
Sound Regular Expression Semantics for Dynamic
Symbolic Execution of JavaScript

Blake Loring
Information Security Group

Royal Holloway, University of London
United Kingdom

blake.loring.2015@rhul.ac.uk

Duncan Mitchell
Department of Computer Science

Royal Holloway, University of London
United Kingdom

duncan.mitchell.2015@rhul.ac.uk

Johannes Kinder
Research Institute CODE

Bundeswehr University Munich
Germany

johannes.kinder@unibw.de

Abstract
Support for regular expressions in symbolic execution-based
tools for test generation and bug finding is insufficient. Com-
mon aspects of mainstream regular expression engines, such
as backreferences or greedy matching, are ignored or impre-
cisely approximated, leading to poor test coverage or missed
bugs. In this paper, we present a model for the complete regu-
lar expression language of ECMAScript 2015 (ES6), which is
sound for dynamic symbolic execution of the test and exec
functions. We model regular expression operations using
string constraints and classical regular expressions and use
a refinement scheme to address the problem of matching
precedence and greediness. We implemented our model in
ExpoSE, a dynamic symbolic execution engine for JavaScript,
and evaluated it on over 1,000 Node.js packages containing
regular expressions, demonstrating that the strategy is effec-
tive and can significantly increase the number of successful
regular expression queries and therefore boost coverage.

CCS Concepts • Software and its engineering → Soft-
ware verification and validation; Dynamic analysis; •
Theory of computation → Regular languages.

Keywords Dynamic symbolic execution, JavaScript, regu-
lar expressions, SMT

ACM Reference Format:
Blake Loring, Duncan Mitchell, and Johannes Kinder. 2019. Sound
Regular Expression Semantics for Dynamic Symbolic Execution of
JavaScript. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’19), June
22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3314221.3314645

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA,
https://doi.org/10.1145/3314221.3314645.

1 Introduction
Regular expressions are popular with developers for match-
ing and substituting strings and are supported by many pro-
gramming languages. For instance, in JavaScript, one can
write /goo+d/.test(s) to test whether the string value of s
contains "go", followed by one or more occurrences of "o"
and a final "d". Similarly, s.replace(/goo+d/,"better")
evaluates to a new string where the first such occurrence in
s is replaced with the string "better".

Several testing and verification tools include some degree
of support for regular expressions because they are so com-
mon [24, 27, 29, 34, 37]. In particular, SMT (satisfiability mod-
ulo theory) solvers now often support theories for strings
and classical regular expressions [1, 2, 6, 15, 25, 26, 34, 38–40],
which allow expressing constraints such as s ∈ L(goo+d)
for the test example above. Although any general theory
of strings is undecidable [7], many string constraints are
efficiently solved by modern SMT solvers.

SMT solvers support regular expressions in the language-
theoretical sense, but “regular expressions” in programming
languages like Perl or JavaScript—often called regex, a term
we also adopt in the remainder of this paper—are not limited
to representing regular languages [3]. For instance, the ex-
pression /<(\w+)>.*?<\/\1>/ parses any pair of matching
XML tags, which is a context-sensitive language (because the
tag is an arbitrary string that must appear twice). Problem-
atic features that prevent a translation of regexes to the word
problem in regular languages include capture groups (the
parentheses around \w+ in the example above), backrefer-
ences (the \1 referring to the capture group), and greedy/non-
greedy matching precedence of subexpressions (the .*? is
non-greedy). In addition, any such expression could also be
included in a lookahead (?=), which effectively encodes in-
tersection of context sensitive languages. In tools reasoning
about string-manipulating programs, these features are usu-
ally ignored or imprecisely approximated. This is a problem,
because they are widely used, as we demonstrate in §7.1.
In the context of dynamic symbolic execution (DSE) for

test generation, this lack of support can lead to loss of cover-
age or missed bugs where constraints would have to include
membership in non-regular languages. The difficulty arises
from the typical mixing of constraints in path conditions—
simply generating a matching word for a standalone regex is

1

https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1145/3314221.3314645

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Blake Loring, Duncan Mitchell, and Johannes Kinder

easy (without lookaheads). To date, there has been only lim-
ited progress on this problem, mostly addressing immediate
needs of implementations with approximate solutions, e.g.,
for capture groups [29] and backreferences [27, 30]. How-
ever, neither matching precedence nor lookaheads have been
addressed before.
In this paper, we propose a novel scheme for supporting

ECMAScript regex in dynamic symbolic execution and show
that it is effective in practice. We rely on the specification of
regexes and their associated methods in ECMAScript 2015
(ES6). However, our methods and findings should be eas-
ily transferable to most other existing implementations. In
particular, we make the following contributions:

• We fully model ES6 regex in terms of classical regular
languages and string constraints (§4) and cover several
aspects missing from previous work [27, 29, 30]. We in-
troduce the notion of a capturing language to make the
problem of matching and capture group assignment
self-contained.

• We introduce a counterexample-guided abstraction
refinement (CEGAR) scheme to address the effect of
greediness on capture groups (§5), which allows us to
deploy our model in DSE without sacrificing sound-
ness for under-approximation.

• We present the first systematic study of JavaScript
regexes, examining feature usage across 415,487 pack-
ages from the NPM software repository. We show that
non-regular features are widely used (§7.1).

In the remainder of the paper we review ES6 regexes (§2)
and present an overview of our approach by example (§3).We
then detail our regex model using a novel formulation (§4),
and we propose a CEGAR scheme to address matching prece-
dence (§5). We discuss an implementation of the model as
part of the ExpoSE symbolic execution engine for JavaScript
(§6) and evaluate its practical impact on DSE (§7). Finally,
we review related work (§8) and conclude (§9).

2 ECMAScript Regex
We review the ES6 regex specification, focusing on differ-
ences to classical regular expressions. We begin with the
regex API and its matching behavior (§2.1) and then explain
capture groups (§2.2), backreferences (§2.3), and operator
precedence (§2.4). ES6 regexes are comparable to those of
other languages but lack Perl’s recursion and lookbehind
and do not require POSIX-like longest matches.

2.1 Methods, Anchors, Flags
ES6 regexes are RegExp objects, created from literals or the
RegExp constructor. RegExp objects have two methods, test
and exec, which expect a string argument; String objects
offer the match, split, search and replace methods that
expect a RegExp argument.

A regex accepts a string if any portion of the stringmatches
the expression, i.e., it is implicitly surrounded by wildcards.
The relative position in the string can be controlled with an-
chors, with ^ and $ matching the start and end, respectively.

Flags in regexes can modify the behavior of matching op-
erations. The ignore case flag i ignores character cases when
matching. Themultiline flag m redefines anchor characters to
match either the start and end of input or newline characters.
The unicode flag u changes how unicode literals are escaped
within an expression. The sticky flag y forces matching to
start at RegExp.lastIndex, which is updated with the index
of the previous match. Therefore, RegExp objects become
stateful as seen in the following example:
r = /goo+d/y;

r.test("goood"); // true; r.lastIndex = 6

r.test("goood"); // false; r.lastIndex = 0

The meaning of the global flag g varies. It extends the effects
of match and replace to include all matches on the string
and it is equivalent to the sticky flag for the test and exec
methods of RegExp.

2.2 Capture Groups
Parentheses in regexes not only change operator precedence
(e.g., (ab)* matches any number of repetitions of the string
"ab" while ab* matches the character "a" followed by any
number of repetitions of the character "b") but also create
capture groups. Capture groups are implicitly numbered from
left to right by order of the opening parenthesis. For example,
/a|((b)*c)*d/ is numbered as /a|(1(2b)*c)*d/. Where
only bracketing is required, a non-capturing group can be
created by using the syntax (?: . . .).
For regexes, capture groups are important because the

regex engine will record the most recent substring matched
against each capture group. Capture groups can be referred
to fromwithin the expression using backreferences (see §2.3).
The last matched substring for each capture group is also
returned by some of the API methods. In JavaScript, the
return values of match and exec are arrays, with the whole
match at index 0 (the implicit capture group 0), and the last
matched instance of the ith capture group at index i . In the
example above, "bbbbcbcd".match(/a|((b)*c)*d/) will
evaluate to the array ["bbbbcbcd", "bc", "b"].

2.3 Backreferences
A backreference in a regex refers to a numbered capture group
and will match whatever the engine last matched the capture
group against. In general, the addition of backreferences to
regexes makes the accepted languages non-regular [3].

Inside quantifiers (Kleene star, Kleene plus, and other rep-
etition operators), the string matched by the backreference
can change across multiple matches. For example, the regex
/((a|b)\2)+/ can match the string "aabb", with the back-
reference \2 being matched twice: the first time, the capture

2

Sound Regular Expression Semantics for DSE of JavaScript PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 1. Regular expression operators, separated by classes
of precedence.

Operator Name Rewriting

(r) Capturing parentheses
\n Backreference
(?:r) Non-capturing parentheses
(?=r) Positive lookahead
(?!r) Negative lookahead
\b Word boundary
\B Non-word boundary

r * Kleene star
r *? Lazy Kleene star
r + Kleene plus r *r
r +? Lazy Kleene plus r *?r
r{m,n} Repetition rn| . . . |rm

r{m,n}? Lazy repetition rm| . . . |rn

r? Optional r|ϵ
r?? Lazy optional ϵ|r

r1r2 Concatenation

r1|r2 Alternation

group contains "a", the second time it contains "b". This
logic applies recursively, and it is possible for backreferences
to in turn be part of outer capture groups.

2.4 Operator Evaluation
We explain the operators of interest for this paper in Table 1;
the implementation described in §6 supports the full ES6
syntax [14]. Some operators can be rewritten into semanti-
cally equivalent expressions to reduce the number of cases
to handle (shown in the Rewriting column).
Regexes distinguish between greedy and lazy evaluation.

Greedy operators consume as many characters as possi-
ble such that the entire regular expression still matches;
lazy operators consume as few characters as possible. This
distinction—called matching precedence—is unnecessary for
classical regular languages, but does affect the assignment
of capture groups and therefore backreferences.

Zero-length assertions or lookarounds do not consume any
characters but still restrict the accepted word, enforcing a
language intersection. Positive or negative lookaheads can
contain any regex, including capture groups and backrefer-
ences. In ES6, lookbehind is only available through \b (word
boundary), and \B (non-word boundary), which are com-
monly used to only (or never) match whole words in a string.

3 Overview
In an overview of our approach, we now define the word
problem for regex (§3.1) and how it arises in DSE (§3.2). We
introduce our model for regex by example (§3.3) and explain
how to eliminate spurious solutions by refinement (§3.4).

1 let timeout = '500';

2 for (let i = 0; i < args.length; i++) {

3 let arg = args[i];

4 let parts = /<(\w+)>([0-9]*)<\/\1>/.exec(arg);

5 if (parts) {

6 if (parts[1] === "timeout") {

7 timeout = parts[2];

8 }

9 ...

10 }

11 }

12 assert(/^[0-9]+$/.test(timeout) == true);

Listing 1. Code example using regex

3.1 The Word Problem and Capturing Languages
For any given classical regular expression r , we write w ∈

L(r) whenever w is a word within the (regular) language
generated by r . For a regex R, we also need to record values
of capture groups within the regex. To this end, we introduce
the following notion:

Definition 1 (Capturing Language). The capturing language
of a regexR, denotedLc (R), is the set of tuples (w, C0, . . . , Cn)
such thatw is aword of the language ofR and eachC0, . . . , Cn
is the substring of w matched by the corresponding num-
bered capture group in R.

A word w is therefore matched by a regex R if and only if
∃C0, . . . , Cn : (w, C0, . . . , Cn) ∈ Lc (R). It is not matched if
and only if ∀C0, . . . , Cn : (w, C0, . . . , Cn) < Lc (R). For read-
ability, we will usually omit quantifiers for capture variables
where they are clear from the context.

3.2 Regex In Dynamic Symbolic Execution
The code in Listing 1 parses numeric arguments between
XML tags from its input variable args, an array of strings.
The regex in line 4 breaks each argument into two capture
groups, the tag and the numeric value (parts[0] is the en-
tire match). When the tag is “timeout”, it sets the timeout
value accordingly (lines 6–7). On line 12, a runtime asser-
tion checks that the timeout value is truly numeric after
the arguments have been processed. The assertion can fail
because the program contains a bug: the regex in line 4 uses
a Kleene star and therefore also admits the empty string as
the number to set, and JavaScript’s dynamic type system will
allow setting timeout to the empty string.

DSE finds such bugs by systematically enumerating paths,
including the failure branches of assertions [17]. Starting
from a concrete run with input, say, args[0] = "foo", the
DSE engine will attempt to build a path condition that en-
codes the branching decisions in terms of the input values. It
then attempts to systematically flip clauses in the path con-
dition and query an SMT solver to obtain input assignments

3

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Blake Loring, Duncan Mitchell, and Johannes Kinder

covering different paths. This process repeats forever or un-
til all paths are covered (this program has an unbounded
number of paths as it is looping over an input string).

Without support for regex, the DSE engine will concretize
arg on the call to exec, assigning the concrete result to
parts. With all subsequent decisions therefore concrete, the
path condition becomes pc = true and the engine will be
unable to cover more paths and find the bug.
Implementing regex support ensures that parts is sym-

bolic, i.e., its elements are represented as formulas during
symbolic execution. The path condition for the initial path
thus becomes pc = (args[0], C0, C1, C2) < Lc (R) where
R = <(\w+)>([0-9]*)<\/\1> . Negating the only clause
and solving yields, e.g., args[0] = "<a>0". DSE then
uses this input assignment to cover a second path with
pc = (args[0], C0, C1, C2) ∈ Lc (R) ∧ C1 , "timeout". Ne-
gating the last clause yields, e.g., “<timeout>0</timeout>”,
entering line 7 and making timeout and therefore the as-
sertion symbolic. This leads to pc = (args[0], C0, C1, C2) ∈

Lc (R)∧C1 = "timeout"∧(C2, C
′
0) ∈ Lc (^[0-9]+$), which,

after negating the last clause, triggers the bug with the input
“<timeout></timeout>”.

3.3 Modeling Capturing Language Membership
Capturing language membership constraints in the path con-
dition cannot be directly expressed in SMT. We model these
in terms of classical regular language membership and string
constraints. For a given ES6 regex R, we first rewrite R (see
Table 1) in atomic terms only, i.e., |, *, capture groups, back-
references, lookaheads, and anchors. For consistency with
the JavaScript API, we also introduce the outer capture group
C0. Consider the regex R = (?:a|(b))\1. After preprocess-
ing, the capturing language membership problem becomes

(w, C0, C1) ∈ Lc ((?:.|\n)*?((?:a|(b))\1)(?:.|\n)*?),

a generic rewriting that allows for characters to precede and
follow the match in the absence of anchors.
We recursively reduce capturing language membership

to regular membership. To begin, we translate the purely
regular Kleene stars and the outer capture group to obtain

(w, C0, C1) ∈Lc (R) =⇒ w = w1++ w2++ w3

∧w1 ∈ L((:?.|\n)*?)

∧ (w2, C1) ∈ Lc ((?:a|(b))\1) ∧ C0 = w2

∧w3 ∈ L((:?.|\n)*?),

where ++ is string concatenation. We continue by decom-
posing the regex until there are only purely regular terms
or standard string constraints. Next, we translate the nested
capturing language constraint

(w2,C1) ∈ Lc ((?:a|(b))\1) =⇒

w2 = w
′
1++w

′
2∧(w

′
1, C1) ∈ Lc (a|(b))∧(w

′
2) ∈ Lc (\1).

When treating the alternation, either the left is satisfied and
the capture group becomes undefined (which we denote as
�), or the right is satisfied and the capture is locked to the
match, which we model as

(w ′
1 ∈ L(a) ∧ C1 = �) ∨ (w ′

1 ∈ L(b) ∧ C1 = w
′
1).

Finally we model the backreference, which is case dependent
on whether the capture group it refers to is defined or not:

(C1 = � =⇒ w ′
2 = ϵ) ∧ (C1 , � =⇒ w ′

2 = C1).

Putting this together, we obtain a model for R:

(w, C0, C1) ∈ Lc (R) =⇒ w = w1++ w ′
1++ w ′

2++ w3

∧ C0 = w
′
1++ w ′

2

∧
(
(w ′

1 ∈ L(a) ∧ C1 = �) ∨ (w ′
1 ∈ L(b) ∧ C1 = w

′
1)
)

∧ (C1 = � =⇒ w ′
2 = ϵ) ∧ (C1 , � =⇒ w ′

2 = C1)

∧w1 ∈ L((:?.|\n)*?) ∧w3 ∈ L((:?.|\n)*?).

3.4 Refinement
Because of matching precedence (greediness), these models
permit assignments to capture groups that are impossible in
real executions. For example, we model /^a*(a)?$/ as

(w, C0, C1) ∈ Lc (/^a*(a)?$/) =⇒ w = w1++ w2

∧w1 ∈ L(a*) ∧w2 ∈ L(a|ϵ) ∧ C0 = w ∧ C1 = w2.

This allows C1 to be either a or the empty string ϵ , i.e., the
tuple ("aa", "aa", "a") would be a spurious member of the
capturing language under our model. Because a* is greedy,
it will always consume both characters in the string "aa";
therefore, (a)? can only match ϵ . This problem posed by
greedy and lazy operator semantics remains unaddressed
by previous work [27, 29, 30, 34]. To address this, we use
a counterexample-guided abstraction refinement scheme
that validates candidate assignments with an ES6-compliant
matcher. Continuing the example, the candidate element
("aa", "aa", "a") is validated by running a concrete matcher
on the string "aa", which contradicts the candidate captures
with C0 = "aa" and C1 = ϵ . The model is refined with the
counter-example to the following:

w =w1++ w2

∧w1 ∈ L(a*) ∧w2 ∈ L(a|ϵ) ∧ C0 = w ∧ C1 = w2

∧
(
w = "aa" =⇒ (C0 = "aa" ∧ C1 = ϵ)

)
.

We then generate and validate a new candidate (w, C0, C1)

and repeat the refinement until a satisfying assignment passes
the concrete matcher.

4 Modeling ES6 Regex
We now detail the process of modeling capturing languages.
After preprocessing a given ES6 regex R to R′ (§4.1), we
model constraints (w, C0, . . . , Cn) ∈ Lc (R

′) by recursively
translating terms in the abstract syntax tree (AST) of R′

4

Sound Regular Expression Semantics for DSE of JavaScript PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

to classical regular language membership and string con-
straints (§4.2–4.3). Finally, we show how to model negated
constraints (w, C0, . . . , Cn) < Lc (R

′) (§4.4).

4.1 Preprocessing
For illustrative purposes, we make the concatenation R1R2
of terms R1,R2 explicit as the binary operator R1 · R2. Any
regex can then be split into combinations of atomic elements,
capture groups and backreferences (referred to collectively
as terms, in line with the ES6 specification [14]), joined by
explicit operators. Using the rules in Table 1, we rewrite
any R to an equivalent regex R′ containing only alternation,
concatenation, Kleene star, capture groups, non-capturing
parentheses, lookarounds, and backreferences. We rewrite
any remaining lazy quantifiers to their greedy equivalents,
as the models are agnostic to matching precedence (this is
dealt with in refinement).

Note that the rules for Kleene plus and repetition duplicate
capture groups, e.g., rewriting/(a){1,2}/ to/(a)(a)|(a)/
adds two capture groups. We therefore explicitly relate cap-
ture groups between the original and rewritten expressions.
When rewriting a Kleene plus expression S+ containing K
capture groups, S*S has 2K capture groups. For a constraint
of the form (C1, . . . , CK) ∈ Lc (S+), the rewriting yields

(C0, C1,1, . . . , CK ,1, C1,2, . . . , CK ,2) ∈ Lc (S*S).

Since S*S contains two copies of S , Ci , j corresponds to the
ith capture in the jth copy of S in S*S . We express the direct
correspondence between captures as
(w, C0, C1, . . . , CK) ∈ Lc (S+) ⇐⇒

(w, C0, C1,1, . . . , CK ,1, C1,2, . . . , CK ,2) ∈ Lc (S*S)

∧∀i ∈ {1, . . . ,K}, Ci = Ci ,2.

For repetition, if S{m,n} has K capture groups, then S ′ =
Sn | . . . | Sm has K

2 (n+m)(n−m+1) captures. In S ′, suppose
we index our captures as Ci , j ,k where i ∈ {1, . . . ,K} is the
index of the capture group in S , j ∈ {0, . . . ,n −m} denotes
which alternate the capture group is in, and k ∈ {0, . . . ,m +
j−1} indexes the copies of S within each alternate. Intuitively,
we pick a single x ∈ {0, . . . ,n − m} that corresponds to
the first satisfied alternate. Comparing the assignment of
captures in S{m,n} to S ′, we know that the value of the
capture is the last possible match, so Ci = Ci ,x ,m+x−1 for all
i ∈ {1, . . . ,K}. Formally, this direct correspondence can be
expressed as
(w,C0, C1, . . . , CK) ∈ Lc (S{m,n}) ⇐⇒

(w, C0, C1,0,0, . . . , CK ,n−m,n) ∈ Lc (S
n | . . . | Sm)

∧∃x ∈ {0, . . . ,n −m} :(
(w, C0, C1,x ,0, . . . , CK ,x ,m+x−1) ∈ Lc (S

m+x)

∧ ∀x ′ > x, (w, C0, C1,x ′,0, . . . , CK ,x ′,m+x ′−1) < Lc (S
m+x ′

)

∧ ∀i ∈ {1, . . . ,K}, Ci = Ci ,x ,m+x−1
)
.

4.2 Operators and Capture Groups
Let t be the next term to process in the AST of R′. If t is
capture-free and purely regular, there is nothing to do in
this step. If t is non-regular, it contains k + 1 capture groups
(with k ≥ −1) numbered i through i + k . At each recur-
sive step, we express membership of the capturing language
(w, Ci , ..., Ci+k) ∈ Lc (t) through a model consisting of string
and regular language membership constraints, and a set of
remaining capturing language membership constraints for
subterms of t . Note that we record the locations of capture
groups within the regex in the preprocessing step. When
splitting t into subterms t1 and t2, capture groups Ci , . . . , Ci+j
are contained in t1 and Ci+j+1, . . . , Ci+k are contained in t2
for some j. The models for individual operations are given
in Table 2; we discuss specifics of the rules below.
When matching an alternation |, capture groups on the

non-matching side will be undefined, denoted by �, which
is distinct from the empty string ϵ .

When modeling quantification t = t1∗, we assume t1 does
not contain backreferences (we address this case in §4.3). In
this instance, we model t via the expression t̂1*t1|ϵ , where t̂1
is a regular expression corresponding to t1, except each set of
capturing parentheses is rewritten as a set of non-capturing
parentheses. In this way, t̂1 is regular (it is backreference-
free by assumption). However, t̂1*t1|ϵ is not semantically
equivalent to t : if possible, capturing groupsmust be satisfied,
so t̂1* cannot consume all matches of the expression. We
encode this constraint with the implication that t̂1* must
match the empty string whenever t1|ϵ does.
Lookahead constrains the word to be a member of the

languages of both the assertion expression and t2. The word
boundary \b is effectively a single-character lookaround for
word and non-word characters. Because the boundary can
occur both ways, the model uses disjunction for the end ofw1
and the start ofw2 being word and non-word, or non-word
and word characters, respectively. The non-word boundary
\B is defined as the dual of \b.

For capture groups, we bind the next capture variable Ci
to the string matched by t1. The ith capture group must be
the outer capture and the remaining captures Ci+1, . . . , Ci+k
must therefore be contained within t1. There is nothing to
be done for non-capturing groups and recursion continues
on the contained subexpression.

Anchors assert the start (^) and end ($) of input; we repre-
sent the beginning and end of a word via the meta-characters
⟨ and ⟩, respectively. In most instances when handling these
operations, t1 will be ϵ ; this is because it is rare to have regex
operators prior to those marking the start of input (or after
marking the end of input, respectively). In both these cases,
we assert that the language defines the start or end of input—
and that as a result of this, the language of t1 must be an
empty word, though the capture groups may be defined (say
through t1 containing assertions with nested captures). We

5

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Blake Loring, Duncan Mitchell, and Johannes Kinder

Table 2. Models for regex operators.

Operation t Overapproximate Model for (w, Ci , ..., Ci+k) ∈ Lc (t)

Alternation t1|t2

(
(w, Ci , ..., Ci+j) ∈ Lc (t1) ∧ Ci+j+1 = ... = Ci+k = �

)
∨
(
(w, Ci+j+1, ..., Ci+k) ∈ Lc (t2) ∧ Ci = ... = Ci+j = �

)
Concatenation t1 · t2 w = w1 ++ w2 ∧ (w1, Ci , ..., Ci+j) ∈ Lc (t1) ∧ (w2, Ci+j+1, ..., Ci+k) ∈ Lc (t2)

Backreference-free
Quantification t1*

w = w1 ++ w2 ∧w1 ∈ L(t̂1*) ∧ (w2, Ci , ..., Ci+k) ∈ Lc (t1|ϵ)

∧
(
w2 = ϵ =⇒ (w1 = ϵ ∧ Ci = . . . = Ci+k = �)

)
Positive Lookahead (?=t1)t2 (w, Ci , ..., Ci+j) ∈ Lc (t1.*) ∧ (w, Ci+j+1, ..., Ci+k) ∈ Lc (t2)

Negative Lookahead (!=t1)t2 (w, Ci , ..., Ci+j) < Lc (t1.*) ∧ (w, Ci+j+1, ..., Ci+k) ∈ Lc (t2)

Input Start t1^ (w, Ci , ..., Ci+k) ∈ Lc (t1) ∧ (w, Ci , ..., Ci+k) ∈ L(. ∗ ⟨)

Input Start (Multiline) t1^ (w, Ci , ..., Ci+k) ∈ Lc (t1) ∧ (w, Ci , ..., Ci+k) ∈ L(. ∗ ⟨|\n)

Input End $t1 (w, Ci , ..., Ci+k) ∈ Lc (t1) ∧ (w, Ci , ..., Ci+k) ∈ L(⟩.∗)

Input End (Multiline) $t1 (w, Ci , ..., Ci+k) ∈ Lc (t1) ∧ (w, Ci , ..., Ci+k) ∈ L(⟩|\n.∗)

Word Boundary t1\b t2

w = w1 ++ w2 ∧ (w1, Ci , ..., Ci+j) ∈ Lc (t1) ∧ (w2, Ci+j+1, ..., Ci+k) ∈ Lc (t2)

∧

((
(w1 ∈ L(.*\W) ∨w1 = ϵ) ∧w2 ∈ L(\w.*)

)
∨
(
w1 ∈ L(.*\w) ∧ (w2 ∈ L(\W.*) ∨w2 = ϵ)

))
Non-Word Boundary t1\B t2

w = w1 ++ w2 ∧ (w1, Ci , ..., Ci+j) ∈ Lc (t1) ∧ (w2, Ci+j+1, ..., Ci+k) ∈ Lc (t2)

∧
(
(w1 < L(.*\W) ∧w1 , ϵ) ∨w2 < L(\w.*)

)
∧
(
w1 < L(.*\w) ∨ (w2 < L(\W.*) ∧w2 , ϵ)

)
Capture Group (t1) (w, Ci+1, ..., Ci+k) ∈ Lc (t1) ∧ Ci = w

Non-Capturing Group (?:t1) (w, Ci , ..., Ci+k) ∈ Lc (t1)

Base Case t regular w ∈ L(t)

give separate rules for matching a regular expression with
the multiline flag set, which modify the behavior of anchors
to accept either our meta-characters or a line break.

4.3 Backreferences
Table 3 lists our models for different cases of backreferences
in the AST of regex R; \k is a backreference to the k th capture
group of R. Intuitively, each instance of a backreference is a
variable that refers to a capture group and has a type that
depends on the structure of R.

We call a backreference immutable if it can only evaluate
to a single value whenmatching; it ismutable if it can take on
multiple values, which is a rare but particularly tricky case.
For example, consider /((a|b)\2)+\1\2/. Here, the back-
reference \1 and the second instance of \2 are immutable.
However, the first instance of \2 is mutable: each repeti-
tion of the outer capture group under the Kleene plus can
change the value of the second (inner) capture group, in turn
changing the value of the backreference inside this quantifi-
cation. For example, the string "aabbaabbb" satisfies this
regex, but "aabaaabaa" does not. To fully characterize these
distinctions, we introduce the following definition:

Definition 2 (Backreference Type). Let t be the k th capture
group of a regex R. Then

1. \k is empty if either k is greater than the number of
capture groups in R, or \k is encountered before t in a
post-order traversal of the AST of R;

2. \k is mutable if \k is not empty, and both t and \k are
subterms of some quantified term Q in R;

3. otherwise, \k is immutable.
When a backreference is empty, it is defined as ϵ , because

it refers to a capture group that either is a superterm, e.g.,
/(a\1)*/, or appears later in the term, e.g., /\1(a)/.

There are two cases for immutable backreferences. In the
first case, the backreference is not quantified. In ourmodel for
R, Ck has already been modeled with an equality constraint,
so we can bind the backreference to it. In the second case,
the backreference occurs within a quantification; here, the
matched word is a finite concatenation of identical copies of
the referenced capture group. Both models also incorporate
the corner case where the capture group is � due to alter-
nation or an empty Kleene star. Following the ES6 standard,
the backreference evaluates to ϵ in this case.

Mutable backreferences appear in the form (...t1...\k ...)*
where t1 is the k th capture group; ES6 does not support for-
ward referencing of backreferences, so in (...\k ...t1...)* , \k is
empty. For illustration purposes, the fourth entry of Table 3
describes the simplest case for mutable backreferences, other
patterns are straightforward generalizations. In this case, we

6

Sound Regular Expression Semantics for DSE of JavaScript PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 3. Modeling backreferences.

Type of \k Capturing Language Approximation Model

Empty (w) ∈ Lc (\k) Exact w = ϵ

Immutable (w) ∈ Lc (\k) Overapproximate (Ck = � =⇒ w = ϵ) ∧ (Ck , � =⇒ w = Ck)

Immutable (w) ∈ Lc (\k*) Overapproximate (Ck = � =⇒ w = ϵ) ∧ (Ck , � =⇒ ∃m ≥ 0 : w = ++mi=0Ck)

Mutable
(w,Ck) ∈ Lc ((?:(t1)\k)*)

t1is capture group-free
Overapproximate

(
w = ϵ ∧ Ck = �

)
∨
(
∃m ≥ 1 : w = ++mi=1(σi ,1 ++ σi ,2)

∧ ∀i > 1,
(
(σi ,1, Ck ,i) ∈ Lc (t1) ∧ σi ,2 = Ck ,i

)
∧ Ck = Ck ,m

)
Mutable

(w,Ck) ∈ Lc ((?:(t1)\k)*)

t1is capture group-free
Unsound

(
w = ϵ ∧ Ck =�

)
∨
(
∃m ≥ 1 : w = ++mi=1(σi ,1 ++ σi ,2)

∧ (σi ,1, Ck) ∈ Lc (t1) ∧ ∀i ≥ 1, (σi ,1 = σ1,1 ∧ σi ,2 = σ1,1)
)

assume t1 is the k th capture group but is otherwise capture
group-free. We can treat the entirety of this term at once:
as such, any word in the language is either ϵ , or for some
number of iterations, we have the concatenation of a word in
the language of t1 followed by a copy of it. We introduce new
variables Ck ,i referring to the values of the capture group in
each iteration, which encodes the repeated matching on the
string until settling on the final value for Ck . In this instance,
we need not deal with the possibility that any Ck ,i is �, since
the quantification ends as soon as t1 does not match.

Unfortunately, constraints generated from this model are
hard to solve and not feasible for current SMT solvers, be-
cause they require “guessing” a partition of the matched
string variable into individual and varying components. To
make solving such queries practical, we introduce an alterna-
tive to the previous rule where we treat quantified backref-
erences as immutable. The resulting model is shown in the
last row of Table 3. E.g., returning to /((a|b)\2)+\1\2/, we
accept ("aaaaaaaaa", "aaaaaaaaa", "aaaa", "a"), but not
("aabbaabbb", "aabbaabbb", "aabb", "b"). We discuss the
soundness implications in §5.4. Quantified backreferences
are rare (see §7.1), so the effect is limited in practice.

4.4 Modeling Non-Membership
The model described so far overapproximates membership
of a capturing language. We define an analogous model for
non-membership of the form ∀C0, . . . , Cn : (w, C0, . . . , Cn) <
Lc (R). Intuitively, non-membership models assert that for
all capture group assignments there exists some partition
of the word such that one of the individual constraints is
violated. Most models are simply negated. In concatenation
and quantification, only language and emptiness constraints
are negated, so the models take the form

w = w1++ w2

∧
(
. . . < Lc (. . .) ∨ . . . < Lc (. . .)

∨ (w2 = ϵ ∧ ¬(w1 = ϵ . . .))
)
.

In the same manner, the model for capture groups is

(w, Ci+1, ..., Ci+k) < Lc (t1) ∧ Ci = w .

Returning to the example of §3.3, the negated model for
∀C0, C1 : (w, C0, C1) < Lc ((?:a|(b))\1) becomes

∀C0, C1 : w = w1++ w ′
1++ w ′

2++ w3

∧ C0 = w
′
1++ w ′

2

∧
(
¬
(
(w ′

1 ∈ L(a) ∧ C1 = �) ∨ (w ′
1 ∈ L(b) ∧ C1 = w

′
1)
)

∨ ¬(C1 = � =⇒ w ′
2 = ϵ) ∨ ¬(C1 , � =⇒ w ′

2 = C1)

∨w1 < L((:?.|\n)*?) ∨w3 < L((:?.|\n)*?)
)
.

5 Matching Precedence Refinement
We now explain the issue of matching precedence (§5.1) and
introduce a counterexample-guided abstraction refinement
scheme (§5.2) to address it. We discuss termination (§5.3)
and the overall soundness of our approach (§5.4).

5.1 Matching Precedence
The model in Tables 2 and 3 does not account for match-
ing precedence (see §3.4). A standards-compliant ES6 regex
matcher will derive a unique set of capture group assign-
ments when matching a stringw , because matching prece-
dence dictates that greedy (non-greedy) expressions match
as many (as few) characters as possible before moving on to
the next [14]. These requirements are not part of our model,
as encoding them directly into SMT would require nesting
of quantifiers for each operator, making them impractical
for automated solving.

5.2 CEGAR for ES6 Regular Expression Models
We eliminate infeasible elements of the capturing language
admitted by our model through counter example-guided
abstraction refinement (CEGAR).
Algorithm 1 is a CEGAR-based satisfiability checker for

constraints modeled from ES6 regexes, which relies on an
external SMT solver with classical regular expression and
string support and an ES6-compliant regex matcher. The
algorithm takes an SMT problem P (derived from the DSE
path condition) as a conjunction of constraints, some of

7

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Blake Loring, Duncan Mitchell, and Johannes Kinder

Algorithm 1: Counterexample-guided abstraction re-
finement scheme for matching precedence.
Input :Constraint problem P including models form

constraints (w j , C0, j , . . . , Cnj , j)⊡j Lc (Rj).
Output :null if P is unsatisfiable, or a satisfying assignment

for P otherwise
1 M := null;
2 Failed := false;
3 do
4 M := Solve(P);
5 if M = null then
6 return null;

7 Failed := false;
8 for j := 0 tom − 1 do
9 (C ♮

0, j , . . . ,C
♮
nj , j) := ConcreteMatch(M[w j],Rj) ;

10 if (C ♮
0, j , . . . ,C

♮
nj , j) then

11 if ⊡j = ∈ then
12 for i := 0 to nj do
13 if C ♮

i , j , M[Ci , j] then
14 Failed := true;
15 P := P ∧ (w j = M[w j] =⇒∧

0≤i≤nj Ci , j = C
♮
i , j) ;

16 else // Non-membership query
17 Failed := true;
18 P := P ∧ (w j , M[w j]);

19 else // No concrete match
20 if ⊡j = ∈ then
21 Failed := true;
22 P := P ∧ (w j , M[w j]);

23 while Failed;
24 return M ;

which model them ≥ 0 original capturing language mem-
bership constraints. We number the original capturing lan-
guage constraints 0 ≤ j < m so that we can refer to them
as (w j , C0, j , . . . , Cnj , j)⊡j Lc (R j), where ⊡ ∈ {∈, <}. The al-
gorithm returns null if P is unsatisfiable, or a satisfying
assignment with correct matching precedence.

In a loop, we first pass the problem P to an external SMT
solver. The solver returns a satisfying assignmentM or null
if the problem is unsatisfiable, in which case we are done
(lines 4–6). If M is not null, the algorithm uses a concrete
regular expression matcher (e.g., Node.js’s built-in matcher)
to populate concrete capture variables C♮

i , j corresponding to
the wordsw j in M .

Lines 8–22 describe how the assignments of capture groups
are checked for each regular expression R j in the original
problem P . We first check whether the concrete matcher re-
turned a list of valid capture group assignments, i.e., whether
the word M[w j] from the satisfying assignment matches

concretely. If it did, then w j is a member of the language
generated by R j . If ⊡j = ∈, i.e., the membership constraint
was positive, then we must check if the capture group as-
signments are consistent with those fromM (line 13). If they
are, we move on to the next regex, otherwise we refine the
constraint problem by fixing capture group assignments to
their concrete values for the matched word (line 15). Dually,
if a modeled non-membership constraint was satisfiable but
the word from the current satisfying assignment M[w j] did
match concretely, we refine the problem by asserting thatw
must not equal that word (line 18). We do the same if M[w j]

did not match concretely but came from a satisfied positive
membership constraint (line 22).
If no refinement was necessary we have confirmed the

overall assignment satisfies P and return M (line 24). Other-
wise, the loop continues with solving the refined problem.

5.3 Termination
Unsurprisingly, CEGAR may require arbitrarily many refine-
ments on pathological formulas and never terminate. This is
unavoidable due to undecidability [7]. In practice, we there-
fore impose a limit on the number of refinements, leading to
unknown as a possible third result. SMT solvers already may
timeout or report unknown for complex string formulas, so
this does not lead to additional problems in practice.

5.4 Soundness
When constructing the rules in Tables 2 and 3, we followed
the semantics of regular expressions as laid out in the ES6
standards document [14]. The ES6 standard is written in a
semi-formal fashion, so we are confident that our translation
into logic is accurate, but cannot have formal proof. Existing
attempts to encode ECMAScript semantics into logic such
as JSIL [8] or KJS [28] do not include regexes.

With the exception of the optimized rule for mutable back-
references, our models are overapproximate, because they
ignore matching precedence. When the CEGAR loop termi-
nates, any spurious solutions from overapproximation are
eliminated. As a result, we have an exact procedure to decide
(non)-membership for capturing languages of ES6 regexes
without quantified backreferences.

In the presence of quantified backreferences, the model
after CEGAR termination becomes underapproximate. Since
DSE itself is an underapproximate program analysis (due to
concretization, solver timeouts, and partial exploration), our
model and refinement strategy are sound for DSE.

6 Implementation
We now describe an implementation of our approach in the
DSE engine ExpoSE1 [27]. We explain how to model the
regex API with capturing language membership (§6.1) and
give a brief overview of ExpoSE (§6.2).

1ExpoSE is available at https://github.com/ExpoSEJS/ExpoSE.
8

https://github.com/ExpoSEJS/ExpoSE

Sound Regular Expression Semantics for DSE of JavaScript PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Algorithm 2: RegExp.exec(input)
1 input ′ := ‘⟨’ + input + ‘⟩’;
2 if sticky or global then
3 offset := lastIndex > 0 ? lastIndex + 1 : 0;
4 input ′ := input ′.substring(offset);

5 source′ := ‘(:?.|\n)*?(’ + source + ‘)(:?.|\n)*?’;
6 if caseIgnore then
7 source ′ := rewriteForIgnoreCase(source ′);

8 if (input ′, C0, ..., Cn) ∈ Lc (source′) then
9 Remove ⟨ and ⟩ from (input ′, C0, ..., Cn);

10 lastIndex := lastIndex + C0.startIndex + C0.length;
11 result := [C0, ..., Cn];
12 result.input := input;
13 result.index := C0.startIndex;
14 return result;

15 else
16 lastIndex := 0;
17 return undefined;

6.1 Modeling the Regex API
The ES6 standard specifies several methods that evaluate
regexes [14]. We follow its specified pseudocode for RegExp.
exec(s) to implement matching and capture group assign-
ment in terms of capturing language membership in Algo-
rithm 2. Notably, our algorithm implements support for all
flags and operators specified for ES6.

RegExp.test(s) is precisely equivalent to the expression
RegExp.exec(s) !== undefined. In the same manner, one
can construct models for other regex functions defined for
ES6. Our implementation includes partial models for the
remaining functions that allow effective test generation in
practice but are not semantically complete.

Algorithm 2 first processes flags to begin from the end of
the previous match for sticky or global flags, and it rewrites
the regex to accept lower and upper case variants of charac-
ters for the ignore case flag.

We introduce the ⟨ and ⟩ meta-characters to input which
act as markers for the start and end of a string during match-
ing. Next, if the sticky or global flags are set we slice input
at lastIndex so that the new match begins from the end of
the previous. Due to the introduction of our meta-characters
thel lastIndex needs to be offset by 1 if it is greater than
zero. We then rewrite the regex source to allow for char-
acters to precede and succeed the match. Note that we use
(?:.|n)*? rather than .*? because the wildcard . consumes
all characters except line breaks in ECMAScript regexes. To
avoid adding these characters to the final match we place
the original regex source inside a capture group. This forms
C0, which is defined to be the whole matched string [14].
Once preprocessing is complete we test whether the input
string and fresh string for each capture group are within

the capturing language for the expression. If they are then a
results object is created which returns the correctly mapped
capture groups, the input string, and the start of the match
in the string with the meta-characters removed. Otherwise
lastIndex is reset and undefined is returned.

6.2 ExpoSE
ExpoSE is a DSE engine which uses the Jalangi2 [19] frame-
work to instrument a piece of JavaScript software in order to
create a program trace. As the program terminates, ExpoSE
calls the SMT solver Z3 [13] to identify all feasible alter-
nate test-cases from the trace. These new test cases are then
queued and the next test case is selected for execution, in
the manner of generational search [18]. The ExpoSE frame-
work allows for the parallel execution of individual test cases,
aggregating coverage and alternative path information as
each test case terminates. This parallelization is achieved by
executing each test case as a unique process allocated to a
dedicated single core; as such the analysis is highly scalable.

Our strategy for test case selection is similar to the CUPA
strategy proposed by Bucur et al. [9]. We use program fork
points to prioritize unexplored code: each expression is given
a unique identifier and scheduled test cases are sorted into
buckets based upon which expression was being executed
when they were created. We select the next test case by
choosing a random test case from the bucket that has been
accessed least during the analysis; this prioritizes test cases
triggered by less common expressions.

7 Evaluation
We now empirically answer the following research questions:
(RQ1) Are non-classical regexes an important problem in

JavaScript?
(RQ2) Does accurate modeling of ES6 regexes make DSE-

based test generation more effective?
(RQ3) Does the performance of the model and the refine-

ment strategy enable practical analysis?
We answer the first question with a survey of regex usage in
the wild (§7.1). We address RQ2 by comparing our approach
against an existing partial implementation of regex support
in ExpoSE [27] on a set of widely used libraries (§7.2). We
thenmeasure the contribution of each aspect of our approach
on over 1,000 JavaScript packages (§7.3). We answer RQ3 by
analyzing solver and refinement statistics per query (§7.4).

7.1 Surveying Regex Usage
We focus on code written for Node.js, a popular framework
for standalone JavaScript. Node.js is used for both server and
desktop applications, including popular tools Slack and Skype.
We analyzed 415,487 packages from the NPM repository, the
primary software repository for open source Node.js code.
Nearly 35% of NPM packages contain a regex, 20% contain a
capture group and 4% contain a backreference.

9

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Blake Loring, Duncan Mitchell, and Johannes Kinder

Table 4. Regex usage by NPM package.

Feature Count %

Packages on NPM 415,487 100.0%
. . . with source files 381,730 91.9%
. . . with regular expressions 145,100 34.9%
. . . with capture groups 84,972 20.5%
. . . with backreferences 15,968 3.8%
. . . with quantified backreferences 503 0.1%

Table 5. Feature usage by unique regex.

Feature Total % Unique %

Total Regex 9,552,546 100% 305,691 100%
Capture Groups 2,360,178 24.71% 119,051 38.94%
Global Flag 2,620,755 27.44% 90,356 29.56%
Character Class 2,671,565 27.97% 71,040 23.24%
Kleene+ 1,541,336 16.14% 67,508 22.08%
Kleene* 1,713,713 17.94% 66,526 21.76%
Ignore Case Flag 1,364,526 14.28% 58,831 19.25%
Ranges 1,273,726 13.33% 52,155 17.06%
Non-capturing 1,236,533 12.94% 25,946 8.49%
Repetition 360,578 3.7% 17,068 5.58%
Kleene* (Lazy) 230,060 2.41% 13,250 4.33%
Multiline Flag 137,366 1.44% 10,604 3.47%
Word Boundary 336,821 3.53% 9,677 3.17%
Kleene+ (Lazy) 148,604 1.56% 6,072 1.99%
Lookaheads 176,786 1.85% 3,123 1.02%
Backreferences 64,408 0.67% 2,437 0.80%
Repetition (Lazy) 2,412 0.03% 221 0.07%
Quantified BRefs 1,346 0.01% 109 0.04%
Sticky Flag 98 <0.01% 60 0.02%
Unicode Flag 73 <0.01% 48 0.02%

Methodology We developed a lightweight static analysis
that parses all source files in a package and identifies regex
literals and function calls. We do not detect expressions of
the form new RegExp(...), as they would generally require
a more expensive static analysis. Our numbers therefore
provide a lower bound for regex usage.

Results We found regex usage in JavaScript to be wide-
spread, with 145,100 packages containing at least one regex
out of a total 415,487 scanned packages. Table 4 lists the num-
ber of NPM packages containing regexes, capture groups,
backreferences, and backreferences appearing within quan-
tification. Note that a significant number of packages make
use of capture groups and backreferences, confirming the
importance of supporting them.

Table 5 reports statistics for all 9M regexes collected, giv-
ing for each feature the fraction of expressions including it.
Many regexes in NPM packages are not unique; this appears

to be due to repeated inclusion of the same literal (instead
of introduction of a constant), the use of online solutions to
common problems, and the inclusion of dependencies (fore-
going proper dependency management). To adjust for this,
we provide data for both all expressions encountered and
for just unique expressions. In both cases, there are signifi-
cant numbers of capture groups, backreferences, and other
non-classical features. As the occurrence rate of quantified
backreferences is low, we do not differentiate between muta-
ble and immutable backreferences.

Conclusions Our findings confirm that regexes are widely
used and often contain complex features. Of particular impor-
tance is a faithful treatment of capture groups, which appear
in 20.45% of the packages examined. On the flip side, since
quantified backreferences make up just 0.01% of regexes, the
optimization introduced in §4.3 will rarely lead to additional
underapproximation during DSE.

7.2 Improvement Over State of the Art
We compare our approach against the original ExpoSE [27],
which is, to our knowledge, the only available and functional
implementation of regex support in JavaScript.

Methodology We evaluated statement coverage achieved
by both versions of ExpoSE on a set of libraries, which we
chose for their popularity (with up to 20M weekly down-
loads) and use of regex. This includes the three libraries
minimist, semver, and validator, which the first version of
ExpoSE was evaluated on [27]. To fairly compare original
ExpoSE against our extension, we use the original automated
library harness for both. Therefore we do not take advantage
of other improvements for test generation, such as symbolic
array support, which we have added in the course of our
work. We re-executed each package six times for one hour
each on both versions, using 32-core machines with 256GB
of RAM, and averaged the results. We limited the refinement
scheme to 20 iterations, which we identified as effective in
preliminary testing (see §7.4).

Results Table 6 contains the results of our comparison. To
provide an indication of program size, we use the number
of lines of code loaded at runtime (JavaScript’s dynamic
method of loading dependencies makes it hard to determine
a meaningful LOC count statically).
The results demonstrate that ExpoSE extended with our

model and refinement strategy can improve coverage more
than tenfold on our sample of widely-used libraries. In the
cases of moment, query-string, and yn, the lack of ES6 sup-
port in the original ExpoSE prohibited meaningful analysis,
leading to 0% coverage. In the case of semver, we see a de-
crease in coverage if stopped after one hour. This is due
to the modeling of regex increasing solving time (see also
§7.4). The coverage deficit disappears when executing both
versions of ExpoSE with a timeout of two hours.

10

Sound Regular Expression Semantics for DSE of JavaScript PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 6. Statement coverage with our approach (New) vs.
[27] (Old) and the relative increase (+) on popular NPM pack-
ages (Weekly downloads). LOC are lines loaded andRegEx
are regular expression functions symbolically executed.

Library Weekly LOC RegEx Old(%) New(%) +(%)

babel-eslint 2,500k 23,047 902 21.0 26.8 27.6
fast-xml-parser 20k 706 562 3.1 44.6 1,338.7
js-yaml 8,000k 6,768 78 4.4 23.7 438.6
minimist 20,000k 229 72,530 65.9 66.4 0.8
moment 4,500k 2,572 21 0.0 52.6 ∞

query-string 3,000k 303 50 0.0 42.6 ∞

semver 1,800k 757 616 51.7 46.2 −10.6
url-parse 1,400k 322 448 60.9 71.8 17.9
validator 1,400k 2,155 94 67.5 72.2 7.0
xml 500k 276 1,022 60.2 77.5 28.7
yn 700k 157 260 0.0 54.0 ∞

Conclusions We find that our modifications to ExpoSE
make test generation more effective in widely used libraries
using regex. This suggests that the new method of solving
regex queries presented in this paper has a substantial im-
pact on practical problems in DSE. We also see that other
improvements to ExpoSE, such as ES6 support, have affected
coverage. Therefore, we continue with an evaluation of the
individual aspects of our model.

7.3 Breakdown of Contributions
We now drill down into how the individual improvements
in regex support are contributing to increases in coverage.

Methodology From the packages with regexes from our
survey §7.1, we developed a test suite of 1,131 NPM libraries
for which ExpoSE is able to automatically generate a mean-
ingful test harness. In each of the libraries selected, ExpoSE
executed at least one regex operation on a symbolic string,
which ensures that the library contains some behavior rele-
vant to the scope of this paper. The test suite constructed in
this manner contains numerous libraries that are dependen-
cies of packages widely used in industry, including Express
and Lodash.2
Automatic test generation typically requires a bespoke

test harness or set of parameterized unit tests [33] to achieve
high coverage in code that does not have a simple com-
mand line interface, including libraries. ExpoSE’s harness
explores libraries fully automatically by executing all ex-
ported methods with symbolic arguments for the supported
types string, boolean, number, null and undefined. Re-
turned objects or functions are also subsequently explored
in the same manner.
We executed each package for one hour, which typically

allowed to reach a (potentially initial) coverage plateau, at
2Raw data for the experiments, including all package names, is available at
https://github.com/ExpoSEJS/PLDI19-Raw-Data.

Table 7. Breakdown of how different components contribute
to testing 1, 131 NPM packages, showing number (#) and
fraction (%) of packages with coverage improvements, the
geometric mean of the relative coverage increase from the
feature (Cov), and test execution rate.

Improved Cov
Regex Support Level # % +(%)

Tests
min

Concrete Regular Expressions - - - 11.46
+ Modeling RegEx 528 46.68% +6.16% 10.14
+ Captures & Backreferences 194 17.15% +4.18% 9.42
+ Refinement 63 5.57% +4.17% 8.70

All Features vs. Concrete 617 54.55% +6.74%

which additional test cases do not increase coverage further.
We break down our regex support into four levels and mea-
sure the contribution and cost of each one to line coverage
and test execution rate (Table 7). As baseline, we first execute
all regex methods concretely, concretizing the arguments
and results. In the second configuration, we add the model
for ES6 regex and their methods, including support for word
boundaries and lookaheads, but remove capture groups and
concretize any accesses to them, including backreferences.
Third, we also enable full support for capture groups and
backreferences. Fourth, we finally also add the refinement
scheme to address overapproximation.

Results Table 7 shows, for each level of support, the num-
ber and percentage of target packages where coverage im-
proved; the geometric mean of the relative increase in cover-
age; and the mean test execution rate. The final row shows
the effect of enabling full support compared to the baseline.
Note that the number of packages improved is less than the
sum of the rows above, since the coverage of a package can
be improved by multiple features.
In a dataset of this size that includes many libraries that

make only little use of regex, average coverage increases are
expected to be small. Nevertheless, we see that dedicated
support improves the coverage of more than half of pack-
ages that symbolically executed at least one regex function.
As expected, the biggest improvement comes from support-
ing basic symbolic execution of regular expressions, even
without capture groups or regard for matching precedence.
However, we see further improvements when adding cap-
ture groups, which shows that they indeed affect program
semantics. Refinement affects fewer packages, although it
significantly contributes to coverage where it is required.
This is because a lucky solver may generate correct inputs
on the first attempt, even in ambiguous settings.
On some libraries in the dataset, the approach is highly

effective. For example, in the manifest parser n4mf-parser,
full support improves coverage by 29% over concrete; in the
format conversion library sbxml2json, by 14%; and in the

11

https://github.com/ExpoSEJS/PLDI19-Raw-Data

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Blake Loring, Duncan Mitchell, and Johannes Kinder

Table 8. Solver times per package and query.

Constraint Solver Time
Packages/Queries Minimum Maximum Mean

All packages 0.04s 12h 15m 2h 34m
With capture groups 0.20s 12h 15m 2h 40m
With refinement 0.46s 12h 15m 2h 48m
Where refinement limit is hit 3.49s 11h 07m 3h 17m

All queries 0.001s 22m 26s 0.15s
With capture groups 0.001s 22m 26s 5.53s
With refinement 0.005s 18m 51s 22.69s
Where refinement limit is hit 0.120s 18m 51s 58.85s

browser detection library mario, by 16%. In each of these
packages the refinement scheme contributed to the improve-
ment in coverage. In general, the largest increases are seen
in packages that include regular expression-based parsers.
Each additional feature causes a small decrease in aver-

age test execution rate. Although a small fraction (∼1%) of
queries can take longer than 300s to solve, concurrent test
execution prevents DSE from stalling on a single query.

Conclusions Full support for ES6 regex improves perfor-
mance of DSE of JavaScript in practice at a cost of a 16%
increase in execution time (RQ2). An increase in coverage
at lower execution rate in a fixed time window suggests
that full regular expression support increases the quality of
individual test cases.

7.4 Effectiveness on Real-World Queries
We now investigate the performance of the model and re-
finement scheme to answer RQ3. Finally, we also discuss the
refinement limit and how it affects analysis.

Methodology We collected data on queries during the NPM
experiments (§7.3) to provide details on SMT query success
rates and execution times, as well as on the usage of the
refinement scheme.

Results We found that 753 (66%) of the 1,131 packages
tested executed at least one query containing a capture group
or backreference. Of these packages, 653 (58% overall) con-
tained at least one query to the SMT solver requiring re-
finement, and 134 (12%) contained a query that reached the
refinement limit.

In total, our experiments executed 58,390,184 SMT queries
to generate test cases. As expected, the majority do not in-
volve regexes, but they form a significant part: 4,489,581
(7.6%) queries modeled a regex, 645,295 (1.1%) modeled a
capture group or backreference, 74,076 (0.1%) required use of
the refinement scheme and 2,079 (0.003%) hit the refinement
limit. The refinement scheme was overwhelmingly effective:
only 2.8% of queries with at least one refinement also reached
the refinement limit (0.003% of all queries where a capture

group was modeled). Of the refined SMT queries, the mean
number of refinements required to produce a valid satisfying
assignment was 2.9; the majority of queries required only a
single refinement.
Table 8 details time spent processing SMT problems per-

package and per-query. We provide the data over the four
key aspects of the problem: we report the time spent in the
constraint solver both per package and per query in total, as
well as the time in the constraint solver for the particularly
challenging parts of our strategy. We found that the use of
refinements increased the average per-query solving time by
a factor of four; however, this is dominated by SMT queries
that hit the refinement limit, which took ten times longer to
run on average. The low minimum time spent in the solver
in some packages can be attributed to packages where a
regular expression was encountered early in execution but
limitations in the test harness or function models (unrelated
to regular expressions) prevented further exploration.

Conclusions We find the refinement scheme is highly ef-
fective, as it is able to solve 97.2% of encountered constraint
problems containing regexes. It is also necessary, as 10% of
queries containing a capture group had led to a spurious
satisfying assignment and required refinement.

Usually, only a small number of refinements are required
to produce a correct satisfying assignment. Therefore, even
refinement limits of five or fewer are feasible and may im-
prove performance with low impact on coverage.

7.5 Threats to Validity
We now look at potential issues affecting the validity of
our results, in particular soundness, package selection, and
scalability.

Soundness In addition to soundness of themodel (see §5.4),
one must consider the soundness of the implementation. In
the absence of a mechanized specification for ES6 regex, our
code cannot be proven correct, so we use an extensive test
suite for validation. However, assuming the concrete matcher
is specification-compliant, Algorithm 1 will, if it terminates,
return a specification-compliant model of the constraint for-
mula even if the implementation of §4 contains bugs. In the
worst case, the algorithm would not terminate, leading to
timeouts and loss of coverage. Bugs could therefore only
have lowered the reported coverage improvements.

Package Selection and Harness In §7.3, we chose pack-
ages identified in our survey (§7.1) where our generic harness
encountered a regular expression within one hour of DSE.
This allowed us to focus the evaluation on regex support as
opposed to evaluating the quality of the harness (and hav-
ing to deal with unreachable code in packages). Use of this
harness may have limited package selection to simpler, un-
representative libraries. However, we found that simple APIs
do not imply simple code: the final dataset contains several

12

Sound Regular Expression Semantics for DSE of JavaScript PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

complex packages, such as language parsers, and the types
of regexes encountered were in line with the survey results.
On simple code we found that ExpoSE would often reach
100% coverage; failure to do so was either due to the complex-
ity of the code or the lack of support for language features
unrelated to regex and APIs that would require additional
modeling (e.g., the file system).

Scalability Scalability is a challenge for DSE in general,
and is not specific to our model for regex. Empirically, ex-
ecution time for a single test (instrumentation, execution,
and constraint generation) grows linearly with program size,
as does the average size of solver queries. The impact of
query length on solving time varies, but does not appear to
be exacerbated by our regex model. In principle, our model is
compatible with compositional approaches [4, 16] and state
merging [5, 21], which can help DSE scale to large programs.

The scalability of our approach suffices for Node.js, how-
ever: JavaScript has smaller LOC counts than, e.g., C++, and
code on NPM is very modular. For instance, among the top 25
most depended-upon NPM libraries, the largest is 30 KLOC
(but contains no regex). Several packages selected for our
evaluation, such as babel-eslint, had between 20-30 KLOC
and were meaningfully explored with the generic harness.

8 Related Work
In prior work, we introduced ExpoSE and partial support for
encoding JavaScript regex in terms of classical regular lan-
guage membership and string constraints [27]. This initial
take on the problem was lacking support for several prob-
lematic features such as lookaheads, word boundaries, and
anchors. Matching precedence was presented as an open
problem, which we have now addressed through our refine-
ment scheme.
In theory, regex engines can be symbolically executed

themselves through the interpreter [9]. While this removes
the need for modeling, in practice the symbolic execution
of the entire interpreter and regex engine quickly becomes
infeasible due to path explosion.
There have been several other approaches for symbolic

execution of JavaScript; most include some limited support
for classical regular expressions. Li et al. [24] presented an
automated test generation scheme for programs with regular
expressions by on-line generation of a matching function
for each regular expression encountered, exacerbating path
explosion. Saxena et al. [29] proposed the first scheme to
encode capture groups through string constraints. Sen et al.
[31] presented Jalangi, a tool based on program instrumenta-
tion and concolic values. Li and Ghosh [23] and Li et al. [22]
describe a custom browser and symbolic execution engine
for JavaScript and the browser DOM, and a string constraint
solver PASS with support for most JavaScript string opera-
tions. Although all of these approaches feature some support
for ECMAScript regex (such as limited support for capture

groups), they ignore matching precedence and do not sup-
port backreferences or lookaheads.

Thomé et al. [32] propose a heuristic approach for solving
constraints involving unsupported string operations. We
choose to model operations unsupported by the solver and
employ a CEGAR scheme to ensure correctness. Abdulla
et al. [2] propose the use of a refinement scheme to solve
complex constraint problems, including support for context-
free languages. The language of regular expressions with
backreferences is not context-free [10] and, as such, their
scheme does not suffice for encoding all regexes; however,
their approach could serve as richer base theory than classic
regular expressions. Scott et al. [30] suggest backreferences
can be eliminated via concatenation constraints, however
they do not present a method for doing so.
Further innovations from the string solving community,

such as work on the decidability of string constraints involv-
ing complex functions [12, 20] or support for recursive string
operations [35, 36], are likely to improve the performance
of our approach in future. We incorporate our techniques
at the level of the DSE engine rather than the constraint
solver, which allows our tool to leverage advances in string
solving techniques; at the same time, we can take advantage
of the native regular expression matcher and can avoid hav-
ing to integrate implementation language-specific details for
regular expressions into the solver.
A previous survey of regex usage across 4,000 Python

applications [11] also provides a strong motivation for mod-
eling regex. Our survey extends this work to JavaScript on a
significantly larger sample size.

9 Conclusion
In this paper we presented a model for the complete regex
language of ES6, which is sound for the dynamic symbolic
execution of the test and exec functions. We model regex
membership constraints in terms of string constraints and
classical regular language membership. We introduced a
novel CEGAR scheme to address the challenge of matching
precedence, which so far had been largely ignored in related
work. To the best of our knowledge, ours is the first compre-
hensive solution for ES6. We demonstrated that regexes—and
specifically their non-regular features—are extensively used
in JavaScript and that existing DSE-based analyses would
therefore suffer coverage loss from concretization. In a large
scale evaluation of over 1,000 Node.js programs, our novel
solution outperforms existing partial approaches to the prob-
lem and demonstrates the viability of our model for improv-
ing the analysis of string-manipulating JavaScript programs.

Acknowledgments
Blake Loring was supported by the EPSRC Centre for Doc-
toral Training in Cyber Security at Royal Holloway, Univer-
sity of London (EP/K035584/1).

13

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Blake Loring, Duncan Mitchell, and Johannes Kinder

References
[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás

Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman. 2015. Norn:
An SMT Solver for String Constraints. In Computer Aided Verification
(CAV).

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi
Diep, Lukáš Holík, Ahmed Rezine, and Philipp Rümmer. 2017. Flatten
and Conquer: A Framework for Efficient Analysis of String Constraints.
In ACM SIGPLAN Conf. Programming Language Design and Implemen-
tation (PLDI).

[3] Alfred V. Aho. 1990. Algorithms for Finding Patterns in Strings. In
Handbook of Theoretical Computer Science (Vol. A), Jan van Leeuwen
(Ed.). MIT Press, 255–300.

[4] Saswat Anand, Patrice Godefroid, andNikolai Tillmann. 2008. Demand-
driven Compositional Symbolic Execution. In 14th Int. Conf. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).

[5] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brum-
ley. 2014. Enhancing symbolic execution with Veritesting. In 36th Int.
Conf. Software Engineering (ICSE). 1083–1094.

[6] Nikolaj Bjørner, Vijay Ganesh, Raphaël Michel, and Margus Veanes.
2012. SMT-LIB Sequences and Regular Expressions. In Int. Workshop
on Satisfiability Modulo Theories (SMT).

[7] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. 2009. Path
Feasibility Analysis for String-Manipulating Programs. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).

[8] Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa Gard-
ner, Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth
Smith. 2014. A Trusted Mechanised JavaScript Specification. In ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL).

[9] Stefan Bucur, Johannes Kinder, and George Candea. 2014. Prototyping
symbolic execution engines for interpreted languages. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[10] Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. 2003. A Formal Study of
Practical Regular Expressions. Int. J. Foundations of Computer Science
14, 06 (2003).

[11] Carl Chapman and Kathryn T. Stolee. 2016. Exploring Regular Expres-
sion Usage and Context in Python. In Int. Symp. on Software Testing
and Analysis (ISSTA).

[12] Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin
Wu. 2018. What is decidable about string constraints with the Re-
placeAll function. PACMPL 2, POPL (2018), 3:1–3:29.

[13] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An
Efficient SMT Solver. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS).

[14] ECMA International. 2015. ECMAScript 2015 Language Specification.
[15] Xiang Fu, Michael C. Powell, Michael Bantegui, and Chung-Chih Li.

2013. Simple linear string constraints. Formal Asp. Comput. 25, 6
(2013).

[16] Patrice Godefroid. 2007. Compositional Dynamic Test Generation. In
ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages
(POPL).

[17] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: di-
rected automated random testing. In ACM SIGPLAN Conf. Program-
ming Language Design and Implementation (PLDI).

[18] Patrice Godefroid, Michael Levin, and David Molnar. 2008. Automated
Whitebox Fuzz Testing. In Network and Distributed System Security
Symp. (NDSS).

[19] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015.
DLint: Dynamically Checking Bad Coding Practices in JavaScript. In
Int. Symp. on Software Testing and Analysis (ISSTA).

[20] Lukás Holík, Petr Janku, Anthony W. Lin, Philipp Rümmer, and Tomás
Vojnar. 2018. String constraints with concatenation and transducers
solved efficiently. PACMPL 2, POPL (2018), 4:1–4:32.

[21] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George
Candea. 2012. Efficient state merging in symbolic execution. In ACM
SIGPLAN Conf. Programming Language Design and Implementation
(PLDI).

[22] Guodong Li, Esben Andreasen, and Indradeep Ghosh. 2014. SymJS: au-
tomatic symbolic testing of JavaScript web applications. In Foundations
of Software Engineering (FSE).

[23] Guodong Li and Indradeep Ghosh. 2013. PASS: String solving with
parameterized array and interval automaton. InHaifa Verification Conf.
(HVC).

[24] Nuo Li, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram
Schulte. 2009. Reggae: Automated test generation for programs us-
ing complex regular expressions. In Automated Software Engineering
(ASE).

[25] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and
Morgan Deters. 2014. A DPLL(T) Theory Solver for a Theory of Strings
and Regular Expressions. In Computer Aided Verification (CAV).

[26] Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli,
and Clark Barrett. 2015. A Decision Procedure for Regular Membership
and Length Constraints over Unbounded Strings. In Int. Symp. on
Frontiers of Combining Systems (FroCoS).

[27] Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE:
Practical Symbolic Execution of Standalone JavaScript. In Int. SPIN
Symp. on Model Checking Software (SPIN).

[28] Daejun Park, Andrei Stefănescu, and Grigore Roşu. 2015. KJS: A
Complete Formal Semantics of JavaScript. In ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI).

[29] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen
McCamant, and Dawn Song. 2010. A Symbolic Execution Framework
for JavaScript. In IEEE Symp. Sec. and Privacy (S&P).

[30] Joseph D. Scott, Pierre Flener, and Justin Pearson. 2015. Constraint
Solving on Bounded String Variables. In Integration of AI and OR Tech.
in Constraint Prog. (CPAIOR).

[31] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
2013. Jalangi: a selective record-replay and dynamic analysis frame-
work for JavaScript. In Foundations of Software Engineering (FSE).

[32] Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel C.
Briand. 2017. Search-driven string constraint solving for vulnerability
detection. In Int. Conf. Software Engineering (ICSE).

[33] Nikolai Tillmann and Wolfram Schulte. 2005. Parameterized unit tests.
In Foundations of Software Engineering (FSE).

[34] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Symbolic
String Solver for Vulnerability Detection in Web Applications. In Conf.
Computer and Commun. Sec. (CCS).

[35] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2016. Progres-
sive Reasoning over Recursively-Defined Strings. In Computer Aided
Verification (CAV).

[36] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2017. Model Count-
ing for Recursively-Defined Strings. In Computer Aided Verification
(CAV).

[37] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. 2010. Rex:
Symbolic regular expression explorer. In Software Testing, Verification
and Validation (ICST).

[38] Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Murphy
Berzish, Julian Dolby, and Xiangyu Zhang. 2017. Z3str2: an efficient
solver for strings, regular expressions, and length constraints. Formal
Methods in System Design 50, 2-3 (2017).

[39] Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Julian
Dolby, and Xiangyu Zhang. 2015. Effective Search-Space Pruning for
Solvers of String Equations, Regular Expressions and Length Con-
straints. In Computer Aided Verification (CAV).

[40] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A
Z3-based String Solver for Web Application Analysis. In Foundations
of Software Engineering (FSE).

14

	Abstract
	1 Introduction
	2 ECMAScript Regex
	2.1 Methods, Anchors, Flags
	2.2 Capture Groups
	2.3 Backreferences
	2.4 Operator Evaluation

	3 Overview
	3.1 The Word Problem and Capturing Languages
	3.2 Regex In Dynamic Symbolic Execution
	3.3 Modeling Capturing Language Membership
	3.4 Refinement

	4 Modeling ES6 Regex
	4.1 Preprocessing
	4.2 Operators and Capture Groups
	4.3 Backreferences
	4.4 Modeling Non-Membership

	5 Matching Precedence Refinement
	5.1 Matching Precedence
	5.2 CEGAR for ES6 Regular Expression Models
	5.3 Termination
	5.4 Soundness

	6 Implementation
	6.1 Modeling the Regex API
	6.2 ExpoSE

	7 Evaluation
	7.1 Surveying Regex Usage
	7.2 Improvement Over State of the Art
	7.3 Breakdown of Contributions
	7.4 Effectiveness on Real-World Queries
	7.5 Threats to Validity

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

