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Abstract. We study a class of concurrent pushdown systems commu-
nicating by both global synchronisations and reversal-bounded counters,
providing a natural model for multithreaded programs with procedure
calls and numeric data types. We show that the synchronisation-bounded
reachability problem can be efficiently reduced to the satisfaction of an
existential Presburger formula. Hence, the problem is NP-complete and
can be tackled with efficient SMT solvers such as Z3. In addition, we
present optimisations to make our reduction practical, e.g., heuristics for
removing or merging transitions in our models. We provide optimised al-
gorithms and a prototypical implementation of our results and perform
preliminary experiments on examples derived from real-world problems.

1 Introduction

Pushdown systems (PDS) are a popular abstraction of sequential programs with
recursive procedure calls. Verification problems for these models have been ex-
tensively studied (e.g. [7, 17]) and they have been successfully used in the model
checking of sequential software (e.g. [3, 5, 37]).

However, given the ubiquity and growing importance of concurrent software
(e.g. in web-servers, operating systems and multi-core machines), coupled with
the inherent non-determinism and difficulties in anticipating all concurrent inter-
actions, the verification of concurrent programs is a pressing problem. In the case
of concurrent pushdown systems, verification problems quickly become undecid-
able [33]. Because of this, much research has attempted to address the undecid-
ability, proposing many different approximations, and restrictions on topology
and communication behaviour (e.g. [29, 8–10, 35, 34, 21, 25]). A technique that
has proved popular in the literature is that of bounded context-switches [34].

Bounded context-switching uses the observation that many real-world bugs
require only a small number of inter-thread communications. It is known that, if
the number of communications is bounded to a fixed k, reachability checking of
pushdown systems becomes NP-complete [26]. The utility of this approach has
been demonstrated by several successful implementations (e.g. [4, 30, 36]).

In addition to recursive procedure calls, numeric data types are an important
feature of programs. By adding counters to pushdown systems one can accu-
rately model integer variables and, furthermore, abstract certain data structures



– such as lists – by tracking their size. It is well known that finite-state machines
augmented even with only two counters leads to undecidability of the simplest
verification problems. One way to retain decidability of reachability is to im-
pose an upper bound r on the number of reversals between incrementing and
decrementing modes for each counter (cf. [12, 23]).

This restriction can be viewed in at least two ways (cf. [12, 24]). First, in
the spirit of bounded-context switches, it provides a generalisation of bounded
model checking – a successful verification technique which exploits the fact that
many bugs occurring in practice are “shallow” (cf. [14]). Secondly, many counting
properties — such as checking the existence of a computation where the number
of calls to the functions f1, f2, f3, and f4 are the same — require no reversals
(e.g. the number of memory allocations equals the number of frees). Similar
counting properties (and their model checking problems) have been studied in
many other contexts (cf. [27] and references therein).

In this paper, we study the problem of verifying reachability over a pro-
gram model incorporating concurrency, numeric data types, and recursions. Our
contributions are as follows:

1. We propose a concurrent extension of pushdown systems with reversal-
bounded counters that communicate through shared counters and global
synchronisations, and prove that the notion of global synchronisations sub-
sumes context-bounded model checking.

2. We show that reachability checking for these systems is in NP, by reduction
to existential Presburger, handled by efficient SMT solvers such as Z3 [13].

3. We provide several new optimisation techniques, including a minimisation
routine for pushdown systems, that are crucial in making our reductions
feasible in practice. These techniques keep the size of the computation objects
small throughout reduction, while also producing smaller output formulas.

4. Finally, we provide two optimised, prototypical tools using these techniques.
The first translates a simple programming language into our model, while
the second performs our reduction to existential Presburger. We demonstrate
the efficacy of our tools on several real-world problems.

The full version of this paper and tool implementations and benchmarks can be
obtained from the authors’ homepages.

Related Work. In recent work [20], we showed that reachability analysis for
pushdown systems with reversal-bounded counters is NP-complete. We provided
a prototypical implementation of our algorithm and obtained encouraging results
on examples derived from Linux device drivers.

Over reversal-bounded counter systems (without stack), reachability is NP-
complete but becomes NEXP-complete when the number of reversals is given
in binary [22]. On the other hand, when the numbers of reversals and counters
are fixed, the problem is solvable in P [19]. The techniques developed by [19,
22], which reason about the maximal counter values, are very different to our
techniques, which exploit the connection to Parikh images of pushdown automata
(first explicated in Ibarra’s original paper [23] though not in a way that gives
optimal complexity or a practical algorithm).



Context-bounded model checking was introduced in 2005 by Qadeer and
Rehof [34, 8, 32]. It has then been used in many different settings and many
different generalisations have been proposed. For example, one may consider
phase-bounds [38], ordered multi-stack machines [1], bounded languages [18],
dynamic thread creation [2] and more general approaches [28].

In recent, independent work, Esparza et al. used a reduction to existential
Presburger to tackle a generalisation of context-bounded reachability checking
for multithreaded programs without counters [15]. Their work, however, does not
allow the use of counters and it is not clear whether our global synchronisation
conditions can be simulated succinctly in their framework.

Organisation. In §2, we define the models that we study. We prove decidabil-
ity of the synchronisation-bounded reachability problem in §3. In §4 we show
that synchronisation-bounded model checking subsumes context-bounded model
checking. Our optimisations are presented in §5. In §6 we describe our imple-
mentation and experimental results. Finally, we conclude in §7.

2 Model Definition

In this section, we define the models that we study. For a vector v = (v1, . . . , vn),
we write v (i) to access vi. For a formula θ over variables (x1, . . . , xn) we write
θ(v1, . . . , vn) to substitute the values v1, . . . , vn for the variables x1, . . . , xn re-
spectively. Given an alphabet Γ = {γ1, . . . , γm} and a word w ∈ Γ ∗, we write
P(w) to denote a tuple with |Γ | entries where the ith entry counts the number
of occurrences of γi in w. Given a language L ⊆ Γ ∗, we write P(L) to denote
the set { P(w) | w ∈ L }. We say that P(L) is the Parikh image of L.

Pushdown Automata. A pushdown automaton P is a tuple (Q, Σ, Γ,∆, q0,F)
where Q is a finite set of control states, Σ is a finite stack alphabet with a special
bottom-of-stack symbol ⊥, Γ is a finite output alphabet, q0 ∈ Q is an initial
state, F ⊆ Q is a set of final states, and ∆ ⊆ (Q×Σ) × Γ ∗ × (Q×Σ∗) is a
finite set of transition rules. We will denote a transition rule ((q, a),γ, (q′, w′))

using the notation (q, a)
γ

−֒→ (q′, w′). Note that γ ∈ Γ ∗ is a sequence of output
characters. This is for convenience, and optimisation. We can reduce this to
single output characters using intermediate control states or stack characters.
Note, a pushdown system is a pushdown automaton without a set of final states.

A configuration of P is a tuple (q, w), where q ∈ Q and w ∈ Σ∗ are the control
state and stack contents. We say that a configuration (q, aw) has a head q, a.

There exists a transition (q, aw)
γ

−→ (q′, w′w) of P whenever (q, a)
γ

−֒→ (q′, w′) ∈

∆. We call a sequence c0
γ1

−→ c1
γ2

−→ · · ·
γm
−−→ cm a run of P. It is accepting if

c0 = (q0,⊥) and cm = (q, w) with q ∈ F . Let L(P) be the set of words labelling
accepting runs. Finally, we write c→∗ c′ if there is a run from c to c′.

Pushdown Systems with Counters. A pushdown system with counters is a
pushdown system which, in addition to the control states and the stack, has a
number of counter variables. These counters may be incremented, decremented
and compared against constants (given in binary).



An atomic counter constraint on counter variable X = {x1, . . . , xn} is an ex-
pression of the form xi ∼ c, where c ∈ Z and ∼∈ {<,>,=}. A counter constraint
θ(x1, . . . , xn) on X is a boolean combination of atomic counter constraints on
X. Let ConstX denote the set of counter constraints on X.

A pushdown system with n counters (n-PDS) P is a tuple (Q, Σ, Γ,∆,X)
where Q is a finite set of control states, Σ is a finite stack alphabet, Γ is a
finite output alphabet, X = {x1, . . . , xn} is a set of n counter variables, and
∆ ⊆ (Q×Σ × ConstX)×Γ ∗ × (Q×Σ∗ × Z

n) is a finite set of transition rules.

We will denote a rule ((q, a, θ),γ, (q′, w′,u)) using (q, a, θ)
γ

−֒→ (q′, w′,u).
A configuration of P is a tuple (q, w,v), where q ∈ Q is the current control

state, w ∈ Σ∗ is the current stack contents, and v = (v1, . . . , vn) ∈ N
n gives the

current valuation of the counter variables x1, . . . , xn respectively. There exists a

transition (q, aw,v)
γ

−→ (q′, w′w,v′) of P whenever

1. (q, a, θ)
γ

−֒→ (q′, w′,u) ∈ ∆, and
2. θ(v (1) , . . . ,v (n)) is true, and
3. v

′ (i) = v (i) + u (i) ≥ 0 for all 1 ≤ i ≤ n.

Communicating Pushdown Systems with Counters. Given Q1, . . . ,Qm,
let Y = {y1, . . . , ym, y

′
1, . . . , y

′
m} be a set of control state variables such that,

for each i, yi, y
′
i range over Qi. Then, an atomic state constraint is of the form

yi = q for some yi ∈ Y and q ∈ Qi. A synchronisation constraint, written
δ(y1, . . . , ym, y

′
1, . . . , y

′
m), is a boolean combination of atomic state constraints.

For example, let n = 3 and consider the constraint

(y1 = q1 ∧ (y′1 = q1 ∧ y
′
2 = q2 ∧ y

′
3 = q3)) ∨

(y1 = r1 ∧ (y′1 = r1 ∧ y
′
2 = r2 ∧ y

′
3 = r3)) .

This allows synchronisations where, whenever the first process has control state
q1, the other processes can simultaneously move to qi (for all 1 ≤ i ≤ 3), whereas,
if process one has control state r1, the processes move to states ri instead. Let
StateConsQ1,...,Qm

be the set of synchronisation constraints for Q1, . . . ,Qm.

Definition 1 (n-SyncPDSr). Given a finite output alphabet Γ and set of n
counter variables X, a system of communicating pushdown systems with n coun-
ters C is a tuple (P1, . . . ,Pm, ∆g, X, r) where, for all 1 ≤ i ≤ m, Pi is a push-
down system (Qi, Σi, Γ,∆i, X) with n counters, and ∆g ⊆ StateConsQ1,...,Qm

×
ConstX×Z

n is a finite set of synchronisation constraints, and r ∈ N is a natural
number given in unary.

Notice that a system of communicating pushdown systems share a set of
counters. A configuration of such a system is a tuple (q1, w1, . . . , qm, wm,v)

where each (qi, wi,v) is a configuration of Pi. We have (q1, w1, . . . , qm, wm,v)
γ

=⇒
(q′1, w

′
1, . . . , q

′
m, w

′
m,v

′) whenever,

1. for some 1 ≤ i ≤ m, we have (qi, wi,v)
γ

−→ (q′i, w
′
i,v

′) is a transition of Pi

and qj = q′j and wj = w′
j for all j 6= i, or



2. γ = ε and wi = w′
i for all 1 ≤ i ≤ m and (δ, θ,u) ∈ ∆g with

(a) δ(q1, . . . , qm, q
′
1, . . . , q

′
m) is true, and

(b) θ(v (1) , . . . ,v (n)) is true, and
(c) v

′ (i) = v (i) + u (i) ≥ 0 for all 1 ≤ i ≤ n.

We refer to these two types of transition as internal and synchronising respec-

tively. A run of C is a run c0
γ1

=⇒ c1
γ2

=⇒ · · ·
γm
==⇒ cm.

Bounding Runs. During a run, the counter is in a non-decrementing mode if
the last value-changing operation on that counter was an increment. Similarly, a
counter may be in a non-incrementing mode. The number of reversals of a counter
during a run is the number of times the counter changes from an incrementing
to a decrementing mode, and vice versa. For example, if the values of a counter
x in a path are 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 2, 3, then the number of reversals of x is
2 (reversals occur in between the overlined positions). This sequence has three
phases (i.e. subpaths interleaved by consecutive reversals or end points): non-
decrementing, non-incrementing, and finally non-decrementing.

Definition 2 (r-Reversal-Bounded). A run c0
γ1

=⇒ c1
γ2

=⇒ · · ·
γm
==⇒ cm is r-

reversal-bounded whenever we can partition c0c1 . . . cm into C1 . . . Cr such that
for all 1 ≤ p ≤ r, there is some ∼∈ {≤,≥} such that for all cjcj+1 appearing
together in Cp, we have cj = (. . .,vj), cj+1 = (. . .,vj+1), and for all 1 ≤ i ≤ n,
vj (i) ∼ vj+1 (i).

Finally, we define the notion of synchronisation-bounded. We show in Sec-
tion 4 that this notion subsumes context-bounded model checking.

Definition 3 (k-Synchronisation-Bounded). A run π is k-synchronisation-
bounded whenever π uses k or fewer synchronising transitions.

3 Synchronisation-Bounded Reachability

The r-reversal and k-synchronisation-bounded reachability problem for a given
C, bound r and k asks, for given configurations c and c′ of C, is there a k-
synchronisation-bounded run of C from c to c′ using up to r reversals. We prove:

Theorem 1. For two bounds r and k given in unary, the r-reversal and k-
synchronisation-bounded reachability problem for n-SyncPDS is NP-complete.

The proof extends the analogous theorem for r-reversal-bounded n-PDS [20].
We will construct, for each Pi in C, an over-approximating pushdown automaton
P ′
i and use Verma et al. [40]3 to obtain an existential Presburger formula Imagei

giving the Parikh image of P ′
i. Finally, we add additional constraints such that

a solution exists iff the reachability problem has a positive answer.

3 It is well known that [40] contains a small bug, fixed by Barner [6]. See the full
version for more details.



The encoding presented here is one of two encodings that we developed.
This encoding is both simpler to explain and seems to be handled better by Z3
for almost all of our examples than the second encoding. However, the second
encoding results in a smaller formula. Hence, we include both reductions as
contributions, and present the second reduction in the full version of the paper.

The key difference between the encodings is where we store the number of
synchronisations performed so far. In the first encoding, we keep a component g
in each control state; thus, from each P we build P ′ with |Q| ×Nmax × (k + 1)
control states, where Q is set of control states of P and Nmax is the number of
mode vectors (where modes are defined below).

In the alternative encoding we put the number of synchronisations in the
modes, resulting in |Q| × (Nmax + k + 1) control states. This is important since
our reduction is quadratic in the number of controls. Hence, if k = 2, the alterna-
tive results in pushdown automata a third of the size of the encoding presented
here. However, the resulting formulas seem experimentally more difficult to solve.

Let c =
(

q01 , w1, . . . , q
0
m, wm,v0

)

and c′ = (f1, w
′
1, . . . , fm, w

′
m,vf ). By hard-

coding the initial and final stack contents, we can assume that all wi = w′
i =⊥.

Unfortunately, we cannot use the reduction for r-reversal-bounded n-PDS as
a completely black box; hence, we will recall the relevant details and highlight
the new techniques required. We refer the reader to the article [20] for further
details. The correctness of the reduction is given in the full version of the paper.

The final formula HasRun will take the shape

∃m1, . . . ,mNmax
∃z1 . . . zm





















Init(m1) ∧ GoodSeq (m1, . . . ,mNmax
)

∧
∧

1≤i≤m

Imagei (zi)

∧ Respect

(

∑

1≤i≤m zi,m1, . . . ,mNmax

)

∧ OneChange

(

∑

1≤i≤m zi

)

∧ EndVal

(

∑

1≤i≤m zi

)

∧ Syncs

(

∑

1≤i≤m zi

)





















where the formulas OneChange

(

∑

1≤i≤m zi

)

and Syncs

(

∑

1≤i≤m zi

)

are the

main differences with the single thread case. In addition, further adaptations
need to be made within other aspects of the formula. We remark at this point
that the user may add to HasRun an additional constraint on the Parikh images
of runs — such as restricting to runs where the number of characters γ output
is greater than the number of γ′.

The Mode Vectors. We begin with the vectors m1, . . . ,mNmax
, which are

unchanged from the case of r-reversal-bounded n-PDS. Let d1 < . . . < dh denote
all the numeric constants appearing in an atomic counter constraint as a part of
the constraints in the Pi. Without loss of generality, we assume that d1 = 0 for
convenience. Let REG = {ϕ1, . . . , ϕh, ψ1, . . . , ψh} be a set of formulas defined as
follows. Note that these formulas partition N into 2h pairwise disjoint regions.

ϕi(x) ≡ x = di, ψi(x) ≡ di < x < di+1 (1 ≤ i < h), ψh(x) ≡ dh < x .



We call a vector in REGn × [0, r]n × {↑, ↓}
n
a mode vector. Given a path π

from configurations c to c′, we may associate a mode vector to each configuration
in π. This vector records for each counter, which region its value is in, how
many reversals it’s used, and whether its phase is non-decrementing (↑) or non-
incrementing (↓). Consider a sequence of mode vectors. A crucial observation is,
once a change occurs to the mode information of a counter, the same information
will not recur for that counter. For example, returning to the same region will
incur an increase in the number of reversals. Thus, there are at most Nmax :=
|REG| × (r + 1)× n = 2hn(r + 1) distinct mode vectors in any sequence.

Constructing P ′
i. We define the pushdown automata

P ′
i =

(

Q′
i, Σi, Γ

′, ∆′
i,
(

q0i , 1, 1
)

, {fi} × [1, Nmax]× [1, k + 1]
)

for each Pi in C. Note that each P ′
i has the same output alphabet Γ ′. We assume

that all Qi are pairwise disjoint. There are two main aspects to each P ′
i. First, we

remove the counters. To replace them, we have P ′
i output any counter changes

or tests that would have been performed. E.g. where Pi would increment a
counter, P ′

i will output a symbol (ctrj , 1, . . .) indicating (amongst other things)
that counter ctrj should be increased by 1. Furthermore, P ′

i guesses when, and
keeps track of when, mode changes would have occurred. Secondly, we allow P ′

i

to non-deterministically make synchronisations (instead of communicating, the
effect of external threads is guessed). In this case, the control state change, along
with the number of synchronisations performed thus far, will be output. In this
way, P ′

i makes “visible” the counter tests, counter updates and synchronisations
that would have been performed by Pi on the same run. Constraints described
later in HasRun ensure these operations are valid.

More formally, let Q′
i = Qi × [1, Nmax]× [1, k+ 1] (that is, we add to Qi the

current mode and synchronisation number). We define Γ ′ implicitly from the
transition relation. In fact, Γ ′ is a (finite) subset of

Γ ∪ { (ctrj , u, e, l) | j ∈ [1, n], u ∈ Z, e ∈ [1, Nmax], l ∈ {0, 1} }
∪ (ConstX × [1, Nmax])

∪
⋃

1≤i≤m

(StateConsQ1,...,Qm
×Qi ×Qi × [1, Nmax]× [1, k + 1]× {0, 1}) .

Characters (ctrj , u, e, l) mean to add u to ctrj , in mode e, where l indicates
whether the counter action changes the mode vector. Characters (θ, e) indicate
a counter test in mode e. Finally, characters (δ, q, q′, e, g, l) indicate a use of
synchronisation rule δ, changing Pi from control state q to q′, in mode e with g
synchronisations performed so far.

We define ∆′
i to be the smallest set such that, if (q, a, θ)

γ

−֒→ (q′, w,u) ∈ ∆i

where u = (u1, . . . , un) then for each e ∈ [1, Nmax] and g ∈ [1, k+1], ∆′
i contains

((q, e, g), a)
γ(θ,e)(ctr1,u1,e,l)...(ctrn,un,e,l)
−֒−−−−−−−−−−−−−−−−−−−−→ ((q′, e+ l, g), w)

for all l ∈ {0, 1} if e ∈ [1, Nmax) and l = 0 otherwise. Thus, l = 1 signifies a
mode changing transition.



These rules are the rules required in the single thread case. We need addi-
tional rules to reflect the multi-threaded environment. In particular, an external
thread may change the mode, or a synchronising transition may occur. To ac-
count for this∆′

i also has for each q ∈ Qi, a ∈ Σi, e ∈ [1, Nmax), and g ∈ [1, k+1],

((q, e, g), a)
ε
−֒→ ((q, e+ 1, g), a) (∗)

and, to model synchronisations, we have for all q, q′ ∈ Qi, e ∈ [1, Nmax], g ∈
[1, k + 1) and (δ, θ,u) ∈ ∆g, when i > 1,

((q, e, g), a)
(δ,q,q′,e,g,l)
−֒−−−−−−→ ((q′, e+ l, g + 1), a)

and when i = 1 and u = (u1, . . . , un),

((q, e, g), a)
(δ,q,q′,e,g,l)(θ,e)(ctr1,u1,e,l)...(ctrn,un,e,l)
−֒−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ((q′, e+ l, g + 1), a)

for all l ∈ {0, 1} when e ∈ [1, Nmax) and l = 0 otherwise. That is, P ′
i guesses

the effect of non-internal transitions and P ′
1 is responsible for performing the

required counter updates. Note that the information in the output character
(δ, q, q′, e, g, l) allows us to check that synchronising transitions take place in the
same order and in the same modes across all threads.

Constructing The Formula. Fix an ordering γ1 < . . . < γl on Γ ′. By f we
denote a function mapping γi to i for each i ∈ [1, l]. Let z denote a vector of
l variables. The formula is HasRun given above, where Init, GoodSeq, Respect,
and EndVal are defined as in the single thread case (using only variables which
are unchanged from [20]); therefore, we describe them informally here, referring
the reader to the full version of the paper for the full definitions. We convert
each P ′

i to a context-free grammar (of cubic size) and use [40] to obtain Imagei
such that for each n ∈ N

l we have n ∈ P(L(P ′
i)) iff Imagei (n) holds. Informally,

– Init ensures the initial mode vector m1 respects the initial configuration c;
– GoodSeq ensures that the sequence of mode vectors m1, . . . ,mNmax

is valid.
For example, if the direction of a counter changes, then an extra reversal is
incurred on that counter;

– Respect requires that the counter tests and actions fired within a mode are
allowed. For example, a subtraction may not occur on a counter in a non-
decreasing phase, only one mode change action may occur per mode, and
that counter tests only occur in sympathetic regions; and

– EndVal checks that the counter operations applied during the run leave each
counter in the correct value, as given in the final configuration c′.

It remains for us to define OneChange and Syncs. We use OneChange to assert
that only one thread may be responsible for firing the transition that changes a
given mode of the counters to the next. That is,

OneChange (z) ≡
∧

(ctrj ,u,e,1)

(ctrj ,u
′,e,1)

u′ 6=u

zf(ctrj ,u,e,1) > 0 ⇒

(

zf(ctrj ,u,e,1) = 1
∧ zf(ctrj ,u′,e,1) = 0

)

.



The role of Syncs is to ensure that the synchronising transitions taken by
P ′
1, . . . ,P

′
m are valid. Note that, by design, each P ′

i will only output at most one
character of the form (δ, q, q′, e, g, l) for each g ∈ [1, k]. We assert, if one thread
uses a global transition with condition δ, all do, and δ is satisfied. That is,

Syncs (z) ≡
∧

1≤g≤k

∨

1≤e≤Nmax

(δ,θ,u)∈∆g

l∈{0,1}

(

Fired(δ,e,g,l) (z) ⇒
(

Sync(δ,e,g,l) (z) ∧ AllFired(δ,e,g,l) (z)
)

)

where Sync(δ,e,g,l) (z) is δ (z) with each atomic state constraints replaced as
below.

(yi = q) ≡
∨

(δ,q,q′,e,g,l)

zf(δ,q,q′,e,g,l) > 0 and (yi = q′) ≡
∨

(δ,q,q′,e,g,l)

zf(δ,q,q′,e,g,l) > 0 .

Finally, Fired(δ,e,g,l) (z) ≡
∨

(δ,q,q′,e,g,l)

zf(δ,q,q′,e,g,l) > 0, and

AllFired(δ,e,g,l) (z) ≡
∧

1≤i≤m

∨

q,q′∈Qi

zf(δ,q,q′,e,g,l) > 0 .

We remark upon a pleasant corollary of our main result. Consider a sys-
tem of pushdown systems communicating only via reversal-bounded counters.
Since such a system cannot use any synchronising transitions, all runs are 0-
synchronisation-bounded; hence, their reachability problem is in NP .

4 Comparison with Context-Bounded Model Checking

Global synchronisations can be used to model classical context-bounded model
checking. We present a simple encoding here. We begin with the definition.

Definition 4 (n-ClPDS). A classical system of communicating pushdown
systems with n counters C is a tuple (P1, . . . ,Pm, G,X) where, for all 1 ≤ i ≤ m,
Pi is a PDA with n counters (Qi, Σi, Γ,∆i, X), X is a finite set of counter vari-
ables and Qi = G×Q′

i for some finite set Q′
i.

A configuration of a n-ClPDS is a tuple (g, q1, w1 . . . , qm, wm,v) where g ∈ G

and (g, qi) ∈ Qi for all i. We have a transition (g, q1, w1, . . . , qm, wm,v)
γ

=⇒

(g′, q′1, w
′
1, . . . , q

′
m, w

′
m,v

′) when, for some 1 ≤ i ≤ m, we have ((g, qi), wi,v)
γ

−→
((g′, q′i), w

′
i,v

′) is a transition of Pi and qj = q′j and wj = w′
j for all j 6= i.

A run of C is a sequence c0
γ1

=⇒ c1
γ2

=⇒ · · ·
γm
==⇒ cm. A k-context-bounded run is

a run c0
γ1

=⇒ c1
γ2

=⇒ · · ·
γm
==⇒ cm that can be divided into k phases C1, . . . , Ck such

that during each Ci only transitions from a unique Pj are used. By convention,
the first phase contains only transitions from P1.

We define an n-SyncPDS simulating any given n-ClPDS. It uses the synchro-
nisations to pass the global component g of the n-ClPDS between configurations
of the n-SyncPDS, acting like a token enabling one process to run. Since there
are k global synchronisations, the run will be k-context-bounded.



Definition 5. Given a n-ClPDS C = (P1, . . . ,Pm, G,X). Let # be a symbol
not in G. We define from each Pi = (Qi, Σi, Γ,∆i, X) with Qi = G × Q′

i the
pushdown system PS

i =
(

QS
i ∪ {fi} , Σi, Γ,∆

S
i , X

)

where QS
i = Qi × (G ∪ {#})

and ∆S
i is the smallest set containing ∆i and ((g, q), a, tt)

ε
−֒→ (fi, w,0) for all

q, a appearing as a head in the final configuration with g = # or with g also in
the final configuration.

Finally, let C
S =

(

PS
1 , . . . ,P

S
m, ∆g, X

)

, where ∆g = {(δ, tt,0)} such that
the formula δ(q11 , . . . , q

1
n, q

2
1 , . . . , q

2
n) holds only when there is some g ∈ G and

1 ≤ i 6= j ≤ n such that

1. q1i = (g, q) and q2i = (#, q) for some q, and
2. q1j = (#, q) and q2j = (g, q) for some q, and

3. for all i′ 6= i and i′ 6= j, q1i′ = (#, q) and q2i′ = (#, q) for some q.

We show in the full version of this paper that an optimised version of this
simulation — discussed in Section 5 — is correct. That is, there is a run of C
to the final configuration (g, q1, w1, . . . , qm, wm,v) iff there is a run of C

S to
(f1, w1, . . . , fm, wm,v) using the same number of reversals.

5 Optimisations

Our experiments suggest that without further optimisations our reduction from
Section 3 is rather impractical. In this section, we provide several optimisations
which considerably improve the practical aspect of our reduction. We discuss
improving the encoding of the context-bounded model checking, identifying and
eliminating “removable” heads from our models, and minimising the size of the
CFG produced during the reduction using reachability information. The gist
behind our optimisation strategies is to keep the size of the models (pushdown
automata, CFG, etc.) as small as possible throughout our reduction, which can
be achieved by removing redundant objects as early as possible. For the rest of
this section, we fix an initial and a final configuration.

Context-Bounded Model Checking. The encoding context-bounded model
checking encoding given in Section 4 allows context-switches to occur at any
moment. However, we can observe that context-switches only need to occur when
global information needs to be up-to-date. This restriction led to improvements
in our experiments. We describe the positions where context-switches may occur
informally here, and give a formal definition and proof in the long version.

In our restricted encoding, context-switches may occur when an update to
global component g occurs; the value of g is tested; an update to the counters
occurs; the values of the counters are tested; or the control state of the active
thread appears in the final configuration. Intuitively, we delay context-switches
as long as possible without removing behaviours — that is, until the status of
the global information affects, or may be affected by, the next transition.

Minimising Communicating Pushdown Systems with Counters. We de-
scribe a minimisation technique to reduce the size of the pushdown systems. It



identifies heads q, a of the pushdown systems that are removable. We collapse
pairs of rules passing through the head q, a into a single combined rule. Thus,
we build a pushdown system with fewer heads, but the same behaviours. In the
following definition, sink states will be defined later. Intuitively it means when
q is reached, q cannot be changed in one local or global transition.

Definition 6. A head q, a is removable whenever

1. q, a is not the head of the initial or final configuration, and

2. it is not a return location, i.e. there is no rule (q1, b1, θ)
γ

−֒→ (q2, b2w
′,u) with

a appearing in w′ and a does not appear below the top of the stack in the
initial configuration, and

3. it is not a loop, i.e. there is no rule (q, a, θ)
γ

−֒→ (q, aw′,u), and

4. it is not a synchronisation location, i.e. for all (q2, b, θ)
γ

−֒→ (q1, aw
′,u) or ini-

tial configuration containing q1 and a, we have either, (i) for all (δ, θ′,u′) ∈
∆g and q11 , . . . , q

1
m, q

2
1 , . . . , q

2
m such that δ(q11 , . . . , q

1
m, q

2
1 , . . . , q

2
m) holds we

have qji 6= q1 for all i, j, or (ii) q1 is a sink state, and

5. it is not a counter access location, i.e. there is no rule (q, a, θ)
γ

−֒→ (q′, w′,u)
such that θ depends on a counter or u contains a non-zero entry, and there

is no rule (q′, b, θ)
γ

−֒→ (q, aw′,u) such that u contains a non-zero entry.

Definition 7. A state q is a sink state when for all rules (q, a, θ)
γ

−֒→ (q′, w′,u)
we have q′ = q and for all (δ, θ′,u′) ∈ ∆g and q11 , . . . , q

1
m, q

2
1 , . . . , q

2
m with q1i = q

for some i such that δ(q11 , . . . , q
1
m, q

2
1 , . . . , q

2
m) holds we have q2i = q.

Removable heads can be eliminated by merging rules passing through them.
In general, this may increase the number of rules, but in practice it leads to
significant reductions (see Table 1). We show, in the full version of this paper,
that this optimisation preserves behaviours of the systems.

Definition 8. Given a n-SyncPDS with global rules ∆g and a pushdown system
P with n counters (Q, Σ, Γ,∆,X) and a removable head q, a, we define Pq,a to
be (Q, Σ, Γ,∆′, X) where ∆′ = ∆ if ∆1 is empty and ∆′ = ∆1 ∪∆2 otherwise,
where

∆1 =











(q1, b, θ)
γ1,γ2

−֒−−→ (q2, w,u1 + u2)

∣

∣

∣

∣

∣

∣

∣

(q1, b, θ1)
γ1

−֒→ (q, aw1,u1) ∈ ∆ ∧

(q, a, θ2)
γ2

−֒→ (q2, w2,u2) ∈ ∆ ∧
θ = (θ1 ∧ θ2) ∧ w = w2w1











and ∆2 = ∆ \





{

(q1, b, θ)
γ

−֒→ (q2, w
′,u) | q1, b = q, a

}

∪
{

(q1, b1, θ)
γ

−֒→ (q2, b2w
′,u) | q2, b2 = q, a

}



.

Minimising CFG size via pushdown reachability table. Recall that our
reduction to existential Presburger formulas from an n-SyncPDS makes use of
a standard language-preserving reduction from pushdown automata to context-
free grammars (CFGs). Unfortunately, the standard translations from PDAs



to CFGs incur a cubic blow-up. More precisely, if the input PDA is P =
(

Q, Σ, Γ,∆, q0, F
)

, the output CFG has size O(|∆| × |Q|2). Our experiments
suggest that this cubic blow-up is impractical without further optimisation, i.e.,
the naive translation failed to terminate within a couple of hours for most of
our examples. Note that the complexity of translating from PDA to CFG is very
much related to the reachability problem for pushdown systems, for which the
optimal complexity is a long-standing open problem (the fastest algorithm [11]
to date has complexity O(n3/ log n) under certain assumptions).

We will now describe two optimisations to improve the size of the CFG that is
produced by our reduction in the previous section, the second optimisation gives
better performance (asymptotically and empirically) than the first. Without loss
of generality, we assume that: (A1) the PDA empties the stack as it accepts an

input word, (A2) the transitions of the input PDA are of the form (p, a)
γ

−֒→ (q, w)
where p, q ∈ Q, γ ∈ Γ ∗, a ∈ Σ, and w ∈ Σ∗ with |w| ≤ 2. [It is well-known
that any input PDA can be translated into a PDA in this “normal form” that
recognises the same language while incuring only a linear blow-up.] The gist
behind both optimisations is to refrain from producing redundant CFG rules by
looking at the reachability table for the PDA. Keeping the CFG size low in the
first place results in algorithms that are more efficient than removing redundant
rules after the CFG is produced.

Let us first briefly recall a standard language-preserving translation from
PDA to CFG. Given a PDA P =

(

Q, Σ, Γ,∆, q0, F
)

, we construct the following
CFG with nonterminals N = {S} ∪ {Ap,a,q : p, q ∈ Q, a ∈ Σ}, terminals Γ ,
starting nonterminal S, and the following transitions:

(1) For each (p, a)
γ

−֒→ (q, ǫ) ∈ ∆, the CFG has Ap,a,q → γ.

(2) For each (p, a)
γ

−֒→ (p′, b) ∈ ∆ and q ∈ Q, the CFG has Ap,a,q → γAp′,b,q.

(3) For each (p, a)
γ

−֒→ (p′, cb) ∈ ∆ and r, q ∈ Q, the CFG has Ap,a,q →
γAp′,c,rAr,b,q.

(4) Add S → Aq0,⊥,qF for each qF ∈ F .

Note that Ap,a,q generates all words that can be output by P from configuration
(p, a) ending in configuration (q, ǫ). Both of our optimisations refrain from gen-
erating: (i) CFG rules of type (2) above in the case when (p′, b) 6→∗ (q, ǫ), and
(ii) CFG rules of type (3) in the case when (p′, c) 6→∗ (r, ǫ) or (r, b) 6→∗ (q, ǫ),
and (iii) CFG rules of type (4) in the case when

(

q0,⊥
)

6→∗ (qF , ǫ).

It remains to describe how to build the reachability lookup table for P with
entries of the form (p, a, q) witnessing whether (p, a) →∗ (q, ǫ). The first op-
timisation achieves this by directly applying the pre∗ algorithm for pushdown
systems described in [16], which takes O(|Q|2 × |∆|) time. This optimisation
holds for any input PDA and, hence, does not exploit the structure of the PDA
that we generated in the previous section. Our second optimisation improves
the pre∗ algorithm for pushdown systems from [16] by exploiting the structure
of the PDA generated in the previous section, for which each control state is of
the form (p, i, j), where i, j ∈ Z>0. The crucial observation is that, due to the



PDA rules of type (*) generated from the previous section, the PDA that we are
concerned with satisfy the following two properties:

(P0) ((p, i, j), v) →∗ ((q, i′, j′), w) implies i′ ≥ i and j′ ≥ j.
(P1) ((p, i, j), v) →∗ ((q, i′, j′), w)) implies for each d1, d2 ∈ N that we have

((p, i+ d1, j + d2), v) →
∗ ((q, i′ + d1, j

′ + d2), w) .
(P2) for each nonempty v ∈ Σ∗: ((p, i, j), av) →∗ ((q, i′, j′), v) implies we have

((p, i, j), av) →∗ ((q, i′′, j′), v) for each i′′ ≥ i′.

Properties (P0) and (P1) imply it suffices to keep track of the differences in the
mode indices and context indices in the reachability lookup table, i.e., instead of
keeping track of all values ((p, i, j), a) →∗ ((q, i′, j′), ǫ), each entry is of the form
(p, a, q, d, d′) meaning that ((p, i, j), a) →∗ ((q, i+ d, j + d′), ǫ) for each i, j ∈
Z>0. Property (P2) implies that if (p, a, q, d, d′) is an entry in the table, then so is
(p, a, q, d+i, d′) for each i ∈ N. Therefore, whenever p, a, q, d′ are fixed, it suffices
to only keep track of the minimum value d such that (p, a, q, d, d′) is an entry
in the table. We describe the adaptation of the pre∗ algorithm for pushdown
systems from [16] for computing the specialised reachability lookup table in
the full version. The resulting time complexity for computing the specialised
reachability lookup table becomes linear in the number of mode indices.

6 Implementation and Experimental Results

We implemented two tools: Pushdown Translator and SynPCo2Z3.

Pushdown Translator The Pushdown Translator tool, implemented in C++,
takes a program in a simple input language and produces an n-SyncPDS. The
language supports threads, boolean variables (shared between threads, global to
a thread, or local), shared counters, method calls, assignment to boolean vari-
ables, counter increment and decrement, branching and assertions with counter
and boolean variable tests, non-deterministic branching, goto statements, locks,
output, and while loops. The user can specify the number of reversals and
context-switches and specify a constraint on the output performed (e.g. find
runs where the number of γ characters output equals the number of γ′s). The
full syntax is given in the full version of this paper. The translation uses the
context-switch technique presented in Definition 5 and the minimisation tech-
nique of Definition 8. Furthermore, the constructed pushdown systems only con-
tain transitions for reachable states of each thread (assuming counter tests always
pass, and synchronising transition can always be fired).

SynPCo2Z3 Our second tool SynPCo2Z3 is implemented in SWI-Prolog. The
input is an n-SyncPDS, reversal bound r, and synchronisation-bound k. Due
to the declarative nature of Prolog, the syntax is kept close to the n-SyncPDS
definition. The output is an existential Presburger formulas in SMT-LIB format,
supported by Z3. Moreover, the tool implements all the different translations
that have been described in this paper (including appendix) with and without
the optimisations described in the previous section. The user may also specify a
constraint on the output performed by the input n-SyncPDS.



Experiments We tested our implementation on several realistic benchmarks.
One benchmark concerns the producer-consumer examples (with one producer
and one consumer) from [31]. We took two examples from [31]: one uses one
counter and is erroneous, wherein both producer and consumer might be both
asleep (a deadlock), and the other uses two counters and is correct. The n-
SyncPDS models of these examples were hand-coded since they use synchroni-
sations rather than the context-switches of Pushdown Translator.

The remaining benchmarks were adapted from modules found in Linux ker-
nel 3.2.1, which contained list- and memory-management, as well as locks for
concurrent access. These modules often provided “register” and “unregister”
functions in their API. We tested that, when register was called as many times
as unregister, the number of calls to malloc was equal to the number of calls to
free. Furthermore, we checked that the module did not attempt to remove an
item from an empty list. In all cases, memory and list management was correct.
We then introduced bugs by either removing a call to free, or a lock state-
ment. Note the translation from C to our input language was by hand, and an
automatic translation is an interesting avenue of future work.

The results are shown in Table 1. All tests were run on a 2.8GHz Intel machine
with 32GB of RAM. Each benchmark had two threads, two context-switches,
one counter and one reversal. The size fields give the total number of pushdown
rules in the n-SyncPDS, both before and after removable heads minimisation.
Tran. Time gives the time it took to produce the SMT formula, Solve Time is
the time taken by Z3 (v. 3.2, Linux build). Each cell contains two entries: the
first is for the instance with a bug, the second for the correct instance.

File Size Min. Size Tran. Time Solve Time

prod-cons.c 22/13 -/- 0.8s/1.8s 4.2s/6.8s
api.c (rtl8192u) 654/660 202/208 28s/28s 4m19s/4m32s
af alg.c 506/528 174/204 18s/21s 10m2s/4m47s
hid-quirks.c 557/559 303/303 47s/47s 18m41s/12m5s
dm-target.c 416/436 254/278 27s/29s 36m43s/10m1s

Table 1. Results of experimental runs.

7 Conclusions and Future Work

We have studied the synchronisation-bounded reachability problem for a class
of pushdown systems communicating by shared reversal-bounded counters and
global synchronisations. This problem was shown to be NP-complete via an
efficient reduction to existential Presburger arithmetic, which can be analysed
using fast SMT solvers such as Z3. We have provided optimisation techniques for
the models and algorithms and a prototypical implementation of this reduction
and experimented on a number of realistic examples, obtaining positive results.



There are several open problems. For instance, one weakness we would like to
address is that we cannot represent data symbolically (using BDDs, for example).
This prevents us from being competitive with tools such as Getafix [39] for
context-bounded model-checking of pushdown systems without counters.

Furthermore, although we can obtain from the SMT solver a satisfying as-
signment to the Presburger formula, we would like to be able to construct a com-
plete trace witnessing reachability. Additionally, the construction of a counter-
example guided abstraction-refinement loop will require the development of new
techniques not previously considered. In particular, heuristics will be needed to
decide when to introduce new counters to the abstraction.

We may also consider generalisations of context-bounded analysis such as
phase-bounds and ordered multi-stack automata. A further challenge will be to
adapt our techniques to dynamic thread creation, where each thread has its own
context-bound, rather than the system as a whole.
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