
The Complexity of Model Checking (Collapsible)
Higher-Order Pushdown Systems
Matthew Hague1 and Anthony Widjaja To2

1,2 Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford, OX1 3QD

Abstract
We study (collapsible) higher-order pushdown systems— theoretically robust and well-studied

models of higher-order programs — along with their natural subclass called (collapsible) higher-
order basic process algebras. We provide a comprehensive analysis of the model checking complex-
ity of a range of both branching-time and linear-time temporal logics. We obtain tight bounds on
data, expression, and combined-complexity for both (collapsible) higher-order pushdown systems
and (collapsible) higher-order basic process algebra. At order-k, results range from polynomial
to (k + 1)-exponential time. Finally, we study (collapsible) higher-order basic process algebras
as graph generators and show that they are almost as powerful as (collapsible) higher-order
pushdown systems up to MSO interpretations.

1998 ACM Subject Classification D.2.4

Keywords and phrases Higher-Order, Collapsible, Pushdown Systems, Temporal Logics, Com-
plexity, Model Checking

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.228

1 Introduction

Recently, there has been a burgeoning interest in collapsible higher-order pushdown systems
(CPDSs), both as generators of structures and as models of higher-order computation.
Whereas an order-1 pushdown system augments a finite-state automaton with an unbounded
stack memory, a higher-order pushdown system (HOPDS) provides a nested “stack-of-stacks”
structure. CPDSs allow a further backtracking operation called collapse.

Higher-order pushdown automata (HOPDA) were introduced by Maslov [24]. Higher-
order pushdown systems (HOPDS) are HOPDA viewed as generators of infinite trees or
graphs. Recently these models have been generalised to collapsible pushdown systems
(CPDS) [17, 19]. In terms of expressivity, order-k CPDSs generate the same class of ranked
trees as deterministic order-k recursion schemes [17]. The analogous result holds for safe
recursion schemes and HOPDSs [18]. These systems provide a natural model for higher-order
programs with (unbounded) recursive function calls and are therefore useful in software
verification. Further results show an intimate connection with the Caucal hierarchy [10, 11].
For verification, reachability properties — which ask whether a given set of control states
can be reached from the initial configuration — are complete for (k − 1)-ExpTime [5, see
appendix], whilst µ-calculus properties are k-ExpTime-complete [7, 26, 17]. Despite these high
complexities, Kobayashi has verified resource usage properties of higher-order programs [20]
using a novel approach based on intersection types [21, 23].

Hitherto, there has been little work addressing the precise complexity of model checking
higher-order programs with respect to the common temporal logics. In most cases, there

© Matthew Hague and Anthony Widjaja To;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 228–239

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.228
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Hague and A. W. To 229

(Collapsible) HOPDS (Collapsible) HOBPA
Data Expression Data Expression

& Combined & Combined
µLTL / LTL (k − 1)-ExpTime k-ExpTime P-time k-ExpTime
LTL(F, X) (k − 1)-ExpTime k-ExpTime P-time k-ExpTime
LTL(U) (k − 1)-ExpTime k-ExpTime P-time k-ExpTime
CTL k-ExpTime k-ExpTime P-time k-ExpTime
CTL+ k-ExpTime (k + 1)-ExpTime P-time (k + 1)-ExpTime
CTL* k-ExpTime (k + 1)-ExpTime P-time (k + 1)-ExpTime
EF (k − 1)-ExpSpace-hard (k − 1)-ExpSpace-hard P-time (k − 1)-ExpSpace-hard

Figure 1 The complexity of model checking order-k higher-order systems. Unless stated, all
results are complete.

is currently a single or double exponential gap in the best known upper and lower bounds
(derived usually from µ-calculus and reachability respectively). One main contribution of this
paper is a nearly complete picture of the model checking complexities against temporal logics.
In particular, we consider data complexity (formulas are fixed), expression complexity (systems
are fixed), and combined complexity (both formulas and systems are input parameters).
Table 1 (left column) summarises our results. In all cases, our lower bounds hold without
the collapse operation, whilst our upper bounds allow collapse.

Basic process algebras (BPAs) are a natural and well-studied subclass of order-1 PDSs
(cf. [6]), which are suitable abstractions for modelling the control-flow of sequential programs
(cf. [2, 14]). We propose higher-order extensions of BPAs, called (collapsible) higher-order
basic process algebras (HOBPAs), that form a natural subclass of (collapsible) HOPDSs.
This differs from the single-state HOPDSs introduced by Bouajjani and Meyer [3]. As graph
generators, (collapsible) HOBPAs are almost as powerful as (collapsible) HOPDSs in the
following sense: (1) like CPDS, there exists a collapsible order-2 BPA whose graph has an
undecidable monadic second-order logic (MSO) theory, and (2) the class of graphs generated
by order-k BPAs coincide with those generated by order-k PDSs up to MSO interpretations.
In this paper, we provide an almost complete picture for the model checking complexities of
standard temporal logics over (collapsible) HOBPAs. See Table 1 (right column). We show
that the restriction to HOBPA does not, in most cases, simplify the model checking problem;
a notable exception is for data complexity, where the problem becomes polynomial time.
Again, our lower bounds hold without collapse, whilst our upper bounds allow collapse.

Similar analyses appear across a number of papers for the special case of order-1 pushdown
systems [1, 6, 30, 31, 4]. In all cases we generalise the resulting picture in a natural manner.
That is, a 1-ExpTime-complete complexity becomes k-ExpTime-complete, and so on. Our
upper bound results concern the data complexity of Collapsible HOBPAs and the data
and combined complexities for LTL over CPDSs. Previous work studied reachability, LTL
and the alternation-free µ-calculus [16, 27, 13] over HOPDS without collapse. However, we
believe the LTL algorithm contains an error, and provide a new algorithm. Furthermore,
the alternation-free µ-calculus algorithm in [16] is not optimal. Our remaining results
concern lower bounds. We begin with two techniques from in the literature: (1) Engelfriet’s
characterization of complexity classes k-ExpTime by extensions of HOPDAs (e.g. with
space-bounded worktape) [13], and (2) Cachat and Walukiewicz’s more “direct” approach
via encodings of large numbers using HOPDSs [8]. We employ Technique (1) to prove the
lower bounds for LTL (and its fragments), CTL, CTL+, and CTL*. This does not mean
that the proofs of the results are immediate: it was left as an open problem in [8] whether
the two techniques can be used to derive these lower bounds. Since Technique (1) seems
only suited to deriving k-ExpTime lower bounds (for some k), we give two variations of

FSTTCS 2010

230 The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

Technique (2) to derive (k − 1)-ExpSpace lower bounds for EF model checking over HOPDSs
and HOBPAs (the latter proof is substantially more involved). The lower bound proofs in
this paper suggest that Technique (1) yields simpler proofs, while Technique (2) offers more
flexibility.

The preliminaries are given in §2. We begin in §3 with the results for fixed formulas over
collapsible HOBPA. In §4 we discuss branching-time logics, and linear-time in §5. Finally,
we conclude this paper with future work in §6. Due to the length and intricate nature of the
proofs, we relegate the full details into the full version.

2 Preliminaries

We define (collapsible) higher-order pushdown systems and basic process algebra and give a
result of Engelfriet used in some proofs. Note, after defining higher-order and collapsible
stores, we only define higher-order systems. For the collapsible version, simply replace the
higher-order store with a collapsible one, expanding the stack operations accordingly. Also,
the definitions generalise from non-deterministic to alternating in the standard way.

Higher-Order Collapsible Pushdown Stores
We begin by defining a higher-order pushdown store. Collapse links will be introduced
afterwards. Intuitively, a higher-order store is a stack of lower order stacks.

I Definition 1 (k-Stores). Let CΣ
0 be a finite alphabet Σ with [,] /∈ Σ. For k ≥ 1, the set of

k-stores CΣ
k contains all [γ1 . . . γm] with m ≥ 1 and γi ∈ CΣ

k−1 for all 1 ≤ i ≤ m.

There are two operations defined over 1-stores (for all w ∈ Σ∗)

pushw[a1 . . . am] = [wa2 . . . am] and top1[a1 . . . am] = a1 .

We define pop1 = pushε. Let O1 = { pushw | w ∈ Σ∗ }. When k > 1, a push operation
creates a copy of the topmost stack, while a pop removes it. We assume w.l.o.g. that
Σ ∩ N = ∅, where N is the set of natural numbers. Finally, let [γ1 . . . γm] ∈ CΣ

k for some k.

pushw[γ1 . . . γm] = [pushw(γ1)γ2 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] if 2 ≤ l < k

pushk[γ1 . . . γm] = [γ1γ1γ2 . . . γm]
popl[γ1 . . . γm] = [popl(γ1)γ2 . . . γm] if 1 ≤ l < k

popk[γ1 . . . γm] = [γ2 . . . γm] if m > 1
topl[γ1 . . . γm] = topl(γ1) if 1 ≤ l < k

topk[γ1 . . . γm] = γ1

Note, when m = 1, popk is undefined. Let Ok = { pushw | w ∈ Σ∗ } ∪ { pushl, popl | 1 <
l ≤ k }. We designate ⊥ to be a bottom of stack symbol that is neither pushed nor popped.
Let [w]1 = [w] and [w]k = [[w]k−1].

For collapse, the order-1 push operation pushw is replaced with push
a

i1
1 ...aim

m b
for 1 ≤

iz ≤ k and az, b ∈ Σ where 1 ≤ z ≤ m. A push
a

i1
1 ...aim

m b
on some stack with top1 character

a is equivalent to pusha1...amb except each az is augmented with a pair (iz, 1). That is,
the top of stack character a(i,j) is replaced by a(i1,1)

1 . . . a
(im,1)
m b(i,j). The collapse operation

from a character a(i,j) is equivalent to j applications of popi. The second component j is
incremented at every pushi. Hence, (i, j) is a link to the order-(i − 1) stack beneath the
character when it was first pushed.

M. Hague and A. W. To 231

Consider [[[⊥] [⊥]]]. Applying pusha2⊥ gives
[[[
a(2,1) ⊥

]
[⊥]
]]
. The pair (2, 1) points to

[⊥]. A push2 leads to
[[[
a(2,2) ⊥

] [
a(2,1) ⊥

]
[⊥]
]]
. Note the second component is incremented

in the copy of a, and, thus, (2, 2) also points to [⊥]. A subtlety occurs after a push3. We
obtain the stack below on the left, where the copies of a now refer to the copies of [⊥] within
the order-2 stack they occupy. After a collapse, we obtain the stack on the right.[[[

a(2,2) ⊥
] [
a(2,1) ⊥

]
[⊥]
][[

a(2,2) ⊥
] [
a(2,1) ⊥

]
[⊥]
]] [

[[⊥]][[
a(2,2) ⊥

] [
a(2,1) ⊥

]
[⊥]
]]

Formally, we define order-k stores with links in terms of order-k stores over the infinite
alphabet Σ =

{
a(i,j) | i, j ∈ N

}
. The set of operations over an order-k store with links is

Ock =
{
push

a
i1
1 ...aim

m b
| ∀1 ≤ z ≤ m.1 ≤ iz ≤ k ∧ az ∈ Σ

}
∪{ pushl, popl, collapse | 1 < l ≤ k } .

Note that this set of operations is slightly different from the original definition [17]. We show,
in the full version, that the definitions are equivalent. The semantics of the operations are
given below, in terms of the standard order-k pushdown operators, and an order-k stack
γ = [γ1 . . . γm]. Let γ<k> be the stack γ where each superscript (i, j) with i ≥ k is replaced
with (i, j + 1).

push
a

i1
1 ...aim

m b
(γ) = push

a
(i1,1)
1 ...a

(im,1)
m b

(i′,j′)
m

(γ) where top1(γ) = b(i
′,j′)

collapse(γ) = popji (γ) where top1(γ) = b(i,j)

pushk[γ1 . . . γm] = [γ<k>1 γ1 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] where l < k

Higher-Order Pushdown Systems
A HOPDS is a finite-state system with a higher-order store. The finite-state component is
the control state. At each step, the applicable transitions are determined by the control state
and the top1 character of the stack. Each transition updates the control state and the stack.

I Definition 2. An order-k PDS is a tuple (P,R,Σ, p0,⊥) where P is a finite set of control
states, R ⊆ P × Σ×Ok × P is a finite set of rules, Σ is a finite stack alphabet, p0 ∈ P is an
initial control state and ⊥∈ Σ is a bottom of stack symbol.

A configuration of a higher-order PDS is a pair 〈p, γ〉 where p ∈ P and γ is a k-store.
We have a transition 〈p, γ〉 ↪→ 〈p′, γ′〉 iff we have (p, a, o, p′) ∈ R, top1(γ) = a and γ′ = o(γ).
The initial configuration is 〈p0, [⊥]k〉.

Higher-Order Basic Process Algebra
An order-1 BPA is an order-1 PDS with a single control state. By applying the same restriction,
Bouajjani and Meyer have obtained one definition of higher-order BPA [3]. However, consider
〈p, [[a ⊥]]〉 and the rule (omitting the control) (a, push2). We obtain 〈p, [[a ⊥] [a ⊥]]〉 and
the same rule can be applied, ad infinitum. However, at order-1 we may use (a, pushbc) to
rewrite the top character before adding a new top character. Hence, at order-j, it is natural
to be able to rewrite the top order-(j − 1) stack, before adding a new one. Consequently, we
introduce (a, pushj , b) = pusha; pushj ; pushb for all 2 ≤ j ≤ k. E.g., such rules can simulate
push2; push3; pop2. Let O′k = { pushw | w ∈ Σ∗ } ∪ { (a, pushj , b), popj | 1 < j ≤ k }.

FSTTCS 2010

232 The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

I Definition 3. An order-k BPA is a tuple (R,Σ,⊥) where R ⊆ Σ ×O′k is a finite set of
rules, Σ is a finite stack alphabet, and ⊥∈ Σ is the bottom of stack symbol.

We mention two results on the expressive power of HOBPAs as graph generators. Familiarity
with monadic second-order logic (MSO) is assumed (cf. [28]). As graph generators, (collapsi-
ble) HOBPAs are as powerful as (collapsible) HOPDAs up to monadic second-order logic
(MSO) interpretation in the following sense. First, it is known that there exists an order-2
CPDA generating a graph with an undecidable MSO theory [17]. In contrast, over HOPDAs,
MSO is decidable. This CPDA is not a collapsible HOBPA. On the other hand, using the
ideas from [17], it is not difficult to come up with an order-2 collapsible HOBPA generating
a graph with an undecidable MSO theory.
I Proposition 1. There exists a fixed collapsible order-2 BPA which generates a graph with
an undecidable MSO theory.
We sketch the proof of this proposition in the full version. Secondly, we discuss the expressive
power of HOBPAs without collapse. Carayol and Wöhrle [9, 10] gave a fixed graph ∆k

2 , for
each integer k > 0, such that the class of graphs that are MSO-interpretable in the graphs
generated by order-k PDSs coincide with the class of graphs that are MSO-interpretable
in ∆k

2 . It is easy to check that ∆k
2 can be generated by a fixed order-k BPAs (e.g. see [9]),

which implies the following proposition.
I Proposition 2. The class of graphs that are MSO-interpretable in the graphs generated by
order-k BPAs coincide with the class of graphs MSO-interpretable in the graphs generated
by order-k PDSs.

Higher-Order Pushdown Automata with an Auxiliary Work Tape
For the lower bound proofs we use HOPDA with a space-bounded work tape. That is, in
addition to the control state and the stack, the machine has a bounded, two-way work tape.
This tape operates identically to the tape in a Turing machine.

I Definition 4. An order-k PDA with an s(n)-space work tape is a tuple (P,R,Σ,Γ ∪
{ε} ,∆, p0,⊥,2,F) where P is a finite set of control states, R ⊆ (P × Γ ∪ {ε} × Σ×∆)×
Ok × (∆× {l, r} × P) is a finite set of rules, Σ is a finite stack alphabet, Γ is a finite input
alphabet, ∆ is a finite tape alphabet, p0 ∈ P is an initial control state, ⊥∈ Σ is the bottom
of stack symbol, 2 ∈ ∆ denotes a blank tape cell and F ⊆ P is a set of accepting control
states.

Given an input word of length n, a configuration of a HOPDA with s(n) bounded work
tape is a tuple 〈p, γ, t, j〉 where p ∈ P , γ is a k-store, t (the tape contents) is a word in ∆s(n)

and 1 ≤ j ≤ s(n) indicates the position of the read/write head on the tape.
A rule (p, α, a, x, o, y, d, p′) ∈ R can be applied when the current control state is p, the

input character is α, the top-of-stack character is a, and the tape contents at position j are
x. The control state is then updated to p′, the command o is applied to the stack, and y is
written to the tape. The tape head moves accordingly for d = l (left) or d = r (right).

More formally, we have a transition 〈p, γ, t, j〉 α
↪−→ 〈p′, γ′, t′, j′〉 iff we have

(p, α, a, x, o, y, l, p′) ∈ R, j > 1, top1(γ) = a, t(j) = x, γ′ = o(γ), t′(j) = y, t′(h) = t(h) for
all h 6= j and j′ = j − 1 or we have (p, α, a, x, o, y, r, p′) ∈ R, j < s(n), top1(γ) = a, t(j) = x,
γ′ = o(γ), t′(j) = y, t′(h) = t(h) for all h 6= j and j′ = j − 1. For α 6= ε, we write c α

↪−→ε c
′

whenever there is a sequence of ε-transitions from c to some c1, an α-transition from c1 to c2
and a sequence of ε-transitions to c′. A word α1, . . . , αn is accepted by the automaton iff
cn = 〈p, γ〉 and p ∈ F and c0

α1
↪−→ε · · ·

αn
↪−→ε cn where c0 = 〈p0, [⊥]k,2s(n), 1〉.

M. Hague and A. W. To 233

Temporal Logics
We will assume familiarity with the temporal logics discussed, remarking only that µLTL is
LTL extended with fixed point operators. Full definitions can be found in the literature [12, 29].
We assume, for all logics, the valuations of atomic propositions depend only on the control
state and current top-of-stack character, referred to as a head. That is, Λ : P ×Σ→ 2Prop is
an assignment of satisfied atomic propositions from the set Prop to each head in P × Σ. We
say a system satisfies a formula if it holds at the initial state of the system.

Engelfriet’s Results
We use the following theorem of Engelfriet [13] in some proofs. Let NSPACE(s(n))-P k denote
the class of languages accepted by a non-deterministic order-k PDA with an s(n)-space-
bounded work tape, where n is the length of the input word. Similarly, ASPACE(s(n))-P k
denotes the class of languages accepted by an alternating order-k PDA with an s(n)-space-
bounded work tape. Finally

⋃
d>0 DTIME(expk(ds(n))) is the class of languages accepted

by a time-bounded Turing machine, where exp0(x) = x and expk(x) = 2expk−1(x).

I Theorem 5 ([13], Thm. 2.5). For any k ≥ 1 and s(n) ≥ log(n), we have NSPACE(s(n))-P k
= ASPACE(s(n))-P k−1 =

⋃
d>0 DTIME(expk(ds(n))).

That is, a non-deterministic order-k PDA with a polynomially-bounded work tape exists
for every k-ExpTime language, and an alternating order-k PDA with a polynomially-bounded
work tape exists for every (k + 1)-ExpTime language.

3 Model Checking Collapsible HOBPA Against Fixed Formulas

We begin with a P-time algorithm for model checking collapsible HOBPA against fixed
formulas. Hardness follows from the P-time-hardness of context-free language emptiness [15].

I Theorem 6. For any logic that can be translated into µ-calculus, model checking collapsible
HOBPA against a fixed formula is in P-time.

Proof. As argued in the full version, any collapsible HOBPA can be simulated by a CPDS
with a fixed number of control states. Therefrom, and since the formula is fixed, we construct
a CPDS parity game with a fixed number of control states. At order-k, the winner of these
games can be determined in k-ExpTime in the number of control states, and polynomial in
the alphabet [17]. Hence, the algorithm runs in P-time. J

4 Branching Time

We begin by observing, for CPDS, the upper bounds for CTL, CTL+ and CTL* can be
obtained by translating into µ-calculus, which has a k-ExpTime model checking problem.
For CTL, the translation is polynomial. For CTL+ and CTL* it is exponential, giving
(k + 1)-ExpTime, and k-ExpTime when the formula is fixed. For the lower bound results,
we discuss EF, CTL and then CTL+.

I Theorem 7. For a fixed formula, and a given order-k CPDS, model checking CTL,
CTL+ and CTL* is in k-ExpTime. For a non-fixed system and non-fixed formula, CTL is
k-ExpTime, and CTL+ and CTL* are in (k + 1)-ExpTime.

FSTTCS 2010

234 The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

4.1 Lower Bounds for EF
In most cases, we are able to derive optimal lower bounds using Theorem 5. However,
Theorem 5 is not immediately applicable for (e.g.) (k − 1)-ExpSpace problems. In the
case of EF-logic, the model checking problem over order-1 PDSs and BPAs is PSpace-
complete [25, 31]. We now give (k − 1)-ExpSpace lower bounds for data complexity of
order-k PDSs and the expression complexity of order-k BPAs (and thus of order-k PDSs)
using the technique of [8] of encoding large numbers. We conjecture that these lower bounds
are tight (currently, the best upper bound is k-ExpTime, which is inherited from µ-calculus).

I Theorem 8. Model checking EF over order-k PDS without collapse is (k − 1)-ExpSpace-
hard, even for a fixed formula.

Proof. (sketch) We reduce membership for a given (k − 1)-ExpSpace Turing machine M
using expk−1(p(n)) space on an input word of length n, for some polynomial function p. Fix
a number m ∈ Z>0, which we will later define as p(n) once n is set. The proof combines the
technique of [1] for proving that EF-logic over PDS is PSpace-hard and the technique of [8]
for encoding and checking large numbers (i.e. k-towers of exponentials) using operations in
Ok.

We shall start by briefly recalling the encoding techniques of large numbers from [8]. For
each i ∈ Z>0, we define Σi := {ai, bi} and Σ≤i :=

⋃i
j=1 Σi. We now define the notion of

i-counters by induction. A 1-counter (of length m) is a word σm−1 . . . σ0 ∈ (Σ1)m. Such a
word naturally represents the number

∑m−1
i=0 σi2i where a1 represents 0 and b1 represents

1. Assuming that the notion of i-counter has been defined, an (i + 1)-counter is simply
a word σrlr . . . σ0l0 over Σ≤i+1, where r = expi(m) − 1, σj ∈ Σi+1, and lj is an i-counter
representing the number j. This (i+ 1)-counter represents the number

∑r
j=0 σj2j , where (as

before) ai+1 and bi+1 are used to (respectively) represent 0 and 1.
Cachat and Walukiewicz [8] showed that a polynomial-size order-k pushdown game arena

P with a reachability objective could be defined (depending only on m) with the following
control states and properties: counterk — from configuration (counterk, γ) of P, Player
0 wins iff γ ends with a k-counter; firstk (resp. lastk) — from configuration (firstk, γ)
(resp. (lastk, γ), Player 0 wins iff γ ends with a k-counter representing 0 (resp. expk−1(m));
equalk — from (equalk, γ), Player 0 wins iff γ ends with two k-counters representing equal
values; succk — from (succk, γ), Player 0 wins iff γ ends with two k-counters representing
successive values. We observe that the game element of P can easily be translated into fixed
EF formulas (i.e. not depending on m) satisfying the same properties, the main reason being
that the game arena P has a fixed number of rounds.

The rest of the proof uses the idea of [1]. Using an EF operator, we will first guess
a word in Σ≤k+1 representing an accepting computation of M on the given input word
w = α1 . . . αn. We then need to check that the guess is valid. That is, it represents a
sequence of configurations, the initial configuration is the right form, the final configuration
is reached, and consecutive configurations respect the transition relation. All these can be
done by means of a fixed formula, thanks to the result above for encoding large numbers. J

I Theorem 9. For a fixed order-k HOBPA without collapse, model checking EF is (k − 1)-
ExpSpace-hard.

Proof. (sketch) The proof uses some general ideas from the previous proof, but, without
control states to encode tests for large numbers, we need an entirely different construction.
We briefly explain the order-2 case. Our HOBPA P will guess an accepting run of a fixed
exponential space Turing machine M accepting an ExpSpace-complete language, obtaining a

M. Hague and A. W. To 235

stack of the form [w]2. For the checking stage, our HOBPA P now tries to find some location
inside the stack that is invalid. In doing so, we need to ensure that all of the information
on top of this location is not destroyed. To this end, we will build a stair-like structure
from [w]2 by performing operations of the form [push1(a′); push2; push1(prime)] or of the
form [push1(a′′); push2; push1(dprime)] when seeing a topmost stack symbol a. Here, prime
and dprime are simply intermediate symbols to help signify the action that was previous
executed, i.e., we could simply only allow pop1 operation when prime or dprime is seen as
topmost symbol. The double prime marking is used to “remember” the starting point of
(sub)configuration that we suspect is invalid. That is, we will have to make sure that it is
put precisely once. At some point, P simply applies rules of the form push1(a′) when a is
seen without applying push2, which marks the end point of a (sub)configuration that we
suspect is invalid. We then only allow rules pop2 when primed or double primed symbols
are seen. To make sure that we see precisely one separator symbol (i.e. a3 ∈ Σ3), we can
use an EF formula saying facts about the location of the double primed symbol a′′3 . Such a
stair-like structure will allow us to define EF formulas that play the roles of counteri, firsti,
lasti, equali, and succi and their associated EF formulas in the previous proof. J

4.2 Lower Bounds for CTL
Data Complexity We know, for a fixed formula, model checking CTL, CTL+ and CTL*
against HOPDSs is in k-ExpTime. Here, we show the lower bound.

I Theorem 10. For a fixed formula, model checking CTL over a given order-k HOPDS
without collapse is k-ExpTime-hard.

Proof. (sketch) From Theorem 5 we take a language that is k-ExpTime-hard and fix an
equivalent order-(k − 1) alternating HOPDA with a polynomially space-bounded work tape
P. The reduction is inspired by Bozzelli [4].

We use an order-k stack to navigate a computation tree of the HOPDA. To simulate the
work tape, at each step, after an operation on the order-(k − 1) stack, a sequence of tape
symbols are pushed on to the top order-1 stack. Then, the system can do a check branch to
ensure the guessed tape is consistent with the previous, or continue simulating the execution.
To continue, an order-k push saves the current state (for backtracking), the work tape is
erased, the next rule is announced, and a pushk remembers the rule. This process repeats.
Consider the example order-3 stack below. [tw1]

[w2]
. . .

 [
[r . . .]
. . .

] [t′w′1]
[w′2]
. . .

 · · ·

This stack is at a configuration with the tape given by the word t and order-2 stack
[[w1] [w2] . . .], which can backtrack to a configuration with tape t′ and order-2 stack
[[w′1] [w′2] . . .]. The rule r connects the configurations. When an accepting configuration is
seen, or the children of the current node have been fully explored, we backtrack using popk,
and check untested universal branches. The automaton accepts when the (marked) initial
stack is reached. That is, all paths have been explored, and found to be accepting.

The check branches have further branches for each of the polynomially many positions
of the work tape. Each branch uses the control state to find the correct position, and then,
using the control state, compares it with the corresponding positions in the previous work
tape, which is recovered via popk operations.

FSTTCS 2010

236 The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

The CTL formula E ((op ∧AX(check → AFgood))Ufin) asserts a path encoding an
accepting tree exists, and checking branches all accept. The proposition op indicates the
current path is simulating a tree, and check indicates a checking branch. Finally, good
indicates that the check has been passed, and fin denotes the (successful) completion of the
run. J

Expression Complexity The following theorem takes care of all cases.

I Theorem 11. For a fixed order-k HOBPA without collapse, model checking CTL is
k-ExpTime-hard.

Proof. (sketch) The proof is in stages. First, we adapt Theorem 10, unfixing the formula to
fix the HOPDS. A HOBPA is obtained using a more complex formula. There are two main
assertions we move from the HOPDS to the formula. First, the check branch becomes a
straight-line sequence of pops and the formula uses sequences of EX to compare positions.
Secondly, the word position being read has to be guessed and added to the work tape
information, then checked by the formula. Hence, we have the result for a fixed HOPDS.

To obtain a HOBPA the main difficulty is that control states were used to separate the
check, backtrack and simulation phases of the model. Here we use the (a, pushj , b) rules
so that, when pushing, the automaton can read a character a, and mark it a in the next
applied rule. Hence the system knows when it is moving up or down the stack, and when
it has simulated a stack action. Also the automaton announces the intended phases. For
example, the check branch announces “check”, removes the work tape, announces “popk”,
pops, announces “check” again and removes the work tape. The formula can then use EXj

to look into the first tape, and E(tapeU(popk ∧ EX(check ∧ EXjϕ))) to look j steps into
the next tape, where tape indicates that a tape character is seen. J

4.3 Lower Bounds for CTL+

For data complexity, the CTL lower bound transfers to CTL+ and CTL*. For the expression
complexity, the following theorem suffices.

I Theorem 12. For a fixed order-k HOBPA without collapse, model checking CTL+ is
(k + 1)-ExpTime-hard.

Proof. (sketch) First we adapt the proof of Theorem 10 to show, CTL* is (k + 1)-ExpTime-
hard. We then replace the CTL* formula with a CTL+ formula. Then we show how to fix
the system, and restrict ourselves to HOBPA.

For a non-fixed formula and system, our CTL* proof adapts Bozzelli’s order-1 proof [4].
Fix a language that is hard for (k + 1)-ExpTime and an equivalent order-(k − 1) alternating
HOPDA with an exponentially space-bounded work tape. The system proceeds as before, but
guesses the length of the work tape and uses a word binn(0)c0binn(1)c1 · · · binn(2n− 1)c2n−1
to represent it, where binn(i) is the n-digit binary representation of i, and cj are cell contents.
The check phase has one branch to check the cell counters are sequential, and the others,
instead of just popping down the stack, mark a position in each tape. The formula asserts,
when markings are sensible, the tape contents are locally consistent. This can, in fact, be
encoded in CTL+ by taking advantage of straight-line parts of the execution and adding
extra markings. Obtaining a fixed HOBPA is similar to the CTL case, with some extra tricks.
E.g., to ensure each marker is placed once and in the correct order. J

M. Hague and A. W. To 237

5 Linear Time

We consider the linear time logics. We first deal with the upper bound for linear time
µ-calculus (µLTL) — and hence LTL — before considering the lower bounds in turn.

5.1 Upper Bounds for µLTL
Since the linear time µ-calculus (µLTL) does not translate polynomially into µ-calculus, we
show the k-ExpTime upper bound of model checking µLTL against CPDS separately. Note
that µLTL trivially subsumes all other linear time logics considered in this paper.

I Theorem 13. Model checking µLTL against order-k CPDSs is in k-ExpTime for a non-fixed
formula, and (k − 1)-ExpTime for a fixed formula.

Proof. (sketch) We can translate any µLTL formula ϕ into a Büchi automaton B at an
exponential cost [29]. From a given CPDS P we construct a product CPDS PB = P × B
which has a Büchi acceptance condition such that PB accepts iff P does not satisfy ϕ.

An order-k Büchi CPDS is a CPDS parity game with two colours and only one player.
Hence, non-emptiness can be reduced to determining the winner in a parity game, which
takes k-ExpTime in the size of the CPDS [17]. Since the Büchi CPDS is exponential in
the size of ϕ, this complexity is too high. The algorithm for an order-k parity game is by
a reduction to an order-(k − 1) game of exponential size. Because the Büchi CPDS has
one player, we can avoid the exponential blow up, constructing an order-(k − 1) game of
polynomial size. This can be solved in (k − 1)-ExpTime in the size of the Büchi CPDS,
giving an algorithm in k-ExpTime for a non-fixed formula, and (k − 1)-ExpTime for a fixed
formula. J

5.2 Lower Bounds for LTL
We first give a matching lower bound for data complexity (fixed formula) of LTL, which
already hold for its fragments LTL(F,X) and LTL(U). Since we have previously shown that
order-k HOBPA can be analysed in P-time for fixed formulas, it remains to consider HOPDS.

I Theorem 14. Model checking HOPDS without collapse against fixed LTL(F, X) and
LTL(U) formulas is (k − 1)-ExpTime-hard.

Proof. The non-emptiness problem for HOPDS is (k − 1)-ExpTime-complete [13]. This
problem easily reduces to checking the fixed formula G(¬f), where f holds at all accepting
states. Since this formula is both in LTL(F, X) and LTL(U), we are done. J

Next we study the expression complexity (fixed system). This is our main result of this
section: already for a fixed order-k HOBPA, both LTL(F, X) and LTL(U) are k-ExpTime-
hard.

I Theorem 15. Model checking LTL(F, X) and LTL(U) against a fixed HOBPA without
collapse is k-ExpTime-hard.

Proof. (sketch) We take a k-ExpTime-hard language L, and, by Theorem 5, its equivalent
HOPDS with s(n)-bounded space work tape P , for some polynomial s(n). We shall construct
a fixed HOBPA P ′ such that the language L is polynomial-time reducible to the LTL(F,X)
model checking problem over P ′. We can similarly derive the desired lower bound for LTL(U)
by “weakly” simulating the next operators with the until operator in the standard way.

FSTTCS 2010

238 The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

We shall now give an intuition of the construction of P ′. Our HOBPA P ′ is an “over-
approximation” of P in the sense that P ′ can do whatever actions P can do but also more.
We will then use LTL(F,X) formulas to enforce correct simulations. This is of course due
to the fact that P ′ lacks control states and work tape, and its definition should not depend
on the input word to P. We shall now elaborate more on how this can be implemented.
Given a word w = α1 . . . αn ∈ Γ∗, we would like to determine if there is an accepting run
of P on w, i.e., a sequence of configurations of the form 〈p, γ, t, j〉 starting with a starting
configuration and ending with a final configuration. Here, p is a control state of P, γ is a
k-store, t ∈ ∆s(n) is a tape content, and 1 ≤ j ≤ s(n) is the position of the tape head. We
will represent each such configuration as the topmost symbols of a contiguous sequence of
configurations of P ′. For example, suppose that the current configuration of P is 〈p, γ, t, j〉
where top1(γ) = a. The HOBPA P ′ will start by having (p, a) as its topmost stack symbol.
It will then keep modifing its topmost symbol to reflect the tape content t and the position j.
This is done by guessing each individual tape cell content from left to right. At some point,
P ′ will nondetermistically choose some rule of P to fire. We simulate this by first executing
the stack operation and then guess some new state, which we put on top of the stack (this
guess is needed because pop operations will destroy control state information). It will then
continue by guessing next tape content in the same manner. This process can be repeated
indefinitely, unless P ′ decides to go to a final (i.e. sink) state, in which P ′ will just loop
forever. Given an input word w = α1 . . . αn ∈ Γ∗, we may force a correct simulation of P on
w by P ′ using an LTL(F,X) formula. That is, we give a formula ϕw such that w ∈ L(P) iff
P ′, c0 6|= ϕw, where c0 is an appropriate initial configuration of P ′ reflecting the initial state
of P. This can be done by first ensuring that each configuration of P in the simulation as a
contiguous sequence of configurations of P ′ is valid. In particular, the guessed tape content
(reflected by the topmost symbols in this sequence of configurations of P ′) must be of length
s(n) and has precisely one tape head, which can be easily expressed in LTL(F,X) using
a single operator G and nestings of next operators of depth s(n) (approximately). Recall
that s(n) is a polynomial function. Using the same technique, we also express that two
representations of consecutive configurations of P in the simulation respect the transition
relation of P . Similarly, we enforce the initial configuration in the simulation and that some
final configuration of P is reached. J

6 Future Work

There are several avenues of future work. E.g., we have no matching upper bound for
the complexity of EF model checking. Walukiewicz has shown the problem to be PSpace-
complete at order-1 [31]. However, his techniques do not easily extend to HOPDS owing to
the subtleties of higher-order stacks. We may also study simpler logics such as LTL(F).

Acknowledgments. We thank Olivier Serre for interesting discussions and the anonymous
referees for their helpful remarks. This work was partly supported by EPSRC (EP/F036361
and EP/E005039), and was done while the second author was a student at the School of
Informatics, University of Edinburgh.

References
1 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In CONCUR, p. 135–150, 1997.
2 A. Bouajjani, P. Habermehl, and R. Mayr. Automatic verification of recursive procedures

with one integer parameter. Theor. Comput. Sci. 295:85–106 (2003)

M. Hague and A. W. To 239

3 A. Bouajjani and A. Meyer. Symbolic Reachability Analysis of Higher-Order Context-Free
Processes. In FSTTCS, p. 135–147, 2004.

4 L. Bozzelli. Complexity results on branching-time pushdown model checking. Theor. Comput.
Sci., 379(1-2):286–297, 2007.

5 C. Broadbent and L. Ong. On global model checking trees generated by higher-order recursion
schemes. In FOSSACS, p. 107–121, 2009.

6 O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures. In
Handbook of Process Algebra, Elsevier, 1999.

7 T. Cachat. Higher order pushdown automata, the caucal hierarchy of graphs and parity games.
In ICALP, p. 556–569, 2003.

8 T. Cachat and I. Walukiewicz. The complexity of games on higher order pushdown automata.
CoRR, abs/0705.0262, 2007.

9 A. Carayol. Regular sets of higher-order pushdown stacks. In MFCS, p. 168–179, 2005.
10 A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in terms of logic and

higher-order pushdown automata. In FSTTCS, p. 112–123, 2003.
11 D. Caucal. On infinite terms having a decidable monadic theory. In Proc. MFCS, p. 165–176,

2002.
12 E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science, p.

995–1072, Elsevier, 1990.
13 J. Engelfriet. Iterated pushdown automata and complexity classes. In STOC, p. 365–373,

1983.
14 J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural data-flow

analysis. In FoSSaCS, p. 14–30, 1999.
15 E. M. Gurari. An Introduction to the Theory of Computation. W. H. Freeman & Co., New

York, NY, USA, 1989.
16 M. Hague. Global Model Checking Higher Order Pushdown Systems. PhD thesis, Oxford

University, 2009.
17 M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata and

recursion schemes. In LICS, p. 452–461, 2008.
18 T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In FoSSaCS,

p. 205–222, 2002.
19 T. Knapik, D. Niwinski, P. Urzyczyn, I. Walukiewicz. Unsafe Grammars and Panic Automata.

In ICALP, p. 1450-1461, 2005.
20 N. Kobayashi. Model-checking higher-order functions. In PPDP, p. 25–36, 2009.
21 N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In POPL, p. 416–428, 2009.
22 N. Kobayashi and C.-H. L. Ong. Complexity of model checking recursion schemes for fragments

of the modal mu-calculus. In ICALP, p. 223–234, 2009.
23 N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-calculus model

checking of higher-order recursion schemes. In LICS, p. 179–188, 2009.
24 A. N. Maslov. Multilevel stack automata. Probl. Inf. Transm., 15:1170–1174, 1976.
25 R. Mayr. Strict lower bounds for model checking BPA. Electr. Notes Theor. Comput. Sci., 18,

1998.
26 C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In LICS,

p. 81–90, 2006.
27 A. Seth. An Alternative Construction in Symbolic Reachability Analysis of Second Order

Pushdown Systems. Int. J. Found. Comput. Sci. 19(4): 983-998, 2008.
28 W. Thomas. Constructing Infinite Graphs with a Decidable MSO-Theory. In MFCS, p.

113–124, 2003.
29 M. Vardi. A temporal fixpoint calculus. In POPL, p. 250-259, 1988.
30 I. Walukiewicz. Pushdown processes: Games and model checking. In CAV, p. 62–74, 1996.
31 I. Walukiewicz. Model checking CTL properties of pushdown systems. In FSTTCS, p. 127–138,

2000.

FSTTCS 2010

	Introduction
	Preliminaries
	Model Checking Collapsible HOBPA Against Fixed Formulas
	Branching Time
	Lower Bounds for EF
	Lower Bounds for CTL
	Lower Bounds for CTL+

	Linear Time
	Upper Bounds for LTL
	Lower Bounds for LTL

	Future Work

