
Integrating Induction and Coinduction via
Closure Operators and Proof Cycles

Liron Cohen1 and Reuben N. S. Rowe2

1 Department of Computer Science, Ben-Gurion University, Israel
cliron@cs.bgu.ac.il

2 Department of Computer Science, Royal Holloway University of London, UK
reuben.rowe@rhul.ac.uk

Abstract. Coinductive reasoning about infinitary data structures has
many applications in computer science. Nonetheless developing natural
proof systems (especially ones amenable to automation) for reasoning
about coinductive data remains a challenge. This paper presents a minimal,
generic formal framework that uniformly captures applicable (i.e. finitary)
forms of inductive and coinductive reasoning in an intuitive manner. The
logic extends transitive closure logic, a general purpose logic for inductive
reasoning based on the transitive closure operator, with a dual ‘co-closure’
operator that similarly captures applicable coinductive reasoning in a
natural, effective manner. We develop a sound and complete non-well-
founded proof system for the extended logic, whose cyclic subsystem
provides the basis for an effective system for automated inductive and
coinductive reasoning. To demonstrate the adequacy of the framework
we show that it captures the canonical coinductive data type: streams.

1 Introduction

The principle of induction is used widely in computer science for reasoning about
data types such as numbers or lists. The lesser-known principle of coinduction
is used for reasoning about coinductive data types, which are data structures
containing non-well-founded elements, e.g. infinite streams or trees [32, 46, 27,
7, 37, 44, 25, 48, 35]. A duality between the two principles is observed when
formulating them within an algebraic, or categorical, framework [49]. However,
such formulation does not account well for the way these principles are commonly
used in deduction, where there is a mismatch in how they are usually applied.

Due to this tension between the abstract theory of coalgebras and its im-
plementation in formal frameworks [41], coinductive reasoning is generally
not fully and naturally incorporated into major proof assistants (e.g. Coq [7],
Nuprl [20], Agda [8], Idris [9] and Dafny [36]). Even in notable exceptions such
as [38, 44, 33, 36] the combination of induction and coinduction is not intu-
itively accounted for. The standard approach in such formalisations is to define
inductive data with constructors and coinductive data with destructors, or ob-
servations [1]. In this paper we propose an alternative approach to formally
integrating induction and coinduction that clearly reveals the duality between

the two principles. Our approach has the advantage that the same signature
is shared for both inductive and coinductive data, making certain aspects of
the relationship between the two principles more apparent. To achieve this,
we extend and combine two powerful frameworks: semantically we follow the
approach of transitive closure logic, a generic logic for expressing inductive struc-
tures [31, 51, 39, 3, 15, 16, 14]; for deduction, we adopt non-well-founded proof
theory [50, 55, 10, 11, 12, 26, 5, 2, 24, 23, 17, 19, 18]. This combination captures
the intuitive dynamics of inductive and coinductive reasoning, reflecting how
these principles are understood and applied in practice.

Transitive closure (RTC) logic minimally extends first-order logic by adding a
single, intuitive notion: an operator, RTC , for forming the (reflexive) transitive
closures of an arbitrary formula (more precisely, of the binary relation induced by
the formula). This operator alone is sufficient for capturing all finitary induction
schemes within a single, unified language (unlike other systems that are a priori
parametrized by a set of inductive definitions [40, 42, 58, 12]). Transitive closures
arise as least fixed points of certain composition operators. In this paper we
extend RTC logic with the semantically dual notion: an operator, RTC op, for
forming greatest fixed points of these same composition operators.3 We call
these transitive co-closures, and show that they are equally as intuitive. Just as
transitive closure captures induction, we show that transitive co-closure facilitates
coinductive definitions and reasoning.

Non-well-founded proof theory formalises the infinite-descent style of induction.
It enables a separation between local steps of deductive inference and global
well-foundedness arguments (i.e. induction), which are encoded in traces of
formulas through possibly infinite derivations. A major benefit of these systems
is that inductive invariants do not need to be explicit. On the other hand,
existing approaches for combining induction and coinduction rely on making
(co)invariants explicit within proofs [59, 4, 30]. In previous work, a non-well-
founded proof system for RTC logic was developed [17, 18]. In this paper, we
show that the meaning of the transitive co-closure operator can be captured
proof-theoretically using inference rules having the exact same structure, with
soundness now requiring infinite ascent (i.e. showing productivity) rather than
descent. What obtains is a proof system in which induction and coinduction are
smoothly integrated, and which very clearly highlights their similarities. Their
differences are also thrown into relief, consisting in the way formulas are traced in
a proof derivation. Specifically, traces of RTC formulas show that certain infinite
paths cannot exist (induction is well-founded), while traces of RTC op formulas
show that other infinite paths must exist (coinduction is productive).

To demonstrate that our system naturally captures patterns of mixed induc-
tive/coinductive reasoning, we formalise one of the most well-known examples
of a coinductive data type: streams. In particular, we consider two illustrative
examples: transitivity of the lexicographic ordering on streams; and transitivity of
the substream relation. Both are known to be hard to prove. Our system handles
these without recourse to general fixpoint operators or algebraic structures.

3 The notation RTC op comes from the categorical notion of the opposite (dual) category.

The transitive (co-)closure framework is contained in the first-order mu-
calculus [43], but offers several advantages. The concept of transitive (co-)closure is
intuitively simpler than that of general fixed-point operators, and does not require
any syntactic restrictions to ensure monotonicity. Our framework is also related,
but complementary to logic programming with coinductive interpretations [53, 52]
and its coalgebraic semantics [34]. Logic programs, built from Horn clauses, have
a fixed intended domain (viz. Herbrand universes), and the semantics of mixing
inductive and coinductive interpretations is subtle. Our framework, on the other
hand, uses a general syntax that can freely mix closures and co-closures, and its
semantics considers all first-order models. Furthermore, the notion of proof in our
setting is more general than the (semantic) notion of proof in logic programming,
in which, for instance, there is no analogous concept of global trace condition.

Outline. Section 2 presents the syntax and semantics of the extended logic, RTcC.
Section 3 describes how streams and their properties can be expressed in RTcC.
Section 4 presents non-well-founded proof systems for RTcC, showing soundness
and completeness. Section 5 then illustrates how the examples of Section 3 are
formalised in this system. Section 6 concludes with directions for future work.

2 RTcC Logic: Syntax and Semantics

Transitive closure (RTC) logic [3, 15] extends the language of first-order logic
with a predicate-forming operator, RTC , for denoting the (reflexive) transitive
closures of (binary) relations. In this section we extend RTC logic into what we
call transitive (co-)closure (RTcC) logic, by adding a single transitive co-closure
operator, RTC op. Roughly speaking, whilst the RTC operator denotes the set of
all pairs that are related via a finite chain (or path), the RTC op operator gives
the set of all pairs that are ‘related’ via a possibly infinite chain. In Section 3 we
show that this allows capturing coinductive definitions and reasoning.

For simplicity of presentation we assume (as is standard practice) a designated
equality symbol. Note also that we use the reflexive transitive closure; however
the reflexive and non-reflexive forms are equivalent in the presence of equality.

Definition 1 (RTcC Formulas). Let s, t and P range over the terms and
predicate symbols, respectively, of a first-order signature Σ. The language LRTcC

(of formulas over Σ) is given by the following grammar:

ϕ,ψ ::= s = t | P (t1, . . . , tn) | ¬ϕ | ∀x . ϕ | ∃x . ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ |
(RTC x,y ϕ)(s, t) | (RTC op

x,y ϕ)(s, t)

where the variables x and y in the formulas (RTC x,y ϕ)(s, t) and (RTC op
x,y ϕ)(s, t)

must be distinct and are bound in the subformula ϕ, referred to as the body.

The semantics of formulas is an extension of the standard semantics of
first-order logic. We write M and ν to denote a first-order structure over a (non-
empty) domain D and a valuation of variables in D, respectively. We denote by

ν[x1 := dn, . . . , xn := dn] the valuation that maps xi to di for each i and behaves
as ν otherwise. We write ϕ {t1/x1, . . . , tn/xn} for the result of simultaneously
substituting each ti for the free occurrences of xi in ϕ. We use (di)i≤n to denote a
non-empty sequence of elements d1, . . . , dn; and (di)i>0 for a (countably) infinite
sequence of elements d1, d2, We use ≡ to denote syntactic equality.

Definition 2 (Semantics). Let M be a structure for LRTcC, and ν a valuation
in M . The satisfaction relation M,ν |= ϕ extends the standard satisfaction
relation of classical first-order logic with the following clauses:

M,ν |= (RTC x,y ϕ)(s, t)⇔
∃(di)i≤n . d1 = ν(s) ∧ dn = ν(t) ∧ ∀i < n .M, ν[x := di, y := di+1] |= ϕ

M, ν |= (RTC op
x,y ϕ)(s, t)⇔

∃(di)i>0 . d1 = ν(s) ∧ ∀i > 0 . di = ν(t) ∨M,ν[x := di, y := di+1] |= ϕ

Intuitively, the formula (RTC x,y ϕ)(s, t) asserts that there is a (possibly empty)
finite ϕ-path from s to t. The formula (RTC op

x,y ϕ)(s, t) asserts that either there
is a (possibly empty) finite ϕ-path from s to t, or an infinite ϕ-path starting at s.

We can connect these closure operators to the general theory of fixed points,
with (RTC x,y ϕ) and (RTC op

x,y ϕ) denoting, respectively, the least and greatest
fixed points of a certain operator on binary relations.

Definition 3 (Composition Operator). Given a binary relation X, we define
an operator ΨX on binary relations, which post-composes its input with X, by:
ΨX(R) = X ∪ (X ◦R) = {(a, c) | (a, c) ∈ X ∨ ∃b . (a, b) ∈ X ∧ (b, c) ∈ R}.

Notice that the set of all binary relations (over some given domain) forms a
complete lattice under the subset ordering ⊆. Moreover, composition operators
ΨX are monotone w.r.t. ⊆. Thus we have the following standard results, from the
Knaster–Tarski theorem. For any binary relation X, the least fixed point lfp(ΨX)
of ΨX is given by lfp(ΨX) =

⋂
{R | ΨX(R) ⊆ R}, i.e. the intersection of all its

prefixed points. Dually, the greatest fixed point gfp(ΨX) of ΨX is given by the
union of all its postfixed points, i.e. gfp(ΨX) =

⋃
{R | R ⊆ ΨX(R)}. Via the usual

notion of formula definability, RTC and RTC op are easily seen to be fixed point
operators. For a model M and valuation ν, denote the binary relation defined by a
formula ϕ with respect to x and y by [[ϕ]]M,ν

x,y = {(a, b) | M,ν[x := a, y := b] |= ϕ}.

Proposition 1. The following hold.

(i) M,ν |= (RTC x,y ϕ)(s, t) iff ν(s) = ν(t) or (ν(s), ν(t)) ∈ lfp(Ψ[[ϕ]]M,νx,y
).

(ii) M,ν |= (RTC op
x,y ϕ)(s, t) iff ν(s) = ν(t) or (ν(s), ν(t)) ∈ gfp(Ψ[[ϕ]]M,νx,y

).

Note that labelling the co-closure ‘transitive’ is justified since, for any model M ,
valuation ν, and formula ϕ, the relation gfp(Ψ[[ϕ]]M,νx,y

) is indeed transitive.

The RTC op operator enjoys dualisations of properties governing the transitive
closure operator (see, e.g., [16, Prop. 3]) that are either symmetrical, or involve
the first component. This is because the semantics of the RTC op has an embedded

asymmetry between the arguments. Reasoning about closures is based on decom-
position into one step and the remaining path. For RTC , this decomposition can
be done in both directions, but for RTC op it can only be done in one direction.

Proposition 2. The following formulas, connecting the two operators, are valid.

i) (RTC x,y ϕ)(s, t)→ (RTC op
x,y ϕ)(s, t)

ii) ¬(RTC x,y ¬ϕ)(s, t)→ (RTC op
x,y ϕ)(s, t)

iii) ¬(RTC op
x,y ¬ϕ)(s, t)→ (RTC x,y ϕ)(s, t)

iv) ((RTC op
x,y ϕ)(s, t) ∧ ∃z.¬(RTC op

x,y ϕ)(s, z))→ (RTC x,y ϕ)(s, t)

v) ((RTC op
x,y ϕ)(s, t) ∧ ¬(RTC op

x,y ϕ ∧ y 6= t)(s, t))→ (RTC x,y ϕ)(s, t)

Note that the converse of these properties do not hold in general, thus they do not
provide characterisations of one operator in terms of the other. A counter-example
for the converses of (ii) and (iii) can be obtained by taking ϕ to be x = y. Then,
for any domain D, the formulas (RTC x,y ¬ϕ), (RTC op

x,y ϕ), and (RTC op
x,y ¬ϕ) all

denote the full binary relation D × D, while (RTC x,y ϕ) denotes the identity
relation on D.

3 Streams in RTcC Logic

This section demonstrates the adequacy of RTcC logic for formalising and reason-
ing about coinductive data types. As claimed by Rutten: “streams are the best
known example of a final coalgebra and offer a perfect playground for the use of
coinduction, both for definitions and for proofs.” [47]. Hence, in this section and
Section 5 we illustrate that RTcC logic naturally captures the stream data type
(see, e.g., [29, 48]).

3.1 The Stream Datatype

We formalise streams as infinite lists, using a signature consisting of the standard
list constructors: the constant nil and the (infix) binary function symbol ‘::’,
traditionally referred to as ‘cons’. These are axiomatized by:

nil = e ::σ ⇒ (1) e ::σ = e′ ::σ′ ⇒ e = e′ (2) e ::σ = e′ ::σ′ ⇒ σ = σ′ (3)

Note that for simplicity of presentation we have not specified that the elements
of possibly infinite lists should be any particular sort (e.g. numbers). Thus, the
theory of streams we formulate here is generic in this respect. To refer specifically
to streams over a particular domain, we could use a multisorted signature
containing a Base sort, in addition to the sort List∞ of possibly infinite lists, with
nil a constant of type List∞ and :: a function of type Base × List∞ −→ List∞.
Nonetheless, we do use the following conventions for formalising streams in this
section and in Section 5. For variables and terms ranging over Base we use
a, b, c, . . . and e, e′, . . . , respectively; and for variables and terms ranging over
possibly infinite lists we use x, y, z, . . . and σ, σ′, . . . , respectively.

The (graphs of) the standard head (hd) and tail (tl) functions are definable4

by hd(σ) = e
def
:= ∃x.σ = e ::x and tl(σ) = σ′

def
:= ∃a.σ = a ::σ′. Finite and

possibly infinite lists can be defined by using the transitive closure and co-closure
operators, respectively, as follows.

List(σ)
def
:= (RTC x,y tl(x) = y)(σ, nil)

List∞(σ)
def
:= (RTC op

x,y tl(x) = y)(σ, nil)

Roughly speaking, these formulas assert that we can perform some number
of successive tail decompositions of the term σ. For the RTC formula, this
decomposition must reach the second component, nil, in a finite number of steps.
For the RTC op formula, on the other hand, the decomposition is not required to
reach nil but, in case it does not, must be able to continue indefinitely.

To define the notion of a necessarily infinite list (i.e. a stream), we specify
in the body that, at each step, the decomposition of the stream cannot actually
reach nil (abbreviating ¬(s = t) by s 6= t). Moreover, since we are using reflexive
forms of the operators we must also stipulate that nil itself is not a stream.

Stream(σ)
def
:= (RTC op

x,y tl(x) = y ∧ y 6= nil)(σ, nil) ∧ σ 6= nil

This technique—of specifying that a single step cannot reach nil and then
taking nil to be the terminating case in the RTC op formula—is a general method
we will use in order to restrict attention to the infinite portion in the induced
semantics of an RTC op formula. To this end, we define the following notation.

ϕinf
x,y(σ)

def
:= (RTC op

x,y (ϕ ∧ y 6= nil))(σ, nil) ∧ σ 6= nil

3.2 Relations and Operations on Streams

We next show that RTcC also naturally captures properties of streams. Using the
RTC operator we can (inductively) define the extension relation / on possibly
infinite lists as follows:

σ / σ′
def
:= (RTC x,y tl(x) = y)(σ, σ′)

This asserts that σ extends σ′, i.e. that σ is obtained from σ′ by prepending
some finite sequence of elements to σ′. Equivalently, σ′ is obtained by some finite
number of tail decompositions from σ: that is, σ′ is a suffix of σ.

We next formalise some standard predicates.

Contains(e, σ)
def
:= ∃x . σ / x ∧ hd(x) = e

Const(e, σ)
def
:= (x = e :: y)

inf

x,y(σ)

4 Although hd(σ) and tl(σ) could have been defined as terms using Russell’s ιoperator,
we opted for the above definition for simplicity of the proof theory.

Const→∞(σ)
def
:= ∃x . σ / x ∧ ∃a . Const(a, x)

Contains(e, ·) defines the possibly infinite lists that contain the element denoted
by e; Const(e, ·) defines the constant stream consisting of the element denoted by
e; and Const→∞ defines streams that are eventually constant.

We next consider how (functional) relations on streams can be formalised
in RTcC, using some illustrative examples. To capture these we need to use
ordered pairs. For this, we use the notation 〈u, v〉 for u :: (v :: nil),5 then abbreviate
(RTCw,w′ ∃u, u′, v, v′ . w = 〈u, v〉 ∧ w′ = 〈u′, v′〉 ∧ ϕ) by (RTC 〈u,v〉,〈u′,v′〉 ϕ) (and
similarly for RTC op formulas), and also write ϕinf

〈x1,x2〉,〈y1,y2〉(〈σ, σ
′〉) to stand for

(RTC op
〈x1,x2〉,〈y1,y2〉 (ϕ ∧ y1 6= nil ∧ y2 6= nil))(〈σ, σ′〉, 〈nil, nil〉) ∧ σ 6= nil ∧ σ′ 6= nil.

Append and Periodicity. With ordered pairs, we can inductively define (the
graph of) the function that appends a possibly infinite list to a finite list.

σ1_σ2 = σ3
def
:=

(RTC 〈x1,x2〉,〈y1,y2〉 ∃a . x1 = a :: y1 ∧ x2 = a :: y2)(〈σ1, σ3〉, 〈nil, σ2〉)

We remark that the formulas σ / σ′ and ∃z . z_σ′ = σ are equivalent. To define
this as a function requires also proofs that the defined relation is total and
functional. However, this is generally straightforward when the body formula is
deterministic, as is the case in all the examples we present here. Other standard
operations on streams, such as element-wise operations, are also definable in
RTcC as (functional) relations. For example, assuming a unary function ⊕, we
can coinductively define its elementwise extension to streams ⊕∞ as follows.

⊕∞(σ) = σ′
def
:= (∃a . x1 = a :: y1 ∧ x2 = ⊕(a) :: y2)

inf

〈x1,x2〉,〈y1,y2〉(〈σ, σ
′〉)

As an example of mixing induction and coinduction, we can express a predicate
coinductively defining the periodic streams using the append function.

Periodic(σ)
def
:= ∃z . z 6= nil ∧ (z_y = x)

inf

x,y(σ)

Lexicographic Ordering. The lexicographic order on streams extends point-
wise an order on the underlying elements. Thus, we assume a binary relation
symbol ≤ with the standard axiomatisation of a (non-strict) partial order.

⇒ e ≤ e e ≤ e′, e′ ≤ e′′ ⇒ e ≤ e′′ e ≤ e′, e′ ≤ e⇒ e = e′

The lexicographic ordering relation ≤` is captured as follows, where we use e < e′

as an abbreviation for e ≤ e′ ∧ e 6= e′.

5 Here we use the fact that ‘::’ behaves as a pairing function. In other languages one
might need to add a function 〈·, ·〉, and (axiomatically) restrict the semantics to
structures that interpret it as a pairing function. Note that incorporating pairs is
equivalent to taking 2n-ary operators RTCn and RTC op

n for every n ≥ 1.

σ ≤` σ′
def
:= (RTC op

〈x1,x2〉,〈y1,y2〉 ψ`)(〈σ, σ
′〉, 〈nil, nil〉)

where ψ` ≡ ∃a, b, z1, z2 . x1 = a :: z1 ∧ x2 = b :: z2 ∧
Stream(z1) ∧ Stream(z2) ∧ (a < b ∨ (a = b ∧ z1 = y1 ∧ z2 = y2))

The semantics of the RTC op operator require an infinite sequence of pairs such
that, until 〈nil, nil〉 is reached, each two consecutive pairs are related by ψ`. This
formula states that if the heads of the lists in the first pair are equal, the next
pair of lists in the infinite sequence is their two tails, thus the lexicographic
relation must also hold of them. Otherwise, if the head of the first is less than
that of the second, nothing is required of the tails, i.e. they may be any streams.

Substreams. We consider one stream to be a substream of another if the latter
contains every element of the former in the same order (although it may contain
other elements too). Equivalently, the latter is obtained by inserting some (possibly
infinite) number of finite sequences of elements in between those of the former.
This description makes it clearer that defining this relation involves mixing (or,
rather, nesting) induction and coinduction. We formalise the substream relation,
< using the inductive extension relation / to capture the inserted finite sequences,
wrapping it within a coinductive definition using the RTC op operator.

σ < σ′
def
:= ψ<

inf

〈x1,x2〉,〈y1,y2〉(〈σ, σ
′〉)

where ψ< ≡ ∃a . x1 / a :: y1 ∧ x2 = a :: y2

On examination, one can observe that this relation is transitive. However, proving
this is non-trivial and, unsurprisingly, involves applying both induction and
coinduction. In Section 5, we give a proof of the transitivity of < in RTcC. This
relation was also considered at length in [6, §5.1.3] where it is formalised in
terms of selectors, which form streams by picking out certain elements from other
streams. The treatment in [6] requires some heavy (coalgebraic) metatheory.
While our proof in Section 5 requires some (fairly obvious) lemmas, the basic
structure of the (co)inductive reasoning required is made plain by the cycles in
the proof. Furthermore, the RTcC presentation seems to enable a more intuitive
understanding of the nature of the coinductive definitions and principles involved.

4 Proof Theory

We now present a non-well-founded proof system for RTcC, which extends (an
equivalent of) the non-well-founded proof system considered in [17, 18] for
transitive closure logic (i.e. the RTC-fragment of RTcC).

4.1 A Non-Well-Founded Proof System

In non-well-founded proof systems, e.g. [50, 10, 11, 12, 5, 2, 24, 23], proofs are
allowed to be infinite, i.e. non-well-founded trees, but they are subject to the

Γ ⇒ ∆, (RTC x,y ϕ)(s, s)
(4)

Γ ⇒ ∆,ϕ {s/x, r/y} Γ ⇒ ∆, (RTC x,y ϕ)(r, t)

Γ ⇒ ∆, (RTC x,y ϕ)(s, t)
(5)

Γ, s = t⇒ ∆ Γ,ϕ {s/x, z/y}, (RTC x,y ϕ)(z, t)⇒ ∆
(†)

Γ, (RTC x,y ϕ)(s, t)⇒ ∆
(6)

Γ ⇒ ∆, (RTC op
x,y ϕ)(s, s)

(7)

Γ ⇒ ∆,ϕ {s/x, r/y} Γ ⇒ ∆, (RTC op
x,y ϕ)(r, t)

Γ ⇒ ∆, (RTC op
x,y ϕ)(s, t)

(8)

Γ, s = t⇒ ∆ Γ,ϕ {s/x, z/y} , (RTC op
x,y ϕ)(z, t)⇒ ∆

(‡)
Γ, (RTC op

x,y ϕ)(s, t)⇒ ∆
(9)

where: (†) z 6∈ fv(Γ,∆, (RTC x,y ϕ)(s, t)); and (‡) z 6∈ fv(Γ,∆, (RTC op
x,y ϕ)(s, t)).

Fig. 1: Proof rules of RTcC∞G

restriction that every infinite path in the proof admits some infinite progress,
witnessed by tracing terms or formulas. The infinitary proof system for RTcC
logic is defined as an extension of LK=, the sequent calculus for classical first-
order logic with equality and substitution [28, 56].6 Sequents are expressions
of the form Γ ⇒ ∆, for finite sets of formulas Γ and ∆. We abbreviate Γ,∆
and Γ, ϕ by Γ ∪∆ and Γ ∪ {ϕ}, respectively, and write fv(Γ) for the set of free
variables of the formulas in Γ . A sequent Γ ⇒ ∆ is valid if and only if the formula∧
ϕ∈Γ ϕ→

∨
ψ∈∆ ψ is.

Definition 4 (RTcC∞G). The proof system RTcC∞G is obtained by adding to LK=

the proof rules given in Figure 1.

Rules (6) and (8) are the unfolding rules for the two operators that represent
the induction and coinduction principles in the system, respectively. The proof
rules for both operators have exactly the same form, and so the reader may
wonder what it is, then, that distinguishes the behaviour of the two operators. The
difference proceeds from the way the decomposition of the corresponding formulas
is traced in the non-well-founded proof system. For induction, RTC formulas on
the left-hand side of the sequents are traced through Rule (6); for coinduction,
RTC op formulas on the right-hand side of sequents are traced through Rule (8).

6 Unlike in the original system, here we take LK= to include the substitution rule.

Definition 5 (RTcC∞G Pre-proofs). An RTcC∞G pre-proof is a rooted, possibly
non-well-founded (i.e. infinite) derivation tree constructed using the RTcC∞G proof
rules. A path in a pre-proof is a possibly infinite sequence S0, S1, . . . (, Sn) of
sequents with S0 the root of the proof, and Si+1 a premise of Si for each i < n.

We adopt the usual proof-theoretic notions of formula occurrence and sub-
occurrence, and of ancestry between formulas [13]. A formula occurrence is called
a proper formula if it is not a sub-occurrence of any formula.

Definition 6 ((Co-)Traces). A trace (resp. co-trace) is a possibly infinite
sequence τ1, τ2, . . . (, τn) of proper RTC (resp. RTC op) formula occurrences in
the left-hand (resp, right-hand) side of sequents in a pre-proof such that τi+1 is an
immediate ancestor of τi for each i > 0. If the trace (resp. co-trace) contains an
infinite number of formula occurrences that are principal for instances of Rule (6)
(resp. Rule (8)), then we say that it is infinitely progressing.

As usual in non-well-founded proof theory, we use the notion of (co-)trace to
define a global trace condition, distinguishing certain ‘valid’ pre-proofs.

Definition 7 (RTcC∞G Proofs). An RTcC∞G proof is a pre-proof in which every
infinite path has a tail followed by an infinitely progressing (co-)trace.

In general, one cannot reason effectively about infinite proofs, as found in
RTcC∞G . In order to do so our attention has to be restricted to those proof trees
which are finitely representable. That is, the regular infinite proof trees, containing
only finitely many distinct subtrees. They can be specified as systems of recursive
equations or, alternatively, as cyclic graphs [22]. One way of formalising such
proof graphs is as standard proof trees containing open nodes (called buds), to
each of which is assigned a syntactically equal internal node of the proof (called
a companion). The restriction to cyclic proofs provides the basis for an effective
system for automated inductive and coinductive reasoning. The system RTcC∞G
can naturally be restricted to a cyclic proof system for RTcC logic as follows.

Definition 8 (Cyclic Proofs). The cyclic proof system RTcCωG for RTcC logic
is the subsystem of RTcC∞G comprising of all and only the finite and regular
infinite proofs (i.e. proofs that can be represented as finite, possibly cyclic, graphs).7

It is decidable whether a cyclic pre-proof satisfies the global trace condition,
using a construction involving an inclusion between Büchi automata [10, 54].
However since this requires complementing Büchi automata (a PSPACE proce-
dure), RTcCωG is not a proof system in the Cook-Reckhow sense [21]. Notwith-
standing, checking the trace condition for cyclic proofs found in practice is not
prohibitive [45, 57].

Although RTcC∞G is complete (cf. Theorem 2 below) RTcCωG is not, since
arithmetic can be encoded in RTcC logic and the set of RTcCωG proofs is recur-
sively enumerable.8 Nonetheless, RTcCωG is adequate for RTcC logic in the sense

7 Note that in [17, 18] RTCω
G denoted the full infinitary system for the RTC -fragment.

8 The RTC -fragment of RTcCω
G was shown complete for a Henkin-style semantics [17].

(7)

⇒ (RTC
op
x,y ϕ)(u, u)

(Eq)

u = v ⇒ (RTC
op
x,y ϕ)(u, v) .

.

.

.

.

.

.

(Ax)

ϕ {u/x, w/y}, (RTCx,y ϕ)(w, v)⇒ ϕ {u/x, w/y} .
.
.
.

(RTCx,y ϕ)(u, v) ⇒ (RTC op
x,y ϕ)(u, v)

(Subst)

(RTCx,y ϕ)(w, v) ⇒ (RTC op
x,y ϕ)(w, v)

(Wk)

ϕ {u/x, w/y}, (RTCx,y ϕ)(w, v) ⇒ (RTC op
x,y ϕ)(w, v) ∗

(8)

ϕ {u/x, w/y}, (RTCx,y ϕ)(w, v) † ⇒ (RTC op
x,y ϕ)(u, v)

(6)

(RTCx,y ϕ)(u, v) ⇒ (RTC op
x,y ϕ)(u, v)

Fig. 2: Proof in RTcCωG of (RTC x,y ϕ)(u, v)⇒ (RTC op
x,y ϕ)(u, v)

that it suffices for proving the standard properties of the operators, as in, e.g.,
Proposition 2.

Example 1. Figure 2 demonstrates an RTcCωG proof that the transitive closure
is contained within the transitive co-closure. Notice that the proof has a single
cycle, and thus a single infinite path. Following this path, there is both a trace
(consisting of the highlighted RTC formulas, on the left-hand side of sequents)
which progresses on traversing Rule (6) (marked †), and a co-trace (consisting
of the highlighted RTC op forumlas, on the right-hand side of sequents), which
progresses on traversing Rule (8) (marked ∗). Thus, Figure 2 can be seen both
as a proof by induction and a proof by coinduction. It exemplifies how naturally
such reasoning can be captured within RTcCωG.

A salient feature of non-well-founded proof systems, including this one, is
that (co)induction invariants need not be mentioned explicitly, but instead are
encoded in the cycles of a proof. This facilitates the automation of such reasoning,
as the invariants may be interactively constructed during a proof-search process.

4.2 Soundness

To show soundness, i.e. that all derived sequents are valid, we establish that
the infinitely progressing (co-)traces in proofs preclude the existence of counter-
models. By local soundness of the proof rules, any given counter-model for a
sequent derived by a proof identifies an infinite path in the proof consisting of
invalid sequents. However, the presence of a (co-)trace along this path entails a
contradiction (and so conclude that no counter-models exist). From a trace, one
may infer the existence of an infinitely descending chain of natural numbers. This
relies on a notion of (well-founded) measure for RTC formulas, viz. the measure
of φ ≡ (RTC x,y ϕ)(s, t) with respect to a given model M and valuation ν—
denoted by δφ(M,ν)—is defined to be the minimum number of ϕ-steps needed to

connect ν(s) and ν(t) in M . Conversely, from a co-trace beginning with a formula
(RTC op

x,y ϕ)(s, t) one can construct an infinite sequence of ϕ-steps beginning at s,
i.e. a witness that the counter-model does in fact satisfy (RTC op

x,y ϕ)(s, t).
The key property needed for soundness of the proof system is the following

strong form of local soundness for the proof rules.

Proposition 3 (Trace Local Soundness). Let M be a model and ν a valua-
tion that invalidate the conclusion of an instance of an RTcC∞G inference rule;
then there exists a valuation ν′ that invalidates some premise of the inference
rule such that the following hold.

1. If (τ, τ ′) is a trace following the path from the conclusion to the invalid
premise, then δτ ′(M,ν′) ≤ δτ (M,ν); moreover δτ ′(M,ν′) < δτ (M,ν) if the
rule is an instance of (6) and τ is the principal formula.

2. If (τ, τ ′) is a co-trace following the path from the conclusion to the in-
valid premise, with τ ≡ (RTC op

x,y ϕ)(s, t) and τ ′ ≡ (RTC op
x,y ϕ

′)(r, t′), then:
(a) M,ν[x := d, y := d′] |= ϕ if and only if M,ν′[x := d, y := d′] |= ϕ′, for
all elements d and d′ in M ; and (b) M,ν′ |= ϕ {s/x, r/y} if τ is the principal
formula of an instance of (8), and ν(s) = ν′(r) otherwise.

The global soundness of the proof system then follows.

Theorem 1 (Soundness of RTcC∞G). Sequents derivable in RTcC∞G are valid.

Proof. Take a proof deriving Γ ⇒ ∆. Suppose, for contradiction, that there is
a model M and valuation ν1 invalidating Γ ⇒ ∆. Then by Proposition 3 there
exists an infinite path of sequents (Si)i>0 in the proof and an infinite sequence
of valuations (νi)i>0 such that M and νi invalidate Si for each i > 0. Since the
proof must satisfy the global trace condition, this infinite path has a tail (Si)i>k
followed by an infinitely progressing (co-)trace (τ i)i>0.

– If (τ i)i>0 is a trace, Proposition 3 implies an infinitely descending chain of
natural numbers: δτ1(Mk+1, νk+1) ≤ δτ2(Mk+2, νk+2) ≤ . . .

– If (τ i)i>0 is a co-trace, with τ1 ≡ (RTC op
x,y ϕ)(s, t) and M,νk+1 6|= τ1, then

Proposition 3 entails that there is an infinite sequence of terms t0, t1, t2, . . .
with s ≡ t0 such that M,νk+1[x := νk+1(tj), y := νk+1(tj+1)] |= ϕ for each
j ≥ 0. That is, it follows from Definition 2 that M,νk+1 |= (RTC op

x,y ϕ)(s, t).

In both cases we have a contradiction, so conclude that Γ ⇒ ∆ is valid. ut

Since every RTcCωG proof is also an RTcC∞G proof, soundness of RTcCωG is an
immediate corollary.

Corollary 1. A sequent Γ ⇒ ∆ is valid if there is an RTcCωG proof deriving it.

4.3 Completeness

The completeness proof for RTcC∞G is obtained by extending the completeness
proof of the RTC -fragment of RTcC∞G found in [17, 18], which, in turn, follows a

standard technique used in e.g. [12]. We next outline the core of the proof, full
details can be found in the appendix.

Roughly speaking, for a given sequent Γ ⇒ ∆ one constructs a ‘search tree’
which corresponds to an exhaustive search strategy for a cut-free proof for the
sequent. Search trees are, by construction, recursive and cut-free. In case the search
tree is not an RTcC∞G proof (and there are no open nodes) it must contain some
untraceable infinite branch, i.e. one that does not satisfy the global trace condition.
We then collect the formulas occurring along such an untraceable branch to
construct a (possibly infinite) ‘sequent’, Γω ⇒ ∆ω (called a limit sequent), and
construct the Herbrand model Mω of open terms quotiented by the equalities it
contains. That is, taking ∼ to be the smallest congruence on terms such that s ∼ t
whenever s = t ∈ Γω, the elements of Mω are ∼-equivalence classes and every
k-ary relation symbol q is interpreted as {([t1], . . . , [tk]) | q(t1, . . . , tk) ∈ Γω}
(here [t] denotes the ∼-equivalence class containing t). This model, together with
the valuation νω defined by νω(x) = [x] for all variables x, can be shown to
invalidate the sequent Γ ⇒ ∆. The completeness result therefore follows.

Theorem 2 (Completeness). All valid sequents are derivable in RTcC∞G .

Proof. Given any sequent S, if some search tree for S is not an RTcC∞G proof then
it has an untraceable branch, and the model Mω and valuation νω constructed
from the corresponding limit sequent invalidate S. Thus if S is valid, then the
search tree is a recursive RTcC∞G proof deriving S. ut

We obtain admissibility of cut for the full infinitary system as the search tree,
by construction, is cut-free. Since the construction of the search tree does not
necessarily produce RTcCωG pre-proofs, we do not obtain a regular completeness
result using this technique.

Corollary 2 (Cut admissibility). Cut is admissible in RTcC∞G .

5 Proving Properties of Streams

We now demonstrate how (co)inductive reasoning about streams and their prop-
erties is formalised in the cyclic fragment of the proof system presented above.
For the sake of clarity, in the derivations below we elide detailed applications of
the proof rules (including the axioms for list constructors), instead indicating
the principal rules involved at each step. We also elide (using ‘. . .’) formulas in
sequents that are not relevant to the local reasoning at that point.

Transitivity of Lexicographic Ordering. Figure 3 outlines the main struc-
ture of an RTcCωG proof deriving the sequent x ≤` y, y ≤` z ⇒ x ≤` z, where x, y,
and z are distinct variables. All other variables in Figure 3 are freshly introduced.
U`(σ1, σ2, σ′1, σ′2) abbreviates the set {ψ` {σ1/x1, σ2/x2, σ

′
1/y1, σ

′
2/y2} , σ′1 ≤` σ′2}

(i.e. the result of unfolding the step case of the formula σ1 ≤` σ2 using σ′1
and σ′2 as the intermediate terms).

(∃R)/(Ax)
·
·
·

a < c, . . .⇒ ψ` {x/x1, z/x2, nil/y1, nil/y2}
(7)

. . .⇒ nil ≤` nil
(8)

a < c, . . .⇒ x ≤` z ×3 .
.
.
.
.
.
.

(∃R)/(Ax)
·
·
·

a = c, . . .⇒ ψ` {x/x1, z/x2, x′/y1, z′/y2}

x ≤` y, y ≤` z ⇒ x ≤` z
(Wk)/(Subst)

x
′ ≤` y′, y′ ≤` z′, . . .⇒ x′ ≤` z′ ∗

(8)

a = c, . . . , x
′ ≤` y′, y′ ≤` z′ ⇒ x ≤` z

(∨L)

x = a :: x
′
, y = b :: y

′
, z = c :: z

′
, a < b ∨ (a = b ∧ x′ = x

′′ ∧ y′ = y
′′
1),

b < c ∨ (b = c ∧ y′ = y
′′
2 ∧ z

′
= z
′′
), x
′′ ≤` y′′1 , y

′′
2 ≤` z

′′
, . . .⇒ x ≤` z

(2), (3)

U`(x, y, x′, y′),U`(y, z, y′′, z′)⇒ x ≤` z

(a) Sub-proof containing non-trivial cases.

.

.

.

.

.

.

.

.

.

.

.

.

(Ax)

x ≤` z ⇒ x ≤` z
(Eq)

x = y = nil, y ≤` z ⇒ x ≤` z

(∃R)/(Ax)
·
·
·
(8)

U`(x, y, x′, y′)⇒ x ≤` w
(Eq)

U`(x, y, x′, y′), w = z = nil⇒ x ≤` z .
.
.
.
.
.

Figure 3a
·
·
·

U`(x, y, x′, y′),U`(y, z, y′′, z′)⇒ x ≤` z

U`(x, y, x′, y′), y ≤` z ⇒ x ≤` z
(9)

z ≤` y, y ≤` z ⇒ x ≤` z

(b) Root of the proof, with trivial cases.

Fig. 3: High-level structure of an RTcCωG proof of transitivity of ≤`.

The proof begins by unfolding the definitions of x ≤` y and y ≤` z, shown in
Figure 3b. The interesting part is the sub-proof shown in Figure 3a, when each
of the lists is not nil. Here, we perform case splits on the relationship between
the head elements a, b, and c. For the case a = c, i.e. the heads are equal, when
unfolding the formula x ≤` z on the right-hand side, we instantiate the second
components of the RTC op formula to be the tails of the streams, x′ and z′. In the
left-hand premise we must show ψ` {x/x1, z/x2, x

′/y1, z
′/y2}, which can be done by

matching with formulas already present in the sequent. The right-hand premise
must derive x′ ≤` z′, i.e. the tails are lexicographically related. This is where we
apply the coinduction principle, by renaming the variables and forming a cycle in
the proof back to the root. This does indeed produce a proof, since we can form
a co-trace by following the formulas x ≤` z, . . . , x′ ≤` z′ on the right-hand side
of sequents along this cycle. This co-trace progresses as it traverses the instance
of Rule (8) each time around the cycle (marked ∗).

(Ax)
·
·
·

. . .⇒ ψ< {x/x1, z/x2, x′/y1, z′/y2}

x < y, y < z ⇒ x < z
(Wk)/(Subst)

x
′ < y

′′
, y
′′ < z

′
, . . .⇒ x′ < z′ ∗

(8)

x / b :: x
′
, z = b :: z

′
, x
′ < y

′′
, y
′′ < z

′
, . . .⇒ x < z .

.

.

.

.

.

.

.

.

.

x
′ < y

′
, y′ / b :: y′′ ⇒ ∃x′′ . x′ / b :: x′′ ∧ x′′ < y

′′ .
.
.

x / a :: x′ , x
′
/ b :: x

′′ ⇒ x / b :: x
′′ .

.

.

.

.

.

(Ax)
·
·
·

. . .⇒ ψ< {x/x1, z/x2, x′/y1, z′/y2} x < y, y < z ⇒ x < z
(Wk)/(Subst)

x
′′ < y

′′
, y
′′ < z

′
, . . .⇒ x′ < z′ ∗

(8)

x / b :: x
′′
, z = b :: z

′
, x
′′ < y

′′
, y
′′ < z

′
, . . .⇒ x < z

(Cut)

x / a :: x
′
, x
′
/ b :: x

′′
, . . .⇒ x < z

(Cut)

x
′ < y

′
, y
′
/ b :: y

′′
, . . .⇒ x < z

(6)

U<(x, y, x
′
, y
′
),U<(y, z, y

′′
, z
′
)⇒ x < z

·
·
·
(6), sim. fig. 3b

x < y, y < z ⇒ x < z

Fig. 4: High-level structure of an RTcCωG proof of transitivity of <.

Transitivity of the Substream Relation. Figure 4 outlines the structure of an
RTcCωG proof of the sequent x < y, y < z ⇒ x < z, for distinct variables x, y, and
z. As above, other variables are freshly introduced, and we use U<(σ1, σ2, σ

′
1, σ
′
2) to

denote the set {ψ< {σ1/x1, σ2/x2, σ
′
1/y1, σ

′
2/y2}, σ′1 < σ′2} (i.e. the result of unfolding

the step-case of the formula σ1 < σ2 using σ′1 and σ′2 as the intermediate terms).

The reflexive cases are handled similarly to the previous example. Again, the
work is in proving the step cases. After unfolding both x < y and y < z, we obtain
x′ < y′ and y′′ < z′, as part of U<(x, y, x′, y′) and U<(y, z, y′′, z′), respectively.
We also have (for fresh variables a and b) that: (i) x / a ::x′; (ii) y = a :: y′ (y′ is
the immediate tail of y); (iii) y / b :: y′′ (y′′ is some tail of y); and (iv) z = b :: z′

(z′ is the immediate tail of z). Ultimately, we are looking to obtain x / b ::x′′

and x′′ < y′′ (for some tail x′′), so that we can unfold the formula x < z on the
right-hand side to obtain x′′ < z′ and thus be able to form a (coinductive) cycle.

The application of Rule (6) shown in Figure 4 performs a case-split on the
formula y / b :: y′′. The left-hand branch handles the case that y′′ is, in fact, the
immediate tail of y; thus y′ = y′′ and a = b, and so we can substitute b and
y′′ in place of a and y′, respectively, and take x′′ to be x′. In the right-hand
branch, corresponding to the case that y′′ is not the immediate tail of y, we
obtain y′ / b :: y′′ from the case-split. Then we apply two lemmas; namely: (i) if
x′ < y′ and y′ / b :: y′′, then there is some x′′ such that x′ / b ::x′′ and x′′ < y′′;
and (ii) if x / a ::x′ and x′ / b ::x′′, then x / b ::x′′ (a form of transitivity for
the extends relation). For space reasons we do not show the structure of the

sub-proofs deriving these, however, as marked in the figure, we note that they
are both carried out by induction on the / relation.

In summary the proof contains two (inductive) sub-proofs, each validated
by infinitely progressing inductive traces, and also two overlapping outer cycles.
Infinite paths following these outer cycles have co-traces consisting of the high-
lighted formulas in Figure 4, which progress infinitely often as they traverse the
instances of Rule (8) (marked ∗).

6 Conclusion and Future Work

This paper presented a new framework that extends the well-known, powerful
transitive closure logic with a dual transitive co-closure operator. An infinitary
proof system for the logic was developed and shown to be sound and complete. Its
cyclic subsystem was shown to be powerful enough for reasoning over streams, and
in particular automating combinations of inductive and coinductive arguments.

Much remains to be done to fully develop the new logic and its proof theory,
and to study its implications. Although we have shown that our framework
captures many interesting properties of the canonical coinductive data type,
streams, a primary task for future research is to formally characterise its ability to
capture finitary coinductive definitions in general. In particular, it seems plausible
that RTcC is a good candidate setting in which to look for characterisations that
complement and bridge existing results for coinductive data in automata theory
and coalgebra. That is, it may potentially mirror (and also perhaps even replace)
the role that monadic second order logic plays for (ω-)regular languages.

Another important research task is to further develop the structural proof
theory of the systems RTcC∞G and RTcCωG in order to describe the natural process
and dynamics of inductive and coinductive reasoning. This includes properties
such as cut elimination, admissibility of rules, regular forms for proofs, focussing,
and proof search strategies. For example, syntactic cut elimination for non-well-
founded systems has been studied extensively in the context of linear logic [26, 5].
The basic approach would seem to work for RTcC, however, one expects that
cut-elimination will not preserve regularity.

Through the proofs-as-programs paradigm (a.k.a. the Curry-Howard corre-
spondence) our proof-theoretic synthesis of induction and coinduction has a
number of applications that invite further investigation. Namely, our framework
provides a general setting for verifying program correctness against specifications
of coinductive (safety) and inductive (liveness) properties. Implementing proof-
search procedures can lead to automation, as well as correct-by-construction
synthesis of programs operating on (co)inductive data. Finally, grounding proof
assistants in our framework will provide a robust, proof-theoretic basis for mech-
anistic coinductive reasoning.

Acknowledgements. We are grateful to Alexandra Silva for valuable coinduc-
tive reasoning examples, and Juriaan Rot for helpful comments and pointers. We
also extend thanks to the anonymous reviewers for their questions and comments.

References

1. Abel, A., Pientka, B.: Well-founded Recursion with Copatterns and
Sized Types. Journal of Functional Programming 26, e2 (2016).
https://doi.org/10.1017/S0956796816000022

2. Afshari, B., Leigh, G.E.: Cut-free Completeness for Modal Mu-calculus. In: Pro-
ceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, June 20–23, 2017. pp. 1–12 (2017).
https://doi.org/10.1109/LICS.2017.8005088

3. Avron, A.: Transitive Closure and the Mechanization of Mathematics. In: Kamared-
dine, F.D. (ed.) Thirty Five Years of Automating Mathematics, Applied Logic Series,
vol. 28, pp. 149–171. Springer, Netherlands (2003). https://doi.org/10.1007/978-94-
017-0253-9 7

4. Baelde, D.: Least and Greatest Fixed Points in Linear Logic. ACM Trans. Comput.
Logic 13(1), 2:1–2:44 (Jan 2012). https://doi.org/10.1145/2071368.2071370

5. Baelde, D., Doumane, A., Saurin, A.: Infinitary Proof Theory: the Multiplicative
Additive Case. In: Proceedings of the 25th EACSL Annual Conference on Computer
Science Logic, CSL 2016, August 29 – September 1, 2016, Marseille, France. pp.
42:1–42:17 (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.42

6. Basold, H.: Mixed Inductive-Coinductive Reasoning Types, Programs and Logic.
Ph.D. thesis, Radboud University (2018), https://hdl.handle.net/2066/190323

7. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
SpringerVerlag (2004)

8. Bove, A., Dybjer, P., Norell, U.: A Brief Overview of Agda – A Functional Language
with Dependent Types. In: Theorem Proving in Higher Order Logics. pp. 73–78
(2009). https://doi.org/10.1007/978-3-642-03359-9 6

9. Brady, E.: Idris, a General-purpose Dependently Typed Programming Lan-
guage: Design and Implementation. J. Funct. Program. 23, 552–593 (2013).
https://doi.org/10.1017/S095679681300018X

10. Brotherston, J.: Formalised Inductive Reasoning in the Logic of Bunched Implica-
tions. In: Proceedings of Static Analysis, 14th International Symposium, SAS 2007.
pp. 87–103 (2007). https://doi.org/10.1007/978-3-540-74061-2 6

11. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic Proofs of Program Termination
in Separation Logic. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2008. pp. 101–112 (2008).
https://doi.org/10.1145/1328438.1328453

12. Brotherston, J., Simpson, A.: Sequent Calculi for Induction and Infi-
nite Descent. Journal of Logic and Computation 21(6), 1177–1216 (2010).
https://doi.org/10.1093/logcom/exq052

13. Buss, S.R.: Handbook of Proof Theory. Studies in Logic and the Foundations of
Mathematics, Elsevier Science (1998)

14. Cohen, L.: Completeness for Ancestral Logic via a Computationally-Meaningful
Semantics. In: Proceedings of the 26th International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2017. pp.
247–260 (2017). https://doi.org/10.1007/978-3-319-66902-1 15

15. Cohen, L., Avron, A.: Ancestral Logic: A Proof Theoretical Study. In: et al., U.K.
(ed.) Logic, Language, Information, and Computation, Lecture Notes in Computer
Science, vol. 8652, pp. 137–151. Springer (2014). https://doi.org/10.1007/978-3-
662-44145-9 10

https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1007/978-94-017-0253-9_7
https://doi.org/10.1007/978-94-017-0253-9_7
https://doi.org/10.1145/2071368.2071370
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://hdl.handle.net/2066/190323
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-540-74061-2_6
https://doi.org/10.1145/1328438.1328453
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1007/978-3-319-66902-1_15
https://doi.org/10.1007/978-3-662-44145-9_10
https://doi.org/10.1007/978-3-662-44145-9_10

16. Cohen, L., Avron, A.: The Middle Ground–Ancestral Logic. Synthese pp. 1–23
(2015). https://doi.org/10.1007/s11229-015-0784-3

17. Cohen, L., Rowe, R.N.S.: Uniform Inductive Reasoning in Transitive Closure Logic
via Infinite Descent. In: Proceedings of the 27th EACSL Annual Conference on
Computer Science Logic, CSL 2018, September 4–7, 2018, Birmingham, UK. pp.
16:1–16:17 (2018). https://doi.org/10.4230/LIPIcs.CSL.2018.16

18. Cohen, L., Rowe, R.N.S.: Non-well-founded Proof Theory of Transitive Closure Logic
(2020), to appear. Preprint available at: https://arxiv.org/pdf/1802.00756.pdf

19. Cohen, L., Rowe, R.N.S., Zohar, Y.: Towards Automated Reasoning in Her-
brand Structures. Journal of Logic and Computation 29(5), 693–721 (2019).
https://doi.org/10.1093/logcom/exz011

20. Constable, R.L., Allen, S.F., Bromley, M., Cleaveland, R., Cremer, J.F., Harper,
R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T.,
Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1986)

21. Cook, S.A., Reckhow, R.A.: The Relative Efficiency of Propositional
Proof Systems. The Journal of Symbolic Logic 44(1), 36–50 (1979).
https://doi.org/10.2307/2273702

22. Courcelle, B.: Fundamental Properties of Infinite Trees. Theoretical Computer
Science 25, 95–169 (1983). https://doi.org/10.1016/0304-3975(83)90059-2

23. Das, A., Pous, D.: Non-Wellfounded Proof Theory for (Kleene+Action)
(Algebras+Lattices). In: Proceedings of the 27th EACSL Annual Con-
ference on Computer Science Logic, CSL 2018. pp. 19:1–19:18 (2018).
https://doi.org/10.4230/LIPIcs.CSL.2018.19

24. Doumane, A.: Constructive Completeness for the Linear-time µ-calculus. In: Pro-
ceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017. pp. 1–12 (2017). https://doi.org/10.1109/LICS.2017.8005075

25. Endrullis, J., Hansen, H., Hendriks, D., Polonsky, A., Silva, A.: A Coinductive
Framework for Infinitary Rewriting and Equational Reasoning. In: 26th International
Conference on Rewriting Techniques and Applications, RTA 2015. vol. 36, pp. 143–
159 (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.143

26. Fortier, J., Santocanale, L.: Cuts for Circular Proofs: Semantics and Cut-elimination.
In: Rocca, S.R.D. (ed.) Computer Science Logic 2013 (CSL 2013). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 23, pp. 248–262. Dagstuhl, Germany
(2013). https://doi.org/10.4230/LIPIcs.CSL.2013.248

27. Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive Subtyping Re-
vealed. Journal of Functional Programming 12(6), 511–548 (2002).
https://doi.org/10.1017/S0956796802004318

28. Gentzen, G.: Untersuchungen über das Logische Schließen. I. Mathematische
Zeitschrift 39(1), 176–210 (1935). https://doi.org/10.1007/BF01201353

29. Hansen, H.H., Kupke, C., Rutten, J.: Stream Differential Equations: Specification
Formats and Solution Methods. Logical Methods in Computer Science 13(1) (Feb
2017). https://doi.org/10.23638/LMCS-13(1:3)2017

30. Heath, Q., Miller, D.: A Proof Theory for Model Checking. J. Autom. Reasoning
63(4), 857–885 (2019). https://doi.org/10.1007/s10817-018-9475-3

31. Immerman, N.: Languages that Capture Complexity Classes. SIAM Journal on
Computing 16(4), 760–778 (1987). https://doi.org/10.1137/0216051

32. Jacobs, B., Rutten, J.: A Tutorial on (Co) Algebras and (Co) Induction. Bulletin
of the European Association for Theoretical Computer Science 62, 222–259 (1997)

https://doi.org/10.1007/s11229-015-0784-3
https://doi.org/10.4230/LIPIcs.CSL.2018.16
https://arxiv.org/pdf/1802.00756.pdf
https://doi.org/10.1093/logcom/exz011
https://doi.org/10.2307/2273702
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1109/LICS.2017.8005075
https://doi.org/10.4230/LIPIcs.RTA.2015.143
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.1017/S0956796802004318
https://doi.org/10.1007/BF01201353
https://doi.org/10.23638/LMCS-13(1:3)2017
https://doi.org/10.1007/s10817-018-9475-3
https://doi.org/10.1137/0216051

33. Jeannin, J.B., Kozen, D., Silva, A.: CoCaml: Functional Programming with
Regular Coinductive Types. Fundamenta Informaticae 150, 347–377 (2017).
https://doi.org/10.3233/FI-2017-1473

34. Komendantskaya, E., Power, J.: Coalgebraic Semantics for Derivations in Logic
Programming. In: Proceedings of Algebra and Coalgebra in Computer Science - 4th

International Conference, CALCO 2011, Winchester, UK, August 30 - September
2, 2011. pp. 268–282 (2011). https://doi.org/10.1007/978-3-642-22944-2 19

35. Kozen, D., Silva, A.: Practical Coinduction. Mathematical Structures in Computer
Science 27(7), 1132–1152 (2017). https://doi.org/10.1017/S0960129515000493

36. Leino, R., Moskal, M.: Co-Induction Simply: Automatic Co-Inductive Proofs in a
Program Verifier. Tech. Rep. MSR-TR-2013-49, Microsoft Research (July 2013),
https://www.microsoft.com/en-us/research/publication/co-induction-
simply-automatic-co-inductive-proofs-in-a-program-verifier/

37. Leroy, X., Grall, H.: Coinductive Big-step Operational Semantics. Information and
Computation 207(2), 284–304 (2009). https://doi.org/10.1016/j.ic.2007.12.004

38. Lucanu, D., Roşu, G.: CIRC: A Circular Coinductive Prover. In: Proceedings of
Algebra and Coalgebra in Computer Science, Second International Conference,
CALCO 2007, Bergen, Norway, August 20-24, 2007. pp. 372–378. Springer (2007).
https://doi.org/10.1007/978-3-540-73859-6 25

39. Martin, R.M.: A Homogeneous System for Formal Logic. Journal of Symbolic Logic
8(1), 1–23 (1943). https://doi.org/10.2307/2267976

40. Martin-Löf, P.: Hauptsatz for the Intuitionistic Theory of Iterated Inductive Def-
initions. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic
Symposium, Studies in Logic and the Foundations of Mathematics, vol. 63, pp.
179–216. Elsevier (1971). https://doi.org/10.1016/S0049-237X(08)70847-4

41. McBride, C.: Let’s See How Things Unfold: Reconciling the Infinite with the
Intensional (Extended Abstract). In: Proceedings of Algebra and Coalgebra in
Computer Science, Third International Conference, CALCO 2009, Udine, Italy,
September 7-10, 2009. pp. 113–126. Springer (2009). https://doi.org/10.1007/978-
3-642-03741-2 9

42. McDowell, R., Miller, D.: Cut-elimination for a Logic with Definitions
and Induction. Theoretical Computer Science 232(1-2), 91–119 (2000).
https://doi.org/10.1016/S0304-3975(99)00171-1

43. Park, D.M.R.: Finiteness is Mu-Ineffable. Theor. Comput. Sci. 3(2), 173–181 (1976).
https://doi.org/10.1016/0304-3975(76)90022-0

44. Roşu, G., Lucanu, D.: Circular Coinduction: A Proof Theoretical Foundation. In:
Proceedings of Algebra and Coalgebra in Computer Science, Third International
Conference, CALCO 2009, Udine, Italy, September 7-10, 2009. pp. 127–144. Springer
(2009). https://doi.org/10.1007/978-3-642-03741-2 10

45. Rowe, R.N.S., Brotherston, J.: Automatic Cyclic Termination Proofs for Recursive
Procedures in Separation Logic. In: Proceedings of the 6th ACM SIGPLAN Confer-
ence on Certified Programs and Proofs, CPP 2017, Paris, France, January 16–17,
2017. pp. 53–65 (2017). https://doi.org/10.1145/3018610.3018623

46. Rutten, J.: Universal Coalgebra: a Theory of Systems. Theoretical computer science
249(1), 3–80 (2000)

47. Rutten, J.: On Streams and Coinduction. https://homepages.cwi.nl/~janr/
papers/files-of-papers/CRM.pdf (2002)

48. Rutten, J.: The Method of Coalgebra: Exercises in Coinduction. Amsterdam: CWI,
The Netherlands (feb 2019)

49. Sangiorgi, D., Rutten, J.: Advanced Topics in Bisimulation and Coinduction.
Cambridge University Press, USA, 1st edn. (2011)

https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.1007/978-3-642-22944-2_19
https://doi.org/10.1017/S0960129515000493
https://www.microsoft.com/en-us/research/publication/co-induction-simply-automatic-co-inductive-proofs-in-a-program-verifier/
https://www.microsoft.com/en-us/research/publication/co-induction-simply-automatic-co-inductive-proofs-in-a-program-verifier/
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1007/978-3-540-73859-6_25
https://doi.org/10.2307/2267976
https://doi.org/10.1016/S0049-237X(08)70847-4
https://doi.org/10.1007/978-3-642-03741-2_9
https://doi.org/10.1007/978-3-642-03741-2_9
https://doi.org/10.1016/S0304-3975(99)00171-1
https://doi.org/10.1016/0304-3975(76)90022-0
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1145/3018610.3018623
https://homepages.cwi.nl/~janr/papers/files-of-papers/CRM.pdf
https://homepages.cwi.nl/~janr/papers/files-of-papers/CRM.pdf

50. Santocanale, L.: A Calculus of Circular Proofs and Its Categorical Semantics.
In: Nielsen, M., Engberg, U. (eds.) Proceedings of the 5th International Con-
ference on Foundations of Software Science and Computation Structures, FOS-
SACS 2002. pp. 357–371. Springer Berlin Heidelberg, Berlin, Heidelberg (2002).
https://doi.org/10.1007/3-540-45931-6 25

51. Shapiro, S.: Foundations without Foundationalism : A Case for Second-order Logic.
Oxford Logic Guides, Clarendon Press (1991)

52. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-Logic Programming: Extending
Logic Programming with Coinduction. In: Proceedings of Automata, Languages
and Programming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland,
July 9-13, 2007. pp. 472–483 (2007). https://doi.org/10.1007/978-3-540-73420-8 42

53. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Program-
ming. In: Proceedings of Logic Programming, 22nd International Conference,
ICLP 2006, Seattle, WA, USA, August 17-20, 2006. pp. 330–345 (2006).
https://doi.org/10.1007/11799573 25

54. Simpson, A.: Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In: Proceedings
of the 20th International Conference on Foundations of Software Science and Compu-
tation Structures, FOSSACS 2017. pp. 283–300 (2017). https://doi.org/10.1007/978-
3-662-54458-7 17

55. Sprenger, C., Dam, M.: On the Structure of Inductive Reasoning: Circular and
Tree-shaped Proofs in the µ-Calculus. In: Proceedings of Foundations of Software
Science and Computational Structures, 6th International Conference, FOSSACS
2003 Held as Part of the Joint European Conference on Theory and Practice of
Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003. pp. 425–440 (2003).
https://doi.org/10.1007/3-540-36576-1 27

56. Takeuti, G.: Proof Theory. Dover Books on Mathematics, Dover Publications,
Incorporated (2013)

57. Tellez, G., Brotherston, J.: Automatically Verifying Temporal Properties of Pointer
Programs with Cyclic Proof. In: Proceedings of the 26th International Conference
on Automated Deduction, CADE 26, Gothenburg, Sweden, August 6–11, 2017. pp.
491–508 (2017). https://doi.org/10.1007/978-3-319-63046-5 30

58. Tiu, A.: A Logical Framework For Reasoning About Logical Specifications. Ph.D.
thesis, Penn. State University (2004)

59. Tiu, A., Momigliano, A.: Cut Elimination for a Logic with Induc-
tion and Co-induction. Journal of Applied Logic 10(4), 330–367 (2012).
https://doi.org/10.1016/j.jal.2012.07.007

https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/978-3-540-73420-8_42
https://doi.org/10.1007/11799573_25
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/978-3-319-63046-5_30
https://doi.org/10.1016/j.jal.2012.07.007

Appendix

In this section we provide the proofs that were omitted from the current version
of the paper due to space limitations.

Proof of Completeness for RTcC∞
G

Definition 9 (Schedule). A schedule element E is any of the following:
– a formula of the form ¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ;
– a pair of the form 〈∀xϕ, t〉 or 〈∃xϕ, t〉 for ∀xϕ,∃xϕ formulas and t a term;
– a tuple of the form 〈(RTC x,y ϕ)(s, t), r, z, Γ,∆〉 or 〈(RTC op

x,y ϕ)(s, t), r, z, Γ,∆〉
for (RTC x,y ϕ)(s, t), (RTC op

x,y ϕ)(s, t) formulas, r a term, Γ,∆ finite sets of
formulas, and z a variable not occurring free in Γ , ∆, (RTC x,y ϕ)(s, t) or
(RTC op

x,y ϕ)(s, t) (respectively);
– a tuple of the form 〈s = t, x, ϕ, n〉 for s, t terms, x a variable, ϕ a formula,

and n ∈ {1, 2}.
A schedule is a recursive enumeration of schedule elements in which every schedule
element appears infinitely often (these exist since our language is countable).

Each schedule corresponds to an exhaustive search strategy for a cut-free
proof for each sequent Γ ⇒ ∆, via the following notion of a ‘search tree’.

Definition 10 (Search Tree). Given a schedule (Ei)i>0, for each sequent
Γ ⇒ ∆ we inductively define an infinite sequence of (possibly open) derivation
trees, (T i)i>0, such that T1 consists of the single open node Γ ⇒ ∆, and each
Ti+1 is obtained by replacing all suitable open nodes in Ti with applications of
first axioms and then the left and right inference rules for the formula in the ith

schedule element. We show the cases for building Ti+1 for when Ei corresponds to
an RTC op formula and an equality formula. The cases for when Ei corresponds
to an RTC formula or an equality formula can be found in [17, 18], and the cases
in which Ei corresponds to a standard compound first-order formula are similar.

– If Ei is of the form 〈(RTC op
x,y ϕ)(s, t), r, z, Γ,∆〉, then Ti+1 is obtained by:

1. first closing as such any open node that is an instance of an axiom (after
left and right weakening, if necessary);

2. next, replacing every open node Γ ′, (RTC op
x,y ϕ)(s, t)⇒ ∆′ of the resulting

tree for which Γ ′ ⊆ Γ and ∆′ ⊆ ∆ with the derivation:

Γ ′, (RTC op
x,y ϕ)(s, t), s = t⇒ ∆′ Γ ′, (RTC op

x,y ϕ)(s, t), ϕ {s/x, z/y}, (RTC op
x,y ϕ)(z, t)⇒ ∆′

Γ ′, (RTC op
x,y ϕ)(s, t)⇒ ∆′

(9)

3. finally, replacing every open node Γ ′ ⇒ ∆′, (RTC op
x,y ϕ)(s, t) of the resulting

tree with the derivation:

Γ ′ ⇒ ∆′, (RTC op
x,y ϕ)(s, t), ϕ {s/x, r/y} Γ ′ ⇒ ∆′, (RTC op

x,y ϕ)(s, t), (RTC op
x,y ϕ)(r, t)

Γ ′ ⇒ ∆′, (RTC op
x,y ϕ)(s, t)

(8)

The limit of the sequence (T i)i>0, denoted by Tω, is a possibly infinite (and
possibly open) derivation tree called the search tree for Γ ⇒ ∆ with respect to
the schedule (Ei)i>0.

Search trees are, by construction, recursive and cut-free. We construct special
‘sequents’ out of search trees, called limit sequents, as follows.

Definition 11 (Limit Sequents). When a search tree Tω is not an RTcC∞G
proof, either: (1) it is not even a pre-proof, i.e. it contains an open node; or (2) it
is a pre-proof but contains an infinite branch that fails to satisfy the global trace
condition. In case (1) it contains an open node to which, necessarily, no schedule
element applies (e.g. a sequent containing only atomic formulas), for which we
write Γω ⇒ ∆ω. In case (2) the global trace condition fails, so there exists an
infinite path (Γ i ⇒∆i)i>0 in Tω which is followed by no infinitely progressing
traces; we call this path an untraceable branch of Tω. We then take the left-most
open node ν or untraceable branch β and define Γω =

⋃
i>0 Γi and ∆ω =

⋃
i>0∆i.

We call Γω ⇒ ∆ω the limit sequent.

Note that the use of the word ‘sequent’ here is an abuse of nomenclature,
since limit sequents may be infinite and thus technically not sequents. However
when we say that such a limit sequent is provable, we mean that it has a finite
sub-sequent that is provable.

Lemma 1. Limit sequents Γω ⇒ ∆ω are not cut-free provable.

Proof. Straightforward adaptation of the proof of [12, Lemma 6.3]. ut

Standardly, the limit sequent induces a counter-interpretation, consisting of a
Herbrand model of open terms quotiented by the equalities in the limit sequent.

Definition 12 (Quotient Relation). For a limit sequent Γω ⇒ ∆ω, the rela-
tion ∼ is the smallest congruence relation on terms such that s ∼ t whenever
s = t ∈ Γω. Denote by [t] the ∼-equivalence class of t, i.e. [t] = {u | t ∼ u}.

Definition 13 (Counter-interpretations). Let Tω be a search tree which is
not a RTcC∞G proof with limit sequent Γω ⇒ ∆ω. Define a structure Mω = 〈D, I〉
as follows:

– D = {[t] | t is a term} (i.e. the set of terms quotiented by the relation ∼).
– For a k-ary function symbol f : I(f)([t1], . . . , [tk]) = [f(t1, . . . , tk)]
– For a k-ary relation symbol q: I(q) = {([t1], . . . , [tk]) | q(t1, . . . , tk) ∈ Γω}

We also define a valuation νω for Mω by νω(x) = [x] for all variables x.

Lemma 2. If t ∼ u, then Γω ⇒ F {t/x} is cut-free provable in RTcC∞G if and
only if Γω ⇒ F {u/x} is cut-free provable in RTcC∞G .

Proof. By induction on the conditions defining ∼. We use ≡ to denote syntactic
equality on terms, in order to distinguish from formulas s = t asserting equality
between (interpretations of) terms.

(t ∼ t): Immediate, since then t ≡ u.
(t = u ∈ Γω): Assume Γω ⇒ F {t/x} is cut-free provable, then we can apply the

(=L1) rule to derive (without cut) Γω, t = u⇒ F {u/x}; however notice that
Γω, t = u is simply Γω since t = u ∈ Γω already. The converse direction is
symmetric, using rule (=L2).

(t ∼ u⇒ u ∼ t): Immediate, by induction.
(t ∼ u ∧ u ∼ v ⇒ t ∼ v): Straightforward, by induction.
(t1 ∼ u1 ∧ . . . ∧ tn ∼ un ⇒ f(t1, . . . , tn) ∼ f(u1, . . . , un)): Consider the formula

F ; clearly there exist formulas G1, . . . , Gn and some variable y such that
Gi {t/y} ≡ F {f(u1, . . . , ui−1, ti, . . . , tn)/x} for each i ≤ n. By induction, each
sequent Γω ⇒ Gi {ti/y} is cut-free provable if and only if so too is Γω ⇒
Gi {ui/y}. The result then follows since F {f(t1, . . . , tn)/x} ≡ G1 {t1/y} and
F {f(u1, . . . , un)/x} ≡ Gn {un/y}, and also Gi {ui/y} ≡ Gi+1 {ti+1/y} for each
i < n. ut

Lemma 3. If ψ ∈ Γω then Mω, νω |= ψ; and if ψ ∈ ∆ω then Mω, νω 6|= ψ.

Proof. By well-founded induction using the lexicographic ordering of the number
of binders (i.e. ∃, ∀, and RTC) in ψ and the structure of ψ. Notice that, by
definition, νω(t) = [t] for all terms t. We here provide only the cases concerning
the RTC op operator. The other cases can be found in the corresponding proof
in [18]. In case ψ = (RTC op

x,y ϕ)(s, t), we reason as follows.

– For the first part of the lemma assume (RTC op
x,y ϕ)(s, t) ∈ Γω. Then, by

the construction of Tω, there is at least one occurrence of Rule (9) with active
formula ψ in the untraceable branch; thus there are two cases:

i) The branch follows the left-hand premise, so there is s = t ∈ Γω. Therefore,
by Definition 13, νω(s) = νω(t) and thus Mω, νω |= (RTC op

x,y ϕ)(s, t).

ii) The branch follows the right-hand premise and so there is some variable
z1 such that both ϕ {s/x, z1/y} ∈ Γω and (RTC x,y ϕ)(z1, t) ∈ Γω. By the
induction hypothesis, Mω, νω |= ϕ {s/x, z1/y}. Again, by the construction
of Tω, the branch must subsequently traverse an instance of Rule (9) now
with (RTC x,y ϕ)(z1, t) as the principal formula. Proceeding in a similar
manner we get that the untraceable branch must traverse a certain amount of
instances of Rule (9). There are two cases. If the untraceable brach traverses
the rule only finitely many times then there is a finite number of distinct
variables z2, . . . , zn (n ≥ 0) with ϕ {zi/x, zi+1/y} ∈ Γω, for each i < n, and
(RTC x,y ϕ)(zn, t) ∈ Γω, where the untraceable branch traverses the left-
hand branch of an instance of rule (9) with the latter formula as principal
from which it follows that also zn = t ∈ Γω. By the inductive hypothesis
Mω, νω |= ϕ {zi/x, zi+1/y} for each i < n, and νω(zn) = [zn] = νω(t). Therefore,
the sequence [s], [z1], [z2], . . . , [zn], [zn], [zn], [zn], . . . serves as a witness (by
Definition 2) for the fact that Mω, νω |= ψ. If, on the other hand, the
untraceable brach traverses the rule infinitely many times then there is an
infinite number of distinct variables (zi)i>0 for which ϕ {zi/x, zi+1/y} ∈ Γω,

for every 0 < i. Thus, by the induction hypothesis we get that Mω, νω |=
ϕ {zi/x, zi+1/y} for each 0 < i. Note then for each i it cannot be the case that
[zi] = [t] since otherwise in the traversal of the corresponding instance of the
rule we would also get that (RTC x,y ϕ)(zi, t) ∈ Γω, which cannot be the case
because Rule(7) would then entail that the limit sequent is cut-free provable.
Therefore, the sequence [s], [z1], [z2], . . . serves as a witness (by Definition 2)
for the fact that Mω, νω |= ψ.

– For the second part of the lemma assume (RTC op
x,y ϕ)(s, t) ∈ ∆ω, and

suppose for contradiction that Mω, νω |= ((RTC op
x,y ϕ))(s, t) holds. Thus, by

Definition 2, there exist (ai)i>0 such that a1 = [s] and for all i > 0 ai = [t] or
Mω, νω[x := ai, y := ai+1] |= ϕ. By the counter model this entails that there
exist terms (ri)i>0 for which [r1] = [s] and for all i > 0, either [ri] = [t] or
Mω, νω |= ϕ {ri/x, ri+1/y}. By the construction of Tω, and the fact that there is
no infinitely progressing trace along the untraceable branch, the untraceable
branch must traverse only a finite number of instances of Rule (8) for which the
principal formula is connected via a trace to the formula (RTC op

x,y ϕ)(s, t). We
follow these instances with respect to terms from the sequence (ri)i>0. Thus,
following the right-hand premise, we obtain that there exists some n ≥ 0 such that
(RTC op

x,y ϕ)(r1, t), (RTC op
x,y ϕ)(r2, t), . . . , (RTC op

x,y ϕ)(rn, t) ∈ ∆ω. Since there is
no infinite progression, after following the right-hand premise n times, we must
traverse through the left-hand side and so ϕ {rn/x, rn+1/y} ∈ ∆ω. But by the
induction hypothesis this entails that Mω, νω 6|= ϕ {rn/x, rn+1/y}. According to
our assumption, this can only happen in the case where [rn] = [t], but then we
have that (RTC op

x,y ϕ)(t, t) ∈ ∆ω resulting in the branch being closed by Rule
(7), which is a contradiction. Therefore, Mω, νω 6|= ((RTC op

x,y ϕ))(s, t).
ut

	Integrating Induction and Coinduction via Closure Operators and Proof Cycles

