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ABSTRACT
JavaScript has evolved into a versatile ecosystem for not just the
web, but also a wide range of server-side and client-side applications.
With this increased scope, the potential impact of bugs increases.
We introduce ExpoSE, a dynamic symbolic execution engine for
Node.js applications. ExpoSE automatically generates test cases to
�nd bugs and cover as many paths in the target program as possible.
We discuss the speci�c challenges for symbolic execution arising
from the widespread use of regular expressions in such applica-
tions. In particular, we make explicit the issues of capture groups,
backreferences, and greediness in JavaScript’s �avor of regular ex-
pressions, and our models improve over previous work that only
partially addressed these. We evaluate ExpoSE on three popular
JavaScript libraries that make heavy use of regular expressions, and
we report a previously unknown bug in the Minimist library.

CCS CONCEPTS
• Software and its engineering → Software veri�cation and
validation; • Theory of computation → Regular languages;
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1 INTRODUCTION
Since its inception as a scripting language for dynamic web ele-
ments, JavaScript has seen its popularity balloon and has become
a versatile and widely used application platform. Browserless run-
times, and in particular Node.js, allow developers to build server-
side1 and client-side2 applications in pure JavaScript. With its grow-
ing importance for the infrastructure of today’s systems, there is
an increased need for helping developers �nd bugs early.

A successful technique for automatically �nding bugs in real
world software is dynamic symbolic execution (DSE). Traditionally,
DSE engines mostly targeted C, Java, or binary code [3, 6]. However,

1https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
2https://blog.atom.io/2014/02/26/the-nucleus-of-atom.html
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early implementations of DSE for JavaScript have shown promising
results for testing browser-based JavaScript code [4, 7].

In DSE, some inputs to the program under test are made symbolic
while the rest are �xed. Starting with an initial concrete assignment
to the symbolic inputs, the DSE engine executes the program both
concretely and symbolically and maintains a symbolic state that
maps program variables to expressions over the symbolic inputs.
Whenever the symbolic execution encounters a conditional opera-
tion, the symbolic state’s evaluation of the condition or its negation
are added to the path condition, depending on the concrete result
of the operation. Once the execution �nishes, the path condition
uniquely characterizes the executed control �ow path. By negating
the last constraint of the path condition or of one of its pre�xes, the
DSE engine generates a constraint for a di�erent path. It then calls
a constraint solver to check feasibility of that path and to obtain a
satisfying assignment for the symbolic input variables that drives
the next execution down that path.

The joint symbolic and concrete execution is one of the advan-
tages of DSE: when an external function cannot be analyzed or an
operation lies outside the constraint solver’s theory, the DSE engine
can concretize parts of the symbolic state without sacri�cing sound-
ness, at the cost of reducing the search space. Nevertheless, we must
avoid excessive concretization and provide symbolic semantics for
as much of the target language as possible to allow e�ective test
generation. This is one of the reasons why low-level or byte-code
languages are popular DSE targets, while keyword-rich languages
with large standard libraries are supported less frequently [1]. The
ECMA standard for JavaScript speci�es regular expressions as part
of the language. Therefore, a DSE engine for JavaScript must sup-
port regular expressions to be e�ective.

Modern constraint solvers support strings and regular expres-
sions via encodings as �nite automata [5, 10, 11]. However, ECMA
regular expressions are strictly more expressive than regular lan-
guages [2]. They include the notion of capture groups and backrefer-
ences in what is often referred to as “perl-style regular expressions”;
we will refer to these languages as regex for short. For example, in
the regex /([a-z]+)\1/, the parentheses denote a capture group, and
the \1 denotes a backreference, which speci�es that whatever was
matched inside the parentheses should be repeated at that point
in the string. We need to model capture groups within a regex to
avoid concretization. Consider the following program:

let capturedMatches = symbolic_string().match(/([a-z])/)

if (capturedMatches[1] == 'c') {

do_something();

}

Without symbolic semantics for match, the contents of the capture
group (stored at index 1 of the returned array) would be concretized,
making it impossible to explore the path entering the conditional

https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://blog.atom.io/2014/02/26/the-nucleus-of-atom.html
http://dx.doi.org/10.1145/3092282.3092295


SPIN’17, July 2017, Santa Barbara, CA, USA Blake Loring, Duncan Mitchell, and Johannes Kinder

Distributor Executor

Program
Under Test

Input TraceInput

Alternative
Inputs

SMT Solver

Models Path Condition

M
ul
ti
pl
e
C
on

cu
rr
en
t
In
st
an

ce
s

Figure 1: The ExpoSE architecture.

statement. In this paper, we present a DSE engine for JavaScript
and address the practical issues that need to be overcome when
trying to support real world language features, in particular regular
expressions. We make the following contributions: (i) we highlight
the challenges in implementing a DSE engine for JavaScript, in-
cluding the handling of asynchronous events and ECMA regular
expressions; (ii) we present an encoding of JavaScript’s regular
expressions into a combination of classical regular expressions and
SMT, including what is to our knowledge the �rst explicit support
for both capture groups and backreferences.

2 EXPOSE
We now present the design of ExpoSE3, our framework for dynamic
symbolic execution for JavaScript applications.

2.1 Architecture
ExpoSE takes a JavaScript program and a symbolic unit test (the
test harness) and generates test cases until it has explored all fea-
sible paths or exceeds a time bound. ExpoSE consists of two main
components, the test executor and the test distributor, as shown
in the overview in Figure 1. The distributor manages the global
state of the exploration, aggregates statistics, and schedules test
cases for symbolic execution. Multiple test cases can be run con-
currently in separate test executor processes to take advantage of
parallelism. The test case executor instruments the program under
test to perform DSE and detect any bugs during execution. We use
the Jalangi2 framework for instrumentation, which is itself written
in JavaScript. It inserts callbacks for all JavaScript syntax, including
in code dynamically created by eval and require. Each instance of
the executor runs a test case, symbolically executes the induced
trace, and uses the Z3 SMT solver (via custom JavaScript bindings)
to generate new test inputs that are passed back to the Distributor.
JavaScript uses �oating point representation for all its numbers,
which we approximate using real arithmetic. For supporting string
operations, we rely on the recently added theory of strings in Z3,
together with our custom encoding (see §3).

2.2 Test Isolation
JavaScript programs execute in a single thread, but rely on asyn-
chronous operations to achieve a form of parallelism and avoid
blocking. Callbacks from completed asynchronous operations are
scheduled whenever the execution of the current execution frame
�nishes. To avoid starvation of asynchronous events and timeouts
3Available at https://github.com/ExpoSEJS/ExpoSE

in a continuously running test executor, we create a separate pro-
cess for each test case. Additionally, this prevents spill-over e�ects
from one execution to the next where the program a�ects the global
state or dynamically modi�es parts of the standard library (which
is legal in JavaScript). As a side e�ect, the overhead of applying
instrumentation is repeated for every test case; we are investigating
adding caching mechanisms to Jalangi2 to avoid redundant steps.

3 REGULAR EXPRESSIONS
We present an encoding of regexes into logical constraints on strings
and regular expression membership. This extends prior work by
formalizing nested capture groups and backreferences [5, 7, 8].

3.1 Capture Groups
Let R be any regex without backreferences, ω ∈ L(R) a word of the
language de�ned by R, and C a capture group within R. Then the
capture of C is the last substring ofω “matched” by C, i.e., consumed
by the transitions corresponding to C within R’s equivalent non-
deterministic �nite automaton (NFA).

In JavaScript, match and related operations return capture groups
in an array, with the entire matched string at position 0 and the
capture of the n-th capture group in position n. Captures may be
the empty string if that capture group was not matched; if there
is no match, null is returned. We model the semantics of match

using formulas over the theory of strings and regular expressions.
Each capture string is expressed as the concatenation of the capture
groups and expressions within it.

Consider evaluating str.match(/(a)b/) in a symbolic state where
str evaluates to Ω. The result is either null (no match) or an array
containing the entire match (ω) and the last match for the capture
group (ω1). We treat the two cases as two separate paths in DSE.
If the concrete evaluation of match succeeds, we set the result to
[ω, ω1] and add to the path constraint:ω� Ω∧ω = ω1++ ω2∧ω1 ∈
L(a)∧ω2 ∈ L(b),where� is the substring relation and++ is string
concatenation. If the concrete match fails, we add the negation of
the constraint and set the result to null.

We now show how one can to encode these regexes using a
recursive strategy. To allow referring to individual captures in con-
straints, we break down a regexR into its constituent capture groups
and literals (which include character classes and ranges, and for
the purpose of simplifying the presentation, also capture-free con-
catenations of literals such as abc). We can then describe words
ω ∈ L(R) in terms of concatenation constraints over literals and
words in the languages of the capture groups, which are broken
down further in a recursive manner. We write any regex R as

R = r0 ◦0 r1 ◦1 ... ◦n−1 rn , (1)

where each odd-indexed ri is a (possibly empty) capture group
(which contains, recursively, the same structure as R), each even-
indexed ri a (possibly empty) literal, and each ◦i either concatena-
tion, alternation, or a Kleene star (+ and ? are rewritten with their
direct equivalences). Note that allowing empty ri also permits to
have no capture groups at all or multiple consecutive operators.

The alternation operator r1 | r2 matches either r1 or r2. Following
the decomposition of R in Equation 1 above, we can, for the �rst i
such that ◦i = |, write ω ∈ L(R) ⇐⇒ ω ∈ L(r0 ◦0 . . . ◦i−1 ri ) ∨

https://github.com/ExpoSEJS/ExpoSE
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ω ∈ L(ri+1 ◦i+1 . . . ◦n−1 rn ). Applied repeatedly on each resulting
subexpression, we can eliminate alternation over capture groups.

The concatenation operator is implicit: words in L(r1r2) are
the concatenation of words in L(r1) and L(r2). Suppose we have
eliminated alternation in the regex via the constraints above, then
considering Equation 1, for the �rst i such that ◦i is concatenation,
we obtain ω ∈ L(R) ⇐⇒ ω1 ∈ L(r0 ◦0 . . . ◦i−1 ri ) ∧ ω2 ∈
L(ri+1 ◦i+1 . . . ◦n−1 rn ) ∧ ω = ω1++ ω2. As before, this allows to
iteratively eliminate concatenation between capture groups.

After eliminating alternation and concatenation at the top level,
we need only describe the constraints induced by a Kleene Star
operations on single subexpressions ri . Capture groups and literals
can both be encoded logically, via

ω ∈ L(ri*) ⇐⇒
(∃m ≥ 0 ∧ ω = ++mj=0 ωj
∧ ∀j ∈ {0, ...,m},ωj ∈ L(ri )) ∨ ω = ϵ . (2)

Finally, when ri is a capture group, the result of the capture group
refers to the last matching string ωm satisfying it. We then proceed
recursively on each capture group to fully describe the language.

3.2 Backreferences
A backreference speci�es that it must match the last matched in-
stance of a labeled, closed capture group. They can be used both
outside and inside quanti�cation, matching the last string matched
to the speci�ed capture group. Suppose that, in a regex R, there are
m non-null capture groups (including top-level and nested captures),
and that any literal ri may additionally be a backreference \k , where
1 ≤ k ≤ m and thekth capture group, Ck , is closed at the point of the
backreference. We can then de�ne a regex R′ = r ′0 ◦0 r

′
1 ◦1 ...◦n−1 r

′
n ,

where r ′i = Ck if ri = \k and r ′i = ri otherwise. It is immediate that
L(R) ⊆ L(R′). Since R′ is backreference-free it can be encoded by
the process in §3.1; we now extend this encoding to R.

Consider the case where a regex R has no quanti�cation. At the
top level, the constraint on R′ generated from eliminating alterna-
tions is of the formω ∈ L(R′) ⇐⇒ P1∨ ...∨PN . For some M and
languagesLi, j , each Pi = (ω = ωi,1++ ...++ωi,M )∧(∀j, ωi, j ∈ Li, j ),
due to the elimination of concatenation. Suppose R contains a back-
reference to Ck at the index i . Suppose that ωi1, j1 is the string
matching the capture group Ck , and ωi2, j2 is the string matching r ′i
in R′. Then translate our constraint for L(R′) into one for L(R) by
adding the constraint ωi1, j1 = ωi2, j2 . Note this only makes sense if
i1 = i2, but this follows the semantics of backreferences.

Now consider a backreference to some Ck which is not contained
within a quanti�ed capture group, either R1 = . . . Ck . . . \k* . . .
or R2 = . . . Ck* . . . \k . . .. For the former case, suppose ωi1, j1 is
the string matching Ck , and ωi2, j2 is the string matching Ck* in
the constraints describing L(R′1). From Equation 2, either ωi2, j2 =
ω0++ ...++ωm for some m, or ωi2, j2 = ϵ . In the former case we add a
constraint which ensures each ωi must be the same as the match
of the capture group referenced: ∀i : 0 ≤ i ≤ m, ωi = ωi1, j1 . In the
latter case, suppose ωi1, j1 matches Ck *, then ωi1, j1 = ω0++ ...++ωm
for some m or ωi1, j1 = ϵ . Suppose further that ωi2, j2 is the string
matching the replaced backreference in R′2. Recalling that ωi2, j2
must match the last match of Ck , we need to add to our constraints
for L(R′2) that ωi2, j2 = ϵ if ωi1, j1 = ϵ and ωi2, j2 = ωm otherwise.

Table 1: Statistics and runtimes for testing targets.

Minimist Semver Validator

Lines of Code 300 1200 1500
Path Count 52 248 168
Total Execution 902.00s 500.00s 170.00s
Median Test Case 1.31s 2.52s 3.00s
Shortest Test Case 0.73s 1.09s 1.67s
Longest Test Case 900.00s 495.10s 64.47s

Finally, we consider nested backreferences with capture groups.
We can consider R3 = . . . (. . . Ck . . . \k . . .)* . . . where Ck and \k
are within a top-level capture group Cl . ConsideringR′3, and suppos-
ing that C′l (the related regex to Cl ) does not contain any alternation
operators, we obtain (omitting any non-pertinent constraints):

ω ∈ L(C′l ) ⇐⇒ ω = ...++ωi++ ...++ ...ωj++ ...

∧ ... ∧ ωi ∈ L(Ck ) ∧ ... ∧ ωj ∈ L(Ck ) ∧ ...

For this i and j, we have ω ∈ L(Cl ) ⇐⇒ ω ∈ L(C′l ) ∧ ωi = ωj .
Adding this constraint now accurately describes the nested back-
reference. Recursing through the entire regex R, we can describe
the entire language R in terms of these constraints.

3.3 Remaining Challenges
In practice, the encoding for nested backreferences presented leads
to sets of constraints that are hard to solve for state of the art SMT
solvers. In ExpoSE’s implementation, we use a more restrictive en-
coding that limits any quanti�ed, nested backreference to have only
equal matches. For example, given the regex ((a|b)\2)+, ExpoSE
would consider the strings aaaa and bbbb to be part of the language
but not aabb. With string support in SMT solvers still a relatively
new addition, we hope to loosen this restriction in the future.

By default, regexes are greedy, which means that as the regex
is matched from left to right, only the largest possible match of
each subexpression is considered. Greediness makes a di�erence
for the contents of capture groups: in /a*(a?)/, the capture will
always be empty since all a’s are consumed by the initial greedy a*.
Our encoding disregards greediness when a regex uses unbounded
quanti�cation. We are not aware of prior work that even considered
this interplay of greediness and capture groups as a limitation.

4 EVALUATION
We evaluate ExpoSE by testing the JavaScript libraries Minimist,
Semver, and Validator. These popular libraries—ranging between
1.5m and 30m monthly downloads on npmjs.com—all rely on string
operations and regular expression matching, and each contain be-
tween 300 and 1500 lines of code. ExpoSE is able to cover between
56-80% and found a previously undiscovered crash bug in Minimist.

4.1 Methodology
It is di�cult to determine a baseline for code coverage in JavaScript
because eval and require can dynamically add new code in some
but not all test cases. In addition to all code in the main �le under
test, we count source code that is required (imported) on demand or
evaluated (generated) during execution. We measure code coverage
as the fraction of unique nodes in the program’s abstract syntax
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Figure 2: ExpoSE performance statistics for three popular Node.js libraries.

tree encountered during execution. For JavaScript code, this metric
allows to distinguish multiple blocks in a single line of code, which
are common in functional design patterns and could otherwise
suggest an in�ated coverage. In some cases we are unable to identify
unreachable instrumented error-handling code. This can lead to
under-reporting of coverage by up to 1.5% in our evaluation.

We built a generic test harness to systematically exercise all
public methods in a given library with symbolic arguments. The
symbolic arguments range over all our supported theories (Strings,
Booleans, Reals, Unde�ned, Null). We ignore spurious type excep-
tions due to functions expecting values of a speci�c type. The public
methods of all three libraries expected only values of base types; for
object types, we will consider a generator-based or lazy approach
in future work. Each test case was executed on a machine with a
dual Intel Xeon E5-2640 CPU with 16 cores in total and 128 GiB of
RAM. Each library was tested with up to 128 concurrent test cases.

4.2 Results
Table 1 lists statistics and the number of explored paths for each
target. Figure 2 shows test coverage and execution rate over time.
Most test cases execute within two seconds, including instantiation
costs. However, in each library some solver queries require several
minutes to solve, depending on the solver’s random seed.

All targets show an initial peak in execution rate, which is due
to concurrently executing a large number of test cases, of which
many �nish quickly. The generational search in ExpoSE generates
alternatives for all conditions already from the �rst run [3]. This
rate slows down over time as the remaining cases �nish, with new
spawns having a smaller but recurring e�ect on the rate.

Typical for DSE, coverage plateaus in all cases. Minimist plateaus
below 60%, due to concretization in functions we do not model ex-
plicitly, including split. Semver and Validator display more stable
test execution rates and coverage gains, since they have multiple
disconnected public methods and shorter query times.

ExpoSE identi�ed a new bug within Minimist, which occurs
when it is passed any argument in the form '--=...=', due to an
overly permissive regular expression. Symbolic modeling of test
and match allowed for the generation of the failing test case.

5 RELATEDWORK
Previous DSE engines have demonstrated success in �nding bugs
in JavaScript [4, 7, 9]. Initial results show that ExpoSE can generate
comparable numbers of paths for target applications. Jalangi [9] is
the predecessor to Jalangi2, and included support for DSE (Jalangi2

does not). However, it is no longer maintained and has only limited
support for asynchronous events and regular expressions.

Existing string solvers do not consider perl-style regex [5, 11].
The string solver Kaluza [7] does not support backreferences but
includes a form of capture groups; however it is unclear whether
their encodings are faithful to the ECMA speci�cation, as noted by
Liang et al. [5]. The elimination of backreferences via concatenation
constraints is mentioned in the work of Scott et al [8], although
they do not describe systematic means of reduction.

6 CONCLUSION
In this paper, we discussed the design of ExpoSE, a DSE engine for
standalone JavaScript applications. We presented an encoding of
regexes into logical constraints on strings and regular expression
membership, including to our knowledge the �rst explicit treatment
of both capture groups and backreferences. We demonstrated that
ExpoSE is e�ective at generating tests for unmodi�ed, string-heavy
JavaScript code and found a new bug in Minimist. In future work,
we plan to extend ExpoSE’s support for backreferences to our full
encoding and to faithfully model greediness for capture groups.
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