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- Carry out formal inductive reasoning
- Do so automatically (as much as possible)

- Study/compare different ‘styles’ of inductive reasoning



Formalising Inductive Reasoning



Explicit Inductive Definitions

- Use clauses to inductively define predicates:

G A A dn = P(D)

DAL APm = P(E)

- We take the smallest interpretation closed under the rules
Nx. Ox  Ex

NO N sx EO E sx O sx

[N] = {0,s0,ss0,...,s"0,...}
[E] = {0,ss0,...,s"0,...}
[0] = {s0,...,s"""0,...}



Reasoning Using Explicit Induction Principles

- We reason using the corresponding induction principles

I = INDg(F) (VQ mutually recursive with P) MFEF A

rPtFA

- E.g. the productions for N give

FEFO) TF(X)EF(sx) TR A

[ NtEA
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Non-well-founded Proofs: Reasoning by Infinite Descent

(Axiom)

- We trace predicate instances through the proof
- At certain points, these progress (i.e. get ‘smaller’)

- Each infinite path must admit some infinite descent

- This global trace condition is an w-regular property
- i.e. decidable using Buchi automata



An Example Cyclic Proof

( 1\
ExtH Nx
— (Subst)
EzF Nz
(NR,)
EzF Nsz
= NO (=L)
NXx = Nsx y=sz,Ez- Ny
—— (Case 0)
EO
= OykF Ny
Ox = Esx (NRy) —— (NRy)
Ex = Osx FNO OyF Nsy
(=0 (=0
X=0F Nx x=5sy, Oy Nx
(Case E)
ExF Nx
N b,
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Comparing the Two Approaches

For FOL with Martin-Lof style inductive definitions:
[Brotherston & Simpson, 2007]

- Infinitary system sound/complete for standard semantics
- Cyclic system subsumes explicit induction

- Equivalent under arithmetic
- Not equivalent in general (2-Hydra counterexample)
[Berardi & Tatsuta, 2017]

- Explicit induction sound/complete for Henkin semantics
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Transitive Closure Logic

Transitive Closure (TC) Logic extends FOL with formulas:

* (RTCxy @)(s, 1)

- @isaformula
- x and y are distinct variables (which become bound in ¢)
- sandtare terms

whose intended meaning is an infinite disjunction

S= t\/(p[S/X,t/y]
Vv (3ws . @[s/x, wr /Y] A plwa/x, t/y])
V (Fwr, wa . [s/x, wa/y] A plwn /x, wa /Y] A p[wa /X, t/Y])
V...
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Transitive Closure Logic: Standard Semantics

The formal semantics:

- M is a (standard) first-order model with domain D

- vis avaluation of terms in M:

M,V = (RTCxy @)(S,t) &
dag,...,an € D.v(s) = ap A V(t) = ap
AMV[x:=a;,y:=a 4] E¢ foralli<n
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Example: Arithmetic in TC

Take a signature ¥ = {0,s} + equality and pairing
Nat(x) = (RTCyw SV = w)(0,X)
x <y = (RTCywsv=w)(x,y)

X=y+7'=
(RTCyw3Nn1,ny . v=(N1,n2) AW = (snq,sn2))((0,Y), (,X))

<07y> S === (SZO7SZy>



Proof Rules for Reasoning in TC

reflexivity
F (RTGy )(t, 1)

M- A7 (RTCXJ/ 90)(57 r) M= Aa (P[r/xa t/y]

step
F'E A (RTCy 9)(s, 1)

FEAY/X T, e(6y) EA9ly/X] T oft/x] - A

induction
I, (RTCxy ©)(s,t) F A

x g fu(l,A)andy & fu(l, A, ¢)
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Proof Rules for Reasoning in TC

reflexivity
F (RTGy )(t, 1)

M- A7 (RTCXJ/ 90)(57 r) M= Aa (P[r/xa t/y]
step

F'E A (RTCy 9)(s, 1)

FEAY/X T, e(6y) EA9ly/X] T oft/x] - A

induction
I, (RTCxy ©)(s,t) F A

x g fu(l,A)andy & fu(l, A, ¢)

Ms=tkA T,(RTCy¢)(s,2),0[z/x t/y] F A
case-split (z fresh)
I, (RTCoy )(s, 1) F A
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Advantages of TC as a Formal Framework

- Itis only a minimal extension of FOL
- It only requires a single, uniform induction principle
- No need to ‘choose’ particular inductive definitions

- Itis a sufficiently expressive logic

Theorem (Avron '03)
All finitely inductively definable relations' are definable in TC.

A. Avron, Transitive Closure and the Mechanization of Mathematics.

tas formalised in: S. Feferman, Finitary Inductively Presented Logics, 1989

n
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Comparing Styles of Induction for TC

- Infinitary system sound/complete for standard semantics
- Cyclic system subsumes explicit induction

- Equivalent under arithmetic

- Don't know if they are inequivalent in general!

2-Hydra does not work since all inductive definitions
available via RTC

- Explicit induction sound/complete for Henkin semantics
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Future Work

- open question of equivalence for TC proof systems
- Implementation to support automated reasoning.
- Use TC to better study implicit vs explicit induction.

- Adapt TC for coinductive reasoning?

13



Thank you!
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