
A Saturation Method for Collapsible Pushdown Systems

C. Broadbent1, A. Carayol2, M. Hague1,2, and O. Serre1

1 LIAFA, Université Paris Diderot – Paris 7 & CNRS
2 LIGM, Université Paris-Est & CNRS

Abstract. We introduce a natural extension of collapsible pushdown systems called an-
notated pushdown systems that replaces collapse links with stack annotations. We believe
this new model has many advantages. We present a saturation method for global backwards
reachability analysis of these models that can also be used to analyse collapsible pushdown
systems. Beginning with an automaton representing a set of configurations, we build an au-
tomaton accepting all configurations that can reach this set. We also improve upon previous
saturation techniques for higher-order pushdown systems by significantly reducing the size
of the automaton constructed and simplifying the algorithm and proofs.

1 Introduction

Via languages such as C++, Haskell, Javascript, Python, or Scala, modern day programming in-
creasingly embraces higher-order procedure calls. This is a challenge for software verification,
which usually does not model recursion accurately, or models only first-order calls (e.g. SLAM [2]
and Moped [26]). Collapsible pushdown systems (CPDSs) are an automaton model of higher-order
recursion schemes (HORSs) [10, 21], which allow reasoning about higher-order recursion.

Collapsible pushdown systems are a generalisation of higher-order pushdown systems (HOPDSs).
HOPDSs provide a model of HORSs subject to a technical constraint called safety [20, 17] and
are closely related to the Caucal hierarchy [9]. These systems extend the stack of a pushdown
system to allow a nested “stack-of-stacks” structure. Recently it has been shown by Parys that
safety is a genuine constraint on definable traces [23]. Hence, to model higher-order recursion fully,
we require CPDSs, which — using an idea from panic automata [18] — add additional collapse
links to the stack structure. These links allow the automaton to return to the context in which a
character was added to the stack.

These formalisms are known to have good model-checking properties. For example, it is de-
cidable whether a given µ-calculus formula holds on the execution graph of a HORS [21] (or
CPDS [13]). Although, the complexity of such analyses is high — for an order-n CPDS, reachabil-
ity checking is complete for (n− 1)-EXPTIME, while µ-calculus is complete for n-EXPTIME —
the problem becomes PTIME if the arity of the recursion scheme, and the number of alternations
in the formula, is bounded. The same holds true for CPDSs when the number of control states is
bounded. Furthermore, when translating from a HORS to a CPDS, it is the arity that determines
the number of control states [13]. It has been shown by Kobayashi et al. [19] that these analyses
can be performed in practice. For example, resource usage properties of programs of orders up to
five can be verified in a matter of seconds.

Kobayashi et al.’s approach uses intersection types. In the order-1 case, an alternative approach
called saturation has been successfully implemented by tools such as Moped [26] and PDSolver [16].
Saturation techniques begin with a small automaton — representing a set of configurations — and
add new transitions as they become necessary until a fixed point is reached. These algorithms,
then, naturally do not pay the worst case complexity immediately, and hence, represent ideal
algorithms for efficient verification. Furthermore, they also provide a solution to the global model
checking problem: that is, determining the set of all system states that satisfy a property. This is
particularly useful when, for example, composing analyses. Furthermore, when testing reachability
from a given initial state, we may terminate the analysis as soon as this state is found. That is,
we do not need to compute the whole fixed point.

Our first contribution is a new model of higher-order execution called Annotated Pushdown
Systems (APDSs), which replace the collapse links of a CPDS with annotations containing the



stack the link pointed to. This model allows a more natural handling than collapse links and we
prove that configuration graphs of this model are isomorphic to the configuration graphs of CPDSs
when restricted to configurations reachable from a given initial configuration.

Our second contribution is a saturation method for backwards reachability analysis of anno-
tated pushdown systems that can also be applied as-is to CPDS. This is a global model-checking
algorithm that is based on saturation techniques for higher-order pushdown automata [5, 14, 27].
Our algorithm handles alternating (or “two-player”) as well as non-alternating systems.

In addition to the extension to annotated pushdown systems, the algorithm improves on Hague
and Ong’s construction for higher-order pushdown systems [14] since the number of states intro-
duced by the construction is no longer multiplied by the number of iterations it takes to reach a
fixed point, potentially leading to a large reduction in the size of the automata constructed. In
addition, both the presentation and the proofs of correctness are much less involved.

Our full ICALP 2012 submission is available from http://igm.univ-mlv.fr/~hague/icalp2012/.

2 Technical Overview

Annotated stacks An order-1 stack is simply a sequence of characters from a given stack al-
phabet Σ, e.g. [abc]1, where a is the top of the stack. A second-order stack is a stack of order-1
stacks, e.g. [[abc]1[de]1]2. This nesting structure continues to build order-n stacks for any order n.

An annotated order-n stack is an order-n stack where the stack characters are annotated with
order-k stacks (for 1 ≤ k ≤ n). E.g., the order-3 stack [[[aubv]1]2]3 where the stacks u and v are
the annotations on a and b. Often we will omit annotations for readability. Ignoring v annotating
b and letting u = [[[c[[d]1]2 ]1]2]3, we can represent this stack as the edge-labelled tree shown below.

• • • • • • • • • • • • • • • • •
[2 [1 a b ]1 ]2 [2 [1 c ]1 ]2 [1 d ]1

Annotated stacks are based on collapsible stacks, which follow a similar definition, except the
annotations are replaced by pointers to positions further down the stack structure.

One can perform several operations annotated stacks: popk removes the uppermost order-
(k− 1) stack; pushk duplicates the uppermost order-(k− 1) stack; pushk

a adds a to the top of the
stack, annotated by the uppermost order-k stack with its uppermost order-(k− 1) stack removed;
collapsek replaces the top order-k stack with the (order-k) annotation of the uppermost stack
character; and rewa changes the uppermost character to a. Some examples are given below.

pop3([[[a]1]2[[b]1]2]3) = [[[b]1]2]3
push2([[[a

u]1]2[[b]1]2]3) = [[[au]1[a
u]1]2[[b]1]2]3

push3
c([[[a]1]2[[b]1]2]3) = [[[c[[[b]1]2]3a]1]2[[b]1]2]3

collapse2
(

[[[c[[d]1]2a]1]2[[b]1]2]3
)

= [[[d]1]2[[b]1]2]3
rewc([[[a

u]1]2[[b]1]2]3) = [[[cu]1]2[[b]1]2]3

Definition 1 (Annotated Pushdown Systems). An order-n alternating annotated pushdown
system (APDS) is a tuple C = (P , Σ,R) where P is a finite set of control states, Σ is a finite
stack alphabet, and R ⊆ (P × Σ ×On × P) ∪

(

P × 2P
)

is a set of rules.

A configuration of an APDS is a pair 〈p, w〉 where p ∈ P and w is an order-n annotated stack.
We have a transition 〈p, w〉 −→ 〈p′, w′〉 from a rule (p, a, o, p′) when a is the uppermost character
in w and w′ = o(w), and a transition 〈p, w〉 −→ { 〈p′, w〉 | p′ ∈ P } from a rule p → P . A non-
alternating APDS has no rules of this second form. We write C to denote a set of configurations.

Regularity of Annotated Stacks We represent sets of configurations with order-n stack au-
tomata based on Bouajjani and Meyer [5]. The handling of annotations is similar to automata
introduced by Broadbent et al. [6], except we read stacks top-down rather than bottom-up.

2



Definition 2 (Order-n Stack Automata). For a finite stack alphabet Σ, an order-n stack
automaton is a tuple A = (Qn, . . . ,Q1, Σ,∆n, . . . , ∆1,Fn, . . . ,F1) where

1. for all n ≥ k ≥ 2, we have Qk is a finite set of states, ∆k ⊆ Qk ×Qk−1 × 2Qk is a transition
relation, and Fk ⊆ Qk is a set of accepting states, and

2. Q1 is a finite set of states, ∆1 ⊆
⋃

2≤k≤n

(

Q1 ×Σ × 2Qk × 2Q1

)

a transition relation, and

F1 ⊆ Q1 a set of accepting states.

Stack automata are alternating automata such that order-k stacks are recognised from states in
Qk. A transition (q, q′, Q) ∈ ∆k for some k > 1 can be fired when the uppermost order-(k−1) stack
is accepted from q′ ∈ Q(k−1) and the rest of the stack is accepted from all states in Q. At order-1, a
transition (q, a,Qbr, Q) is an alternating a-transition with the additional requirement that the stack
annotating a is accepted from all states in Qbr. A stack is accepted if a subset of Fk is reached at the

end of each order-k stack. A (partial) run is pictured below, using q3
q2
−→ Q3 ∈ ∆3, q2

q1
−→ Q2 ∈ ∆2

and q1
a

−−→
Qbr

Q1 ∈ ∆1. The node labelled Qbr begins a run on the stack annotating a.

q3 q2 q1 Q1 · · · Q2 · · · Q3 · · · Qbr · · ·
[2 [1 a · · · ]1 · · · ]2 · · · · · ·

Algorithm Given an APDS C and a stack automaton A0 with a state qp ∈ Qn for each control
state p in C, we define Pre∗C(A0) as the smallest set such that Pre∗C(A0) ⊇

{

〈p, w〉
∣

∣ w ∈ Lqp(A0)
}

,
and

Pre∗C(A0) =

{

〈p, w〉

∣

∣

∣

∣

∃〈p, w〉 −→ 〈p′, w′〉 with 〈p′, w′〉 ∈ Pre∗C(A0) ∨
∃〈p, w〉 −→ C and C ⊆ Pre∗C(A0)

}

recalling C denotes a set of configurations. In our ICALP submission, we show how to build a stack
automaton recognising Pre∗C(A0). We begin with A0 and iterate a saturation function denoted Γ

— which adds new transitions to A0 — until a fixed point has been reached. That is, we iterate
Ai+1 = Γ (Ai) until Ai+1 = Ai. As the number of states is bounded, we eventually reach a fixed
point, giving us the following theorem.

Theorem 1. Given an alternating annotated pushdown system C and a stack automaton A0, we
can construct an automaton A accepting Pre∗C(A0).

The construction is n-EXPTIME for alternating APDS and CPDS — which is optimal —
and can be improved to (n− 1)-EXPTIME for non-alternating CPDSs when the stack automaton
satisfies a certain notion of non-alternation.

3 Perspectives

There are several avenues of future work. First, we intend to generalise our saturation technique
to computing winning regions of parity conditions, based on the order-1 case [15]. This will permit
verification of more general specifications. We also plan to design a prototype tool to test the
algorithm in practice

An important direction is that of counter example generation. When checking a safety property,
it is desirable to provide a trace witnessing a violation of the property. This can be used to repair
the bug and as part of a counter-example guided abstraction refinement (CEGAR) loop enabling
efficient verification algorithms. However, finding shortest counter examples — due to its tight
connection with pumping lemmas — will present a challenging and interesting problem.

Saturation techniques have been extended to concurrent order-1 pushdown systems [29, 1]. We
would like to consider versions of our algorithm for higher-order concurrent systems.

It will also be interesting to study notions of regularity of annotated stacks. In our notion
of regularity, the forwards reachability set is not regular, due to the copy operation pushk. This

3



problem was addressed by Carayol for higher-order stacks [8]; adapting these techniques to APDS
is a challenging problem.

We may also study the question of FO decidability over the configuration graphs of APDSs.
Note that the undecidability results for CPDSs do not transfer here. In fact we conjecture that
FO should be decidable.

References
1. M. F. Atig. Global model checking of ordered multi-pushdown systems. In FSTTCS, pages 216–227,

2010.
2. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static analysis. In

POPL, pages 1–3, 2002.
3. M. Benois Parties rationnelles du groupe libre. Comptes-Rendus de l’Acamdémie des Sciences de

Paris, Série A:1188–1190, 1969.
4. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application to

model-checking. In CONCUR, pages 135–150, 1997.
5. A. Bouajjani and A. Meyer. Symbolic Reachability Analysis of Higher-Order Context-Free Processes.

In FSTTCS, pages 135–147 ,2004.
6. C. H. Broadbent, A. Carayol, C.-H. Luke Ong, and O. Serre. Recursion schemes and logical reflection.

In LiCS, pages 120–129, 2010.
7. T. Cachat. Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen, 2003.
8. A. Carayol. Regular sets of higher-order pushdown stacks. In MFCS, pages 168–179, 2005.
9. A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in terms of logic and higher-order

pushdown automata. In FSTTCS, pages 112–123, 2003.
10. W. Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982.
11. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model checking

pushdown systems. In CAV, pages 232–247, 2000.
12. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking pushdown

systems. In Electr. Notes Theor. Comput. Sci. 9: 27-37, 1997.
13. M. Hague, A. S. Murawski, C.-H. Luke Ong, and O. Serre. Collapsible pushdown automata and

recursion schemes. In LiCS, pages 452–461, 2008.
14. M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analysis for higher-order pushdown

systems. Logical Methods in Computer Science, 4(4), 2008.
15. M. Hague and C.-H. L. Ong. A saturation method for the modal -calculus over pushdown systems.

Inf. Comput., 209(5):799–821, 2010.
16. M. Hague and C.-H. L. Ong. Analysing mu-calculus properties of pushdown systems. In SPIN, pages

187–192, 2010.
17. T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In FoSSaCS, pages

205–222, 2002.
18. T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and panic automata. In

ICALP, pages 1450–1461, 2005.
19. N. Kobayashi. Higher-order model checking: From theory to practice. In LiCS, pages 219–224, 2011.
20. A. N. Maslov. Multilevel stack automata. Problems of Information Transmission, 15:1170–1174, 1976.
21. C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In LiCS, pages

81–90, 2006.
22. C.-H. L. Ong and S. J. Ramsay. Verifying higher-order functional programs with pattern-matching

algebraic data types. In POPL, pages 587–598, 2011.
23. P. Parys. Collapse operation increases expressive power of deterministic higher order pushdown au-

tomata. In STACS, pages 603–614, 2011.
24. T. W. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their application

to interprocedural dataflow analysis. Sci. Comput. Program., 58(1-2):206–263, 2005.
25. S. Salvati and I. Walukiewicz. Krivine machines and higher-order schemes. In ICALP (2), pages

162–173, 2011.
26. S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical University of Munich, 2002.
27. A. Seth. An alternative construction in symbolic reachability analysis of second order pushdown

systems. In RP pages 80–95, 2007.
28. A. Seth. Games on higher order multi-stack pushdown systems. In RP, pages 203–216, 2009.
29. D. Suwimonteerabuth, J. Esparza, and S. Schwoon. Symbolic context-bounded analysis of multi-

threaded java programs. In SPIN, pages 270–287, 2008.
30. D. Suwimonteerabuth, S. Schwoon, and J. Esparza. Efficient algorithms for alternating pushdown

systems with an application to the computation of certificate chains. In ATVA, pages 141–153, 2006.

4


