
Winning Regions of Pushdown Parity Games:
A Saturation Method

M. Hague and C.-H. L. Ong

Oxford University Computing Laboratory

Abstract. We present a new algorithm for computing the winning region of a
parity game played over the configuration graph of a pushdown system.Our
method gives the first extension of the saturation technique to the parity con-
dition. Finite word automata are used to represent sets of pushdown configura-
tions. Starting from an initial automaton, we perform a series of automaton trans-
formations to compute a fixed-point characterisation of the winning region. We
introduce notions of under-approximation (soundness) and over-approximation
(completeness) that apply to automaton transitions rather than runs, and obtain
clean proof of correctness. Our algorithm is simple and direct, and it permits an
optimisation that avoids an immediate exponential blow up.

1 Introduction

Pushdown systems — finite-state transition systems equipped with a stack — are an old
model of computation which has recently enjoyed renewed interests from the software
verification community. They accurately model the control flow of first-order recur-
sive programs [7] (such as C and Java), and lend themselves readily to algorithmic
analysis. For these reasons, pushdown systems have played akey rôle in the automata-
theoretic approach to software model checking [1, 5, 10, 14]. Considerable progress has
been made in the implementation of scalable model checkers of pushdown systems.
These tools (e.g. Moped [10] and Bebop [11]) are an essentialback-end component of
such model checkers as SLAM [12].

The modal mu-calculus is an important language for describing properties of pro-
gram behaviour because it is highly expressive (all standard temporal logics in verifi-
cation are embeddable in it). In a seminal paper [3] at CAV 1996, Walukiewicz showed
that local modal mu-calculus model checking of pushdown systems, or equivalently
[4] the solution ofpushdown parity games(i.e. parity games over the configuration
graphs of pushdown systems), is EXPTIME-complete. His method reduces pushdown
parity games to finite parity games by a kind of powerset construction over the control
states, which is immediately exponential in size. Whilstlocal model checking asks if a
designated state (of a pushdown system) satisfies a given property,globalmodel check-
ing computes a finite representation of the set of states satisfying the property. The
latter is equivalent to computinǵElöıse’s winning region of a pushdown parity game,
which is the problem that we have set ourselves here. Global model checking used to be
the norm in verification (CTL and many symbolic model checkers still perform global
model checking). While local model checking can be expected to have better complex-
ity, global model checking is important when repeated checks are required (because

2 M. Hague and C.-H. L. Ong

tests on the representing automata tend to be comparativelycheap), or where the model
checking is only part of the verification process.

Related work.Cachat [13] and Serre [9] have independently generalised Walukiewicz’
algorithm to solve the global model-checking problem: theyuse the local model-checking
algorithm as an oracle guiding the construction of automatarecognising the winning re-
gion. An alternative approach, introduced by Piterman and Vardi [8], uses two-way al-
ternating tree automata to navigate a tree representing allpossible stacks. After several
reductions, including the complementation of Büchi automata, an automaton accepting
the winning region can be constructed.

In 1997 Bouajjaniet al. [1] (at CONCUR), and, independently, Finkelet al. [2]
(at INFINITY), introduced asaturation technique for global model-checking reacha-
bility properties of pushdown systems. From a finite-word automaton recognising a
given configuration-setC, they perform a backwards-reachability analysis. By itera-
tively adding new transitions to the automaton, the set of configurations that can reach
some configuration inC is constructed. Since the number of new transitions is bounded,
the iterative process terminates. This approach underpinsthe acclaimed Moped tool.

Contributions. This paper presents a new algorithm for computingÉlöıse’s winning
region of a pushdown parity game. We represent (regular) configuration sets as alter-
nating multi-automata [1]. Using a modal mu-calculus formula that defines the winning
region as a guide, our algorithm iteratively expands (when computing least fixpoints)
and contracts (when computing greatest fixpoints) an approximating automaton until
the winning region is precisely recognised. Our method is a generalisation of Cachat’s
for solving Büchi games [13], which is itself a generalisation of the saturation tech-
nique for reachability analysis. However, we adopt a different proof strategy which we
believe to be cleaner than Cachat’s original proof. Our contribution can equivalently
be presented as a solution to theglobal model checking problem: given a pushdown
systemK, a modal mu-calculus formulaχ(Y), and a regular valuationV , our method
candirectlycompute an automaton that recognises the setJχ(Y)KKV of K-configurations
satisfyingχ(Y) w.r.t. V .

Our algorithm has several advantages:
(i) It is simple and direct. Even though pushdown graphs are in general infinite, our

construction of the automaton that recognises the winning region follows, in outline, the
standard pen-and-paper calculation of the semantics of modal mu-calculus formulas in
afinite transition system. Through the use ofprojection, our algorithm is guaranteed to
terminate in a finite number of steps, even though the usual fixpoint calculations may
require transfinite iterations. Thanks to projection, the state-sets of the approximating
automata are bounded: during expansion, the number of transitions increases, but only
up to the bound determined by the finite state-set; during contraction, the number of
transitions decreases until stabilisation or zero.

(ii) Our proof is simple and easy to understand. A key conceptual innovation of the
correctness argument arevaluation soundnessand valuation completeness. They are
respectively under- and over-approximation conditions that applylocally to individual
transitions of the automaton, rather thanglobally to the extensional behaviour of the

Winning Regions of Pushdown Parity Games: A Saturation Method 3

automaton (such as runs). By combining these conditions, which reduce the overhead
of the proof, we show that our algorithm is both sound and complete in the usual sense.

(iii) Finally, our decision procedure builds on and extendsthe well-known satura-
tion method, which is the implementation technique of choice of pushdown checkers.
In contrast to previous solutions, our algorithm permits a straightforward optimisation
that avoids an immediate exponential explosion, which we believe is important for an
efficient implementation. Another advantage worth noting is that the automaton repre-
senting the winning region is independent of the maximum priority m (even though it
takes time exponential inm to construct).

2 Preliminaries

A pushdown parity game is a parity game defined over apushdown graph(i.e. the
configuration graph of a pushdown system). Formally it is a quadruple(P,D, Σ⊥, Ω)
whereP = PA⊎PE = {p1, . . . , pz} is a set of control states partitioned into Abelard’s
andÉlöıse’s states,Σ⊥ := Σ ∪ {⊥} is a finite stack alphabet (we assume⊥ /∈ Σ),
D ⊆ P×Σ⊥×P×Σ∗

⊥ is a set of pushdown rules andΩ : P → {1, . . . ,m} is a function
assigning priorities to control states. As is standard, we assume that the bottom-of-stack
symbol⊥ is neither pushed onto, nor popped from, the stack. We also assume there is
(at least) a rule for eachp ∈ P anda ∈ Σ⊥.

A play begins from some configuration〈p, aw〉. The player controllingp chooses
p a → p′ w′ ∈ D and the play moves to〈p′, w′w〉. Then, the player controllingp′

chooses a move, and so on, generating an infinite run. The priority of a configuration
〈p,w〉 is Ω(p). A priority occurs infinitely often in a play if there are an infinite number
of configurations with that priority.́Elöıse wins the play if the smallest priority occur-
ring infinitely often is even. Otherwise, Abelard is the winner.

A player’swinning region of a pushdown parity game is the set of configurations
from which the player can always win the game, regardless of their opponent’s strategy.
Élöıse’s winning regionWE of a parity gameG is definable in the modalµ-calculus;
the following is due to Walukiewicz [3]:

WE = JµZ1.νZ2. . . . µZm−1.νZm.ϕE(Z1, . . . , Zm)KGV

wherem is the maximum parity (assumed even),V is a valuation of the variables1, and

ϕE(Z1, . . . , Zm) :=

E ⇒
∧

c∈{1,...,m}

(c ⇒ ♦Zc)

 ∧

¬E ⇒
∧

c∈{1,...,m}

(c ⇒ ¤Zc)

whereE is an atomic proposition asserting the current configuration is Élöıse’s and, for
1 ≤ c ≤ m, c asserts that the priority of the current control state isc.

For each1 ≤ c ≤ m, we have a variableZc. The odd priorities are bound byµ
operators which can be intuitively understood as “finite looping”. Dually, even priorities
are bound byν operators and can be understood as “infinite looping”. The formulaϕE

1 The valuation is initially empty since the formula has no free variables.

4 M. Hague and C.-H. L. Ong

asserts that a variableZc is visited whenever a configuration of priorityc is encountered.
Thus the full formula asserts that the minimal priority occurring infinitely often must be
even — otherwise a variable bound by theµ operator would be passed through infinitely
often. It can be shown by a signature lemma thatÉlöıse has a winning strategy from a
configuration satisfying the formula [3]. Since the formula’s inverse is a similar formula
with µ/ν, and¤/♦ reversed, Abelard has a winning strategy from any configuration not
in WE .

Thanks to the Knaster-Tarski Fixpoint Theorem, the semantics of a fixpoint formula
JσZ.χ(Y ,Z)KGV whereσ ∈ {µ, ν} can be given as the limit of the sequence ofα-
approximants JσαZ.χ(Y ,Z)KGV whereα ranges over the ordinals andλ ranges over
the limit ordinals:

Jσ0Z.χ(Y ,Z)KGV := Init

Jσα+1Z.χ(Y ,Z)KGV := Jχ(Y ,Z)KG
V [Z 7→JσαZ.χ(Y ,Z)KG

V
]

JσλZ.χ(Y ,Z)KGV := ©α<λJσαZ.χ(Y ,Z)KGV

whereInit = ∅ and© =
⋃

when σ = µ, and Init is the set of all configura-
tions and© =

⋂

whenσ = ν. The least ordinalκ such thatJσκZ.χ(Y ,Z)KGV =
JσZ.χ(Y ,Z)KGV is called theclosure ordinal.

Example 1.When interpreted in a pushdown graph,〈σαZ.χ(Y ,Z) 〉α∈Ord may have
an infinite closure ordinal. Consider the following pushdown parity graph (which is a
dual of an example of Cachat’s [13]): all configurations are Abelard’s,Ω(p) = 1 and
Ω(f) = 2.

〈f,⊥〉 〈f, a⊥〉 〈f, aa⊥〉 · · ·

〈p,⊥〉 〈p, a⊥〉 〈p, aa⊥〉 · · ·

In this game,WE = JµZ1.νZ2.ϕE(Z1, Z2)K consists of all configurations. However,
any 〈f, a an⊥〉 for somen only appears in an approximant of the least fixed point
when 〈f, a a an⊥〉 and 〈p, a an⊥〉 appear in the previous approximant (since Abelard
may move to either of these configurations). Hence, all〈p, an⊥〉 must appear in the
α-approximant before any〈f, an⊥〉 can appear in the(α + 1)-approximant. The first
approximant containing allp configurations is theω-approximant.

To represent (regular) configuration-sets, we use Bouajjani et al.’s notion of alternat-
ing multi-automata [1]. Given a pushdown system(P,D, Σ) with P = {p1, . . . , pz},
an alternating multi-automaton A is a tuple(Q, Σ,∆, I,F) whereQ is a finite set
of states,∆ ⊆ Q × (Σ ∪ {⊥}) × 2Q is a set of transitions (we assume⊥ /∈ Σ),
I = {q1, . . . , qz} ⊆ Q is a set of initial states, andF ⊆ Q is a set of final states.
Observe that there is an initial state for each control stateof the pushdown system. We
write q

a
−→ Q just if (q, a,Q) ∈ ∆; and defineq

ε
−→ {q}; andq

aw
−−→ Q1 ∪ · · · ∪ Qn just

if q
a
−→ {q1, . . . , qn} andqk

w
−→ Qk for all 1 ≤ k ≤ n. Finally we define thelanguage

accepted byA, L(A), by: 〈pj , w〉 ∈ L(A) iff qj w
−→ Q for someQ ⊆ F . alternating

multi-automata simply asautomata.

Winning Regions of Pushdown Parity Games: A Saturation Method 5

Reachability and Projection.The formulaϕE(Z1, . . . , Zm) asserts a ‘one-step’ reacha-
bility formula, for which we use a variant of Bouajjaniet al.’s reachability algorithm [1].
Cachat’s extension of this algorithm requires a technique called projection. Using an
example, we briefly recall the relevant techniques.

The automatonAeg in Figure 1 (i) represents a configuration setC. Take a PDS with
the rulesp1 a → p2 ε andp2 b → p2 ba. Let Pre(C) be the set of all configurations
that can reachC in exactly one step. To calculatePre(C) we first add a new set of
initial states — since we don’t necessarily haveC ⊆ Pre(C). By applyingp1 a →
p2 ε, any configuration of the form〈p1, aw〉, wherew is accepted fromq2 in Aeg,
can reachC. Hence we add ana-transition fromq1. (Via the pop transition, we reach
〈p2, w〉 ∈ L(Aeg).) Alternatively, viap2 b → p2 ba, any configuration of the form
〈p2, bw〉, wherebaw is accepted fromq2 in Aeg, can reachC. The push, when applied
backwards, replacesba by b. We add ab-transition fromq2 which skips any run overba
from q2. Figure 1 (ii), ignoring the dashed transition, shows the resulting automaton.

To ensure termination of the Büchi construction, Cachat usesprojection, which re-
places a new transition to an old initial state with a transition to the corresponding new
state. Hence, the transition in Figure 1 (ii) fromq1 is replacedby the dashed transition.
The old initial states are then unreachable, and deleted, which, in this case, leaves an
automaton with the same states as Figure 1 (i) but an additional transition. In this sense,
the state-set remains fixed.

q1

q2

b

a

q1

new q1

q2

new q2

b

a

b
aa

Fig. 1. (i) On the left,Aeg accepting〈p2, ba∗〉; and, (ii) on the right,Aeg updated by the rules
p1 a → p2 ε andp2 a → p2 ba. The dashed line is the result of projection.

3 An Example

We begin with an intuitive explanation of the algorithm by means of an example. Con-
sider the pushdown game shown in Figure 2. Since the aim of this example is to give
an overview of the flow of the algorithm, the behaviour of the pushdown system is kept
simplistic. The subscripts indicate the priority of a configuration2 and an arc labelled
with pushw indicates a pushdown rule of the formp a → p′ w for somep, a andp′. Let
pE , p′E ∈ PE andpA ∈ PA.

2 Our priorities here begin at0. This does not change the algorithm significantly.

6 M. Hague and C.-H. L. Ong

〈p′

E , bΣ∗⊥〉
0

〈p′

E , aΣ∗⊥〉
0

〈pE , aΣ∗⊥〉
1

〈pA, aΣ∗⊥〉
1

〈pA, bΣ∗⊥〉
1

〈pE , bΣ∗⊥〉
1

p
u
s
h

a

p
u
s
h

b

pusha

pusha

pushb

pushb

pushb

p
u
s
h

b

Fig. 2.An example pushdown parity game.

Élöıse can win from configurations of the forms〈p′E , aΣ∗⊥〉0, 〈pE , aΣ∗⊥〉1, or
〈p′E , bΣ∗⊥〉0. Élöıse can loop between the last two of these configurations, generating a
run with priority0. From elsewhere, Abelard can force play to〈pA, bΣ∗⊥〉1 and gener-
ate a run with priority1. ComputingÉlöıse’s winning region is equivalent to computing
JνZ0.µZ1.ϕE(Z0, Z1)K

G
V . We illustrate how this is done in the following.

To compute a greatest fixed point, we begin by settingZ0 to be the set of all configu-
rations. We then calculate the automaton recognising the denotation ofµZ1.ϕE(Z0, Z1)
with this value ofZ0. The result is the value ofZ0 for the next iteration. After each it-
eration the value ofZ0 will be a subset of the previous value. This computation reaches
a limit when the value ofZ0 stabilises, which is the denotation of the formula.

Computing the least fixed point proceeds in a similar manner,except that the initial
value ofZ1 is set to∅. We then compute the (automaton that recognises the) denotation
of ϕE(Z0, Z1), which gives us the next value ofZ1. Dual to the case of greatest fixed
points, the value ofZ1 increases with each iteration.

Constructing the Automaton.(We shall often confuse the denotation of a formula with
the automaton that recognises it, leaving it to the context to indicate which is intended.)
We begin by settingZ0 to the set of all configurations. The automaton recognising
all configurations is shown in Figure 3 (i)3. Given this value ofZ0, we compute the
denotation ofµZ1.ϕE(Z0, Z1). The first step is to set the initial value ofZ1 to the
empty set. The corresponding automaton is also shown in Figure 3 (ii). Observe that we
have a separate set of initial states forZ0 andZ1.

We now computeϕE(Z0, Z1) which is the next value ofZ1. A configuration〈pj , aw〉
with priority c should be accepted if́Elöıse can play - or Abelard must play - a move
which reaches some〈pk, w′w〉 ∈ V (Zc). The result is Figure 3 (iii).

Observe that the computation of the new automaton has only added transitions.
When computing a least fixed point, each generation of initialstates has more transi-
tions than the previous generation. In this example the number of possible transitions is
finite since all transitions happen to go toq∗f . Therefore, the automaton must eventually

3 This is a simplification of the automaton defined in Section 4.

Winning Regions of Pushdown Parity Games: A Saturation Method 7

become saturated, causing termination. In the full algorithm, transitions from the new
set of initial states to the old areprojectedback onto the new initial states. This en-
sures that the previous generation is not reachable. Hence,the state-set is fixed. When
computing a greatest fixed point, termination can be proved dually: we begin with all
transitions and iteratively remove transitions at each stage.

We now compute the next iterate ofZ1. We add a new set of initial states, and
perform the reachability analysis, as in Figure 4 (i). If we were to perform another
round of the reachability analysis, we would find a fixed point. That is, the transitions
from the new initial states corresponding toZ1 have the same outgoing transitions as the
old. This fixed point is the next value ofZ0. Therefore, we set the current initial states
of Z1 to be the new initial states ofZ0. If necessary, we would also perform projections
from the old initial states ofZ0 to the new. We then begin evaluatingµZ1.ϕE(Z0, Z1)
with our new value ofZ0. The initial value ofZ1 is the empty set, so we introduce new
initial states corresponding toZ1 with no outgoing transitions. Figure 4 (ii) shows the
automaton after these steps.

We compute the next iterate ofZ1 as before, as in Figure 5. The second automaton
is the fixed point ofZ1, and hence the new iterate ofZ0. Since the newZ0 is identical
to the previousZ0, we have reached a final fixed point. Setting the initial states of Z1

to be the initial states ofZ0, and deleting any unreachable states, gives the automaton
in Figure 6, which acceptśElöıse’s winning region.

q
E
0

q
E′

0
q
∗
f

q
A
0

Σ

Σ

Σ

Σ

q
E
0

q
E′

0

q
A
0

q
∗
f

q
E
1

q
E′

1

q
A
1

Σ

Σ

Σ

Σ

q
E
0

q
E′

0

q
A
0

q
∗
f

q
E
1

q
E′

1

q
A
1

Σ

Σ

Σ

Σ

a, b

Fig. 3.From left to right, (i) the automaton accepting the initial value ofZ0; (ii) the automaton ac-
cepting the initial values ofZ0 andZ1; and (iii) the automaton after the first round of reachability
analysis.

4 The Algorithm

Fix a pushdown parity gameG = (P,D, Σ,Ω) that has maximum prioritym. The
algorithm has two key components. The first —Phi(A) — computes an automaton

8 M. Hague and C.-H. L. Ong

q
E
0

q
E′

0

q
A
0

q
∗
f

q
E
1

q
E′

1

q
A
1

Σ

Σ

Σ

Σ

a

a, b

q
E
0

q
E′

0

q
A
0

q
∗
f

q
E
1

q
E′

1

q
A
1

Σ

a

a, b

Fig. 4. (i) The automaton after the second round of reachability analysis; and (ii)the automaton
with the new value ofZ0 andZ1 set to the empty set.

q
E
0

q
E′

0

q
A
0

q
∗
f

q
E
1

q
E′

1

q
A
1

Σ

a

a, b

a, b

q
E
0

q
E′

0

q
A
0

q
∗
f

q
E
1

q
E′

1

q
A
1

Σ

a

a, b

a

a, b

Fig. 5. The automaton after the first round of reachability analysis with the newZ0; and the
automaton after the second round of reachability analysis with the newZ0.

q
E
0

q
E′

0
q
∗
f

q
A
0

Σ

a

a, b

Fig. 6. The automaton accepting the winning region ofÉlöıse.

Winning Regions of Pushdown Parity Games: A Saturation Method 9

recognisingJϕE(Z1, . . . , Zm)KGV , given an automatonA recognising the configuration-
setsV (Z1), . . . , V (Zm). The second —Sig(l, A) — computes, for each1 ≤ l ≤ m,
an automaton recognisingJσZl.χl+1(Z1, . . . , Zl)K

G
V whereσ is eitherµ or ν, given an

automatonA recognising the configuration-setsV (Z1), . . . , V (Zl−1), and

χl+1(Z1, . . . , Zl) := σZl+1 . . . σZm.ϕE(Z1, . . . , Zm).

Format of the Automata.We describe the format of the automata constructed during
the algorithm. LetQall := {q∗, qε

f}, andQc :=
{

qj
c | 1 ≤ j ≤ |P|

}

for each1 ≤ c ≤
m+1. These states are used to give the valuations of the variablesZ1, . . . , Zm, and the
semantics ofϕE(Z1, . . . , Zm) whenc = m + 1.

Let 0 ≤ l ≤ m + 1. An automatonA is said to betype-l just if:

(i) The state-setQA := Q1 ∪ · · · ∪ Ql ∪ Qall.
(ii) Every transition of the formqj

c

a
−→ Q has the property thatQ 6= ∅, and for allj′

andc′ > c, qj′

c′ /∈ Q (i.e. there are no transitions to states with a higher priority).
(iii) The only final state isqε

f which can only be reached by a⊥-transition. I.e. for each

q
a
−→ Q, we haveqε

f ∈ Q iff Q = {qε
f} iff a =⊥.

(iv) We also haveq∗
Σ
−→ {q∗} and q∗

⊥
−→ {qε

f} and no other transitions fromq∗.
Furthermore,qε

f never has any outgoing transitions.

It follows that there is a unique automaton of type-0.
In the following, letA be a type-l automaton, where1 ≤ c ≤ l ≤ m + 1. We define

Lc(A) ⊆ P Σ∗ ⊥ by: for 1 ≤ j ≤ |P|, 〈pj , w〉 ∈ Lc(A) just if w is accepted byA
from the initial stateqj

c . ThusLc(A) is intended to represent the current valuation of the
variableZc; in casel = m+1, Lm+1(A) is intended to representJϕE(Z1, . . . , Zm)KGV
where the valuationV mapsZc to Lc(A). If we omit the subscript and writeL(A), we
meanLl(A). By abuse of notation, we defineLq(A) ⊆ Σ∗⊥ ∪ { ǫ } to be the set of
words accepted byA from the stateq (note thatLq∗(A) = Σ∗⊥ andLqε

f
(A) = { ε }).

Definition of the Algorithm.Given a pushdown parity gameG, the algorithm presented
in Figure 7 computesWE , the winning region ofG:

WE = JµZ1.νZ2. . . . σZm−1.σZm.ϕE(Z1, . . . , Zm)KG∅ .

In computingJϕE(Z1, . . . , Zm)KGV we may add an exponential number of transitions.
To computeJσZl. · · · .σZm . ϕE(Z1, · · · , Zm)KGV we may require an exponential num-
ber of iterations. Hence, in the worst case, the algorithm is(singly) exponential in the
number of control states and the maximum prioritym.

Theorem 1. Given a pushdown parity gameG = (P,D, Σ,Ω), we can construct an
automaton recognising the winning region ofÉlöıse in EXPTIME in|P| ·m wherem is
the maximum priority.

The alternating multi-automaton returned by the algorithm, Sig(1, A0), hasn = |P|+2
states. The number of transitions is bounded byn · |Σ| · 2n, which is independent ofm.

10 M. Hague and C.-H. L. Ong

procedure Phi(A)

Input: A type-m automatonA as valuation ofZ = Z1, · · · , Zm.
Output: A type-(m + 1) automaton denotingϕE(Z), relative toA.

1. (1-Step Reachability) Construct the automatonA′ by adding new states
{q1

m+1, . . . , q
|P|
m+1} and the following transitions toA. For each1 ≤ j ≤ |P|,

setc := Ω(pj), and
– if pj ∈ PE thenqj

m+1
a
−→ Q if qk

c

w
−→ Q and(pk, w) ∈ Next(pj , a)

– if pj ∈ PA thenqj
m+1

a
−→ Q1 ∪ · · · ∪ Qn if qk1

c

w1−−→ Q1, . . . , qkn
c

wn−−→
Qn, andNext(pj , a) = {(pk1 , w1), . . . , (p

kn , wn)}
whereNext(pj , a) := { (pk, w) | pj a → pk w ∈ D }.

2. return A′.

procedure Proj (l, A)

Input: 1 ≤ l ≤ m; a type-(l + 1) automatonA.
Output: A type-l automaton.

1. For eachj, replace each transitionqj
l+1

a
−→ Q with qj

l+1
a
−→ πl(Q) where

πl(Q) := {qj′

l+1 | qj′

l ∈ Q} ∪ (Q −Ql).

2. For eachj, remove the stateqj
l .

3. For eachj, rename the stateqj
l+1 to qj

l .

procedure Sig(l, A)

Input: 1 ≤ l ≤ m + 1;
a type-(l − 1) automatonA as valuation ofZ1, · · · , Zl−1.

Output: A type-l automaton denotingσZl · · ·σZm . ϕE(Z), relative toA.

1. if l = m + 1 then return Phi(A)

2. A0 :=

A with new statesQl, but no new transitions ifσZl = µZl

A with new statesQl, and all outgoing ifσZl = νZl

transitions obeying the format of the automata.
3. for i = 0 to ∞ do
4. Bi := Sig(l + 1, Ai)
5. Ai+1 := Proj (l, Bi)
6. if Ai = Ai+1 then return Ai

Input: A pushdown parity gameG = (P,D, Σ,Ω) with max. prioritym.
Output: A type-1 automaton recognisingJχ1K

G , the winning region ofG.

begin
return Sig(1, A0) % A0 is the unique type-0 automaton.

end

Fig. 7.Algorithm for computing winning region of a pushdown paritygame.

Winning Regions of Pushdown Parity Games: A Saturation Method 11

5 Termination and Correctness

Termination First an auxiliary notion of monotonicity for automaton constructions.
Let 1 ≤ l, l′ ≤ m + 1, andA and A′ be type-l automata. We writeA ¹ A′ to
mean: for allq, a andQ, if q

a
−→ Q is anA-transition then it is anA′-transition. We

consider automaton constructionsT (such asSig ,Phi andProj) that transform type-
l automata to type-l′ automata. We say thatT is monotonejust if T (A) ¹ T (A′)
wheneverA ¹ A′.

To show that our winning-region construction procedure terminates, it suffices to
prove the following.

Theorem 2 (Termination).For every1 ≤ l ≤ m+1 and every type-(l−1) automaton
A, the procedureSig(l, A) terminates.

We prove the Theorem by induction onl. It is straightforward to establish the base
case ofl = m + 1: Phi(A) (whereA is type-m) terminates. For the inductive case of
Sig(l,−) where1 ≤ l ≤ m, sinceSig(l + 1,−) terminates by the induction hypoth-
esis, andProj (l,−) clearly terminates, it remains to check that in the computation of
Sig(l, A) whereA is type-(l − 1), there exists ani ≥ 0 such thatAi = Ai+1. Since all
automata of the same type have the same finite state-set (andA0, A1, . . . are all type-
l) , it suffices to show (i) of the following Lemma (see the Appendix for a mutually
inductive proof).

Lemma 1 (Monotonicity). We have the following properties.

(i) Let 1 ≤ l ≤ m andA be a type-(l − 1) automaton. InSig(l, A):
a. if σZl = µZl thenAi ¹ Ai+1 for all i ≥ 0
b. if σZl = νZl thenAi+1 ¹ Ai for all i ≥ 0.

(ii) For every1 ≤ l ≤ m + 1, the constructionSig(l,−) is monotone.
(iii) For every1 ≤ l ≤ m, the constructionProj (l,−) is monotone.

Correctness To prove correctness, we introduce the notions ofvaluation soundness
andcompleteness. Fix a pushdown parity gameG = (P,D, Σ,Ω). A valuation profile
is a vectorS = (S1, . . . , Sl) of configuration-sets (i.e. vertex-sets of the underlying
configuration graph). We define the induced valuationVS : Zc 7→ Sc, which we extend
to a mapVS : QA −→ 2Σ∗⊥ on the states of a type-l automaton as follows:

VS :=

qj
c 7→ { w | 〈pj , w〉 ∈ Sc } 1 ≤ j ≤ |P|, 1 ≤ c ≤ l

q∗ 7→ Σ∗⊥
qε
f 7→ { ε }

Definition 1. Given a valuation profileS of lengthl, a type-l automatonA is S-sound
just if, for all q, a andw, if A has a transitionq

a
−→ Q such thatw ∈ VS(q′) for all

q′ ∈ Q, thenaw ∈ VS(q).

By induction on the length of the word, valuation soundness extends to runs of a
multi-automaton. We then obtain that all accepting runs aresound.

12 M. Hague and C.-H. L. Ong

Lemma 2. LetA be aS-sound automaton.

(i) For all q, w andw′, if A has a runq
w
−→ Q such thatw′ ∈ VS(q′) for all q′ ∈ Q,

thenw w′ ∈ VS(q).
(ii) For all q ∈ QA, Lq(A) ⊆ VS(q).

Proof. (i) We prove by induction on the length of the wordw. Whenw = a, the prop-
erty is justS-soundness. Takew = au and some runq

a
−→ Q

u
−→ Q′ such that for

all q′ ∈ Q′, we havew ∈ VS(q′). By the induction hypothesis, we have the property
for the runQ

u
−→ Q′. Hence, we have for allq′ ∈ Q that,uw′ ∈ VS(q′). Thus, from

S-soundness, we haveauw′ ∈ VS(q).
(ii) Take an accepting runq

w
−→ Qf of A. We have for allq′ ∈ Qf = {qε

f},
ε ∈ VS(q′). Thanks to (i), we havew ∈ VS(q).

Definition 2. Given a valuation profileS of lengthl, a type-l automatonA isS-complete
just if, for all q, a andw, if aw ∈ VS(q) thenA has a transitionq

a
−→ Q such that

w ∈ VS(q′) for all q′ ∈ Q.

By induction on the length of the word, valuation completeness extends to runs.
Furthermore, an accepting run always exists when required.

Lemma 3. LetA be anS-complete automaton.

(i) For all q, w andw′, if w w′ ∈ VS(q) thenA has a runq
w
−→ Q such thatw′ ∈

VS(q′) for all q′ ∈ Q.
(ii) For all q ∈ QA, VS(q) ⊆ Lq(A).

(See the Appendix for a proof.)

Notation.Let 1 ≤ l ≤ m + 1. We write

χl(Z1, . . . , Zl−1) := σZl · · ·Zm.ϕE(Z1, . . . , Zm).

Thus we haveχ1 = µZ1 . . . σZm.ϕE(Z) andχm+1(Z1, . . . , Zm) = ϕE(Z). Let S =
(S1, . . . , Sl−1); we write(S, T) to mean(S1, . . . , Sl−1, T). Thus we write (say)χl(S)
to meanχl(S1, · · · , Sl−1), andχl+1(S,Zl) to meanχl+1(S1, . . . , Sl−1, Zl).

Proposition 1 (Main). Let1 ≤ l ≤ m + 1, A be a type-(l − 1) automaton, andS be a
valuation profile of lengthl − 1.

(i) (Soundness Preservation) If A is S-sound, thenSig(l, A) is a type-l automaton
which is(S, Jχl(S)K)-sound.4

(ii) (Completeness Preservation) If A is S-complete, thenSig(l, A) is a type-l au-
tomaton which is(S, Jχl(S)K)-complete.

Since the type-0 automatonA0 is trivially sound and complete with respect to the
empty valuation profile, we obtain the following as an immediate corollary.

4 By Jχl(S1, · · · , Sl−1)K we meanJχl(Z1, · · · , Zl−1)KV w.r.t. a valuationV that mapsZc to
Sc.

Winning Regions of Pushdown Parity Games: A Saturation Method 13

Theorem 3 (Correctness).The procedure callSig(1, A0) terminates and returns a
type-1 automaton which is(Jχ1K)-sound and(Jχ1K)-complete. Hence, thanks to Lem-
mas 2 and 3, for each1 ≤ j ≤ |P|, VJχ1K(q

j
1) = L

q
j
1

(Sig(1, A0)) i.e. the automaton

Sig(1, A0) recognises the configuration setJχ1K, which is the winning region of the
pushdown parity gameG.

Proof of the Main Proposition We prove Proposition 1 by induction onl. First the
base case:l = m + 1.

Lemma 4. LetS be a valuation profile of lengthm, andA a type-m automaton.

(i) Phi(A) is a type-(m + 1) automaton.
(ii) If A is S-sound thenPhi(A) is (S, JϕE(S)K)-sound.
(iii) If A is S-complete thenPhi(A) is (S, JϕE(S)K)-complete.

Proof. The proof of (i) is given in the appendix.

(ii) Set S′ = (S, JϕE(S)K) and letΩ(pj) = c. Take any transitionqj
m+1

a
−→ Q

in Phi(A) such that for allqj′

c′ ∈ Q, 〈pj′

, w〉 ∈ VS′(Zc′). Abusing notation, we take
an appropriate assignment toNext(pj , a) — the complete value ofNext(pj , a) for
an Abelard position, and a single command for anÉlöıse position — that led to the
introduction of the transition. SinceA is S-sound and for all(pk, wk) ∈ Next(pj , a)

we haveqk
c

wk−−→ Qk ⊆ Q, we know that〈pk, wkw〉 ∈ VS′(Zc). Hence all〈pk, wkw〉
are inVS′(Zc), and〈pj , aw〉 ∈ VS′(Zm+1) = JϕE(Z)KGV

S′
, since all moves, in the case

of Abelard, and a move in the case ofÉlöıse, reach configurations inZc.

(iii) Take any configuration〈pj , aw〉 ∈ VS′(Zm+1) = JϕE(Z)KGV
S′

. LetΩ(pj) = c.

There exists an appropriate assignment{(pk1 , w1), . . . , (p
kn , wn)} to Next(pj , a) (as

before) such that〈pkh , whw〉 ∈ VS′(Zc) for all h ∈ {1, . . . , n}. SinceA is assumed
to beS-complete, it follows that all〈pkh , whw〉 have a complete run. In particular, we
have a complete runqkh

c

wh−−→ Qh for all h. Hence, by the definition ofPhi(A), there
exists a transitionpj a

−→ Q that is complete.

For the inductive case of1 ≤ l ≤ m, we present the proof whenσZl = µZl. The
case ofσZl = νZl is exactly dual and given in the Appendix. Recall that

χl(Z1, . . . , Zl−1) := σZl.χl+1(Z1, · · · , Zl).

Lemma 5. SupposeσZl = µZl. LetS be a valuation profile of lengthl − 1, andA be
a type-(l − 1) automaton; setθ = JµZl.χl+1(S,Zl)K.

(i) Sig(l, A) is a type-l automaton.
(ii) If A is S-sound, thenSig(l, A) is (S, θ)-sound.
(iii) If A is S-complete, thenSig(l, A) is (S, θ)-complete.

Proof. (i) The result of the recursive call toSig(l + 1, A) combined with the call
to Proj ensures the property.

14 M. Hague and C.-H. L. Ong

(ii) Let S′ := (S, θ). It is straightforward to see thatA0 is S′-sound, since it did
not add any transitions toA, which is assumed to beS-sound. Hence, we assumeAi is
S′-sound. We argue the case forAi+1.
Take a transitionqj

l

a
−→ Q in Ai+1 such that for allqk

l′ ∈ Q we have〈pk, w〉 ∈ VS′(Zl′).
Take the corresponding transitionqj

l+1
a
−→ Q′ in Sig(l + 1, Ai) before the projection.

In particular, for everyqk
l ∈ Q we haveqk

l or qk
l+1 in Q′. By the induction hypothe-

sis, we knowSig(l + 1, Ai) is (S′, Jχl+1(S′)K)-sound. Furthermore,VS′(Zl) = θ =
Jχl+1(S, θ)K = VS′(Zl+1). SinceSig(l + 1, Ai) is (S′, Jχl+1(S′)K)-sound, we have
〈pj , aw〉 ∈ VS′(Zl+1) = VS′(Zl) as required.

(iii) Let A be a type-(l − 1) automaton which isS-complete. We use the short-
handθα = JµαZl.χl+1(S,Zl)K. Trivially A0 is (S, θ0)-complete. Now assume that the
type-l Ai is (S, θα)-complete for allα ≤ β for someβ. By the induction hypothesis,
Bi := Sig(l+1, Ai) is (S, θα, θα+1)-complete, sinceθα+1 = Jχl+1(S, θα)K. We need
to show that, after the projection,Ai+1 := Proj (l, Bi) is S′-complete, whereS′ :=

(S, θα+1). Take some〈pj , aw〉 ∈ VS′(Zl). We knowBi has a transitionqj
l+1

a
−→ Q sat-

isfying completeness. IfQ contains no states of the formqk
l , then the transitionqj

l

a
−→ Q

satisfies completeness inAi+1. If Q contains statesqk
l , then〈pk, w〉 ∈ θα ⊆ θα+1 =

VS′(Zl). Hence, we have a required complete transition after the projection, and so,
Ai+1 is S′-complete.
ConsequentlySig(l, A) is (S, θα)-complete for allα ≤ β for someβ. We require that
Sig(l, A) be(S, JµZl.χl+1(S,Zl)K)-complete. We proceed by transfinite induction. For
a successor ordinal we repeat the argument above, and observe that a complete run in
the new automatonA′ implies a complete run inSig(l, A) (sinceA′ = Sig(l, A)). For
a limit ordinalλ, we have thatSig(l, A) is (S, θα)-complete for allα < λ. Sinceθλ =
⋃

α<λ θα, the result follows because each configuration in the limit appears in some
smaller approximant, and the transition witnessing completeness for the approximant
witnesses completeness for the limit.

6 Optimisation

In the procedureSig(l, A), in caseσZl = νZl, our definition ofA0 contains all allow-
able transitions, and hence is immediately exponential. However, if we haveq

a
−→ Q and

q
a
−→ Q′ with Q ⊆ Q′, then acceptance fromQ′ implies acceptance fromQ. That is, the

transition toQ′ is redundant. Furthermore, acceptance from anyqj
c implies acceptance

from q∗ (trivially). Using these observations, we can optimise ourautomaton. In the
following definition,Q ≪ Q′ can be taken to mean an accepting run fromQ′ implies
an accepting run fromQ.

Definition 3. For all non-empty sets of statesQ andQ′, we define

Q ≪ Q′ :=
(

(q∗ ∈ Q ⇒ ∃q.q 6= qε
f ∧ q ∈ Q′) ∧ (∀q 6= q∗.q ∈ Q ⇒ q ∈ Q′)

)

andEXPAND(A) := { q
a
−→ Q′ | q

a
−→ Q in A andQ ≪ Q′ }.

Winning Regions of Pushdown Parity Games: A Saturation Method 15

By specifying monotonicity with respect to EXPAND(A) rather thanA, A0 (in case
σZl = νZl) only needs transitions toq∗ andqε

f , which is linear. We can remove redun-
dant transitions at every stage of the algorithm. Since a transition to{q∗} is powerful
with respect to≪ we expect to keep the automaton small. However, this will have to be
confirmed experimentally.

To test termination ofSig(A, l), we check if EXPAND(Ai+1) = EXPAND(Ai).

Lemma 6. EXPAND(A) ¹ EXPAND(A′) if and only if wheneverq
a
−→ Q in A then

there is someQ′ ≪ Q with q
a
−→ Q′ in A′.

By induction, we extend the property to runs. Hence EXPAND(A) ¹ EXPAND(A′)
impliesL(A) ⊆ L(A′). Finally, we have:

Lemma 7. The optimisation preserves monotonicity and both valuation soundness and
valuation completeness.

Conclusion. We have proposed a new, simple and direct algorithm for computing the
winning region of a pushdown parity game. The algorithm usesa mu-calculus formula
that characteriseśElöıse’s winning region as a guide to construct the required automa-
ton. We have identified an optimisation that avoids an immediate exponential blow up.
An interesting open problem is to construct winning strategies using our approach.

Acknowledgments.This work is supported by EPSRC (EP/F036361). We are greatly
indebted to Arnaud Carayol for his invaluable assistance.

References
1. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-

plication to model-checking. InCONCUR, pages 135–150, 1997.
2. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking push-

down systems. In INFINITY, 1997.
3. I. Walukiewicz. Pushdown processes: Games and model checking. In CAV, 1996.
4. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy (extended

abstract). InFOCS 1991, pages 368–377, 1991.
5. J. Esparza, A. Kǔcera, and S. Schwoon. Model-checking LTL with regular valuations for

pushdown systems. InTACS, pages 306–339, 2001.
6. M. HagueSaturation methods for global model-checking pushdown systemsPhD. Thesis,

University of Oxford, 2009.
7. N. Jones and S. Muchnick. Even simple programs are hard to analyse. InJACM24: 338-350,

1977.
8. N. Piterman and M. Y. Vardi. Global model-checking of infinite-state systems. InCAV,

pages 387–400, 2004.
9. O. Serre. Note on winning positions on pushdown games withω-regular conditions.Infor-

mation Processing Letters, 85:285–291, 2003.
10. S. Schwoon.Model-checking Pushdown Systems. PhD thesis, Technical University of Mu-

nich, 2002.
11. T. Ball and S. K. Rajamani. Bebop: A Symbolic Model Checker for Boolean Programs. In

SPIN, 2000.
12. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static anal-

ysis. In POPL, pages 1–3, 2002.

16 M. Hague and C.-H. L. Ong

13. T. Cachat.Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen, 2003.
14. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their applica-

tion to interprocedural dataflow analysis.Sci. Comput. Program., 2005.

A Proofs omitted from the main paper

Proofs omitted from the main body of the paper because of lackof space are presented
here.

A.1 Termination

Lemma 1. We have the following monotonicity properties.

(i) Let 1 ≤ l ≤ m andA be a type-(l − 1) automaton. InSig(l, A):

a. if σZl = µZl thenAi ¹ Ai+1 for all i ≥ 0

b. if σZl = νZl thenAi+1 ¹ Ai for all i ≥ 0.

(ii) For every1 ≤ l ≤ m + 1, the constructionSig(l,−) is monotone.
(iii) For every1 ≤ l ≤ m, the constructionProj (l,−) is monotone.

Proof. (i): We prove the case ofσZl = µZl by induction oni (the proof of the other
case is omitted as it is dual). For the base case ofi = 0, A0 ¹ A1 trivially since there
are no transitions fromqj

1 in A0. The inductive case follows from the monotonicity of
the constructionsSig(l + 1,−) andProj (l,−), which are the inductive hypotheses of
(ii) and (iii) respectively.

(ii): We first establish the base case ofl = m + 1 i.e. Phi(−) is monotone. Let
A ¹ A′ be type-m automata. We aim to showPhi(A) ¹ Phi(A′) i.e. for all 1 ≤ j ≤

|P|, if qj a
−→ Q in Phi(A) thenqj a

−→ Q in Phi(A′). Since the transitions from all
other states do not change, this is enough. LetΩ(pj) = c. Takeqj a

−→ Q in Phi(A). If
p ∈ PE we have some rulepj a → pk1 w1 with the runqk1

c

w1−−→ Q in A. Otherwise,
pj ∈ PA, Next(p, a) is the set{(pk1 , w1), . . . , (p

kn , wn)} andQ = Q1 ∪ · · · ∪ Qn

with the following transitionsqk1

c

w1−−→ Q1, . . ., qkn
c

wn−−→ Qn in A. Since the former case
can easily be encoded as an instance of the latter, we argue the second case only. For all
1 ≤ t ∈ n, we haveqkt

c

wt−→ Qt in A and sinceA ¹ A′ we know thatqkt
c

wt−→ Qt in A′.
Therefore, we haveQ = Q1 ∪ · · ·∪Qn and, by the definition of the procedurePhi(−),
qj a

−→ Q in A′ as required. For the inductive case, we consider the case ofσZl = µZl

(the case ofσZl = νZl is omitted as the proof is dual). LetA1 ¹ A2 be type-(l − 1)
automata. For eachi ∈ { 1, 2 }, let A0

i , A
1
i , A

2
i , . . . be the intermediate automata that

are constructed in the computation ofSig(l, Ai). By the induction hypothesis of (i), we
haveA0

i ¹ A1
i ¹ A2

i ¹ SinceSig(l + 1,−) andProj (l,−) are monotone by the
induction hypothesis of (ii) and (iii) respectively, we have Ai

1 ¹ Ai
2 for eachi ≥ 0. It

follows thatSig(l, A1) ¹ Sig(l, A2) as required.
(iii): Straightforward.

Winning Regions of Pushdown Parity Games: A Saturation Method 17

A.2 Valuation Soundness and Completeness

Lemma 3. LetA be anS-complete automaton.

(i) For all q, w andw′, if w w′ ∈ VS(q) thenA has a runq
w
−→ Q such thatw′ ∈

VS(q′) for all q′ ∈ Q.
(ii) For all q ∈ QA, VS(q) ⊆ Lq(A).

Proof. (i) The proof is by induction on the length of the wordw. Whenw = a, the
property is simplyS-completeness. Takew = au and someq with auw′ ∈ VS(q).
FromS-completeness, we have a transitionq

a
−→ Q such that for allq′ ∈ Q, we have

uw ∈ VS(q′). By induction on the length of the word, we have a runQ
u
−→ Q′ satisfying

the property. Hence, we haveq
a
−→ Q

u
−→ Q′ as required.

(ii) Take w ∈ VS(q). Instantiating (i) withw′ = ε, we knowA has a runq
w
−→ Q.

Every state inQ must be accepting becauseε is only accepted from accepting states
and there can be no〈pj , ε〉 satisfying anySi becauseε is not a valid stack.

A.3 Proof of Proposition 1

Lemma 4. (i) Let A be a type-m automaton.Phi(A) is a type-(m + 1) automaton.
I.e. all transitionsq

a
−→ Q satisfy:qε

f ∈ Q iff a =⊥ iff Q = { qε }.

Proof. Suppose there is some transitionqj ⊥
−→ Q with qε

f /∈ Q or Q 6= {qε
f}. Then the

transition was added from some appropriateNext(pj ,⊥). Then it must be the case that
for some(pk, w) ∈ Next(pj ,⊥) the last character inw is not⊥ (elseqε

f ∈ Q). This
means⊥ is removed from the stack, which is explicitly disallowed.

Conversely, suppose there is some transitionqj a
−→ Q wherea 6=⊥ andqε

f ∈ Q.
Then the transition was added from some appropriateNext(pj , a). It must be the case
that for some(pk, w) ∈ Next(pj , a) the last character inw is ⊥ (elseqε

f /∈ Q). This
means⊥ is pushed on to the stack, which is explicitly disallowed.

Lemma 8. SupposeσZl = νZl. Setθ = JνZl.χl+1(S,Zl)K.

(i) Sig(l, A) is a type-l automaton.
(ii) If A is S-sound, thenSig(l, A) is (S, θ)-sound.
(iii) If A is S-complete, thenSig(l, A) is (S, θ)-complete.

Proof. (i) The result of the recursive call toSig(l + 1, A) combined with the call
to Proj ensures the property.

(ii) The proof is by induction. LetA be a type-(l−1) automaton which isS-sound.
We use the shorthandθα = JµαZl.χl+1(S,Zl)K. Observe thatA0 is (S, θ0)-sound
(trivially, since the zeroth approximant contains all configurations). Inductively assume
thatAi is (S, θα)-sound for allα ≤ β for someβ. By the induction hypothesis,Bi :=
Sig(l + 1, Ai) is (S, θα, θα+1)-sound, sinceθα+1 = Jχl+1(S, θα)K. We need to show
that, after the projections,Ai+1 := Proj (l, Bi) is S′-sound whereS′ := (S, θα+1).

18 M. Hague and C.-H. L. Ong

Take some transitionqj
l

a
−→ Q in Ai+1 such that for allqk

l′ ∈ Q we have〈pk, w〉 ∈

V
S

′(Zl′). We knowBi+1 had a sound, unprojected transitionqj
l+1

a
−→ Q′ such that for

all qk
l ∈ Q we have eitherqk

l ∈ Q′ or qk
l+1 ∈ Q′. In the former case, by assumption we

know 〈pk, w〉 ∈ θα+1 ⊆ θα. In the latter〈pk, w〉 ∈ θα+1, also by assumption. Since
Bi is (S, θα, θα+1)-sound we know〈pj , aw〉 ∈ θα+1 as required.
Consequently, we have thatSig(l, A) is (S, θα)-sound for allα ≤ β for someβ. We
require thatSig(l, A) be (S, JµZl.χl+1(S,Zl)K)-sound. We proceed by transfinite in-
duction. For a successor ordinal we repeat the argument above, and observe that sound-
ness in the new automaton implies soundness inSig(l, A) (since they are equal). For
a limit ordinalλ, we have thatSig(l, A) is (S, θα)-sound for allα < λ. Since Since
θλ =

⋂

α<λ θα, the result follows because each configuration in the limit appears in all
smaller approximants, andSig(l, A) is sound for all smaller approximants (and trivially
for the zeroth approximant).

(iii) Let S′ := (S, θ). It can be easily seen thatA0 is S′-complete (always move to
q∗ or qε

f during the first transition). Hence, we assumeAi is S′-complete. We argue the
case fori + 1.
Take some〈pj , aw〉 such that〈pj , aw〉 ∈ VS(Zl). By the induction hypothesis, we
knowSig(l+1, Ai) is (S′, Jχl+1(S′)K)-complete. Furthermore,VS′(Zl) = θ = Jχl+1(S, θ)K =

VS′(Zl+1). Since we have an(S′, Jχl+1(S′)K)-complete transitionqj a
−→ Q in Ai+1 be-

fore the projections, it follows that, for allqj′

c′ ∈ πl(Q) we know,〈pj , w〉 ∈ VS(Zc′) as
required.

A.4 Optimisations

Lemma 6. EXPAND(A) ¹ EXPAND(A′) if and only if wheneverq
a
−→ Q in A then

there is someQ′ ≪ Q with q
a
−→ Q′ in A′.

Proof. First we assume EXPAND(A) ¹ EXPAND(A′). Takeq
a
−→ Q in A. Thenq

a
−→

Q ∈ EXPAND(A). We haveq
a
−→ Q ∈ EXPAND(A′), and thereforeq

a
−→ Q′ is a

transition ofA′ with Q′ ≪ Q.
In the other direction, we assumeq

a
−→ Q in A implies q

a
−→ Q′ in A′. Takeq

a
−→

Q ∈ EXPAND(A1). We needq
a
−→ Q ∈ EXPAND(A′). We have someq

a
−→ Q′ in A with

Q′ ≪ Q. Hence, we haveq
a
−→ Q′′ in A′ with Q′′ ≪ Q. Hence,q

a
−→ Q ∈ EXPAND(A′)

as required.

We can extend the definition to runs as follows.

Lemma 9. EXPAND(A) ¹ EXPAND(A′) if and only if wheneverq
w
−→ Q in A then

there is someQ′ ≪ Q with q
w
−→ Q′ in A′.

Proof. The proof is by induction over the length ofw. In the base casew = a and the

proof follows directly from¹. Whenw = aw′ with w′ 6= ε we haveq
a
−→ Q1

w′

−→ Q2

whereqε
f /∈ Q1 (sincew′ 6= ε). By ¹ we haveq

a
−→ Q′

1 with Q′
1 ≪ Q1. By induction

and thatq∗
a
−→ {q∗} for all a 6=⊥ andq∗

⊥
−→ {qε

f} we also haveQ′
1

w′

−→ Q′
2 with

Q′
2 ≪ Q2, and henceq

w
−→ Q2 as required.

Winning Regions of Pushdown Parity Games: A Saturation Method 19

Finally, we check that the optimisations do not contradict the important properties
of the construction.

Lemma 7. The optimisation preserves monotonicity and both valuation soundness and
valuation completeness.

Proof. Let A′ be A with a removed transition. That EXPAND(A′) ¹ EXPAND(A) is
immediate, since we have only removed a transition fromA to obtainA′. To show
EXPAND(A) ¹ EXPAND(A′) we only need to consider the removed transition (since
all other transitions can be matched with their counterpart). Sinceq

a
−→ Q′ can be

matched withq
a
−→ Q, which hasQ ≪ Q′, we are done.

Preservation of soundness is straightforward since we haveonly removed a transi-
tion. Finally, suppose a complete transitionq

a
−→ Q was removed by the optimisation.

This implies that there exists a transitionq
a
−→ Q′ with Q′ ≪ Q. Suppose this transition

is not complete. Then there is some incomplete stateq ∈ Q′. Since this state is notq∗,
it must also appear inQ. This is a contradiction, sinceq

a
−→ Q is complete.

