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Abstract. We present a new algorithm for computing the winning region of a
parity game played over the configuration graph of a pushdown sy<dem.
method gives the first extension of the saturation technique to the parity con
dition. Finite word automata are used to represent sets of pushdowiywenfi
tions. Starting from an initial automaton, we perform a series of automatns-tr
formations to compute a fixed-point characterisation of the winning regi@n
introduce notions of under-approximation (soundness) and oyepamation
(completeness) that apply to automaton transitions rather than runspeaid o
clean proof of correctness. Our algorithm is simple and direct, andntifean
optimisation that avoids an immediate exponential blow up.

1 Introduction

Pushdown systems — finite-state transition systems eqdijjib a stack — are an old
model of computation which has recently enjoyed renewegta@sts from the software
verification community. They accurately model the controivlof first-order recur-
sive programs [7] (such as C and Java), and lend themselad#yréo algorithmic
analysis. For these reasons, pushdown systems have plaggdtde in the automata-
theoretic approach to software model checking [1, 5, 10,ddhsiderable progress has
been made in the implementation of scalable model checKgrssthhdown systems.
These tools (e.g. Moped [10] and Bebop [11]) are an essdratcd-end component of
such model checkers as SLAM [12].

The modal mu-calculus is an important language for deswiproperties of pro-
gram behaviour because it is highly expressive (all stahtiEamporal logics in verifi-
cation are embeddable in it). In a seminal paper [3] at CAV6]l ¥¥alukiewicz showed
that local modal mu-calculus model checking of pushdown systems, oivalgntly
[4] the solution ofpushdown parity game@.e. parity games over the configuration
graphs of pushdown systems), is EXPTIME-complete. His nattieduces pushdown
parity games to finite parity games by a kind of powerset ¢ansbn over the control
states, which is immediately exponential in size. WHistl model checking asks if a
designated state (of a pushdown system) satisfies a giveenymlobal model check-
ing computes a finite representation of the set of statesfgat) the property. The
latter is equivalent to computingloise’s winning region of a pushdown parity game,
which is the problem that we have set ourselves here. Globdehthecking used to be
the norm in verification (CTL and many symbolic model cheskill perform global
model checking). While local model checking can be expeaidthte better complex-
ity, global model checking is important when repeated chemle required (because
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tests on the representing automata tend to be comparativefp), or where the model
checking is only part of the verification process.

Related work.Cachat [13] and Serre [9] have independently generalisddkiésvicz’
algorithm to solve the global model-checking problem: theg the local model-checking
algorithm as an oracle guiding the construction of autorretagnising the winning re-
gion. An alternative approach, introduced by Piterman azadiM8], uses two-way al-
ternating tree automata to navigate a tree representipgsdlible stacks. After several
reductions, including the complementation afd®i automata, an automaton accepting
the winning region can be constructed.

In 1997 Bouajjaniet al. [1] (at CONCUR), and, independently, Finkalt al. [2]
(at INFINITY), introduced asaturationtechnique for global model-checking reacha-
bility properties of pushdown systems. From a finite-wordoeaton recognising a
given configuration-sef, they perform a backwards-reachability analysis. By itera
tively adding new transitions to the automaton, the set aofigarations that can reach
some configuration i@ is constructed. Since the number of new transitions is bednd
the iterative process terminates. This approach undetipinacclaimed Moped tool.

Contributions. This paper presents a new algorithm for computiiigise’s winning
region of a pushdown parity game. We represent (regularigumation sets as alter-
nating multi-automata [1]. Using a modal mu-calculus folarthat defines the winning
region as a guide, our algorithm iteratively expands (whempmuting least fixpoints)
and contracts (when computing greatest fixpoints) an ajapeiing automaton until
the winning region is precisely recognised. Our method isrgegalisation of Cachat’s
for solving Bichi games [13], which is itself a generalisation of the sstan tech-
nique for reachability analysis. However, we adopt a défferproof strategy which we
believe to be cleaner than Cachat’s original proof. Our rhoution can equivalently
be presented as a solution to thiebal model checking problem: given a pushdown
systemk’, a modal mu-calculus formulg(Y’), and a regular valuatiol, our method
candirectly compute an automaton that recognises thé @t )]~ of K-configurations
satisfyingy (Y) w.r.t. V.

Our algorithm has several advantages:

(i) Itis simple and direct. Even though pushdown graphsrmagehneral infinite, our
construction of the automaton that recognises the winréggpn follows, in outline, the
standard pen-and-paper calculation of the semantics odhmad-calculus formulas in
afinite transition system. Through the usepbjection our algorithm is guaranteed to
terminate in a finite number of steps, even though the usyaifit calculations may
require transfinite iterations. Thanks to projection, ttatessets of the approximating
automata are bounded: during expansion, the number ofticarssincreases, but only
up to the bound determined by the finite state-set; duringraotion, the number of
transitions decreases until stabilisation or zero.

(ii) Our proof is simple and easy to understand. A key congaghnovation of the
correctness argument avaluation soundnesand valuation completenes3hey are
respectively under- and over-approximation conditiora #pplylocally to individual
transitions of the automaton, rather thglobally to the extensional behaviour of the
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automaton (such as runs). By combining these conditionighaieduce the overhead
of the proof, we show that our algorithm is both sound and detapn the usual sense.

(iii) Finally, our decision procedure builds on and extetius well-known satura-
tion method, which is the implementation technique of cea€ pushdown checkers.
In contrast to previous solutions, our algorithm permitsraightforward optimisation
that avoids an immediate exponential explosion, which wiebeis important for an
efficient implementation. Another advantage worth notsithat the automaton repre-
senting the winning region is independent of the maximurarfiyi m (even though it
takes time exponential im to construct).

2 Preliminaries

A pushdown parity game is a parity game defined overpushdown grapHi.e. the
configuration graph of a pushdown system). Formally it is adyuple(P, D, X'} , £2)
whereP = PoWPp = {p*,...,p"} is a set of control states partitioned into Abelard’s
andEloise’s statesy'; := X U { L } is a finite stack alphabet (we assume¢ X)),

D CPxX| xPxX} isasetof pushdownrules afitl: P — {1,...,m} isafunction
assigning priorities to control states. As is standard, sseime that the bottom-of-stack
symbol L is neither pushed onto, nor popped from, the stack. We almassthere is
(at least) a rule for each € P anda € X .

A play begins from some configuratidp, a w). The player controlling chooses
pa — p'w’ € D and the play moves t¢’, w'w). Then, the player controlling’
chooses a move, and so on, generating an infinite run. Thatprid a configuration
(p,w) is £2(p). A priority occurs infinitely often in a play if there are arfiimte number
of configurations with that priority'EIo'l'se wins the play if the smallest priority occur-
ring infinitely often is even. Otherwise, Abelard is the wénn

A player'swinning region of a pushdown parity game is the set of configurations
from which the player can always win the game, regardledseif bpponent’s strategy.
Eloise’s winning regionVy of a parity gameg is definable in the modal-calculus;
the following is due to Walukiewicz [3]:

Wg = [uZivZs. ... 121V Zmp(Z1s - -, Zm)]Y

wherem is the maximum parity (assumed eveW)is a valuation of the variablésand

0e(Z1,.. .. Zm) = |[E= J\ (c=0Z) | A |~E= A (c=0%)
ce{l,...,m} ce{l,...,m}

whereF is an atomic proposition asserting the current configundiéloise’s and, for
1 < ¢ < m, casserts that the priority of the current control state is

For eachl < ¢ < m, we have a variable/.. The odd priorities are bound hy
operators which can be intuitively understood as “finitgpiog”. Dually, even priorities
are bound by operators and can be understood as “infinite looping”. Theftay

! The valuation is initially empty since the formula has no free variables.



4 M. Hague and C.-H.L.Ong

asserts that a variablg. is visited whenever a configuration of prioritys encountered.
Thus the full formula asserts that the minimal priority ocyg infinitely often must be
even — otherwise a variable bound by fheperator would be passed through infinitely
often. It can be shown by a signature lemma fhlaise has a winning strategy from a
configuration satisfying the formula [3]. Since the formsiiaverse is a similar formula
with /v, andd/{ reversed, Abelard has a winning strategy from any configuraiot

in Weg.

Thanks to the Knaster-Tarski Fixpoint Theorem, the seranti a fixpoint formula
[eZx(Y,Z)]{ wheres € {u,v} can be given as the limit of the sequencecef
approximants [o*Z.x(Y, Z)]]‘g, wherea ranges over the ordinals andranges over
the limit ordinals:

Y, 2)]§ = Init.
[[O—a+1Z'X(K7 Z)]]\g/ = HX(Ya Z)ﬂ\g/[Zl—»Lf“Z.X(?,Z)]]g]
Y, 2)l§ == Oacalo®Zx (Y, 2)[};

whereInit = @ and(O = |J wheno = p, and Init is the set of all configura-
tions andO = () wheno = v. The least ordinak such thatlo"Z.x (Y, Z)]{, =
loZ.x(Y, Z)]{ is called theclosure ordinal

Example 1.When interpreted in a pushdown grag*Z.x (Y, Z) ) ,corq May have
an infinite closure ordinal. Consider the following pushdaoparity graph (which is a
dual of an example of Cachat’s [13]): all configurations ateelard’s,f2(p) = 1 and

2(f) =2
C L (fial) — (fraal) —

T | l

(p, L) <— (p,al) < (p,aal) —

In this gameWg = [uZ1.vZ>.0r(Z1, Z2)] consists of all configurations. However,
any (f,aa™L) for somen only appears in an approximant of the least fixed point
when (f,aaa™L) and (p,aa™L) appear in the previous approximant (since Abelard
may move to either of these configurations). Hence(jal™L) must appear in the
a-approximant before anyf,a™L) can appear in théx + 1)-approximant. The first
approximant containing afl configurations is the-approximant.

To represent (regular) configuration-sets, we use Bouajaal.s notion of alternat-
ing multi-automata [1]. Given a pushdown systém D, ) with P = {p',...,p*},
an alternating multi-automaton A is a tuple(Q, X, A, I, F) where Q is a finite set
of states, A € Q x (X U {L}) x 22 is a set of transitions (we assume ¢ ),
I ={q¢',...,¢°} C Qs a set of initial states, an# C Q is a set of final states.
Observe that there is an initial state for each control sihtbe pushdown system. We
write ¢ % Q justif (¢,a,Q) € A; and defing; = {¢}; andg 2% Q, U--- U Q,, just
if ¢ % {q1,...,q.} andgr = Qy for all 1 < k < n. Finally we define théanguage
accepted by, £L(A), by: (p/,w) € L(A) iff ¢ 2 Q for someQ C F. alternating
multi-automata simply asutomata.
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Reachability and ProjectionThe formulapg (271, . . ., Z,,) asserts a ‘one-step’ reacha-
bility formula, for which we use a variant of Bouajjagtial's reachability algorithm [1].
Cachat's extension of this algorithm requires a techniqalked projection Using an
example, we briefly recall the relevant techniques.

The automatod., in Figure 1 (i) represents a configuration SeTake a PDS with
the rulesp' a — p?e andp?b — p?ba. Let Pre(C) be the set of all configurations
that can reaclt in exactly one step. To calculatere(C) we first add a new set of
initial states — since we don’t necessarily haveC Pre(C). By applyingp'a —
p? e, any configuration of the fornfp', aw), wherew is accepted fromy? in A,
can reaclC. Hence we add an-transition fromg®. (Via the pop transition, we reach
(p?,w) € L(Acq).) Alternatively, viap®b — p?ba, any configuration of the form
(p?, bw), wherebaw is accepted frong? in A.,, can reackC. The push, when applied
backwards, replacés by b. We add &-transition fromg? which skips any run ovea
from ¢2. Figure 1 (ii), ignoring the dashed transition, shows treilting automaton.

To ensure termination of thetBhi construction, Cachat uspsojection which re-
places a new transition to an old initial state with a traasito the corresponding new
state. Hence, the transition in Figure 1 (ii) frarhis replacedby the dashed transition.
The old initial states are then unreachable, and deletedthwim this case, leaves an
automaton with the same states as Figure 1 (i) but an additicansition. In this sense,
the state-set remains fixed.

Fig. 1. (i) On the left, A., accepting(p?, ba*); and, (ii) on the rightA., updated by the rules
pla — p? e andp? a — p? ba. The dashed line is the result of projection.

3 An Example

We begin with an intuitive explanation of the algorithm byans of an example. Con-
sider the pushdown game shown in Figure 2. Since the aim ®fttample is to give
an overview of the flow of the algorithm, the behaviour of thisipdown system is kept
simplistic. The subscripts indicate the priority of a configtior and an arc labelled
with push,, indicates a pushdown rule of the fopma, — p’ w for somep, a andp’. Let
PE, P € Prandpa € Pa.

2 Our priorities here begin @ This does not change the algorithm significantly.

5
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pushyp
<p/E:bE*J—>0 s <p/E7aE*J->0

pushyp
2 E
Al » h
i = pusha
— pushy
<pE7a2*J~>1 <pA7a2*J~>1 —— <pA7bZ*J~>1
\_/
pushq ﬁ:
3
8,
<pE1 bE*J—)l

Fig. 2. An example pushdown parity game.

Eloise can win from configurations of the fornig/,, aX*l),, (pg,aX*L),, or
(P, bE*L),. Eloise can loop between the last two of these configurationgrgéng a
run with priority 0. From elsewhere, Abelard can force play(ta, bX*L), and gener-
ate a run with priorityl. ComputingEloise’s winning region is equivalent to computing
vZo.uZzi.or(Zo, Zl)]]‘g/. We illustrate how this is done in the following.

To compute a greatest fixed point, we begin by settiptp be the set of all configu-
rations. We then calculate the automaton recognising thetdgon ofuZ, .o r(Zy, Z1)
with this value ofZ;. The result is the value df;; for the next iteration. After each it-
eration the value of/; will be a subset of the previous value. This computationtieac
a limit when the value of; stabilises, which is the denotation of the formula.

Computing the least fixed point proceeds in a similar marex@ept that the initial
value of Z; is set tof). We then compute the (automaton that recognises the) diamota
of pr(Zy, Z1), which gives us the next value &f;. Dual to the case of greatest fixed
points, the value of/; increases with each iteration.

Constructing the Automator{We shall often confuse the denotation of a formula with
the automaton that recognises it, leaving it to the conteitdicate which is intended.)
We begin by settingZ, to the set of all configurations. The automaton recognising
all configurations is shown in Figure 3 {i)Given this value ofZ,, we compute the
denotation ofuZ,.¢r(Zy, Z1). The first step is to set the initial value @ to the
empty set. The corresponding automaton is also shown in€Rj(i). Observe that we
have a separate set of initial states #grand~;.

We now computez (Zy, Z; ) which is the next value of; . A configuration(p’, aw)
with priority ¢ should be accepted Eloise can play - or Abelard must play - a move
which reaches som@"*, w'w) € V(Z.). The result is Figure 3 (iii).

Observe that the computation of the new automaton has omlgdattansitions.
When computing a least fixed point, each generation of instiailes has more transi-
tions than the previous generation. In this example the mubpossible transitions is
finite since all transitions happen to gogp Therefore, the automaton must eventually

8 This is a simplification of the automaton defined in Section 4.
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become saturated, causing termination. In the full algorjttransitions from the new
set of initial states to the old aprojectedback onto the new initial states. This en-
sures that the previous generation is not reachable. Hémestate-set is fixed. When
computing a greatest fixed point, termination can be provediyt we begin with all
transitions and iteratively remove transitions at eacpesta

We now compute the next iterate @f. We add a new set of initial states, and
perform the reachability analysis, as in Figure 4 (i). If were/ to perform another
round of the reachability analysis, we would find a fixed poirtat is, the transitions
from the new initial states correspondingZphave the same outgoing transitions as the
old. This fixed point is the next value &f,. Therefore, we set the current initial states
of Z; to be the new initial states d¢fy. If necessary, we would also perform projections
from the old initial states of, to the new. We then begin evaluating: .o s (Zo, Z1)
with our new value of7,. The initial value ofZ; is the empty set, so we introduce new
initial states corresponding t6; with no outgoing transitions. Figure 4 (ii) shows the
automaton after these steps.

We compute the next iterate 4f as before, as in Figure 5. The second automaton
is the fixed point ofZ;, and hence the new iterate &f. Since the new?; is identical
to the previousZ,, we have reached a final fixed point. Setting the initial stateZ;
to be the initial states af, and deleting any unreachable states, gives the automaton
in Figure 6, which accepEIo’fse’s winning region.

@)

Fig. 3. From left to right, (i) the automaton accepting the initial valueZgf (ii) the automaton ac-
cepting the initial values af, andZ;; and (iii) the automaton after the first round of reachability
analysis.

4 The Algorithm

Fix a pushdown parity gamé = (P, D, X, {2) that has maximum priorityn. The
algorithm has two key components. The first Phi(A) — computes an automaton
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Fig. 4. (i) The automaton after the second round of reachability analysis; arti€igutomaton
with the new value o¥, andZ; set to the empty set.

Fig.5. The automaton after the first round of reachability analysis with the Agwand the
automaton after the second round of reachability analysis with theZaew

\a
a,b
- b

Fig. 6. The automaton accepting the winning regiorEddise.
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recognisindyx(Z1,. .., Z»)]%, given an automatod recognising the configuration-
setsV(Z1),...,V(Z,). The second —Sig(l, A) — computes, for each < I < m,
an automaton recognisifig Z;.x;+1(Z1, - . ., Z)[§, whereo is eithery or v, given an
automatonA4 recognising the configuration-sét§7;), ...,V (Z;—1), and

Xi+1(Z1,..,2) :=0Z131 .. .02 0u(Z1, ..o, Zm).

Format of the AutomataWe describe the format of the automata constructed during
the algorithm. LeQ.u := {¢*, ¢5}, andQ. := {¢]1<j<|P|}foreachl <c<
m+ 1. These states are used to give the valuations of the vasidble. ., Z,,, and the
semantics obg(Z4,. .., Zy,) Whenc =m + 1.

Let0 <! < m+ 1. An automator is said to beype-/ just if:

(i) The state-seQ4 :=Q; U --- U Q; U Q.
(ii) Every transition of the formyZ % @ has the property tha® # (), and for all;’
andc’ > ¢, qg/l ¢ @ (i.e. there are no transitions to states with a higher pyipri
(iii) The only final state ig;; which can only be reached bylatransition. I.e. for each

q = Q,we havey; € Qiff Q = {¢5} iff a =1.

(iv) We also havey* =, {¢*} and ¢* 4, {qjc} and no other transitions fromg*.
Furthermoreg; never has any outgoing transitions.

It follows that there is a unique automaton of type-O0.

In the following, letA be a typetautomaton, wheré < ¢ < 1 < m + 1. We define
L(A) CPX*Lby:forl <j<|P| (pP,w) € L.(A) justif wis accepted by
from the initial statey). ThusL.(A) is intended to represent the current valuation of the
variableZ,.; in case = m+1, £,,+1(A) is intended to represefip g (Z1, . . ., Zm)]]‘g,
where the valuatio mapsZ. to £.(A). If we omit the subscript and writé(A), we
mean/,;(A). By abuse of notation, we defing,(A) C 2*L U {¢e} to be the set of
words accepted byl from the state; (note thatly- (A) = 2* L andLy: (A) = {e}).

Definition of the Algorithm.Given a pushdown parity gangg the algorithm presented
in Figure 7 compute®Vg, the winning region of:

Wi = [uZ1.vZs....0Zm—1.0Zmpp(Z1, ..., Zm)]§ -

In computing[¢x(Z1, . .., Z,)], we may add an exponential number of transitions.
TocomputecZ;. -+ .0Zpm . 0r(Z1,- - ,Zm)}]‘g, we may require an exponential num-
ber of iterations. Hence, in the worst case, the algorith(siiggly) exponential in the
number of control states and the maximum priority

Theorem 1. Given a pushdown parity gang = (P, D, X, £2), we can construct an
automaton recognising the winning regionkibise in EXPTIME inP| - m wherem is
the maximum priority.

The alternating multi-automaton returned by the algoritlin(1, Ay), hasn = |P|+2
states. The number of transitions is bounded:byX’| - 2, which is independent ofu.
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-
procedure Phi(A)
Input A type-mn automaton as valuation ofZ = Zy,- - -, Z,,.

Output A type-(m + 1) automaton denoting g (2), relative toA.

1. (1-Step ReachabilijyConstruct the automatod’ by adding new states

{Ghgts s q_lﬂl} and the following transitions td. For eachl < j < |P],

setc := 2(p?), and
— if p € Pptheng), ., = Qif ¢¢ *> Q and(p*, w) € Next(p’, a)
—if pP € Patheng ., = Qi U---UQ,if ¢ 5 Qu, ..., ¢
Qn, andNext(p?,a) = {(p™,w1), ..., (", w,)}
whereNext(p’,a) := { (pF,w) | p’ a — p*w € D}.
2. return A’.

procedure Proj(l, A)
Input 1 <1 < m;atype{l + 1) automatonA.
Output A type- automaton.

1. For eacly, replace each transitiafi, , < Q with ¢/, , > 7'(Q) where

Q) ={d, ld €QtUQ-Q).
2. For eacly, remove the statg/ .
3. For eacly, rename the staig, , to g/ .

procedure Sig(l, A)

Input 1 <l <m+1;
atype{l — 1) automatord as valuation o7y, --- , Z;_4.

Output A type- automaton denotingZ; - - - 0 Z,,, . ¢ p(Z), relative toA.

1. ifl = m + 1 then return Phi(A)
A with new stateg);, but no new transitions #27; = uz;

2. AY .= { A with new stategD;, and all outgoing iz, =vZz
transitions obeying the format of the automata.

3. fori =0to co do

4, Bt := Sig(l+ 1, A%

5. AL = Proj(l, BY)

6 if A" = A*! then return A?

Input A pushdown parity gamé = (P, D, X, 2) with max. prioritym.
Output A type-1 automaton recognisirig; ]9, the winning region of;.

begin
return Sig(1, Ap) % Ay is the unique type-0 automaton.

end

Fig. 7. Algorithm for computing winning region of a pushdown parggme.
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5 Termination and Correctness

Termination First an auxiliary notion of monotonicity for automaton stnuctions.
Letl < I, I’ < m+ 1, and A and A’ be typet automata. We writed < A’ to
mean: for allg,a andQ, if ¢ = @ is an A-transition then it is am’-transition. We
consider automaton constructiofis(such asSig, Phi and Proj) that transform type-
! automata to typé- automata. We say thaf is monotongjust if 7(A) < 7(A")
wheneverd < A’.

To show that our winning-region construction procedurenteates, it suffices to
prove the following.

Theorem 2 (Termination). For everyl < < m+1 and every typg{— 1) automaton
A, the proceduredig(l, A) terminates.

We prove the Theorem by induction énlit is straightforward to establish the base
case off = m + 1: Phi(A) (whereA is typesn) terminates. For the inductive case of
Sig(l,—) wherel <[ < m, sinceSig(l + 1, —) terminates by the induction hypoth-
esis, andProj (I, —) clearly terminates, it remains to check that in the comjmranf
Sig(1, A) whereA is type{l — 1), there exists an > 0 such thatd’ = A**L. Since all
automata of the same type have the same finite state-setdlant!, ... are all type-

1) , it suffices to show (i) of the following Lemma (see the Apginfor a mutually
inductive proof).

Lemma 1 (Monotonicity). We have the following properties.

() Letl <! < mandA be atypefl — 1) automaton. InSig(l, A):
a. ifoZ; = pnZ; thenA* < A+t foralli > 0
b. ifoZ;, = vZ; thenA*t! < A forall i > 0.
(ii) Foreveryl <1 <m+ 1, the constructiorbig(l, —) is monotone.
(iii) Foreveryl <[ < m, the constructionProj (I, —) is monotone.

Correctness To prove correctness, we introduce the notionvalfiation soundness
andcompleteness-ix a pushdown parity gamg = (P, D, X, £2). A valuation profile

is a vectorS = (Si,...,95;) of configuration-sets (i.e. vertex-sets of the underlying
configuration graph). We define the induced valualign Z. — S., which we extend
toamapls: Q4 — 2" L on the states of a typkautomaton as follows:

@ —{wl@P wyes} 1<j<|Pl,1<c<I
Voi=0q" — 2" 1
q }

—{e

0

Definition 1. Given a valuation profileS of lengthl, a type# automatond is S-sound
just if, for all ¢,  andw, if A has a transitioy — @ such thatw € V(') for all
q € Q,thenaw € Vg(q).

By induction on the length of the word, valuation soundnedsrals to runs of a
multi-automaton. We then obtain that all accepting runssatend.
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Lemma 2. Let A be aS-sound automaton.

(i) Forall ¢, w andw’, if A has arung — Q such thatw’ € Vg(¢') forall ¢’ € Q,
thenw v’ € Vg(q).
(i) Forall ¢ € Qa, L4(A) C V5(q).

Proof. (i) We prove by induction on the length of the watd Whenw = a, the prop-
erty is justS-soundness. Take = au and some ruy = @ - @’ such that for
all ¢ € Q', we havew € Vg(¢'). By the induction hypothesis, we have the property
for the run@ - Q'. Hence, we have for alf € Q that,uw’ € V(¢'). Thus, from
S-soundness, we haveww’ € Vg(q).

(i) Take an accepting rug —» Q; of A. We have for ally € Q; = {a7},
e € V5(¢'). Thanks to (i), we have € Vg(q).

Definition 2. Given a valuation profil& of lengthl, a typet automator is S-complete
just if, for all ¢, a andw, if aw € Vi(q) then A has a transitioy < @ such that
w € Vg(¢') forall ¢’ € Q.

By induction on the length of the word, valuation complesmextends to runs.
Furthermore, an accepting run always exists when required.

Lemma 3. Let A be anS-complete automaton.

w

(i) Forall ¢, wandw’, if ww’ € Vg(q) thenA has a rung — @ such thatw’ €
Vs(q') forall ¢’ € Q.
(i) Forall g € Qa, Vg(q) € Ly(A).

(See the Appendix for a proof.)

Notation.Let1 < < m 4+ 1. We write
Xl(Zla ey Zl—l) = O'Zl e Zm.LpE(Zl, ey Zm).

Thus we have, = pZ; ...0Zy.¢p(Z) andxm1(Z1, ..., Zm) = ¢p(Z). LetS =
(St -5 81-1); we write (S, T') to mean(Sy, . .., S;—1, T). Thus we write (sayx;(S)
to meany; (S, -+, Si—1), andx;+1(S, Z;) to meany;11(S1, - .., Si-1, Z1).

Proposition 1 (Main). Let1 <1 < m + 1, A be atypefl — 1) automaton, and be a
valuation profile of lengthl — 1.

(i) (Soundness Preservation) If A is S-sound, thenSig(l, A) is a typet automaton
which is(S, [x:(S)])-sound?

(i) (Completeness Preservation) If A is S-complete, therfig(l, A) is a typet au-
tomaton which igS, [x;(S)])-complete.

Since the type-0 automataofy, is trivially sound and complete with respect to the
empty valuation profile, we obtain the following as an imnagelicorollary.

*By [xi(S1,- -+, Si—1)] we mean]x;(Z1,- - - , Zi—1)]v W.r.t. a valuatiorl that mapsZ. to
Se.
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Theorem 3 (Correctness).The procedure callSig(1, Ag) terminates and returns a
type-1 automaton which igx:])-sound and[x:])-complete. Hence, thanks to Lem-
mas 2 and 3, for each < j < |P], V},,(q]) = ,ngl-(SZ'g(l,Ao)) i.e. the automaton
Sig(1, Ap) recognises the configuration sft;], which is the winning region of the
pushdown parity gamé.

Proof of the Main Proposition We prove Proposition 1 by induction dnFirst the
base casd:= m + 1.

Lemma 4. Let S be a valuation profile of length,, and A a typem automaton.

(i) Phi(A)is atypefm + 1) automaton.
(i) If Ais S-sound therPhi(A)is (S, [¢x(S)])-sound.
(i) If AisS-complete therPhi(A) is (S, [¢r(S)])-complete.

Proof. The proof of (i) is given in the appendix.

(i) SetS” = (S, [¢r(S)]) and let2(p’) = c. Take any transition’, ., = Q
in Phi(A) such that for allqg: € Q, (p/',w) € Ver(Ze). Abusing notation, we take
an appropriate assignment ¥ext(p’,a) — the complete value oNext(p’,a) for
an Abelard position, and a single command forEaise position — that led to the
introduction of the transition. Sincé is S-sound and for al(p*, wy,) € Next(p’,a)
we haveg? =% Q) C Q, we know that(p*, wyw) € Vigr(Z.). Hence all(p*, wj,w)
are inVg-(Z.), and(p’, aw) € Vgr(Zm+1) = [¢r(Z)]{_, since all moves, in the case

’ s/
of Abelard, and a move in the caseklbise, reach configurations i..
(iii) Take any configurationp?, aw) € Vgr(Zm 1) = [¢e(2)]]_ . Let2(p?) = c.

S
There exists an appropriate assignmgipt®, w,), ..., (p*~,w,)} to Next(p’, a) (as
before) such thatp™, wyw) € Vr(Z,.) for all b € {1,...,n}. SinceA is assumed
to be S-complete, it follows that al{p*" , w;,w) have a complete run. In particular, we
have a complete rug» - @Q,, for all h. Hence, by the definition oPhi(A), there

exists a transitiop’ % Q that is complete.

For the inductive case df < I < m, we present the proof whenz, = ;. The
case ofvZ; = vZ; is exactly dual and given in the Appendix. Recall that

Xl(le--;Zl—l) = O'Zl-Xl+1(Zla"' ,Zl).

Lemma 5. SupposerZ; = uZ;. LetS be a valuation profile of length— 1, and A be
atype{l — 1) automaton; sefl = [uZ;.xi1+1(S, Z))].

(i) Sig(l, A) is a typet automaton.
(ii) If Ais S-sound, therbig(l, A) is (S, 6)-sound.
(iii) If Ais S-complete, thewig(l, A) is (S, 6)-complete.

Proof. (i) The result of the recursive call t8ig(l + 1, A) combined with the call
to Proj ensures the property.
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(i) Let 87 := (S,0). Itis straightforward to see that® is S’-sound, since it did
not add any transitions td, which is assumed to b§-sound. Hence, we assuré is
S’-sound. We argue the case fai*!.

Take a transition % Q in A*t! such that for ali; € Q we have(p*, w) € Vg (Zy).
Take the corresponding transitiqﬁrl %, Q" in Sig(1 4 1, A) before the projection.
In particular, for every;® € Q we haveg} or ¢f,, in Q'. By the induction hypothe-
sis, we knowSig(l + 1, A%) is (5, [xi+1(57)])-sound. Furthermoré/s:(Z;) = 6 =
[x1+1(S,0)] = Vor(Z111). SinceSig(l + 1, A%) is (57, [xi1+1(S")])-sound, we have
(p?, aw) € Ver(Z111) = Vr(Z;) as required.

(i) Let A be a typefl — 1) automaton which isS-complete. We use the short-
handd® = [u®Z;.x141(S, Z;)]. Trivially A% is (S, 6°)-complete. Now assume that the
typed Al is (S, 0*)-complete for alle < 3 for some3. By the induction hypothesis,
Bt := Sig(l+1,A%)is (S, 0%, 0°T1)-complete, sinc€>™! = [y,11(S, 6%)]. We need
to show that, after the projectionli™! := Proj(l, BY) is S’-complete, wherey’ :=
(S,0°%1). Take somép/, aw) € Vi7(Z;). We knowB! has a transition;, , > Q sat-
isfying completeness. I contains no states of the forgfi, then the transitioq{ LQ
satisfies completeness i *1. If Q contains stateg’, then(p*, w) € > C §o+1 =
Vs7(Z1). Hence, we have a required complete transition after thgeqgtion, and so,
A+l s S’-complete.

Consequentlyig(l, A) is (S, 6%)-complete for alle < 3 for somes. We require that
Sig(l, A) be(S, [uZi.-xi1+1(S, Z1)])-complete. We proceed by transfinite induction. For
a successor ordinal we repeat the argument above, and elikatva complete run in
the new automatord’ implies a complete run ifig(l, A) (sinceA’ = Sig(l, A)). For

a limit ordinal \, we have thatig(l, A) is (S, §)-complete for alle < ). Sincef* =
Ua<a 0%, the result follows because each configuration in the limijiesars in some
smaller approximant, and the transition witnessing cotepless for the approximant
witnesses completeness for the limit.

6 Optimisation

In the procedureSig(l, A), in caserZ; = vZ;, our definition ofA° contains all allow-
able transitions, and hence is immediately exponentiakéver, if we havey — Q and
g % Q' with Q C @', then acceptance frof)’ implies acceptance frof. That is, the
transition toQ’ is redundant. Furthermore, acceptance fromaniynplies acceptance
from ¢* (trivially). Using these observations, we can optimise automaton. In the
following definition,) < @’ can be taken to mean an accepting run fi@himplies
an accepting run frorg).

Definition 3. For all non-empty sets of statésand Q’, we define
Q<Q = ((¢"€Q=>3qq#d; N qeQ) N (Vg#q¢qeQ=qe Q"))

andExPAND(A) :={¢ % Q' |¢ L QinAandQ < Q' }.
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By specifying monotonicity with respect toXBAND(A) rather than4, A° (in case
07, = vZ;) only needs transitions ig* anqui, which is linear. We can remove redun-
dant transitions at every stage of the algorithm. Sincersitian to{¢*} is powerful
with respect to« we expect to keep the automaton small. However, this wilehiabe
confirmed experimentally.

To test termination ofig(A, 1), we check if EXPAND(A**1) = EXPAND(A?).

Lemma 6. ExPAND(A) < EXPAND(A’) if and only if whenever; % @ in A then
there is som&)’ < Q withg = @’ in A’.

By induction, we extend the property to runs. HencePEND(A) =< EXPAND(A’)
implies£(A) C £(A"). Finally, we have:

Lemma 7. The optimisation preserves monotonicity and both valmegmundness and
valuation completeness.

Conclusion. We have proposed a new, simple and direct algorithm for cdimgpthe
winning region of a pushdown parity game. The algorithm wsesi-calculus formula
that characteriseiSloise’s winning region as a guide to construct the requiredraat
ton. We have identified an optimisation that avoids an im@iedéxponential blow up.
An interesting open problem is to construct winning stregegising our approach.

AcknowledgmentsThis work is supported by EPSRC (EP/F036361). We are greatly
indebted to Arnaud Carayol for his invaluable assistance.
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A Proofs omitted from the main paper

Proofs omitted from the main body of the paper because ofdaskace are presented
here.

A.1 Termination

Lemma 1. We have the following monotonicity properties.

(i) Let1 <! <mandA be atypefl — 1) automaton. InSig(l, A):
a. ifoZ; = pnZ; thenA* < A+l foralli >0
b. if6Z;, = vZ; thenA*t! < At forall i > 0.
(i) Foreveryl <! < m + 1, the constructiorbig(l, —) is monotone.
(iii) Foreveryl <1 < m, the constructiorProj(l, —) is monotone.

Proof. (i): We prove the case af Z; = uZ; by induction oni (the proof of the other
case is omitted as it is dual). For the base case-of0, A° < A! trivially since there
are no transitions from{ in A°. The inductive case follows from the monotonicity of
the constructions'ig(l + 1, —) and Proj (I, —), which are the inductive hypotheses of
(i) and (iii) respectively.

(i)): We first establish the base caseloE m + 1 i.e. Phi(—) is monotone. Let
A < A’ be typem automata. We aim to showhi(A) =< Phi(A’)i.e.foralll < j <
|P|, if ¢ % Q in Phi(A) thengZ % Q in Phi(A’). Since the transitions from all
other states do not change, this is enough.f2g¥) = c. Takeq’ % Q in Phi(A). If
p € Pr we have some rulg’ ¢ — p*' w; with the rung® % Q in A. Otherwise,
p? € Pa, Next(p,a) is the set{ (p**,wy),..., (pF,w,)} andQ = Q' U--- U Q"
with the following transitiong* =% Q1,..., ¢ 2= Q™ in A. Since the former case
can easily be encoded as an instance of the latter, we argget¢bnd case only. For all
1 <t e n,we havey® 2% Q' in Aand sinced < A’ we know thaig®* 2% Q*in A’
Therefore, we hav® = Q' U---UQ™ and, by the definition of the proceduR&i(—),
¢ % Qin A’ as required. For the inductive case, we consider the cas&€0f 117
(the case ot Z; = vZ; is omitted as the proof is dual). Let; < As be typefl — 1)
automata. For eache {1,2}, let A?, Al A% ... be the intermediate automata that
are constructed in the computation$if (I, A;). By the induction hypothesis of (i), we
haveA) < Al < A% < .... SinceSig(l + 1,—) and Proj(l, —) are monotone by the
induction hypothesis of (ii) and (iii) respectively, we leadi < Aj for eachi > 0. It
follows thatSig (1, A1) < Sig(l, A2) as required.

(iii): Straightforward.
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A.2 Valuation Soundness and Completeness

Lemma 3. Let A be anS-complete automaton.

(i) For all ¢, w andw’, if ww' € Vg(q) thenA has a rung = @ such thatw’ €
Vs(q') forall ¢’ € Q.
(i) Forall g € Q4, V5(q) C Ly(A).

Proof. (i) The proof is by induction on the length of the woud Whenw = a, the
property is simplyS-completeness. Take = au and somey with auw’ € Vg(q).
From S-completeness, we have a transitipA> @ such that for ally’ € Q, we have
uw € Vi(g'). By induction on the length of the word, we have a @r* Q' satisfying
the property. Hence, we haye™ Q - Q' as required.

(i) Take w € Vi(q). Instantiating (i) withw’ = ¢, we know A has a runy = Q.
Every state in) must be accepting becauseas only accepted from accepting states
and there can be n@’, ¢) satisfying anyS; because is not a valid stack.

A.3 Proof of Proposition 1

Lemma 4. (i) Let A be a typem automaton.Phi(A) is a type{m + 1) automaton.
l.e. all transitionsg = Q satisfy:¢5 € Qiffa =L iff Q = {¢° }.

Proof. Suppose there is some transiti@?'n# Q with ¢; ¢ Q or @ # {q}}. Then the
transition was added from some appropriatert(p’, 1). Then it must be the case that
for some(p*,w) € Next(p’, L) the last character i is not | (elseq; € Q). This
meansl is removed from the stack, which is explicitly disallowed.

Conversely, suppose there is some transition> @ wherea #.1 and g € Q.
Then the transition was added from some appropiétet(p’, a). It must be the case
that for some(p*, w) € Next(p’, a) the last character iw is | (elseq; ¢ Q). This
meansL is pushed on to the stack, which is explicitly disallowed.

Lemma 8. Suppose Z; = vZ;. Setd = [vZ;.x1+1(S, Z1)].

(i) Sig(l,A)is atypet automaton.
(ii) If Ais S-sound, therbig(l, A) is (S, #)-sound.
(iii) If AisS-complete, therig(l, A) is (.5, #)-complete.

Proof. (i) The result of the recursive call t6ig(l + 1, A) combined with the call
to Proj ensures the property.

(i) The proofis by induction. Let! be a typef/ — 1) automaton which i$-sound.
We use the shorthan@l® = [u*Z;.x;+1(S, Z;)]. Observe thatd® is (.S, 6")-sound
(trivially, since the zeroth approximant contains all cgofations). Inductively assume
that A’ is (S, 6%)-sound for alla < 3 for someg. By the induction hypothesig3? :=
Sig(l + 1, A?) is (S, 0<,0°"1)-sound, sincd**! = [x;41(S,0%)]. We need to show

that, after the projections{’*! := Proj(l, B') is S’-sound wheres” := (S, 0°+1).
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Take some transitiop! % @ in A™! such that for allf; € Q we have(p*,w) €
Vo (Z1). We knowBi*+! had a sound, unprojected transitiqfnH 2, @' such that for
all ¢ € Q we have eithey € Q" or ¢/, € Q'. In the former case, by assumption we
know (p*, w) € #o+1 C 9°. In the latter(p*, w) € #*+1, also by assumption. Since
Btis (S,0%,6%*1)-sound we knowp’, aw) € #*+! as required.
Consequently, we have th&ig(l, A) is (S, #*)-sound for alla < 3 for somej3. We
require thatSig(l, A) be (S, [1Zi.x1+1(S, Z1)])-sound. We proceed by transfinite in-
duction. For a successor ordinal we repeat the argumentabod observe that sound-
ness in the new automaton implies soundnesSiir/, A) (since they are equal). For
a limit ordinal \, we have thatSig(l, A) is (S, 6%)-sound for alla. < . Since Since
6* = N,<\ 67, the result follows because each configuration in the lipgtesars in all
smaller approximants, artig(l, A) is sound for all smaller approximants (and trivially
for the zeroth approximant).

(iii) Let §” := (S, 0). It can be easily seen that’ is S’-complete (always move to
q" or g3 during the first transition). Hence, we assurfds S’-complete. We argue the
case for + 1.
Take some(p’, aw) such that(p’, aw) € Vg(Z;). By the induction hypothesis, we
know Sig(I+1, A%)is (S, [xi+1(57)])-complete. Furthermor&z(Z;) = 6 = [xi+1(S,0)] =
Visr(Z151). Since we have af’, [x;+1(S’)])-complete transitiog? - Q in A™+* be-
fore the projections, it follows that, for a}ﬁ € 7(Q) we know, (p?, w) € V5(Z) as
required.

A.4 Optimisations

Lemma 6. EXPAND(A) < EXPAND(A’) if and only if whenever; % @ in A then
there is som&)’ < Q withg = @’ in A’.

Proof. First we assume ¥PAND(A) < EXPAND(A’). Takeq % @Q in A. Theng =
Q € EXPAND(A). We haveq % @Q € EXPAND(A’), and thereforey % Q' is a
transition of A’ with Q' < Q.

In the other direction, we assume= Q in A impliesq = @’ in A’. Takeq %
Q € EXPAND(A'). We need; % @ € EXPAND(A’). We have some % @’ in A with
Q' < Q.Hence, we havg % Q" in A’ with Q" < Q. Henceg % Q € EXPAND(A’)
as required.

We can extend the definition to runs as follows.

Lemma 9. EXPAND(A) < EXPAND(A’) if and only if whenevey - @ in A then
there is some)’ < Q with ¢ = Q' in A’.
Proof. The proof is by induction over the length af In the base case = a and the

proof follows directly from=. Whenw = aw’ with w’ # ¢ we haveg % Q, N Q2
whereg; ¢ Q1 (sincew’ # ¢). By < we haveg 2, Q4 with Q) < Q1. By induction

and thatg* % {¢*} for all « #1 andg* EX {45} we also have; — @3 with
@}, < Q2, and hencg - Q, as required.
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Finally, we check that the optimisations do not contradiet important properties
of the construction.

Lemma 7. The optimisation preserves monotonicity and both valmegimundness and
valuation completeness.

Proof. Let A’ be A with a removed transition. That®AND(A’) < EXPAND(A) is
immediate, since we have only removed a transition fuérto obtain A’. To show
ExPAND(A) < EXPAND(A’) we only need to consider the removed transition (since
all other transitions can be matched with their counte)p&inceq = Q' can be
matched withy = @, which hasQ < Q’, we are done.

Preservation of soundness is straightforward since we balyeremoved a transi-
tion. Finally, suppose a complete transitipn’> ) was removed by the optimisation.
This implies that there exists a transitigr= @’ with Q' < Q. Suppose this transition
is not complete. Then there is some incomplete state)’. Since this state is nat",
it must also appear i§). This is a contradiction, sinag-% Q is complete.



