Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

Liron Cohen ${ }^{1}$ Reuben N. S. Rowe ${ }^{2}$
Queen Mary Theory Seminar, Tuesday $24^{\text {th }}$ July 2018, London, UK
${ }^{1}$ Dept of Computer Science, Cornell University, Ithaca, NY, USA
${ }^{2}$ School of Computing, University of Kent, Canterbury, UK

Transitive Closure (TC) Logic extends FOL with formulas:

- $\left(R^{T} C_{x, y} \varphi\right)(s, t)$
- φ is a formula
- x and y are distinct variables (which become bound in φ)
- s and t are terms

Transitive Closure (TC) Logic extends FOL with formulas:

- $\left(R T C_{x, y} \varphi\right)(s, t)$
- φ is a formula
- x and y are distinct variables (which become bound in φ)
- s and t are terms
whose intended meaning is an infinite disjunction

$$
\begin{aligned}
s=t & \vee \varphi[s / x, t / y] \\
& \vee\left(\exists w_{1} \cdot \varphi\left[s / x, w_{1} / y\right] \wedge \varphi\left[w_{1} / x, t / y\right]\right) \\
& \vee\left(\exists w_{1}, w_{2} \cdot \varphi\left[s / x, w_{1} / y\right] \wedge \varphi\left[w_{1} / x, w_{2} / y\right] \wedge \varphi\left[w_{2} / x, t / y\right]\right) \\
& \vee \ldots
\end{aligned}
$$

The formal semantics:

- M is a (standard) first-order model with domain D
- v is a valuation of terms in M :
$M, v \models\left(R T C_{x, y} \varphi\right)(s, t)$

The formal semantics:

- M is a (standard) first-order model with domain D
- v is a valuation of terms in M :
$M, v \models\left(R T C_{x, y} \varphi\right)(s, t) \Leftrightarrow$

$$
\exists a_{0}, \ldots, a_{n} \in D
$$

The formal semantics:

- M is a (standard) first-order model with domain D
- v is a valuation of terms in M :
$M, v \models\left(R T C_{x, y} \varphi\right)(s, t) \Leftrightarrow$

$$
\exists a_{0}, \ldots, a_{n} \in D . v(s)=a_{0} \wedge v(t)=a_{n}
$$

The formal semantics:

- M is a (standard) first-order model with domain D
- v is a valuation of terms in M :

$$
M, v \models\left(R T C_{x, y} \varphi\right)(s, t) \Leftrightarrow
$$

$$
\begin{aligned}
& \exists a_{0}, \ldots, a_{n} \in D . v(s)=a_{0} \wedge v(t)=a_{n} \\
& \quad \wedge M, v\left[x:=a_{i}, y:=a_{i+1}\right] \models \varphi \text { for all } i<n
\end{aligned}
$$

Why ‘Transitive Closure' logic?

Why ‘Transitive Closure’ logic?

- Consider the binary relation induced by φ (wrt. x and y):

$$
\llbracket \varphi(x, y) \rrbracket_{M, v}=\{(a, b) \mid M, v[x:=a, y:=b] \models \varphi\}
$$

Why ‘Transitive Closure’ logic?

- Consider the binary relation induced by φ (wit. x and y):

$$
\llbracket \varphi(x, y) \rrbracket_{M, v}=\{(a, b) \mid M, v[x:=a, y:=b] \models \varphi\}
$$

- $\left(R T C_{x, y} \varphi\right)$ 'denotes' the reflexive, transitive closure of φ :

$$
M, v \models\left(R T C_{x, y} \varphi\right)(s, t) \Leftrightarrow(v(s), v(t)) \in\left(\llbracket \varphi(x, y) \rrbracket_{M, v}\right)^{*}
$$

Why Transitive Closure logic?

- It is a minimal extension of FOL
- It has an intuitive, easy-to-understand semantics
- e.g. Ancestor $(x, y) \equiv\left(R T C_{v, w} \operatorname{Parent}(v, w)\right)(x, y) \ldots$ and $x \neq y$!
- It turns out to be surprisingly expressive

Why Transitive Closure logic?

- It is a minimal extension of FOL
- It has an intuitive, easy-to-understand semantics
- e.g. Ancestor $(x, y) \equiv\left(R T C_{v, w} \operatorname{Parent}(v, w)\right)(x, y) \ldots$ and $x \neq y$!
- It turns out to be surprisingly expressive

Theorem (Avron '03)

All finitely inductively defined relations* are definable in $\mathrm{TC}^{\dagger}{ }^{\dagger}$
A. Avron, Transitive Closure and the Mechanization of Mathematics, 2003.

[^0]Example: Arithmetic

- Take a signature $\Sigma=\{0, \mathbf{s}\}+$ equality

$$
\operatorname{Nat}(x) \equiv\left(R T C_{v, w} s v=w\right)(0, x)
$$

Example: Arithmetic

- Take a signature $\Sigma=\{0, \mathbf{s}\}+$ equality

$$
\operatorname{Nat}(x) \equiv\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x)
$$

Example: Arithmetic

- Take a signature $\Sigma=\{0, \mathbf{s}\}+$ equality

$$
\begin{aligned}
\operatorname{Nat}(x) & \equiv\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x) \\
" x=y+z^{\prime \prime} & \equiv\left(R T C_{v_{1}, v_{2}, v_{3}, v_{4}}^{2} v_{3}=\mathbf{s} v_{1} \wedge v_{4}=\mathbf{s} v_{2}\right)(0, y, z, x)
\end{aligned}
$$

Example: Arithmetic

- Take a signature $\Sigma=\{0, s\}+$ equality

$$
\begin{aligned}
\operatorname{Nat}(x) & \equiv\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x) \\
{ }^{\prime x} x=y+z^{\prime \prime} & \equiv\left(R T C_{v_{1}, v_{2}, v_{3}, v_{4}}^{2} v_{3}=\mathbf{s} v_{1} \wedge v_{4}=\mathbf{s} v_{2}\right)(0, y, z, x)
\end{aligned}
$$

(0,y)

Example: Arithmetic

- Take a signature $\Sigma=\{0, \mathbf{s}\}+$ equality

$$
\begin{aligned}
\operatorname{Nat}(x) & \equiv\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x) \\
{ }^{\prime x} x=y+z^{\prime \prime} & \equiv\left(R T C_{v_{1}, v_{2}, v_{3}, v_{4}}^{2} v_{3}=\mathbf{s} v_{1} \wedge v_{4}=\mathbf{s} v_{2}\right)(0, y, z, x)
\end{aligned}
$$

Example: Arithmetic

- Take a signature $\Sigma=\{0, \mathbf{s}\}+$ equality

$$
\begin{aligned}
\operatorname{Nat}(x) & \equiv\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x) \\
" x=y+z^{\prime \prime} & \equiv\left(R T C_{v_{1}, v_{2}, v_{3}, v_{4}}^{2} v_{3}=\mathbf{s} v_{1} \wedge v_{4}=s v_{2}\right)(0, y, z, x)
\end{aligned}
$$

Example: Arithmetic

- Take a signature $\Sigma=\{0, \mathbf{s}\}+$ equality

$$
\begin{aligned}
\operatorname{Nat}(x) & \equiv\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x) \\
{ }^{\prime x} x=y+z^{\prime \prime} & \equiv\left(R T C_{v_{1}, v_{2}, v_{3}, v_{4}}^{2} v_{3}=\mathbf{s} v_{1} \wedge v_{4}=\mathbf{s} v_{2}\right)(0, y, z, x)
\end{aligned}
$$

Example: Arithmetic

- Take a signature $\Sigma=\{0, s\}+$ equality and pairing

$$
\operatorname{Nat}(x) \equiv\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x)
$$

$$
\begin{aligned}
& " x=y+z " \equiv \\
& \left(R T C_{v, w} \exists n_{1}, n_{2} \cdot v=\left\langle n_{1}, n_{2}\right\rangle \wedge w=\left\langle\mathbf{s} n_{1}, \mathbf{s} n_{2}\right\rangle\right)(\langle 0, y\rangle,\langle z, x\rangle)
\end{aligned}
$$

Example: Arithmetic

- Take a signature $\Sigma=\{0, s\}+$ equality and pairing

$$
\begin{aligned}
& \operatorname{Nat}(x) \equiv\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x) \\
& " x=y+z " \equiv \\
& \left(R T C_{v, w} \exists n_{1}, n_{2} \cdot v=\left\langle n_{1}, n_{2}\right\rangle \wedge w=\left\langle\mathbf{s} n_{1}, s n_{2}\right\rangle\right)(\langle 0, y\rangle,\langle z, x\rangle)
\end{aligned}
$$

- The following axioms categorically characterise the natural numbers in TC:

$$
\begin{aligned}
& \forall x \cdot \mathbf{s} x \neq 0 \\
& \forall x, y \cdot \mathbf{s}(x)=\mathbf{s}(y) \rightarrow x=y \\
& \forall x \cdot \operatorname{Nat}(x)
\end{aligned}
$$

J. Halpern Et Al, On the Unusual Effectiveness of Logic in Computer Science, 2001

J. Halpern Et Al, On the Unusual Effectiveness of Logic in Computer Science, 2001
"Everything should be made as simple as possible but not simpler"
-Albert Einsten

"Everything should be made as simple as possible but not simpler"
-Albert Einsten

"Everything should be made as simple as possible but not simpler"
-Albert Einsten

$$
\begin{gathered}
\text { Weak SOL } \\
\omega \text {-logic } \\
\text { Cardinality logic } \\
\text { FOL + Henkin Quantifiers }
\end{gathered}
$$

"Everything should be made as simple as possible but not simpler"
-Albert Einsten

$$
\begin{gathered}
\text { Weak SOL } \\
\omega \text {-logic } \\
\text { Cardinality logic } \\
\text { FOL + Henkin Quantifiers }
\end{gathered}
$$

$$
\begin{aligned}
& \text { FOL + } \\
& \text { Martin-Löf } \\
& \text { Ind. Defs }
\end{aligned}
$$

First-order Modal
μ-calculus

Modal μ-calculus has general fixed points, but (non-reflexive) transitive closure

$$
\begin{aligned}
R^{+}=\bigcup_{i \geq 0} R_{i}, \quad \text { where } \quad R_{0} & =R \\
R_{i+1} & =R_{i} \circ R \quad(i \geq 0)
\end{aligned}
$$

is a particular kind of fixed point

Modal μ-calculus has general fixed points, but (non-reflexive) transitive closure

$$
\begin{aligned}
R^{+}=\bigcup_{i \geq 0} R_{i}, \quad \text { where } \quad R_{0} & =R \\
R_{i+1} & =R_{i} \circ R \quad(i \geq 0)
\end{aligned}
$$

is a particular kind of fixed point:

$$
R^{+}=\mu X \cdot \Psi_{R}(X)
$$

where, for binary relations R and S, we define

$$
\Psi_{R}(S)=R \cup(R \circ S)
$$

In FOL + Martin-Löf inductive definitions:

- We pick a (finite) set of 'inductive' predicates P_{1}, \ldots, P_{n}
- For each predicate we give a set of productions:

$$
\frac{Q_{1}\left(\overrightarrow{S_{1}}\right)}{} \ldots \quad Q_{n}\left(\overrightarrow{S_{n}}\right)
$$

In FOL + Martin-Löf inductive definitions:

- We pick a (finite) set of 'inductive' predicates P_{1}, \ldots, P_{n}
- For each predicate we give a set of productions:

$$
\frac{Q_{1}\left(\overrightarrow{S_{1}}\right) \quad \ldots \quad Q_{n}\left(\overrightarrow{S_{n}}\right)}{P_{i}(\vec{t})}
$$

- We take the smallest interpretation closed under the rules
- That is, a least fixed point

$$
\overline{\mathrm{N} 0} \quad \frac{\mathrm{~N} x}{\mathrm{Ns}(x)} \quad \llbracket \mathrm{N} \rrbracket=\left\{0, \mathrm{~s} 0, \mathrm{ss} 0, \ldots, \mathrm{~s}^{n} 0, \ldots\right\}
$$

In FOL + Martin-Löf inductive definitions:

- We pick a (finite) set of 'inductive' predicates P_{1}, \ldots, P_{n}
- For each predicate we give a set of productions:

$$
\frac{Q_{1}\left(\overrightarrow{S_{1}}\right) \quad \ldots \quad Q_{n}\left(\overrightarrow{S_{n}}\right)}{P_{i}(\vec{t})}
$$

- We take the smallest interpretation closed unf/r the rules
- That is, a least fixed point

$\overline{\mathrm{N} 0} \quad \frac{\mathrm{~N} x}{\mathrm{Ns}(x)} \quad \llbracket \mathrm{N} \rrbracket=$| TC has all possible inductive |
| :--- |
| definitions 'available' using |
| only a finite signature |

In FOL + Martin-Löf inductive definitions:

- We pick a (finite) set of 'inductive' predicates P_{1}, \ldots, P_{n}
- For each predicate we give a set of productions:
$/ \frac{Q_{1}\left(\overrightarrow{S_{1}}\right) \quad \ldots \quad Q_{n}\left(\overrightarrow{S_{n}}\right)}{P_{i}(\vec{t})}$
- We take the/pnallest interpretation closed under the rules
- That if a least fixed point

FOL ${ }_{\text {ID }}$ productions only

$$
\llbracket \mathrm{N} \rrbracket=\left\{0, \mathrm{~s} 0, \mathrm{ss} 0, \ldots, \mathrm{~s}^{n} 0, \ldots\right\}
$$

So we have a logic, but we need a proof theory ...

So we have a logic, but we need a proof theory ...

EfFECTIVE

COMPLETE

So we have a logic, but we need a proof theory ...

EfFECTIVE

COMPLETE

So we have a logic, but we need a proof theory ...

EfFECTIVE

COMPLETE

Finitary RTC $_{G}$

So we have a logic, but we need a proof theory ...

EfFECTIVE

COMPLETE

Infinitary
RTC ${ }_{G}^{\omega}$

So we have a logic, but we need a proof theory ...

So we have a logic, but we need a proof theory ...

EfFECTIVE

COMPLETE

Infinitary
RTC ${ }_{G}^{\omega}$

So we have a logic, but we need a proof theory ...

EFFECTIVE HENKIN-COMPLETE

COMPLETE

Infinitary
RTC ${ }_{G}^{\omega}$

So we have a logic, but we need a proof theory ...

EFFECTIVE Henkin-Complete

HENKIN
SOUND

COMPLETE

Infinitary
$\operatorname{RTC}_{G}^{\omega}$

So we have a logic, but we need a proof theory ...

EFFECTIVE HENKIN-COMPLETE

HENKIN
SOUND

COMPLETE

So we have a logic, but we need a proof theory ...

EfFECTIVE HENKIN-COMPLETE

HENKIN SOUND

COMPLETE

Infinitary
RTC ${ }_{G}^{\omega}$

So we have a logic, but we need a proof theory ...

EfFECTIVE HENKIN-COMPLETE

HENKIN SOUND

COMPLETE

Infinitary
$\operatorname{RTC}_{G}^{\omega}$

So we have a logic, but we need a proof theory ...

EfFECTIVE
 HENKIN-COMPLETE

COMPLETE

Infinitary
 RTC ${ }_{G}^{\omega}$

RTC ${ }_{G}$: A Finitary Proof System with 'Explicit' Induction

We add the following rules to Gentzen's sequent calculus for CL with substitution and equality:

$$
\begin{aligned}
& \text { reflexivity } \overline{\vdash\left(R T C_{x, y} \varphi\right)(t, t)} \\
& \Gamma \vdash \Delta,\left(R T C_{x, y} \varphi\right)(s, r) \quad \Gamma \vdash \Delta, \varphi[r / x, t / y] \\
& \text { step } \Gamma \stackrel{\Gamma \vdash,\left(R T C_{x, y} \varphi\right)(s, t)}{ } \\
& \text { induction } \frac{\Gamma, \psi(x), \varphi(x, y) \vdash \Delta, \psi[y / x]}{\Gamma, \psi[s / x],\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta, \psi[t / x]} \\
& x \notin \mathrm{fv}(\Gamma, \Delta) \text { and } y \notin \mathrm{fv}(\Gamma, \Delta, \psi)
\end{aligned}
$$

RTC ${ }_{G}$: A Finitary Proof System with 'Explicit' Induction

We add the following rules to Gentzen's sequent calculus for CL with substitution and equality:

$$
\begin{aligned}
\text { reflexivity } & \begin{aligned}
& \vdash\left(R T C_{x, y} \varphi\right)(t, t) \\
& \text { step } \frac{\Gamma \vdash \Delta,\left(R T C_{x, y} \varphi\right)(s, r) \quad \Gamma \vdash \Delta, \varphi[r / x, t / y]}{\Gamma \vdash \Delta,\left(R T C_{x, y} \varphi\right)(s, t)} \\
& \text { induction } \frac{\Gamma \vdash \Delta, \psi[\mathrm{s} / x] \quad \Gamma, \psi(x), \varphi(x, y) \vdash \Delta, \psi[y / x] \quad \Gamma, \psi[t / x] \vdash \Delta}{\Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta,} \\
& x \notin \mathrm{fv}(\Gamma, \Delta) \text { and } y \notin \mathrm{fv}(\Gamma, \Delta, \psi)
\end{aligned}
\end{aligned}
$$

RTC_{G} 'captures' TC:

$$
\begin{array}{cc}
\frac{\Gamma \vdash \Delta,\left(R T C_{x, y} \varphi\right)(s, t)}{\Gamma \vdash \Delta,\left(R T C_{X, y} \varphi\right)(t, s)} & \frac{\Gamma \vdash \Delta, \varphi[s / x, r / y] \Gamma \vdash \Delta,\left(R T C_{x, y} \varphi\right)(r, t)}{\Gamma \vdash \Delta,\left(R T C_{x, y} \varphi\right)(s, t)} \\
\frac{\Gamma \vdash \Delta,\left(R T C_{x, y} \varphi\right)(s, t)}{\Gamma \vdash \Delta,\left(R T C_{v, w} \varphi[v / x, w / y]\right)(s, t)} & \frac{\Gamma, \varphi \vdash \Delta, \psi}{\Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta,\left(R T C_{x, y} \psi\right)(s, t)} \\
\frac{\Gamma, \varphi[s / x] \vdash \Delta}{\Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta, s=t} & \frac{\Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta}{\Gamma,\left(R T C_{v, w}\left(R T C_{x, y} \varphi\right)(v, w)\right)(s, t) \vdash \Delta} \\
\frac{\Gamma \vdash \Delta,\left(R T C_{x, y} \varphi\right)(s, t)}{\Gamma \vdash \Delta, s=t, \exists z \cdot\left(R T C_{x, y} \varphi\right)(s, z) \wedge \varphi[z / x, t / y]}
\end{array}
$$

$R T C_{G}$ is complete for the following Henkin-style semantics:
RTC_{G} is complete for the following Henkin-style semantics:

- A TC Henkin-frame H is a triple $\langle D, I, \mathcal{D}\rangle$
- $\langle D, I\rangle$ is a first-order structure
- $\mathcal{D} \subseteq \wp(D)$ is its set of admissible subsets
RTC_{G} is complete for the following Henkin-style semantics:
- A TC Henkin-frame H is a triple $\langle D, I, \mathcal{D}\rangle$
- $\langle D, I\rangle$ is a first-order structure
- $\mathcal{D} \subseteq \wp(D)$ is its set of admissible subsets
- RTC formulas are interpreted wrt. frames as follows:
$H, v \models_{\mathcal{H}}\left(R T C_{x, y} \varphi\right)(s, t) \Leftrightarrow$
for all $A \in \mathcal{D}$, if $v(s) \in A$ and
$\forall a, b \in D .(a \in A \wedge H, v[x:=a, y:=b] \models \varphi) \rightarrow b \in A$
then $v(t) \in A$
RTC_{G} is complete for the following Henkin-style semantics:
- A TC Henkin-frame H is a triple $\langle D, I, \mathcal{D}\rangle$
- $\langle D, I\rangle$ is a first-order structure
- $\mathcal{D} \subseteq \wp(D)$ is its set of admissible subsets
- RTC formulas are interpreted wrt. frames as follows:

$$
\begin{aligned}
& H, v \models_{\mathcal{H}}\left(R T C_{x, y} \varphi\right)(s, t) \Leftrightarrow \\
& \text { for all } A \in \mathcal{D} \text {, if } v(s) \in A \text { and } \\
& \qquad \forall a, b \in D .(a \in A \wedge H, v[x:=a, y:=b] \models \varphi) \rightarrow \\
& \quad b \in A \\
& \quad \text { then } v(t) \in A
\end{aligned}
$$

- A TC Henkin structure is a TC Henkin-frame closed under parametric definability, i.e.

$$
\{a \in D \mid H, v[x:=a] \models \varphi\} \in \mathcal{D} \text { for all } \varphi, v, \text { and } H
$$

Non-well-founded Proof Theory

Non-well-founded Proof Theory

- We only accept proofs for which every path admits some infinite descent

Non-well-founded Proof Theory

- We only accept proofs for which every path admits some infinite descent
- This is witnessed by tracing terms/formulas corresponding to elements of a well-founded set

Non-well-founded Proof Theory

- We only accept proofs for which every path admits some infinite descent
- This is witnessed by tracing terms/formulas corresponding to elements of a well-founded set
- This global trace condition is an ω-regular property (i.e. decidable using Büchi automata)

RTC $_{G}^{\omega}$: An Infinitary Proof System with 'Implicit' Induction

We simply replace the explicit induction rule of RTC $_{G}$ with:

$$
\text { case-split } \frac{\Gamma, s=t \vdash \Delta \Gamma,\left(R T C_{x, y} \varphi\right)(s, z), \varphi[z / x, t / y] \vdash \Delta}{\Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta}(z \text { fresh })
$$

RTC ${ }_{G}^{\omega}$: An Infinitary Proof System with 'Implicit' Induction

We simply replace the explicit induction rule of RTC $_{G}$ with:

$$
\text { case-split } \frac{\Gamma, s=t \vdash \Delta \Gamma,\left(R T C_{x, y} \varphi\right)(s, z), \varphi[z / x, t / y] \vdash \Delta}{\Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta}(z \text { fresh })
$$

We trace formulas $\left(R T C_{x, y} \varphi\right)(s, t)$ in the antecedent of sequents

RTC $_{G}^{\omega}$: An Infinitary Proof System with 'Implicit' Induction

We simply replace the explicit induction rule of RTC $_{G}$ with:

$$
\text { case-split } \frac{\Gamma, s=t \vdash \Delta \Gamma,\left(R T C_{x, y} \varphi\right)(s, z), \varphi[z / x, t / y] \vdash \Delta}{\Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta}(z \text { fresh })
$$

We trace formulas $\left(R T C_{x, y} \varphi\right)(s, t)$ in the antecedent of sequents
The trace progresses when it traverses the principal formula of a case-split rule.

Soundness of RTC ${ }_{G}^{\omega}$

- Define a measure function for RTC-formulas:

$$
\delta_{\left(R T C_{x, y} \varphi\right)(s, t)}(M, v)=\left\{\begin{array}{l}
\text { minimal no. of } \varphi \text {-steps } \\
\text { from } v(s) \text { to } v(t) \text { in } M
\end{array}\right.
$$

Soundness of RTC ${ }_{G}^{\omega}$

- Define a measure function for RTC-formulas:

$$
\delta_{\left(R T C_{x, y} \varphi\right)(s, t)}(M, v)=\left\{\begin{array}{l}
\text { minimal no. of } \varphi \text {-steps } \\
\text { from } v(s) \text { to } v(t) \text { in } M
\end{array}\right.
$$

- The proof rules have the following property:

$$
\frac{\Gamma_{1} \vdash \Delta_{1} \quad \ldots \quad \Gamma_{n} \vdash \Delta_{n}}{\Gamma \vdash \Delta}
$$

Soundness of RTC ${ }_{G}^{\omega}$

- Define a measure function for RTC-formulas:

$$
\delta_{\left(R T C_{x, y} \varphi\right)(s, t)}(M, v)=\left\{\begin{array}{l}
\text { minimal no. of } \varphi \text {-steps } \\
\text { from } v(s) \text { to } v(t) \text { in } M
\end{array}\right.
$$

- The proof rules have the following property:

$$
\frac{\Gamma_{1} \vdash \Delta_{1} \quad \ldots}{c}\left(M^{\prime}, v^{\prime}\right) \not \vDash \Gamma_{i} \vdash \Delta_{i} \quad \ldots \quad \Gamma_{n} \vdash \Delta_{n}
$$

Soundness of RTC ${ }_{G}^{\omega}$

- Define a measure function for RTC-formulas:

$$
\delta_{\left(R T C_{x, y} \varphi\right)(s, t)}(M, v)=\left\{\begin{array}{l}
\text { minimal no. of } \varphi \text {-steps } \\
\text { from } v(s) \text { to } v(t) \text { in } M
\end{array}\right.
$$

- The proof rules have the following property:

$$
\ldots \quad\left(M^{\prime}, v^{\prime}\right) \not \vDash \Gamma_{i},\left(R T C_{v, w} \varphi^{\prime}\right)(r, u) \vdash \Delta_{i}
$$

$$
\begin{gathered}
(M, v) \not \models \Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta \\
\delta_{\left(R T C_{v, w} \varphi^{\prime}\right)(r, u)}\left(M^{\prime}, v^{\prime}\right) \leq \delta_{\left(R T C_{x, y} \varphi\right)(s, t)}(M, v)
\end{gathered}
$$

Soundness of RTC ${ }_{G}^{\omega}$

- Define a measure function for RTC-formulas:

$$
\delta_{\left(R T C_{x, y} \varphi\right)(s, t)}(M, v)=\left\{\begin{array}{l}
\text { minimal no. of } \varphi \text {-steps } \\
\text { from } v(s) \text { to } v(t) \text { in } M
\end{array}\right.
$$

- The proof rules have the following property:

$$
\begin{gathered}
\Gamma, s=t \vdash \Delta \quad\left(M^{\prime}, v^{\prime}\right) \not \vDash \Gamma,\left(R T C_{x, y} \varphi\right)(s, z), \varphi[z / x, t / y] \vdash \Delta \\
(M, v) \not \vDash \Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta \\
\delta_{\left(R T C_{v, w} \varphi^{\prime}\right)(r, u)}\left(M^{\prime}, v^{\prime}\right)<\delta_{\left(R T C_{x, y} \varphi\right)(s, t)}(M, v)
\end{gathered}
$$

Soundness of RTC ${ }_{G}^{\omega}$

- Define a measure function for RTC-formulas:

$$
\delta_{\left(R T C_{x, y} \varphi\right)(s, t)}(M, v)=\left\{\begin{array}{l}
\text { minimal no. of } \varphi \text {-steps } \\
\text { from } v(s) \text { to } v(t) \text { in } M
\end{array}\right.
$$

- The proof rules have the following property:

$$
\begin{gathered}
\Gamma, s=t \vdash \Delta \quad\left(M^{\prime}, v^{\prime}\right) \not \vDash \Gamma,\left(R T C_{x, y} \varphi\right)(s, z), \varphi[z / x, t / y] \vdash \Delta \\
(M, v) \not \vDash \Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \vdash \Delta \\
\delta_{\left(R T C_{v, w} \varphi^{\prime}\right)(r, u)}\left(M^{\prime}, v^{\prime}\right)<\delta_{\left(R T C_{x, y} \varphi\right)(s, t)}(M, v)
\end{gathered}
$$

- Global trace condition $\Rightarrow n_{1}>n_{2}>n_{3}>\ldots$

Cut-free Completeness of RTC ${ }_{G}^{\omega}$

Obtained using a variation of the standard technique:

1. Construct an infinite (cut-free) pre-proof via an exhaustive search tree
2. If not a valid proof, then it is possible to construct a counter-model
3. Thus search tree gives a valid proof for every valid sequent

CRTC $_{G}^{\omega}$: A Cyclic Subsystem

- Restricting to all and only regular infinite pre-proofs gives an effective system

CRTC $_{G}^{\omega}$: A Cyclic Subsystem

- Restricting to all and only regular infinite pre-proofs gives an effective system
- Regular pre-proofs can be represented as finite, possibly cyclic graphs

Implicit induction subsumes explicit induction

Implicit induction subsumes explicit induction

Implicit induction subsumes explicit induction

NCRTC ${ }_{G}^{\omega}$, the subsystem of non-overlapping cyclic proofs, is Henkin-complete

Equivalence Under Arithmetic

Obtain $\mathrm{RTC}_{G}+\mathrm{A}$ and $\mathrm{CRTC}{ }_{G}^{\omega}+\mathrm{A}$ by adding the following schemas:

1. $\mathrm{s} 0 \vdash$
2. $\mathbf{s} x=\mathbf{s} y \vdash x=y$
3. $\vdash x+0=x$
4. $\vdash x+\mathbf{s} y=\mathbf{s}(x+y)$
5. $\vdash\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x)$

Equivalence Under Arithmetic

Obtain $\mathrm{RTC}_{G}+\mathrm{A}$ and $\mathrm{CRTC}{ }_{G}^{\omega}+\mathrm{A}$ by adding the following schemas:

1. $\mathrm{s} 0 \vdash$
2. $\mathbf{s} x=\mathbf{s} y \vdash x=y$
3. $\vdash x+0=x$
4. $\vdash x+\mathbf{s} y=\mathbf{s}(x+y)$
5. $\vdash\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x)$

Equivalence Under Arithmetic

Obtain $\mathrm{RTC}_{G}+\mathrm{A}$ and $\mathrm{CRTC} C_{G}^{\omega}+\mathrm{A}$ by adding the following schemas:

1. $\mathrm{s} 0 \vdash$
2. $\mathbf{s} x=\mathbf{s} y \vdash x=y$
3. $\vdash x+0=x$
4. $\vdash x+\mathbf{s} y=\mathbf{s}(x+y)$
5. $\vdash\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x)$

C \& Avron, '15

Equivalence Under Arithmetic

Obtain $\mathrm{RTC}_{G}+\mathrm{A}$ and $\mathrm{CRTC} C_{G}^{\omega}+\mathrm{A}$ by adding the following schemas:

1. $\mathrm{s} 0 \vdash$
2. $\mathbf{s} x=\mathbf{s} y \vdash x=y$
3. $\vdash x+0=x$
4. $\vdash x+\boldsymbol{s} y=\mathbf{s}(x+y)$
5. $\vdash\left(R T C_{v, w} \mathbf{s} v=w\right)(0, x)$

C \& Avron, '15

Equivalence: The General Case

For $\mathrm{FOL}_{\text {ID }}$, implicit (cyclic) induction generally stronger than explicit induction [Berardi \& Tatsuta, '17]

Equivalence: The General Case

For FOL $_{\text {ID }}$, implicit (cyclic) induction generally stronger than explicit induction [Berardi \& Tatsuta, '17]

- For signature $\{0, \mathrm{~s}\}+\{\mathrm{N}\}$:
- 0,s-axioms $\vdash_{\text {clkiDw }}$ "2-hydra"

Equivalence: The General Case

For FOL $_{\text {ID }}$, implicit (cyclic) induction generally stronger than explicit induction [Berardi \& Tatsuta, '17]

- For signature $\{0, \mathrm{~s}\}+\{\mathrm{N}\}$:
- 0,s-axioms $\vdash_{\text {clkid }}$ " 2 -hydra"
- 0,s-axioms H LKID "2-hydra"
(Henkin counter-model construction)

Equivalence: The General Case

For $\mathrm{FOL}_{\text {ID }}$, implicit (cyclic) induction generally stronger than explicit induction [Berardi \& Tatsuta, '17]

- For signature $\{0, \mathrm{~s}\}+\{\mathrm{N}\}$:
- 0,s-axioms $\vdash_{\text {clkid }}$ " 2 -hydra"
- 0,s-axioms 㳕 "2-hydra"
(Henkin counter-model construction)
- However, for signature $\{0, \mathrm{~s}\}+\{\mathrm{N}, \leq\}$
- 0,s-axioms $\vdash_{\text {LKID }}$ 2-hydra

Equivalence: The General Case

For $\mathrm{FOL}_{\text {ID }}$, implicit (cyclic) induction generally stronger than explicit induction [Berardi \& Tatsuta, '17]

- For signature $\{0, s\}+\{N\}$:
- 0,s-axioms $\vdash_{\text {clkid }}$ " 2 -hydra"
- 0,s-axioms 㳕 "2-hydra"
(Henkin counter-model construction)
- However, for signature $\{0, \mathrm{~s}\}+\{\mathrm{N}, \leq\}$
- 0,s-axioms $\vdash_{\text {LKID }} 2$-hydra

So this does not serve to show RTC_{G} and $\operatorname{CRTC}_{G}^{\omega}$ inequivalent

- TC has all inductive definitions available

Summary of Results

Future Work

- Resolving the open question of the (in)equivalence of RTC $_{G}$, NCRTC $_{G}^{\omega}$ and CRTC ${ }_{G}^{\omega}$ (with/out pairs).
- Implementing $\operatorname{CRTC} C_{G}^{\omega}$ and investigating the practicalities of TC-logic to support automated inductive reasoning.
- Using the uniformity of TC-logic to better study the relationship between implicit and explicit induction.
- Cuts required in each system
- Relative complexity of proofs
- Das, A. (2018). On The Logical Complexity of Cyclic Arithmetic (Submitted)
- A uniform framework for coinductive reasoning?

Recall transitive closure as a fixed point:

$$
R^{+}=\mu X \cdot \Psi_{R}(X) \quad \Psi_{R}(S)=R \cup(R \circ S)
$$

The greatest fixed point gives the transitive co-closure

- Pairs (s, t) in $\nu X . \Psi_{R}(X)$ are those connected by a possibly infinite number of R-steps
- We can write $\left(R T C_{x, y}^{0 \mathrm{p}} \varphi\right)(s, t)$ to denote that (s, t) is in the reflexive, transitive co-closure of φ
- E.g. The following formula defines possibly infinite lists

$$
\left(R T C_{x, y}^{0 p} \exists z \cdot x=\operatorname{cons}(z, y)\right)(v,[])
$$

We have the following standard semantics

$$
\begin{aligned}
M, v \models & \left(R T C_{x, y}^{\mathrm{op}} \varphi\right)(s, t) \Leftrightarrow \\
& \exists\left(\vec{a}_{i}\right)_{i \geq 0} \cdot \forall i \geq 0 \cdot a_{i}=v(t) \vee M, v\left[x:=a_{i}, y:=a_{i+1}\right] \models \varphi
\end{aligned}
$$

We have the following Henkin-semantics
$H, v \models_{\mathcal{H}}\left(R T C_{x, y}^{0 \mathrm{p}} \varphi\right)(s, t) \Leftrightarrow$
there exists $A \in \mathcal{D}$ such that $v(s) \in A$ and
$\forall a \in A$. either $a=v(t)$ or $\exists b \in A . H, v[x:=a, y:=b] \models_{\mathcal{H}} \varphi$

[^0]: *as defined in: S. Feferman, Finitary Inductively Presented Logics, 1989 ${ }^{\dagger}$ with signatures containing pairing/all $2 n$-ary closure operators

