0,

arity(κ1 → κ2) = arity(κ2) + 1, order(κ1 → κ2) = max(order(κ1) + 1, order(κ2)) .
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Let K be the set of all kinds. Higher-order recursion schemes assign kinds to symbols from
different alphabets, namely non-terminals, terminals, and variables. Let Γ be a set of such
kinded symbols. For each kind κ, we denote by Γκ the restriction of Γ to the symbols with
kind κ. The terms T κ(Γ) of kind κ over Γ are defined by simultaneous induction over all
kinds. They form the smallest set satisfying
1. Γκ ⊆ T κ(Γ),
2.

∪
κ1

{t v | t ∈ T κ1→κ2(Γ), v ∈ T κ1(Γ)} ⊆ T κ2(Γ), and
3. {λx.t | x ∈ T κ1(Γ), t ∈ T κ2(Γ)} ⊆ T κ1→κ2(Γ).
If term t is of kind κ, we also write t : κ. We use T (Γ) for the set of all terms over Γ. We
say a term is λ-free if it contains no sub-term of the form λx.t. A term is variable-closed if
all occurring variables are bound by a preceding λ-expression.

▶ Definition 1. A higher-order recursion scheme, (scheme for short), is a tuple G =
(V, N, T, R, S), where V is a finite set of kinded symbols called variables, T is a finite set of
kinded symbols called terminals, and N is a finite set of kinded symbols called non-terminals
with S ∈ N the initial symbol. The sets V , T , and N are pairwise disjoint. The finite set R

consists of rewriting rules of the form F = λx1 . . . λxn.e, where F ∈ N is a non-terminal of
kind κ1 → . . . κn → o, x1, . . . , xn ∈ V are variables of the required kinds, and e is a λ-free,
variable-closed term of ground kind from T o(T ·∪ N ·∪{x1 : κ1, . . . , xn : κn}).

The semantics of G is defined by rewriting subterms according to the rules in R. A context
is a term C[•] ∈ T (Γ ·∪{• : o}) in which • occurs exactly once. Given a context C[•] and a
term t : o, we obtain C[t] by replacing the unique occurrence of • in C[•] by t. With this,
t ⇒G t′ if there is a context C[•], a rule F = λx1 . . . λxn.e, and a term F t1 . . . tn : o such
that t = C[F t1 . . . tn] and t′ = C[e[x1 7→ t1, . . . , xn 7→ tn]]. In other words, we replace one
occurrence of F in t by a right-hand side of a rewriting rule, while properly instantiating the
variables. We call such a replaceable F t1 . . . tn a reducible expression (redex). The rewriting
step is outermost to innermost (OI) if there is no redex that contains the rewritten one as a
proper subterm. The OI-language L(G) of G is the set of all (finite, ranked, labeled) trees
T over the terminal symbols that can be created from the initial symbol S via OI-rewriting
steps. We will restrict the rewriting relation to OI-rewritings in the rest of this paper. Note,
all words derivable by IO-rewriting are also derivable with OI-rewriting.

Word-Generating Schemes. We consider word-generating schemes, i.e. schemes with ter-
minals T ·∪{$ : o} where exactly one terminal symbol $ has kind o and all others are of kind
o → o. The generated trees have the shape a1 (a2 (· · · (ak $))), which we understand as the
finite word a1a2 . . . ak ∈ T ∗. We also see L(G) as a language of finite words.

Determinism. The above schemes are non-deterministic in that several rules may rewrite
a non-terminal. We associate with a non-deterministic scheme G = (V, N, T, R, S) a deter-
ministic scheme Gdet with exactly one rule per non-terminal. Intuitively, Gdet makes the
non-determinism explicit with new terminal symbols.

Formally, let F : κ be a non-terminal with rules F = t1 to F = tℓ. We may assume
each ti = λx1 . . . λxk.ei, where ei is λ-free. We introduce a new terminal symbol opF :
o → o → . . . → o of arity ℓ. Let the set of all these terminals be T det = {opF | F ∈
N}. The set of rules Rdet now consists of a single rule for each non-terminal, namely
F = λx1 . . . λxk.opF e1 · · · eℓ. The original rules in R are removed. This yields Gdet =
(V, N, T ·∪ T det , Rdet , S). The advantage of resolving the non-determinism explicitly is that
we can give a semantics to non-deterministic choices that depends on the non-terminal
instead of having to treat non-determinism uniformly.

MFCS 2017
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Semantics. Let G = (V, N, T, R, S) be a deterministic scheme. A model of G is a pair
M = (D, I), where D is a family of domains (D(κ))κ∈K that satisfies the following: D(o) is a
cppo and D(κ1 → κ2) = Cont(D(κ1), D(κ2)). Here, Cont(A, B) is the set of all ⊓-continuous
functions from domain A to B. We comment on this cppo in a moment. The interpretation
I : T → D assigns to each terminal s : κ an element I(s) ∈ D(κ).

The ordering on functions is defined component-wise, f ≤κ1→κ2 g if (f x) ≤κ2 (g x)
for all x ∈ D(κ1). For each κ, we denote the top element of D(κ) by ⊤κ. For the ground
kind, ⊤o exists since D(κ) is a cppo, and ⊤κ1→κ2 is the function that maps every argument
to ⊤κ2 . The meet of a descending chain of functions (fi)i∈N is the function defined by
(
d

κ1→κ2
(fi)i∈N) x =

d
κ2

(fi x)i∈N. Note that the sequence on the right-hand side is a
descending chain.

The semantics of terms defined by a model is a function

MJ−K : T → (N ·∪ V ↛ D) → D .

that assigns to each term built over the non-terminals and terminals again a function. This
function expects a valuation ν : N ·∪ V ↛ D and returns an element from the domain. A
valuation is a partial function that is defined on all non-terminals and the free variables.
We lift ⊓ to descending chains of valuations with (

d
i∈N νi)(y) =

d
i∈N(νi(y)) for y ∈ N ·∪ V .

We obtain that the set of such valuations is a cppo where the greatest elements are those
valuations which assign the greatest elements of the appropriate domain to all arguments.

Since the right-hand sides of the rules in the scheme are variable-closed, we do not need a
variable valuation for them. We need the variable valuation, however, whenever we proceed
by induction on the structure of terms. The semantics is defined by such an induction:

MJsK ν = I(s) MJF K ν = ν(F ) MJt1 t2K ν = (MJt1K ν) (MJt2K ν)
MJxK ν = ν(x) MJλx : κ.t1K ν = d ∈ D(κ) 7→ MJt1K ν[x 7→ d] .

We show that MJtK is ⊓-continuous for all terms t. This follows from continuity of the
functions in the domain, but requires some care when handling application.

▶ Proposition 2. For all t, MJtK is ⊓-continuous (in ν) over the respective lattice.

Given M, the rules F1 = t1, . . . , Fk = tk of the (deterministic) scheme give a function

rhsM : (N → D) → (N → D) , where rhsM(ν)(Fj) = MJtjK ν .

Since the right-hand sides are variable-closed, the MJtjK are functions in the non-terminals.
Provided MJt1K to MJtkK are ⊓-continuous (in the valuation of the non-terminals), the
function rhsM will be ⊓-continuous. This allows us to apply Kleene iteration as follows.
The initial value is the greatest element σ0

M where σ0
M(Fj) = ⊤j with ⊤j the top element of

D(κj). The (i + 1)th approximant is computed by evaluating the right-hand side at the ith

solution, σi+1
M = rhsM(σi

M). The greatest fixed point is the tuple σM defined below. It can
be understood as the greatest solution to the equation ν = rhsM(ν). We call this greatest
solution σM the semantics of the scheme in the model.

σM =
l
i∈N

σi
M =

l
i∈N

rhsi
M(σ0

M)

4 Higher-Order Inclusion Games

Our goal is to solve higher-order games, whose arena is defined by a scheme. We assume
that the derivation process is controlled by two players. To this end, we divide the non-
terminals of a word-generating scheme into those owned by the existential player 3 and
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those owned by the universal player 2. Whenever a non-terminal is to be replaced during
the derivation, it is the owner who chooses which rule to apply. The winning condition is
given by an automaton A, Player 3 attempts to produce a word that is in L(A), while
Player 2 attempts to produce a word outside of L(A).

▶ Definition 3. A higher-order game is a triple G = (G, A, O) where G is a word-generating
scheme, A is an NFA, O : N → {3, 2} is a partitioning of the non-terminals of G.

A play of the game is a sequence of OI-rewriting steps. Since terms generate words, it is
unambiguous which term forms the next redex to be rewritten. In particular, all terms are
of the form a1(a2(· · · (ak(t)))), where t is either $ or a redex F t1 · · · tm. If O(F ) = 3 then
Player 3 chooses a rule F = λx1 . . . λxm.e to apply, else Player 2 chooses the rule. This
moves the play to a1 (a2 (· · · (ak e[x1 7→ t1, . . . , xm 7→ tm]))).

Each play begins at the initial non-terminal S, and continues either ad infinitum or until
a term a1 (a2 (· · · (ak $))), understood as the word w = a1 . . . ak, is produced. Infinite
plays do not produce a word and are won by Player 3. Finite maximal plays produce such a
word w. Player 3 wins whenever w ∈ L(A), Player 2 wins if w ∈ L(A). Since the winning
condition is Borel, either Player 3 or Player 2 has a winning strategy [44].

The Winner of a Higher-Order Game (HOG)
Input: A higher-order game G.
Question: Does Player 3 win G? If so, effectively represent Player 3’s strategy.

Our contribution is a fixed-point algorithm to decide HOG. We derive it in three steps.
First, we develop a concrete model for higher-order games whose semantics captures the
above winning condition. Second, we introduce a framework that for two models and a
mapping between them guarantees that the mapping of the greatest fixed point with respect
to the one model is the greatest fixed point with respect to the other model. Finally, we
introduce an abstract model that uses a finite ground domain. The solution of HOG can be
read off from the semantics in the abstract model, which in turn can be computed via Kleene
iteration. Moreover, this semantics can be used to define Player 3’s winning strategy. We
instantiate the framework for the concrete and abstract model to prove the soundness of the
algorithm.

Concrete Semantics
Consider a HOG instance G = (G, A, O). Let Gdet be the determinized version of G. Our goal
is to define a model MC = (DC , IC ) such that the semantics of Gdet in this model allows
us to decide HOG. Recall that we only have to define the ground domain. For composed
kinds, we use the functional lifting discussed in Section 3.

Our idea is to associate to kind o the set of positive Boolean formulas where the atomic
propositions are words in T ∗. To be able to reuse the definition, we define formula domains
in more generality as follows.

Domains of Boolean Formulas Given a (potentially infinite) set P of atomic propositions,
the positive Boolean formulas PBool(P ) over P are defined to contain true, every p from
P , and compositions of formulas via conjunction and disjunction. We work up to logical
equivalence, which means we treat ϕ1 and ϕ2 as equal as long as they are logically equivalent.

Unfortunately, if the set P is infinite, PBool(P ) is not a cppo, because the meet of a
descending chain of formulas might not be a finite formula. The idea of our domain is to

MFCS 2017
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have conjunctions of infinitely many formulas. As is common in logic, we represent them as
infinite sets. Therefore, we consider the set of all sets of (finite) positive Boolean formulas
P(PBool(T ∗)) \ {∅} factorized modulo logical equivalence, denoted (P(PBool(T ∗)) \ {∅})/⇔.
To be precise, the sets may be finite or infinite, but they must be non-empty.

To define the factorization, let an assignment to the atomic propositions be given by a
subset of P ′ ⊆ P . The atomic proposition p is true if p ∈ P ′. An assignment satisfies a
Boolean formula, if the formula evaluates to true in that assignment. It satisfies a set of
Boolean formulas, if it satisfies all elements. Given two sets of formulas Φ1 and Φ2, we write
Φ1 ⇒ Φ2, if every assignment that satisfies Φ1 also satisfies Φ2. Two sets of formulas are
equivalent, denoted Φ1 ⇔ Φ2, if Φ1 ⇒ Φ2 and Φ2 ⇒ Φ1 holds.

The ordering on these factorized sets is implication (which by transitivity is indepen-
dent of the representative). The top element is the set {true}, which is implied by ev-
ery set. The conjunction of two sets is union. Note that it forms the meet in the
partial order, and moreover note that meets over arbitrary sets exist, in particular the
domain is a cppo. We will also need an operation of disjunction, which is defined by
Φ1 ∨ Φ2 = {ϕ1 ∨ ϕ2 | ϕ1 ∈ Φ1, ϕ2 ∈ Φ2}. We will also use disjunctions of higher (but finite)
arity where convenient. Note that the disjunction on finite formulas is guaranteed to result
in a finite formula. Therefore, the above is well-defined.

In our case, the assignment P ′ ⊆ T ∗ of interest is the language of the automaton A.
Player 3 will win the game iff the concrete semantics assigns a set of formulas to S that is
satisfied by L(A).

The Concrete Domains and Interpretation of Terminals. From a ground domain, higher-
order domains are defined as continuous functions as in Section 3. Thus we only need

DC (o) = (P(PBool(T ∗)) \ {∅})/⇔ .

The endmarker $ yields the set of formulas {ε}, i.e. IC ($) = {ε}. A terminal a : o → o

prepends a to a given word w. That is IC (a) = prependa, where prependa distributes over
conjunction and disjunction:

prependa(ϕ) =


aw ϕ = w ,

prependa(ϕ1) op prependa(ϕ2) ϕ = ϕ1 op ϕ2 and op ∈ {∧, ∨} ,

ϕ ϕ = true .

We apply prependa to sets of formulas by applying it to every element. Finally, IC (opF )
where opF has arity ℓ is an ℓ-ary conjunction (resp. disjunction) if Player 2 (resp. 3) owns F .

For MC = (DC , IC ) to be a model, we need our interpretation of terminals to be
⊓-continuous. This follows largely by the distributivity of our definitions.

▶ Lemma 4. For all non-ground terminals s, IC (s) is ⊓-continuous.

▶ Example 5. Consider the higher-order game defined by the scheme S = H a $ | b $
and H = λf.λx.f (f x) | λf.λx.H (H f) x. Assume S is owned by Player 3 and H is
owned by Player 2. Let the automaton accept the language {b}. Player 3 can choose to
rewrite S to b $ and therefore has a strategy to produce a word in the language. To derive
this information from the concrete semantics, we compute σMC (H). It is the function
mapping f ∈ Cont(DC (o), DC (o)) and d ∈ DC (o) to

∪
k>0 f2k(d). Note that the union is

the conjunction of sets of formulas, which is the interpretation of opH for the universal player.
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Moreover, note that due to non-determinism we obtain all even numbers of applications of f ,
not only the powers of 2. With this, the semantics of the initial symbol is

σMC (S) =
∪
k>0

prepend2k
a ({ε}) ∨ prependb({ε}) = {a2k ∨ b | k > 0}.

The assignment {b} given by the language of the NFA satisfies {a2k ∨ b | k > 0}. Indeed,
since b evaluates to true, every formula in the set evaluates to true.

Correctness of Semantics and Winning Strategies. We need to show that the concrete
semantics matches the original semantics of the game.

▶ Theorem 6. σMC (S) is satisfied by L(A) iff there is a winning strategy for Player 3.

When σMC (S) is satisfied by L(A) the concrete semantics gives a winning strategy for 3:
From a term t such that MC JtK σMC is satisfied by L(A), Player 3, when able to choose,
picks a rewrite rule that transforms t to t′, where MC Jt′K σMC remains satisfied. The proof
of Theorem 6 shows this is always possible, and, moreover, Player 2 is unable to reach
a term for which satisfaction does not hold. This does not yet give an effective strategy
since we cannot compute MC JtK σMC . However, the abstract semantics will be computable,
and can be used in place of the concrete semantics by Player 3 to implement the winning
strategy.

The proof that σMC (S) being unsatisfied implies a winning strategy for Player 2 is more
involved and requires the definition of a correctness relation between semantics and terms
that is lifted to the level of functions, and shown to hold inductively.

5 Framework for Exact Fixed-Point Transfer

The concrete model MC does not lead to an algorithm for solving HOG since its domains are
infinite. Here, we consider an abstract model MA with finite domains. The soundness of the
resulting Kleene iteration relies on the two semantics being related by a precise abstraction α.
Since both semantics are defined by fixed points, this requires us to prove α(σMC ) = σMA .
In this section, we provide a general framework to this end.

Consider the deterministic scheme G together with two models (left and right)
Ml = (Dl, Il) and Mr = (Dr, Ir). Our goal is to relate the semantics in these mod-
els in the sense that σMr

= α(σMl
). Such exact fixed-point transfer results are well-known

in abstract interpretation. To generalize them to higher-order we give easy to instantiate
conditions on α, Ml, and Mr that yield the above equality. Interestingly, exact fixed-point
transfer results seem to be rare for higher-order (e.g. [47]). Our development is inspired by
Abramsky’s lifting of abstraction functions to logical relations [4], which generalizes [11, 3].
These works focus on approximation and the compatibility we need for exactness is missing.
Our framework is easier to apply than [15, 6], which are again concerned with approximation
and do not offer (but may lead to) exact fixed-point transfer results.

For the terminology, an abstraction is a function α : Dl(o) → Dr(o). To lift the abstrac-
tion to function domains, we define the notion of being compatible with α. Compatibility
intuitively states that the function on the concrete domain is not more precise than what
the abstraction function distinguishes. This allows us to define the abstraction of a function
by applying the function and abstracting the result, α(f) α(vl) = α(f vl). Compatibility
ensures the independence of the choice of vl.

By definition, all ground elements vl ∈ Dl(o) are compatible with α. For function
domains, compatibility and the abstraction are defined as follows.
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▶ Definition 7. Assume α and the notion of compatibility are defined on Dl(κ1) and Dl(κ2).
Let ⊤l

κ (resp. ⊤r
κ) be the greatest element of Dl(κ) (resp. Dr(κ)) for each κ.

1. Function f ∈ Dl(κ1 → κ2) is compatible with α, if
a. for all compatible vl, v′

l ∈ Dl(κ1) with α(vl) = α(v′
l) we have α(f vl) = α(f v′

l), and
b. for all compatible vl ∈ Dl(κ1) we have that f vl is compatible.

2. We define α(f) ∈ Dr(κ1 → κ2) as follows.
a. If f is compatible, we set α(f) vr = α(f vl), provided there is a compatible vl ∈ Dl(κ1)

with vr = α(vl), and α(f) vr = ⊤r
κ2

otherwise.
b. If f is not compatible, α(f) = ⊤r

κ1→κ2
.

We lift α to valuations ν : N ·∪ V ↛ Dl by α(ν)(F ) = α(ν(F )) and similar for x. We also
lift compatibility to valuations ν : N ·∪ V ↛ Dl by requiring ν(F ) to be compatible for all
F ∈ N and similar for x ∈ V .

The conditions needed for the exact fixed-point transfer are the following.

▶ Definition 8. Function α is precise for Ml and Mr, if
(P1) α(Dl(o)) = Dr(o),
(P2) α : Dl(o) → Dr(o) is ⊓-continuous,
(P3) α(⊤l

o) = ⊤r
o,

(P4) α(Il(s)) = Ir(s) for all terminals s : o, and similarly α(Il(s) vl) = Ir(s) α(vl) for all
terminals s : κ1 → κ2 and all compatible vl ∈ Dl(κ1),

(P5) Il(s) vl is compatible for all terminals s : κ1 → κ2, and all compatible vl ∈ Dl(κ1).

(P1) is surjectivity of α. (P2) states that α is well-behaved wrt. ⊓. (P3) says that the
greatest element is mapped as expected. Note that (P1)-(P3) are only posed for the ground
domain. One can prove that they generalize to function domains by the definition of function
abstraction. (P4) is that the interpretations of terminals in MC and MA are suitably related.
Finally (P5) is compatibility. (P4) and (P5) are generalized to terms in Lemma 9.

To prove α(σMl
) = σMr

, we need that rhsMr
is an exact abstract transformer of rhsMl

.
The following lemma states this for all terms t, in particular those that occur in the equations.
The generalization to product domains is immediate. Note that the result is limited to
compatible valuations, but this will be sufficient for our purposes. The proof proceeds by
induction on the structure of terms, while simultaneously proving MlJtK compatible with α.
With this result, we obtain the required exact fixed-point transfer for precise abstractions.

▶ Lemma 9. Assume (P1), (P4), and (P5) hold. For all terms t and all compatible ν, we
have MlJtK ν compatible and α(MlJtK ν) = MrJtK α(ν).

▶ Theorem 10 (Exact Fixed-Point Transfer). Let G be a scheme with models Ml and Mr.
Let σl and σr be the corresponding semantics. If α : Dl → Dr is precise, we have σr = α(σl).

6 Domains for Higher-Order Games

We propose two domains, abstract and optimized, that allow us to solve HOG. The compu-
tation is a standard fixed-point iteration, and, in the optimized domain, this iteration has
optimal complexity. Correctness follows by instantiating the previous framework.

Abstract Semantics. Our goal is to define an abstract model for games that (1) suitably
relates to the concrete model from Section 4 and (2) is computable. By a suitable relation,
we mean the two models should relate via an abstraction function. Provided the conditions
on precision hold, correctness of the abstraction then follows from Theorem 10. Combined
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with Theorem 6, this will allow us to solve HOG. Computable in particular means the
domain should be finite and the operations should be efficiently computable.

We define the MA = (DA, IA) as follows. Again, we resolve the non-determinism into
Boolean formulas. But rather than tracking the precise words generated by the scheme, we
only track the current set of states of the automaton. To achieve the surjectivity required
by precision, we restrict the powerset to those sets of states from which a word is accepted.
Let acc(w) = {q | q

w→ qf ∈ Qf }. For a language L we have acc(L) = {acc(w) | w ∈ L}.
The abstract domain for terms of ground kind is DA(o) = PBool(acc(T ∗)). The lifting
to functions is as explained in Section 3. Satisfaction is now defined relative to a set Ω of
elements of P(QNFA) (cf. Section 4). With finitely many atomic propositions, there are only
finitely many formulas (up to logical equivalence). This means we no longer need sets of
formulas to represent infinite conjunctions, but can work with plain formulas. The ordering
is thus the ordinary implication with the meet being conjunction and top being true.

The interpretation of ground terms is IA($) = Qf and IA(a) = prea. Here prea is the
predecessor computation under label a, prea(Q) = {q′ ∈ QNFA | q′ a→ q ∈ Q}. It is lifted
to formulas by distributing it over conjunction and disjunction. The composition operators
are again interpreted as conjunctions and disjunctions, depending on the owner of the non-
terminal. Since we restrict the atomic propositions to acc(T ∗), we have to show that the
interpretations use only this restricted set. Proving IA(s) is ⊓-continuous is standard.

▶ Lemma 11. The interpretations are defined on the abstract domain.

▶ Lemma 12. For all terminals s, IA(s) is ⊓-continuous over the respective lattices.

Recall our concrete model is MC = (DC , IC ), where DC = P(PBool(T ∗)). To relate this
model to MA, we define the abstraction function α : DC (o) → DA(o). It leaves the Boolean
structure of a formula unchanged but maps every word (which is an atomic proposition)
to the set of states from which this word is accepted. For a set of formulas, we take the
conjunction of the abstraction of the elements. This conjunction is finite as we work over a
finite domain, so there is no need to worry about infinite syntax. Technically, we define α

on PBool(T ∗) by α(Φ) =
∧

ϕ∈Φ α(ϕ) for a set of formulas Φ ∈ P(PBool(T ∗)), and

α(ϕ) =


acc(w) if ϕ = w,

α(ϕ1) op α(ϕ2) if ϕ = ϕ1 op ϕ2 and op ∈ {∧, ∨},

ϕ if ϕ = true .

This definition is suitable in that α(σMC ) = σMA entails the following.

▶ Theorem 13. σMA(S) is satisfied by {Q ∈ acc(T ∗) | q0 ∈ Q} iff Player 3 wins G.

To see that the theorem is a consequence of the exact fixed-point transfer, observe that
{Q ∈ acc(T ∗) | q0 ∈ Q} = acc(L(A)). Then, by σMA = α(σMC ) we have acc(L(A)) satisfies
σMA(S) iff it also satisfies α(σMC (S)). This holds iff L(A) satisfies σMC (S) (a simple
induction over formulas). By Theorem 6, this occurs iff Player 3 wins the game.

It remains to establish α(σMC ) = σMA . With the framework, the exact fixed-point
transfer follows from precision, Theorem 10. The proof of the following is routine.

▶ Proposition 14. α is precise. Hence, α(σMC ) = σMA .

Optimized Semantics. The above model yields a decision procedure for HOG via Kleene
iteration. Unfortunately, the complexity is one exponential too high: The height of the
domain for a symbol of order k in the abstract model is (k + 2)-times exponential, where
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the height is the length of the longest strictly descending chain in the domain. This gives
the maximum number of steps of Kleene iteration needed to reach the fixed point.

We present an optimized version of our model that is able to close the gap: In this model,
the domain for an order-k symbol is only (k + 1)-times exponentially high. The idea is to
resolve the atomic propositions in MA, which are sets of states, into disjunctions among the
states. The reader familiar with inclusion algorithms will find this decomposition surprising.

We first define α : PBool(acc(T ∗)) → PBool(QNFA). The optimized domain will then
be based on the image of α. This guarantees surjectivity. For a set of states Q, we define
α(Q) =

∨
Q =

∨
q∈Q q. For a formula, the abstraction function is defined to distribute

over conjunction and disjunction. The optimized model is MO = (DO, IO) with ground
domain α(PBool(acc(T ∗))). The interpretation is IO($) =

∨
Qf . For a, we resolve the set

of predecessors into a disjunction, IO(a) q =
∨

prea({q}). The function distributes over
conjunction and disjunction. Finally, IO(opF ) is conjunction or disjunction of formulas,
depending on the owner of the non-terminal. Since we use a restricted domain, we have to
argue that the operations do not leave the domain. It is also straightforward to prove our
interpretation is ⊓-continuous as required.
▶ Lemma 15. The interpretations are defined on the optimized domain.
▶ Lemma 16. For all terminals s, IO(s) is ⊓-continuous over the respective lattices.
We again show precision, enabling the required exact fixed-point transfer.
▶ Proposition 17. α is precise. Hence, α(σMA) = σMO .
▶ Theorem 18. σMO (S) is satisfied by {q0} iff Player 3 wins G.
It is sufficient to show σMA(S) is satisfied by {Q ∈ acc(T ∗) | q0 ∈ Q} iff σMO (S) is satisfied
by {q0}. Theorem 13 then yields the statement. Propositions Q in σMA(S) are resolved into
disjunctions

∨
Q in σMO (S). For such a proposition, we have Q ∈ {Q ∈ acc(T ∗) | q0 ∈ Q} iff∨

Q is satisfied by {q0}. This equivalence propagates to the formulas σMA(S) and σMO (S)
as the Boolean structure coincides. The latter follows from α(σMA(S)) = σMO (S).

Complexity. To solve HOG, we compute the semantics σMO and then evaluate σMO (S) at
the assignment {q0}. For the complexity, assume that the highest order of any non-terminal
in G is k. We show the number of iterations needed to compute the greatest fixed point is
at most (k + 1)-times exponential. We do this via a suitable upper bound on the length of
strictly descending chains in the domains assigned by DO.
▶ Proposition 19. The semantics σMO can be computed in (k + 1)EXP, where k is the
highest order of any non-terminal in the input scheme.
The lower bound is via a reduction from the word membership problem for alternating k-
iterated pushdown automata with polynomially-bounded auxiliary work-tape. This problem
was shown by Engelfriet to be (k + 1)EXP-hard. We can reduce this problem to HOG via
well-known translations between iterated stack automata and recursion schemes, using the
regular language specifying the winning condition to help simulate the work-tape.
▶ Proposition 20. Determining whether Player 3 wins G is (k + 1)EXP-hard for k > 0.
Together, these results show the following corollary and final result.
▶ Corollary 21. HOG is (k + 1)EXP-complete for order-k schemes and k > 0.
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