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Abstract. We present a new algorithm for computing the winning region of a par-
ity game played over the configuration graph of a pushdown system. Our method
gives the first extension of the saturation technique to the parity condition. Fi-
nite word automata are used to represent sets of pushdown configurations. Start-
ing from an initial automaton, we perform a series of automaton transformations
to compute a fixed-point characterisation of the winning region. We introduce
notions of under-approximation (soundness) and over-approximation (complete-
ness) that apply to automaton transitions rather than runs, and obtain a clean proof
of correctness. Our algorithm is simple and direct, and it permits an optimisation
that avoids an immediate exponential blow up.

1 Introduction

Pushdown systems — finite-state transition systems equipped with a stack — are an
old model of computation that have recently enjoyed renewed interest from the soft-
ware verification community. They accurately model the control flow of first-order re-
cursive programs [7] (such as C and Java), and lend themselves readily to algorithmic
analysis. Pushdown systems have played a key rôle in the automata-theoretic approach
to software model checking [1,5,10,14]. Considerable progress has been made in the
implementation of scalable model checkers of pushdown systems. These tools (e.g. Be-
bop [11] and Moped [10]) are an essential back-end component of such model checkers
as SLAM [12].

The modal mu-calculus is a highly expressive language for describing properties of
program behaviour (all standard temporal logics in verification are embeddable in it).
In a seminal paper [3] at CAV 1996, Walukiewicz showed that local modal mu-calculus
model checking of pushdown systems, or equivalently [4] the solution of pushdown
parity games (i.e. parity games over the configuration graphs of pushdown systems), is
EXPTIME-complete. His method reduces pushdown parity games to finite parity games
by a kind of powerset construction, which is immediately exponential in size. Whilst
local model checking asks if a designated state (of a pushdown system) satisfies a given
property, global model checking computes a finite representation of the set of states
satisfying the property. The latter is equivalent to computing Éloı̈se’s winning region
of a pushdown parity game, which is the problem that we have set ourselves here. It
is worth noting that global model checking used to be the norm in verification (CTL
and many symbolic model checkers still perform global model checking). While local
model checking can be expected to have better complexity, global model checking is im-
portant when repeated checks are required (because tests on the representing automata

M. Bravetti and G. Zavattaro (Eds.): CONCUR 2009, LNCS 5710, pp. 384–398, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Winning Regions of Pushdown Parity Games 385

tend to be comparatively cheap), or where the model checking is only a component of
the verification process.

Related work. Cachat [13] and Serre [9] have independently generalised Walukiewicz’
algorithm to provide solutions to the global model-checking problem: they use the lo-
cal model-checking algorithm as an oracle to guide the construction of the automaton
recognising the winning region. An alternative approach, introduced by Piterman and
Vardi [8], uses two-way alternating tree automata to navigate a tree representing all pos-
sible stacks: after several reductions, including the complementation of Büchi automata,
an automaton accepting the winning region can be constructed.

At CONCUR 1997, Bouajjani et al. [1], and, independently, Finkel et al. [2] (at IN-
FINITY 1997), introduced a saturation technique for global model-checking reacha-
bility properties of pushdown systems. From a finite-word automaton recognising a
given configuration-set C, they perform a backwards-reachability analysis. By itera-
tively adding new transitions to the automaton, the set of configurations that can reach
some configuration in C is constructed. Since the number of new transitions is bounded,
the iterative process terminates. This approach underpins the acclaimed Moped tool.

Contributions. This paper presents a new algorithm for computing Éloı̈se’s winning
region of a pushdown parity game. We represent (regular) configuration sets as alter-
nating multi-automata [1]. Using a modal mu-calculus formula that defines the winning
region as a guide, our algorithm iteratively expands (when computing least fixpoints)
and contracts (when computing greatest fixpoints) an approximating automaton until
the winning region is precisely recognised. Our method is a generalisation of Cachat’s
for solving Büchi games [13], which is itself a generalisation of the saturation tech-
nique for reachability analysis. However, we adopt a different proof strategy which we
believe to be cleaner than Cachat’s original proof. Our contribution can equivalently
be presented as a solution to the global model checking problem: given a pushdown
system K, a modal mu-calculus formula χ(Y ), and a regular valuation V , our method
can directly compute an automaton that recognises the set �χ(Y )�KV of K-configurations
satisfying χ(Y ) with respect to V .

Our algorithm has several advantages:

(i) The algorithm is simple and direct. Even though pushdown graphs are in general
infinite, our construction of the automaton that recognises the winning region fol-
lows, in outline, the standard pen-and-paper calculation of the semantics of modal
mu-calculus formulas in a finite transition system. Through the use of projection,
our algorithm is guaranteed to terminate in a finite number of steps, even though
the usual fixpoint calculations may require transfinite iterations. Thanks to pro-
jection, the state-sets of the approximating automata are bounded: during expan-
sion, the number of transitions increases, but only up to the bound determined by
the finite state-set; during contraction, the number of transitions decreases until it
reaches zero or stabilises.

(ii) The correctness proof is simple and easy to understand. A conceptual innovation
of the correctness argument are valuation soundness and valuation completeness.
They are respectively under- and over-approximation conditions that apply locally
to individual transitions of the automaton, rather than globally to the extensional
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behaviour of the automaton (such as runs). By combining these conditions, which
reduce the overhead of the proof, we show that our algorithm is both sound and
complete in the usual sense.

(iii) Finally, our decision procedure builds on and extends the well-known saturation
method, which is the implementation technique of choice of pushdown checkers.
In contrast to previous solutions, our algorithm permits a straightforward opti-
misation that avoids an immediate exponential explosion, which we believe is
important for an efficient implementation. Another advantage worth noting is that
the automaton representing the winning region is independent of the maximum
priority m (even though it takes time exponential in m to construct).

2 Preliminaries

A pushdown parity game is a parity game defined over a pushdown graph (i.e. the
configuration graph of a pushdown system). Formally it is a quadruple (P ,D, Σ⊥, Ω)
where P = PA�PE = {p1, . . . , pz} is a set of control states partitioned into Abelard’s
and Éloı̈se’s states, Σ⊥ := Σ ∪ {⊥} is a finite stack alphabet (we assume ⊥ /∈ Σ),
D ⊆ P×Σ⊥×P×Σ∗

⊥ is a set of pushdown rules and Ω : P → {1, . . . , m} is a function
assigning priorities to control states. As is standard, we assume that the bottom-of-stack
symbol ⊥ is neither pushed onto, nor popped from, the stack. We also assume there is
a rule for each p ∈ P and a ∈ Σ⊥.

A play begins from some configuration 〈p, a w〉. The player controlling p chooses
p a → p′ w′ ∈ D and the play moves to 〈p′, w′w〉. Then, the player controlling p′

chooses a move, and so on, generating an infinite run. The priority of a configuration
〈p, w〉 is Ω(p). A priority occurs infinitely often in a play if there are an infinite number
of configurations with that priority. Éloı̈se wins the play if the smallest priority occur-
ring infinitely often is even. Otherwise, Abelard is the winner.

A player’s winning region of a pushdown parity game is the set of configurations
from which the player can always win the game, regardless of the other player’s strategy.
Éloı̈se’s winning region WE of a parity game G is definable in the modal μ-calculus;
the following is due to Walukiewicz [3]:

WE = �μZ1.νZ2. . . . μZm−1.νZm.ϕE(Z1, . . . , Zm)�GV

where m is the maximum parity (assumed even), V is a valuation of the variables1, and

ϕE(Z1, . . . , Zm) :=

⎛
⎝E ⇒

∧
c∈{1,...,m}

(c ⇒ ♦Zc)

⎞
⎠ ∧

⎛
⎝¬E ⇒

∧
c∈{1,...,m}

(c ⇒ �Zc)

⎞
⎠

where E is an atomic proposition asserting the current configuration is Éloı̈se’s and, for
1 ≤ c ≤ m, c asserts that the priority of the current control state is c.

For each 1 ≤ c ≤ m, we have a variable Zc. The odd priorities are bound by μ
operators which can be understood intuitively as “finite looping”. Dually, even priorities

1 The valuation is initially empty since the formula has no free variables.
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are bound by ν operators and can be understood as “infinite looping”. The formula ϕE

asserts that a variable Zc is visited whenever a configuration of priority c is encountered.
Thus the full formula asserts that the minimal priority occurring infinitely often must be
even — otherwise a variable bound by the μ operator would be passed through infinitely
often. It can be shown by a signature lemma that Éloı̈se has a winning strategy from a
configuration satisfying the formula [3]. Since the formula’s inverse is a similar formula
with μ/ν, and �/♦ reversed, Abelard has a winning strategy from any configuration not
in WE .

Thanks to the Knaster-Tarski Fixpoint Theorem, the semantics of a fixpoint formula
�σZ.χ(Y , Z)�GV where σ ∈ {μ, ν} can be given as the limit of the sequence of α-
approximants �σαZ.χ(Y , Z)�GV , where α ranges over the ordinals and λ ranges over
the limit ordinals:

�σ0Z.χ(Y , Z)�GV := Init
�σα+1Z.χ(Y , Z)�GV := �χ(Y , Z)�G

V [Z �→�σαZ.χ(Y ,Z)�GV ]

�σλZ.χ(Y , Z)�GV := ©α<λ�σαZ.χ(Y , Z)�GV

where Init = ∅ and © =
⋃

when σ = μ, and Init is the set of all configura-
tions and © =

⋂
when σ = ν. The least ordinal κ such that �σκZ.χ(Y , Z)�GV =

�σZ.χ(Y , Z)�GV is called the closure ordinal.

Example 1. When interpreted in a pushdown graph, 〈σαZ.χ(Y , Z) 〉α∈Ord may have
an infinite closure ordinal. Consider the following pushdown parity graph (which is a
dual of an example of Cachat’s [13]): all configurations are Abelard’s, Ω(p) = 1 and
Ω(f) = 2.

〈f,⊥〉 〈f, a⊥〉 〈f, aa⊥〉 · · ·

〈p,⊥〉 〈p, a⊥〉 〈p, aa⊥〉 · · ·

In this game, WE = �μZ1.νZ2.ϕE(Z1, Z2)� consists of all configurations. However,
any 〈f, a an⊥〉 for some n only appears in an approximant of the least fixed point
when 〈f, a a an⊥〉 and 〈p, a an⊥〉 appear in the previous approximant (since Abelard
may move to either of these configurations). Hence, all 〈p, an⊥〉 must appear in the
α-approximant before any 〈f, an⊥〉 can appear in the (α + 1)-approximant. The first
approximant containing all p configurations is the ω-approximant.

We use alternating multi-automata [1] as a representation of (regular) configuration-
sets. Given a pushdown system (P ,D, Σ) with P = {p1, . . . , pz}, an alternating
multi-automaton A is a tuple (Q, Σ, Δ, I,F) where Q is a finite set of states, Δ ⊆
Q×(Σ ∪ {⊥})×2Q is a set of transitions (we assume ⊥ /∈ Σ), I = {q1, . . . , qz} ⊆ Q
is a set of initial states, and F ⊆ Q is a set of final states. Observe that there is an
initial state for each control state of the pushdown system. We write q

a−→ Q just if
(q, a, Q) ∈ Δ; and define q

ε−→ {q}; and q
aw−−→ Q1 ∪ · · · ∪Qn just if q

a−→ {q1, . . . , qn}
and qk

w−→ Qk for all 1 ≤ k ≤ n. Finally we define the language accepted by A, L(A),
by: 〈pj , w〉 ∈ L(A) just if qj w−→ Q for some Q ⊆ F . Henceforth, we shall refer to
alternating multi-automata simply as automata.
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Reachability and Projection. The formula ϕE(Z1, . . . , Zm) asserts reachability in one
step, which we compute using the reachability algorithm [1] due to Bouajjani et al.
Cachat’s extension of this algorithm requires a technique called projection. Using an
example, we briefly introduce the relevant techniques.

Take a PDS with the rules p1 a → p2 ε and p2 b →
q1

q2

b
a

Fig. 1. The automaton Aeg ac-
cepting 〈p2, ba∗〉

p2 ba. The automaton Aeg in Figure 1 represents a con-
figuration set C. Let Pre(C) be the set of all configura-
tions that can reach C in exactly one step. To calculate
Pre(C) we first add a new set of initial states — since
we don’t necessarily have C ⊆ Pre(C). By applying
p1 a → p2 ε, any configuration of the form 〈p1, aw〉,
where w is accepted from q2 in Aeg , can reach C. Hence
we add an a-transition from q1

new. (Via the pop tran-
sition, we reach 〈p2, w〉 ∈ L(Aeg).) Alternatively, via
p2 b → p2 ba, any configuration of the form 〈p2, bw〉,
where baw is accepted from q2 in Aeg , can reach C. The push, when applied back-
wards, replaces ba by b. We add a b-transition from q2

new which skips any run over ba
from q2. Figure 2 (i) shows the resulting automaton.

To ensure termination of the Büchi construction, Cachat uses projection, which re-
places a new transition to an old initial state with a transition to the corresponding new
state. Hence, the transition in Figure 2 (i) from q1

new is replaced by the transition in
Figure 2 (ii). The old initial states are then unreachable, and deleted, which, in this
case, leaves an automaton with the same states as Figure 1 (modulo the new suffix) but
an additional transition. In this sense, the state-set remains fixed.

q1
new q1

q2
new q2

b

a

b
a

q1
new q1

q2
new q2

b

b
aa

Fig. 2. (i) On the left, Aeg updated by the rules p1 a → p2 ε and p2 a → p2 ba; and (ii) on the
right, the result of projecting the automaton in (i)

3 An Example

We begin with an intuitive explanation of the algorithm by means of an example. Con-
sider the pushdown game represented in Figure 3. Note that this diagram is a quotient
of the infinite state space. Since the aim of this example is to give an overview of
the flow of the algorithm, the behaviour of the pushdown system is kept simplistic.
The subscripts indicate the priority of a configuration2 and an arc labelled with pushw

2 Our priorities here begin at 0. This does not change the algorithm significantly.
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〈p′
E, bΣ∗⊥〉0 〈p′

E, aΣ∗⊥〉0

〈pE, aΣ∗⊥〉1 〈pA, aΣ∗⊥〉1 〈pA, bΣ∗⊥〉1

〈pE, bΣ∗⊥〉1

p
u
sh

ap
u
sh

b

pusha

pusha

pushb

pushb

pushb

p
u
sh

b

Fig. 3. An example pushdown parity game

indicates a pushdown rule of the form p a → p′ w for some p, a and p′. Let pE , p′E ∈ PE

and pA ∈ PA.
Éloı̈se can win from configurations of the forms 〈p′E , aΣ∗⊥〉0, 〈pE , aΣ∗⊥〉1, or

〈p′E , bΣ∗⊥〉0. Éloı̈se can loop between the last two of these configurations, generating a
run with priority 0. From elsewhere, Abelard can force play to 〈pA, bΣ∗⊥〉1 and gener-
ate a run with priority 1. Computing Éloı̈se’s winning region is equivalent to computing
�νZ0.μZ1.ϕE(Z0, Z1)�GV . We illustrate how this is done in the following.

To compute a greatest fixed point, we begin by setting Z0 to be the set of all configu-
rations. We then calculate the automaton recognising the denotation of μZ1.ϕE(Z0, Z1)
with this value of Z0. The result is the value of Z0 for the next iteration. After each it-
eration the value of Z0 will be a subset of the previous value. This computation reaches
a limit when the value of Z0 stabilises, which is the denotation of the formula.

Computing the least fixed point proceeds in a similar manner, except that the initial
value of Z1 is set to ∅. We then compute the (automaton that recognises the) denotation
of ϕE(Z0, Z1), which gives us the next value of Z1. Dual to the case of greatest fixed
points, the value of Z1 increases with each iteration.

Constructing the Automaton. (We shall often confuse the denotation of a formula with
the automaton that recognises it, leaving it to the context to indicate which is intended.)
We begin by setting Z0 to the set of all configurations. The automaton recognising
all configurations is shown in Figure 4 (i)3. Given this value of Z0, we compute the
denotation of μZ1.ϕE(Z0, Z1). The first step is to set the initial value of Z1 to the
empty set. The corresponding automaton is also shown in Figure 4 (ii). Observe that we
have a separate set of initial states for Z0 and Z1.

We now compute ϕE(Z0, Z1) which will be the next value of Z1. A configuration
〈pj , aw〉 with priority c should be accepted if Éloı̈se can play - or Abelard must play -
a move which reaches some 〈pk, w′w〉 ∈ V (Zc). The result is Figure 4 (iii).

Observe that the computation of the new automaton has only added transitions. When
computing a least fixed point, each generation of initial states has more transitions than
the previous generation. In this example the number of possible transitions is finite since

3 This is a simplification of the automaton defined in Section 4.



390 M. Hague and C.-H.L. Ong

all transitions happen to go to q∗f . Therefore, the automaton must eventually become
saturated, causing termination. In the full algorithm, transitions from the new set of
initial states to the old are projected back onto the new initial states. This ensures that
the previous generation is not reachable. Hence, the state-set is fixed. When computing
a greatest fixed point, termination can be proved dually: we begin with all transitions
and iteratively remove transitions at each stage.

We now compute the next iterate of Z1. We add a new set of initial states, and perform
the reachability analysis, as in Figure 5 (i). If we were to perform another round of the
reachability analysis, we would find a fixed point. That is, the transitions from the new
initial states corresponding to Z1 have the same outgoing transitions as the old. This
fixed point is the next value of Z0. Therefore, we set the current initial states of Z1 to
be the new initial states of Z0. If necessary, we would also perform projections from
the old initial states of Z0 to the new. We then begin evaluating μZ1.ϕE(Z0, Z1) with
our new value of Z0. The initial value of Z1 is the empty set, so we introduce new
initial states corresponding to Z1 with no outgoing transitions. Figure 5 (ii) shows the
automaton after these steps.

We compute the next iterate of Z1 as before, as in Figure 6. The second automaton
is the fixed point of Z1, and hence the new iterate of Z0. Since the new Z0 is identical
to the previous Z0, we have reached a final fixed point. Setting the initial states of Z1

to be the initial states of Z0, and deleting any unreachable states, gives the automaton
in Figure 7, which accepts Éloı̈se’s winning region.

qE
0

qE′
0

q∗f

qA
0

Σ

Σ

Σ

Σ

qE
0

qE′
0

qA
0

q∗f

qE
1

qE′
1

qA
1

Σ

Σ

Σ

Σ

qE
0

qE′
0

qA
0

q∗f

qE
1

qE′
1

qA
1

Σ

Σ

Σ

Σ

a, b

Fig. 4. From left to right, (i) the automaton accepting the initial value of Z0; (ii) the automaton ac-
cepting the initial values of Z0 and Z1; and (iii) the automaton after the first round of reachability
analysis

4 The Algorithm

Fix a pushdown parity game G = (P ,D, Σ, Ω) that has maximum priority m. The algo-
rithm has two key components. The first — Phi(A) — computes an automaton recog-
nising �ϕE(Z1, . . . , Zm)�GV , given an automaton A recognising the configuration-sets
V (Z1), . . . , V (Zm). The second — Sig(l, A) — computes, for each 1 ≤ l ≤ m, an au-
tomaton recognising �σZl.χl+1(Z1, . . . , Zl)�GV where σ is either μ or ν as appropriate,



Winning Regions of Pushdown Parity Games 391

qE
0

qE′
0

qA
0

q∗f

qE
1

qE′
1

qA
1

Σ

Σ

Σ

Σ

a

a, b

qE
0

qE′
0

qA
0

q∗f

qE
1

qE′
1

qA
1

Σ

a

a, b

Fig. 5. (i) The automaton after the second round of reachability analysis; and (ii) the automaton
with the new value of Z0 and Z1 set to the empty set

qE
0

qE′
0

qA
0

q∗f

qE
1

qE′
1

qA
1

Σ

a

a, b

a, b

qE
0

qE′
0

qA
0

q∗f

qE
1

qE′
1

qA
1

Σ

a

a, b

a

a, b

Fig. 6. The automaton after the first round of reachability analysis with the new Z0; and the
automaton after the second round of reachability analysis with the new Z0

qE
0

qE′
0

q∗f

qA
0

Σ

a

a, b

Fig. 7. The automaton accepting the winning region of Éloı̈se

given an automaton A recognising the configuration-sets V (Z1), . . . , V (Zl−1), and

χl+1(Z1, . . . , Zl) := σZl+1 . . . σZm.ϕE(Z1, . . . , Zm).
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Format of the Automata. We describe the format of the automata constructed by the
algorithm. Let Qall := {q∗, qε

f}, and Qc :=
{

qj
c | 1 ≤ j ≤ |P|

}
for each 1 ≤ c ≤

m+1. These states are used to give the valuations of the variables Z1, . . . , Zm, and the
semantics of ϕE(Z1, . . . , Zm) when c = m + 1.

Let 0 ≤ l ≤ m + 1. An automaton A is said to be type-l just if:

(i) the state-set QA := Q1 ∪ · · · ∪ Ql ∪ Qall

(ii) every transition of the form qj
c

a−→ Q has the property that Q �= ∅, and for all j′

and c′ > c, qj′
c′ /∈ Q (i.e. there are no transitions to states with a higher priority)

(iii) the only final state is qε
f , which can only be reached by a ⊥-transition (i.e. for each

q
a−→ Q, we have qε

f ∈ Q iff Q = {qε
f} iff a =⊥); further, qε

f has no outgoing
transitions

(iv) we have q∗ Σ−→ {q∗} and q∗ ⊥−→ {qε
f}, and q∗ has no other outgoing transitions.

It follows that there is a unique automaton of type-0.
In the following, let A be a type-l automaton, where 1 ≤ c ≤ l ≤ m + 1. We define

Lc(A) ⊆ P Σ∗ ⊥ by: for 1 ≤ j ≤ |P|, 〈pj , w〉 ∈ Lc(A) just if w is accepted by A
from the initial state qj

c . Thus Lc(A) is intended to represent the current valuation of the
variable Zc; in case l = m+1, Lm+1(A) is intended to represent �ϕE(Z1, . . . , Zm)�GV
where the valuation V maps Zc to Lc(A). If we omit the subscript and write L(A), we
mean Ll(A). By abuse of notation, we define Lq(A) ⊆ Σ∗⊥ ∪ { ε } to be the set of
words accepted by A from the state q (note that Lq∗(A) = Σ∗⊥ and Lqε

f
(A) = { ε }).

Definition of the Algorithm. Given a pushdown parity game G, the algorithm presented
in Figure 8 computes WE , the winning region of G:

WE = �μZ1.νZ2. . . . σZm−1.σZm.ϕE(Z1, . . . , Zm)�G∅ .

When computing �ϕE(Z1, . . . , Zm)�GV we may add an exponential number of transi-
tions. To compute �σZl. · · · .σZm . ϕE(Z1, · · · , Zm)�GV we may require an exponential
number of iterations. Hence, in the worst case, the algorithm is (singly) exponential in
the number of control states and the maximum priority m.

Theorem 1. Given a pushdown parity game G = (P ,D, Σ, Ω), we can construct an
automaton recognising the winning region of Éloı̈se in EXPTIME in |P| ·m where m is
the maximum priority.

The alternating multi-automaton returned by the algorithm, Sig(1, A0), has n = |P|+2
states. The number of transitions is bounded by n · |Σ| · 2n, which is independent of m.

5 Termination and Correctness

Termination. First an auxiliary notion of monotonicity for automaton constructions.
Let 1 ≤ l, l′ ≤ m + 1, and A and A′ be type-l automata. We write A � A′ to
mean: for all q, a and Q, if q

a−→ Q is an A-transition then it is an A′-transition. We
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Input: A pushdown parity game G = (P ,D, Σ, Ω) with maximum priority m.
Output: A type-1 automaton recognising �χ1�

G , the winning region of G.

begin
return Sig(1, A0) % A0 is the unique type-0 automaton.

end

procedure Sig(l, A)
Input: 1 ≤ l ≤ m + 1;

a type-(l − 1) automaton A as valuation of Z1, · · · , Zl−1.
Output: A type-l automaton denoting σZl · · ·σZm . ϕE(Z), relative to A.
1. if l = m + 1 then return Phi(A)

2. A0 :=

⎧⎨
⎩

A with new states Ql, but no new transitions if σZl = μZl

A with new states Ql, and all outgoing if σZl = νZl

transitions obeying the format of the automata.
3. for i = 0 to ∞ do
4. Bi := Sig(l + 1, Ai)
5. Ai+1 := Proj (l, Bi)
6. if Ai = Ai+1 then return Ai

procedure Phi(A)

Input: A type-m automaton A as valuation of Z = Z1, · · · , Zm.
Output: A type-(m + 1) automaton denoting ϕE(Z), relative to A.

1. (1-Step Reachability) Construct the automaton A′ by adding new states
{q1

m+1, . . . , q
|P|
m+1} and the following transitions to A. For each 1 ≤ j ≤ |P|,

set c := Ω(pj), and
– if pj ∈ PE then qj

m+1
a−→ Q if qk

c
w−→ Q and (pk, w) ∈ Next(pj, a)

– if pj ∈ PA then qj
m+1

a−→ Q1 ∪ · · · ∪ Qn if qk1
c

w1−−→ Q1, . . . , qkn
c

wn−−→
Qn, and Next(pj , a) = {(pk1 , w1), . . . , (pkn , wn)}

where Next(pj , a) := { (pk, w) | pj a → pk w ∈ D }.
2. return A′.

procedure Proj (l, A)
Input: 1 ≤ l ≤ m; a type-(l + 1) automaton A.
Output: A type-l automaton.

1. For each j, replace each transition qj
l+1

a−→ Q with qj
l+1

a−→ πl(Q) where

πl(Q) := {qj′
l+1 | qj′

l ∈ Q} ∪ (Q −Ql).
2. For each j, remove the state qj

l .
3. For each j, rename the state qj

l+1 to qj
l .

Fig. 8. Algorithm for computing winning region of a pushdown parity game
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consider automaton constructions T (such as Sig ,Phi and Proj ) that transform type-
l automata to type-l′ automata. We say that T is monotone just if T (A) � T (A′)
whenever A � A′.

To show that our winning-region construction procedure terminates, it suffices to
prove the following.

Theorem 2 (Termination). For every 1 ≤ l ≤ m+1 and every type-(l−1) automaton
A, the procedure Sig(l, A) terminates.

We prove the theorem by induction on l. It is straightforward to establish the base case of
l = m+1: Phi(A) (where A is type-m) terminates. For the inductive case of Sig(l,−)
where 1 ≤ l ≤ m, since Sig(l + 1,−) terminates by the induction hypothesis, and
Proj (l,−) clearly terminates, it remains to check that in the computation of Sig(l, A)
where A is type-(l − 1), there exists an i ≥ 0 such that Ai = Ai+1. Since all automata
of the same type have the same finite state-set (and A0, A1, . . . are all type-l) , it suffices
to show (i) of the following Lemma.

Lemma 1 (Monotonicity). We have the following properties.

(i) Let 1 ≤ l ≤ m and A be a type-(l − 1) automaton. In Sig(l, A):
a. if σZl = μZl then Ai � Ai+1 for all i ≥ 0
b. if σZl = νZl then Ai+1 � Ai for all i ≥ 0.

(ii) For every 1 ≤ l ≤ m + 1, the construction Sig(l,−) is monotone.
(iii) For every 1 ≤ l ≤ m, the construction Proj (l,−) is monotone.

Correctness. To prove correctness, we introduce the notions of valuation soundness
and completeness. Fix a pushdown parity game G = (P ,D, Σ, Ω). A valuation profile
is a vector S = (S1, . . . , Sl) of configuration-sets (i.e. vertex-sets of the underlying
configuration graph). We define the valuation VS : Zc �→ Sc induced by S, which we
extend to a map VS : QA −→ 2Σ∗⊥ on the states of a type-l automaton as follows:

VS :=

⎧⎨
⎩

qj
c �→ { w | 〈pj , w〉 ∈ Sc } 1 ≤ j ≤ |P|, 1 ≤ c ≤ l

q∗ �→ Σ∗⊥
qε
f �→ { ε }

Definition 1. Given a valuation profile S of length l, we say that a type-l automaton A
is S-sound just if, for all q, a and w, if A has a transition q

a−→ Q such that w ∈ VS(q′)
for all q′ ∈ Q, then a w ∈ VS(q).

By induction on the length of the word, valuation soundness extends to runs of a multi-
automaton. We then obtain that all accepting runs are sound.

Lemma 2. Let A be a S-sound automaton.

(i) For all q, w and w′, if A has a run q
w−→ Q such that w′ ∈ VS(q′) for all q′ ∈ Q,

then w w′ ∈ VS(q).
(ii) For all q ∈ QA, Lq(A) ⊆ VS(q).
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Proof

(i) We prove by induction on the length of the word w. When w = a, the property
is just S-soundness. Take w = au and some run q

a−→ Q
u−→ Q′ such that for all

q′ ∈ Q′, we have w ∈ VS(q′). By the induction hypothesis, we have the property
for the run Q

u−→ Q′. Hence, we have for all q′ ∈ Q that, uw′ ∈ VS(q′). Thus, from
S-soundness, we have auw′ ∈ VS(q).

(ii) Take an accepting run q
w−→ Qf of A. We have for all q′ ∈ Qf = {qε

f}, ε ∈ VS(q′).
Thanks to (i), we have w ∈ VS(q). �

Definition 2. Given a valuation profile S of length l, we say that a type-l automaton A
is S-complete just if, for all q, a and w, if a w ∈ VS(q) then A has a transition q

a−→ Q
such that w ∈ VS(q′) for all q′ ∈ Q.

By induction on the length of the word, valuation completeness extends to runs. Fur-
thermore, an accepting run always exists when required.

Lemma 3. Let A be an S-complete automaton.

(i) For all q, w and w′, if w w′ ∈ VS(q) then A has a run q
w−→ Q such that w′ ∈

VS(q′) for all q′ ∈ Q.
(ii) For all q ∈ QA, VS(q) ⊆ Lq(A).

Notation. Recall χl(Z1, . . . , Zl−1) := σZl · · ·Zm.ϕE(Z1, . . . , Zm) where 1 ≤ l ≤
m + 1. Thus we have χ1 = μZ1 . . . σZm.ϕE(Z) and χm+1(Z1, . . . , Zm) = ϕE(Z).
Let S = (S1, . . . , Sl−1); we write (S, T ) to mean (S1, . . . , Sl−1, T ). Thus we write
χl(S) to mean χl(S1, · · · , Sl−1), and χl+1(S, Zl) to mean χl+1(S1, . . . , Sl−1, Zl).

Proposition 1 (Main). Let 1 ≤ l ≤ m + 1, A be a type-(l − 1) automaton, and S be a
valuation profile of length l − 1.

(i) (Soundness Preservation) If A is S-sound, then Sig(l, A) is a type-l automaton
which is (S, �χl(S)�)-sound.4

(ii) (Completeness Preservation) If A is S-complete, then Sig(l, A) is a type-l au-
tomaton which is (S, �χl(S)�)-complete.

Since the type-0 automaton A0 is trivially sound and complete with respect to the empty
valuation profile, we obtain the following as an immediate corollary.

Theorem 3 (Correctness). The procedure call Sig(1, A0) terminates and returns a
type-1 automaton which is (�χ1�)-sound and (�χ1�)-complete. Hence, thanks to Lem-
mas 2 and 3, for each 1 ≤ j ≤ |P|, V�χ1�(q

j
1) = Lqj

1
(Sig(1, A0)) i.e. the automaton

Sig(1, A0) recognises the configuration set �χ1�, which is the winning region of the
pushdown parity game G.

4 By �χl(S1, · · · , Sl−1)� we mean �χl(Z1, · · · , Zl−1)�V where V maps Zc to Sc.
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Proof of the Main Proposition. We prove Proposition 1 by induction on l. First the
base case: l = m + 1.

Lemma 4. Let S be a valuation profile of length m, and A a type-m automaton.

(i) Phi(A) is a type-(m + 1) automaton.
(ii) If A is S-sound then Phi(A) is (S, �ϕE(S)�)-sound.

(iii) If A is S-complete then Phi(A) is (S, �ϕE(S)�)-complete.

Proof

(i) We omit the straightforward proof.
(ii) Let S′ = (S, �ϕE(S)�) and Ω(pj) = c. Take any transition qj

m+1
a−→ Q in Phi(A)

and stack w such that for all qj′
c′ ∈ Q, 〈pj′ , w〉 ∈ VS′(Zc′). For an Éloı̈se position,

we abuse notation by interpreting Next(pj , a) as the singleton set containing the
rule that led to the introduction of the new transition. Essentially, we present the
proof for an Abelard position, which can be easily applied to Éloı̈se’s positions.
Since A is S-sound and for all (pk, wk) ∈ Next(pj , a) we have qk

c
wk−−→ Qk ⊆ Q,

we know that 〈pk, wkw〉 ∈ VS′(Zc). Hence all 〈pk, wkw〉 are in VS′(Zc), and
〈pj , aw〉 ∈ VS′(Zm+1) = �ϕE(Z)�GV

S′
, since all moves, in the case of Abelard,

and a move in the case of Éloı̈se, reach configurations in Zc.
(iii) Take any configuration 〈pj , aw〉 ∈ VS′(Zm+1) = �ϕE(Z)�GV

S′
. Let Ω(pj) = c.

There exists an appropriate assignment {(pk1 , w1), . . . , (pkn , wn)} to Next(pj , a)
(as before) such that 〈pkh , whw〉 ∈ VS′(Zc) for all h ∈ {1, . . . , n}. Since A is
assumed to be S-complete, it follows that all 〈pkh , whw〉 have a complete run. In
particular, we have a complete run qkh

c
wh−−→ Qh for all h. Hence, by the definition

of Phi(A), there exists a transition pj a−→ Q that is complete. �

For the inductive case of 1 ≤ l ≤ m, we present the proof when σZl = μZl. The case
of σZl = νZl is exactly dual (in outline, the soundness and completeness proofs are
interchanged). Recall that χl(Z1, . . . , Zl−1) := σZl.χl+1(Z1, · · · , Zl).

Lemma 5. Suppose σZl = μZl. Let S be a valuation profile of length l − 1, and A be
a type-(l − 1) automaton; set θ = �μZl.χl+1(S, Zl)�.

(i) Sig(l, A) is a type-l automaton.
(ii) If A is S-sound, then Sig(l, A) is (S, θ)-sound.

(iii) If A is S-complete, then Sig(l, A) is (S, θ)-complete.

Proof

(i) The result of the recursive call to Sig(l + 1, A) combined with the call to Proj
ensures the property.

(ii) Let S′ := (S, θ). It is straightforward to see that A0 is S′-sound, since it did not
add any transitions to A, which is assumed to be S-sound. Hence, we assume by
induction Ai is S′-sound and argue the case for Ai+1.
Take a transition qj

l
a−→ Q in Ai+1 such that for all qk

l′ ∈ Q we have 〈pk, w〉 ∈
VS′(Zl′). Take the corresponding transition qj

l+1

a−→ Q′ in Sig(l + 1, Ai) before
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the projection. In particular, for every qk
l ∈ Q we have qk

l or qk
l+1 in Q′. By

the induction hypothesis, we know Sig(l + 1, Ai) is (S′, �χl+1(S′)�)-sound. Fur-
thermore, VS′(Zl) = θ = �χl+1(S, θ)� = VS′(Zl+1). Since Sig(l + 1, Ai) is
(S′, �χl+1(S′)�)-sound, we have 〈pj , aw〉 ∈ VS′(Zl+1) = VS′(Zl) as required.

(iii) Let A be a type-(l − 1) automaton which is S-complete. We use the shorthand
θα = �μαZl.χl+1(S, Zl)�. We first show that if the type-l Ai is (S, θα)-complete
for some α then Ai+1 is (S, θα+1)-complete. By the induction hypothesis, Bi :=
Sig(l + 1, Ai) is (S, θα, θα+1)-complete, since θα+1 = �χl+1(S, θα)�. We need
to show that, after the projection, Ai+1 := Proj (l, Bi) is S′-complete, where
S′ := (S, θα+1). Take some 〈pj , aw〉 ∈ VS′(Zl). We know Bi has a transition
qj
l+1

a−→ Q satisfying completeness. If Q contains no states of the form qk
l , then

the transition qj
l

a−→ Q satisfies completeness in Ai+1. If Q contains states qk
l ,

then 〈pk, w〉 ∈ θα ⊆ θα+1 = VS′(Zl). Hence, we have a required complete tran-
sition after the projection, and so, Ai+1 is S′-complete. We require that Sig(l, A)
be (S, �μZl.χl+1(S, Zl)�)-complete. Take i such that Ai = Ai+1 = Sig(l, A).
Trivially Sig(l, A) is (S, θ0)-complete. We proceed by transfinite induction. For
a successor ordinal we know by induction that Ai is (S, θα)-complete and from
the above that Ai+1 is (S, θα+1)-complete. Since Sig(l, A) = Ai = Ai+1 we
are done. For a limit ordinal λ, we have that Sig(l, A) is (S, θα)-complete for
all α < λ. Since θλ =

⋃
α<λ θα, the result follows because each configuration

in the limit appears in some smaller approximant, and the transition witnessing
completeness for the approximant witnesses completeness for the limit. �

6 Optimisation

In the procedure Sig(l, A), in case σZl = νZl, our definition of A0 contains all allow-
able transitions, and hence is immediately exponential. However, if we have q

a−→ Q and
q

a−→ Q′ with Q ⊆ Q′, then acceptance from Q′ implies acceptance from Q. That is, the
transition to Q′ is redundant. Furthermore, acceptance from any qj

c implies acceptance
from q∗ (trivially). Using these observations, we can optimise our automaton. In the
following definition, Q � Q′ can be taken to mean an accepting run from Q′ implies
an accepting run from Q.

Definition 3. For all non-empty sets of states Q and Q′, we define

Q � Q′ :=
(
(q∗ ∈ Q ⇒ ∃q.q �= qε

f ∧ q ∈ Q′) ∧ (∀q �= q∗.q ∈ Q ⇒ q ∈ Q′)
)

and EXPAND(A) := { q
a−→ Q′ | q a−→ Q in A and Q � Q′ }.

By specifying monotonicity with respect to EXPAND(A) rather than A, A0 (in case
σZl = νZl) only needs transitions to q∗ and qε

f , which is linear. When this optimisation
is used in the case of a one-player game, the constructed automaton will not use any
alternating transitions. Furthermore, we can remove redundant transitions at every stage
of the algorithm. Since a transition to {q∗} is powerful with respect to � we expect to
keep the automaton small. However, this will have to be confirmed experimentally.

To test termination of Sig(A, l), we check if EXPAND(Ai+1) = EXPAND(Ai).
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Lemma 6. EXPAND(A) � EXPAND(A′) if and only if whenever q
a−→ Q in A then

there is some Q′ � Q with q
a−→ Q′ in A′.

By induction, we extend the property to runs. Hence EXPAND(A) � EXPAND(A′)
implies L(A) ⊆ L(A′). Finally, we have:

Lemma 7. The optimisation preserves monotonicity and both valuation soundness and
valuation completeness.

Conclusion. We have proposed a new, simple and direct algorithm for computing the
winning region of a pushdown parity game. The algorithm uses a mu-calculus formula
that characterises Éloı̈se’s winning region as a guide to construct the required automa-
ton. We have identified an optimisation that avoids an immediate exponential blow up.
An interesting open problem is to construct winning strategies using our approach.
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