
U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Non-well-founded Proof Theory of Transitive Closure Logic

LIRON COHEN, Cornell University, USA
REUBEN N. S. ROWE, University of Kent, UK

Supporting inductive reasoning is an essential component is any framework of use in computer science. To do

so, the logical framework must extend that of first-order logic. Transitive closure logic is a known extension

of first-order logic which is particularly straightforward to automate. While other extensions of first-order

logic with inductive definitions are a priori parametrized by a set of inductive definitions, the addition of a

single transitive closure operator has the advantage of uniformly capturing all finitary inductive definitions.

To further improve the reasoning techniques for transitive closure logic we here present an infinitary proof

system for it which is an infinite descent-style counterpart to the existing (explicit induction) proof system
for the logic. We show that the infinitary system is complete for the standard semantics and subsumes the

explicit system. Moreover, the uniformity of the transitive closure operator allows semantically meaningful

complete restrictions to be defined using simple syntactic criteria. Consequently, the restriction to regular

infinitary (i.e. cyclic) proofs provides the basis for an effective system for automating inductive reasoning.

CCSConcepts: •Theory of computation→Logic and verification;Proof theory;Automated reasoning;

Additional Key Words and Phrases: Induction, Transitive Closure, Infinitary Proof Systems, Cyclic Proof

Systems, Soundness, Completeness, Standard Semantics, Henkin Semantics

ACM Reference Format:
Liron Cohen and Reuben N. S. Rowe. 2020. Non-well-founded Proof Theory of Transitive Closure Logic. 1, 1

(April 2020), 30 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Induction is a core reasoning technique, especially in computer science, where it plays a central

role in reasoning about recursive data and computations. There is therefore a constant attempt

to increase and improve the armoury of techniques available for automated inductive reasoning.

This battle is waged along two intertwined fronts: firstly finding the right logical framework, and

secondly developing effective associated proof methods. In other words, we are concerned with

both being able to formalize as much mathematical reasoning as possible, and also with doing so in

an effective way.

In terms of the logical framework, one should aim for a logic powerful enough to capture finitary
1

inductive principles, yet as simple as possible in order to facilitate automation. Transitive closure
(TC) logic has been identified as a minimal, general purpose logic for inductive reasoning that is also

very suitable for automation [2, 15, 16]. TC adds to first-order logic a single operator for forming

binary relations: specifically, the transitive closures of arbitrary formulas (or, more precisely, the

transitive closure of the binary relation induced by a formula with respect to two distinct variables).

It is thus able to express, e.g., unbounded reachability; on the other hand, it cannot express, e.g.,

well-foundedness of relations. Thus TC logic is intermediate between first- and second-order logic.

Despite its minimality TC logic retains enough expressivity to capture inductive reasoning, as

well as to subsume arithmetics (see Section 6.2.1). Moreover, it provides a uniform way of capturing

inductive principles. If an induction scheme is expressed by a formula φ, then the elements of the

inductive collection it defines are those ‘reachable’ from the base elements x via the iteration of the

induction scheme. That is, those y’s for which (x ,y) is in the transitive closure of φ. Accordingly,

1
We here mean finitary as opposed to transfinitary.

Authors’ addresses: Liron Cohen, Dept. of Computer Science, Cornell University, Ithaca, NY, USA, lironcohen@cornell.edu;

Reuben N. S. Rowe, School of Computing, University of Kent, Canterbury, Kent, UK, r.n.s.rowe@kent.ac.uk.

2020-04-05 19:33. Page 1 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

:2 Liron Cohen and Reuben N. S. Rowe

while other extensions of first-order logic with inductive definitions are a priori parametrized by

a set of inductive definitions (see, e.g., [11, 27, 29, 38]), bespoke induction principles do not need

to be added to, or embedded within, transitive closure logic; instead, all induction schemes are

available within a single, unified language. In this respect, the transitive closure operator resembles

the W-type [28], which also provides a single type constructor from which one can uniformly

define a variety of inductive types. This conciseness of the logic makes it of particular interest from

an automation point of view. The use of only one constructor of course comes with a price: namely,

formalizations (mostly of non-linear induction schemes) may be somewhat complex. However, they

generally do not require as complex an encoding as in arithmetics, since the TC operator can be

applied on any formula and thus (depending on the underlying signature) more naturally encode

induction on sets more complex than the natural numbers.

Since its expressiveness entails that TC logic subsumes arithmetics, by Gödel’s result, any

effective proof system for it must necessarily be incomplete for the standard semantics. This poses a

major challenge for the second of our stated objectives in the programme of developing automated

inductive reasoning, i.e. finding effective proof machinery for our chosen logic. Notwithstanding, a

natural, effective proof system which is sound for TC logic was shown to be complete with respect

to a generalized form of Henkin semantics [14]. That system, in keeping with standard practice,

captures the notion of inductive reasoning via an explicit inference rule that expresses the general

induction principle of the operator.

Aiming to enhance the opportunities for automating formal reasoning in TC logic, this paper

presents an infinitary proof theory for TC logic in the same vein as similar recent developments for

other logics with fixed point constructions [1, 3, 9–11, 21, 22, 33, 35]). This, as far as we know, is

the first system for TC logic that is (cut-free) complete with respect to its standard semantics. More

specifically we employ recent techniques from non-well-founded proof theory, which embodies

the philosophy of infinite descent, as an alternative to explicit induction. Such systems incorporate

infinite-height, rather than infinite-width proofs (see Section 4). The soundness of such infinitary

proof theories is underpinned by the principle of infinite descent: proofs are permitted to be infinite,

non-well-founded trees, but subject to the restriction that every infinite path in the proof admits

some infinite descent. The descent is witnessed by tracing terms or formulas for which we can

give a correspondence with elements of a well-founded set. In particular, we can trace terms that

denote elements of an inductively defined (well-founded) set. For this reason, such theories are

considered systems of implicit induction, as opposed to those which employ explicit rules for

applying induction principles. While a full infinitary proof theory is clearly not effective, in the

aforementioned sense, such a system can be obtained by restricting consideration to only the

regular infinite proofs. These are precisely those proofs that can be finitely represented as (possibly

cyclic) graphs.

These infinitary proof theories generally subsume systems of explicit induction in expressive

power, but also offer a number of advantages. Most notably, they can ameliorate the primary

challenge for inductive reasoning: finding an induction invariant. In explicit induction systems,

this must be provided a priori, and is often much stronger than the goal one is ultimately interested

in proving. However, in implicit systems the inductive arguments and hypotheses may be encoded

in the cycles of a proof, so cyclic proof systems seem better for automation. The cyclic approach

has also been used to provide an optimal cut-free complete proof system for Kleene algebra [20],

providing further evidence of its utility for automation.

In the setting of TC logic, we observe some further benefits over more traditional formal systems

of inductive definitions and their infinitary proof theories (cf. LKID [11, 27]). TC (with a pairing

function) has all first-order definable finitary inductive definitions immediately ‘available’ within

the language of the logic: as with inductive hypotheses, one does not need to ‘know’ in advance

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 2 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Non-well-founded Proof Theory of Transitive Closure Logic :3

which induction schemes will be required. Moreover, the use of a single transitive closure operator

provides a uniform treatment of all induction schemes. That is, instead of having a proof system

parameterized by a set of inductive predicates and rules for them (as is the case in LKID), TC offers

a single proof system with a single rule scheme for induction. This has immediate advantages

for developing the metatheory: the proofs of completeness for standard semantics and adequacy

(i.e. subsumption of explicit induction) for the infinitary system presented in this paper are simpler

and more straightforward. Moreover, it permits a further refinement of the cyclic system, which also

subsumes explicit induction, to be defined via a simple structural criterion that we call normality.
This restriction in the search space of possible proofs further enhances the potential for automation.

TC logic seems more expressive in other ways, too. For instance, the transitive closure operator

may be applied to arbitrarily complex formulas, and thus inductive definitions are not restricted to

consist only of conjunctions of atomic formulas (i.e. Horn clauses) as in e.g. [9, 11]. Conversely,

since the TC operator is a particular instance of a least fixed point operator, it is itself subsumed by

fixed-point logics such as the µ-calculus [25].
We show that the explicit and cyclic TC systems are equivalent under arithmetic, as is the case

for LKID [7, 34]. However, there are cases in which the cyclic system for LKID is strictly more

expressive than the explicit induction system [6]. To obtain a similar result for TC, the fact that all
induction schemes are available poses a serious challenge. For one, the counter-example used in [6]

does not serve to show that this result holds for TC. If this strong inequivalence indeed holds also

for TC, it must be witnessed by a more subtle and complex counter-example. Conversely, it may be

that the explicit and cyclic systems do coincide for TC. In either case, this points towards some

interesting subtleties of these LKID results in the TC setting, stemming from lifting the restriction

of having the system parameterized by a fixed set of inductive definitions.

The rest of the paper is organised as follows. In Section 2 we reprise the definition of transitive

closure logic and both its standard andHenkin-style semantics. Sections 3 and 4 present, respectively,

the existing explicit induction proof system and our new infinitary and cyclic proof systems for

TC logic, along with their soundness, completeness and cut-admissibility results. In Section 5 we

consider how our treatment extends to two important variants of transitive closure logic: one

with a pairing function and one without explicit equality. To complete the picture, Section 6 then

compares the expressive power of the infinitary system (and its cyclic subsystem) with the explicit

system. Finally, Section 7 concludes and examines the remaining open questions for our system as

well as future work. This paper is an extended version of [17].

2 TRANSITIVE CLOSURE LOGIC AND ITS EXPRESSIVNESS
This section reviews the language of transitive closure logic, and defines both its standard and

Henkin-style semantics. We also illustrate the usefulness of the logic in various applications in

computer science.

For simplicity of presentation we assume (as is standard practice) a designated equality symbol

in the language. We denote by v[x1 := an , . . . ,xn := an] the variant of the assignment v which

assigns ai to xi for each i , and by φ
{
t1

x1

, . . . , tnxn

}
the result of simultaneously substituting each ti for

the free occurrences of xi in φ. Note also that we use an operator denoting the reflexive transitive

closure; however the reflexive and non-reflexive forms are equivalent in the presence of equality.

2.1 The Syntax and Semantics
Definition 2.1 (The language LRTC). Let σ be a first-order signature with equality, whose terms

are ranged over by s and t and predicates by P , and let x , y, z, etc. range over a countable setV of

2020-04-05 19:33. Page 3 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

:4 Liron Cohen and Reuben N. S. Rowe

variables. The language LRTC consists of the formulas defined by the grammar:

φ,ψ F s = t | P (t1, . . . , tn) | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ | ∀x .φ | ∃x .φ | (RTCx,y φ) (s, t)

As usual, ∀x and ∃x bind free occurrences of the variable x and we identify formulas up to renaming

of bound variables, so that capturing of free variables during substitution does not occur. Note that

in the formula (RTCx,y φ) (s, t) free occurrences of x and y in φ are also bound (but not those in s
and t).

Definition 2.2 (Standard Semantics). LetM = ⟨D, I ⟩ be a first-order structure (i.e.D is a non-empty

domain and I an interpretation function), and v an assignment inM which we extend to terms in

the obvious way. The satisfaction relation |= between model-valuation pairs ⟨M,v⟩ and formulas is

defined inductively on the structure of formulas by:

• M,v |= s = t if v (s) = v (t);
• M,v |= P (t1, . . . , tn) if (v (t1), . . . ,v (tn)) ∈ I (P);
• M,v |= ¬φ ifM,v ̸ |= φ;
• M,v |= φ1 ∧ φ2 if bothM,v |= φ1 andM,v |= φ2;

• M,v |= φ1 ∨ φ2 if eitherM,v |= φ1 orM,v |= φ2;

• M,v |= φ1 → φ2 ifM,v |= φ1 impliesM,v |= φ2;

• M,v |= ∃x .φ ifM,v[x := a] |= φ for some a ∈ D;
• M,v |= ∀x .φ ifM,v[x := a] |= φ for all a ∈ D;
• M,v |= (RTCx,y φ) (s, t) if v (s) = v (t), or there exist a0, . . . ,an ∈ D (n > 0) s.t. v (s) = a0,

v (t) = an , andM,v[x := ai ,y := ai+1] |= φ for 0 ≤ i < n.

We say that a formula φ is valid with respect to the standard semantics whenM,v |= φ holds for

all modelsM and valuations v .

We next recall the concepts of frames andHenkin structures (see, e.g., [24]). A frame is a first-order

structure together with some subset of the powerset of its domain (called its set of admissible

subsets).

Definition 2.3 (Frames). A frame M is a triple ⟨D, I ,D⟩, where ⟨D, I ⟩ is a first-order structure,
and D ⊆ ℘(D).

Definition 2.4 (Frame Semantics). LRTC formulas are interpreted in frames as in Definition 2.2

above, except for:

• M,v |= (RTCx,y φ) (s, t) if for every A ∈ D, if v (s) ∈ A and for every a,b ∈ D: a ∈ A and

M,v[x := a,y := b] |= φ implies b ∈ A, then v (t) ∈ A.

Note that if D = ℘(D), the frame is identified with a standard first-order structure.

We now consider Henkin structures, which are frames whose set of admissible subsets is closed

under parametric definability.

Definition 2.5 (Henkin structures). A Henkin structure M = ⟨D, I ,D⟩ is a frame such that for

every formula φ and valuation v inM we have {a ∈ D | M,v[x := a] |= φ} ∈ D.

We refer to the semantics induced by quantifying over the (larger) class of Henkin structures as

the Henkin semantics.

2.2 Applications of Transitive Closure Logic
Transitive Closure Logic offers a variety of applications in different areas in computer science, such

as program verification, database query languages, descriptive complexity, etc. We briefly describe

some of these here.

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 4 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Non-well-founded Proof Theory of Transitive Closure Logic :5

Inductive Numerical Predicates. Transitive Closure logic enables complex numerical induction

schemes to be expressed concisely and naturally. This supports the application of TC in a multitude

of other areas, since numerical theories often form the foundation of more complex formalisms.

Assuming a signature containing a constant 0 for zero, and a successor function s, a predicate
N characterising natural numbers can easily be defined by N(t) ≡ (RTCu,v v = s(u)) (0, t). Now
consider a binary predicate H defined by the following induction scheme over natural numbers x
and y considered in [6]:

i) H(0, 0), H(s(0), 0), and H(x , s(0)) hold;
ii) if H(x ,y) holds then so does H(s(x), s(s(y)));
iii) if H(s(x),x) holds then so do H(0, s(s(x))) and H(s(s(x)), 0).

This predicate is a binary version of the Kirby-Paris Hydra game [26] that considers a Hydra with

two heads. It can be expressed, using a pairing function ⟨·,·⟩, by the TC formula H(t1, t2) defined by:

H(t1, t2) ≡ ∃n1,n2 . (RTCx,y φ1 ∨ φ2 ∨ φ3) (⟨n1,n2⟩, ⟨t1, t2⟩)

∧ ((n1 = 0 ∧ n2 = 0) ∨ (n1 = s(0) ∧ n2 = 0) ∨ (N(n1) ∧ n2 = s(0)))

where the formulas φ1–φ3 are defined as follows:

φ1 ≡ ∃z1 . ∃z2 . x = ⟨z1, z2⟩ ∧ y = ⟨s(z1), s(s(z2))⟩

φ2 ≡ ∃z . x = ⟨z, s(z)⟩ ∧ y = ⟨0, s(s(z))⟩
φ3 ≡ ∃z . x = ⟨z, s(z)⟩ ∧ y = ⟨s(s(z)), 0⟩

and express the inductive steps of the scheme, cf. items (ii) and (iii). H(t1, t2) asserts that the pair of
terms (t1, t2) may be reached via (some arbitrary number of) applications of these steps from one

of the base cases, cf. item (i). It is easy to show that any such pair of terms must consist of natural

numbers (i.e. N(t1) and N(t2) hold). Moreover, the H predicate is total over the natural numbers, a

fact that is derivable in each of the proof systems we present for TC.

Temporal Logic. It is possible to encode temporal logics in TC, since temporal operators such as

‘eventually’, ‘globally’ (in the past, or future) and ‘until’ essentially denote reachability properties

between temporal states. For example, consider LTL (linear temporal logic) [31] over some signature.

To encode it in TC we essentially make the state-based semantics explicit by:

• extending the arity of each predicate symbol to capture how its interpretation changes over

time (e.g. p(t) becomes p(t , s), true if and only if p(t) is true in the state denoted by s);
• introducing a fresh unary function next(s) to denote the state immediately following s; and
• assuming a term constant sinit to indicate the initial state.

The formula (RTCx,y y = next(x)) (s, s ′) then expresses that state s ′ occurs after state s , which we

will abbreviate as s ≤ s ′. We can then define a translation T [s] of LTL formulas, with respect

to a ‘state’ variable s . For atomic formulas, we define T [s](q(t1, . . . , tn)) = q(t1, . . . , tn , s). For
standard first-order logical connectives, the translation is defined straightforwardly by induction.

The translation of the temporal operators X (next), F (finally, or eventually), G (globally, or always),

and U (until), are as follows:

T [s](Xϕ) = ∃s ′ . s ′ = next(s) ∧T [s ′](ϕ)

T [s](Fϕ) = ∃s ′ . s ≤ s ′ ∧T [s ′](ϕ)

T [s](Gϕ) = ∀s ′ . s ≤ s ′ → T [s ′](ϕ)

T [s](ϕ U ψ) = ∃s ′ . s ≤ s ′ ∧T [s ′](ψ) ∧ ∀s ′′ . (s ≤ s ′′ ∧ s ′′ ≤ s ′) → T [s ′′](ϕ)

Finally, an LTL formulaψ is interpreted asT [sinit](ψ). This is essentially equivalent to the standard

translation of modal logic into first-order logic given in, e.g., [4, 8] which takes the temporal

2020-04-05 19:33. Page 5 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

:6 Liron Cohen and Reuben N. S. Rowe

ordering relation as a primitive. Here, the ordering relation arises from taking the transitive closure

of the next function. The TC approach is more flexible, since we may also take the transitive closure

of temporal relations, and so represent branching-time temporal logics in the same framework.

Program Verification. TC can be used for the specification and verification of properties of

linked data structures and the operation of programs that manipulate them, because it offers a

unified constructor for reasoning over both the pointer structures in memory and the sequences of

transitions between program states. More concretely, given some definable state transition relation

R (x ,y) and an initial state s0, the formula (RTCx,y R) (s0, s) defines all the states the program

execution can reach. Additionally, if ns is a function associating to each memory location its

successor in state s , then the formula (RTCx,y y = ns (x)) (x ,y) defines reachability in memory at

state s .
The use of the same constructor for both aspects of the program offers a major improvement on

the current formal frameworks which usually use qualitatively different formalisms for describing

the operational semantics of programs and the data operated on by the program. For instance, many

formalisms employ separation logic to describe the data structures manipulated by programs, but

encode the relationship between the program’s memory and its operational behaviour via bespoke

symbolic-execution inference rules. Another improvement of TC over, e.g., separation logic is its

ability to reason over non-tree-like structures such as directed acyclic, or even general, graphs.

3 A FINITARY PROOF SYSTEM FOR LRTC

We briefly summarise a variation of the finitary proof system for LRTC presented in [15, 16]. The

key component of the system is an explicit induction rule for RTC formulas. All of the systems for

LRTC presented in the sequel are extensions of LK =, the sequent calculus for classical first-order

logic with equality [23, 36], whose proof rules we show in Fig. 1.
2
Sequents are expressions of

the form Γ ⇒ ∆, for finite sets of formulas Γ and ∆. We write Γ,∆ and Γ,φ as a shorthand for

Γ ∪ ∆ and Γ ∪ {φ} respectively, and fv(Γ) for the set of free variables of the formulas in the set Γ.
Note that since sequents consist of sets of formulas, there is no need for explicit exchange and

contraction rules. A sequent Γ ⇒ ∆ is valid if and only if the formula

∧
φ ∈Γ φ →

∨
ψ ∈∆ψ is. We

write φ (x1, . . . ,xn) to emphasise that the formula φ may contain x1, . . . ,xn as free variables.

3.1 The Proof System RTCG

Definition 3.1. The proof system RTCG for LRTC is defined by adding to LK = the following

inference rules where, for Rule (3), x < fv(Γ,∆) and y < fv(Γ,∆,ψ):

Γ ⇒ ∆, (RTCx,y φ) (s, s) (1)

Γ ⇒ ∆, (RTCx,y φ) (s, r) Γ ⇒ ∆,φ
{
r
x ,

t
y

}

Γ ⇒ ∆, (RTCx,y φ) (s, t)
(2)

Γ,ψ (x),φ (x ,y) ⇒ ∆,ψ
{ y
x

}

Γ,ψ
{
s
x

}
, (RTCx,y φ) (s, t) ⇒ ψ

{
t
x

}
,∆

(3)

Rule (3) is a generalized induction principle. It states that if an extension of formulaψ is closed

under the relation induced by φ, then it is also closed under the reflexive transitive closure of that

relation. In the case of arithmetic it captures the induction rule of Peano’s Arithmetics PA [16].

2
Here we take LK = to include the substitution rule, which was not a part of the original systems.

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 6 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Non-well-founded Proof Theory of Transitive Closure Logic :7

(Axiom):

φ ⇒ φ
(WL):

Γ ⇒ ∆

Γ,φ ⇒ ∆
(WR):

Γ ⇒ ∆

Γ ⇒ ∆,φ

(=L1):

Γ ⇒ φ
{
s
x

}
,∆

Γ, s = t ⇒ φ
{
t
x

}
,∆

(=L2):

Γ ⇒ φ
{
t
x

}
,∆

Γ, s = t ⇒ φ
{
s
x

}
,∆

(=R):
⇒ t = t

(Cut):

Γ ⇒ φ,∆ Σ,φ ⇒ Π

Γ, Σ⇒ ∆,Π
(Subst):

Γ ⇒ ∆

Γ
{
t1

x1

, . . . , tnxn

}
⇒ ∆

{
t1

x1

, . . . , tnxn

}

(∨L):
Γ,φ ⇒ ∆ Γ,ψ ⇒ ∆

Γ,φ ∨ψ ⇒ ∆
(∧L):

Γ,φ,ψ ⇒ ∆

Γ,φ ∧ψ ⇒ ∆
(→L):

Γ ⇒ φ,∆ Γ,ψ ⇒ ∆

Γ,φ → ψ ⇒ ∆

(∨R):
Γ ⇒ φ,ψ ,∆

Γ ⇒ φ ∨ψ ,∆
(∧R):

Γ ⇒ φ,∆ Γ ⇒ ψ ,∆

Γ ⇒ φ ∧ψ ,∆
(→R):

Γ,φ ⇒ ψ ,∆

Γ ⇒ φ → ψ ,∆

(∃L):
Γ,φ ⇒ ∆

x < fv(Γ,∆)
Γ,∃x .φ ⇒ ∆

(∀L):
Γ,φ

{
t
x

}
⇒ ∆

Γ,∀x .φ ⇒ ∆
(¬L):

Γ ⇒ φ,∆

Γ,¬φ ⇒ ∆

(∃R):
Γ ⇒ φ

{
t
x

}
,∆

Γ ⇒ ∃x .φ,∆
(∀R):

Γ ⇒ φ,∆
x < fv(Γ,∆)

Γ ⇒ ∀x .φ,∆
(¬R):

Γ,φ ⇒ ∆

Γ ⇒ ¬φ,∆

Fig. 1. Proof rules for the sequent calculus LK = with substitution.

3.2 Soundness and Completeness
The rich expressiveness of TC logic entails that the effective system RTCG which is sound w.r.t. the

standard semantics, cannot be complete (much like the case for LKID). It is however both sound

and complete w.r.t. Henkin semantics.

Theorem 3.2 (Soundness and Completeness of RTCG [14]). RTCG is sound for standard
semantics, and also sound and complete for Henkin semantics.

We remark that the soundness proof of LKID is rather complex since it must handle different

types of mutual dependencies between the inductive predicates. For RTCG the proof is much

simpler due to the uniformity of the rules for the RTC operator. Nonetheless, the completeness

proof given in [14] does not establish cut admissibility while the proof for LKID does. We believe

that by adapting the technique used in the proof of the completeness of LKID one can obtain cut

admissibility for an equivalent system to RTCG , in which the formalization of Rule (3) is slightly

modified, like the induction rule for LKID in [11], to incorporate a cut with the induction formula

ψ as follows:

Γ ⇒ ∆,ψ
{
s
x

}
Γ,ψ (x),φ (x ,y) ⇒ ∆,ψ

{ y
x

}
Γ,ψ

{
t
x

}
⇒ ∆

Γ, (RTCx,y φ) (s, t) ⇒ ∆

where x < fv(Γ,∆) and y < fv(Γ,∆,ψ). However, the trade-off is that the cut-free system presented

here no longer enjoys the sub-formula property (for a generalized notion of a subformula that

incorporates substitution instances), as in LK =. Nonetheless, since the explicit system is not the

main focus of the current work, we leave obtaining cut admissibility for future work.

2020-04-05 19:33. Page 7 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

:8 Liron Cohen and Reuben N. S. Rowe

4 INFINITARY PROOF SYSTEMS FOR LRTC

This section introduces an infinitary proof system, in which RTC formulas are simply unfolded,

and inductive arguments are represented via infinite descent-style constructions. We establish

soundness and completeness of the proof system with respect to the standard semantics, and further

identify a subsystem restricted to regular proofs.

4.1 The Proof System RTCωG
Definition 4.1. The infinitary proof system RTCωG for LRTC is defined like RTCG , but replacing

Rule (3) by the following case-split rule:

Γ, s = t ⇒ ∆ Γ, (RTCx,y φ) (s, z),φ
{
z
x ,

t
y

}
⇒ ∆

Γ, (RTCx,y φ) (s, t) ⇒ ∆
(4)

where z is fresh, i.e. does not occur free in Γ, ∆, or (RTCx,y φ) (s, t). The formula (RTCx,y φ) (s, z) in
the right-hand premise is called the immediate ancestor (cf. [12, §1.2.3]) of the principal formula,

(RTCx,y φ) (s, t), in the conclusion.

There is an asymmetry between Rule (2), in which the intermediary is an arbitrary term r , and
Rule (4), where we use a variable z. This is necessary to obtain the soundness of the cyclic proof

system. It is used to show that when there is a counter-model for the conclusion of a rule, then

there is also a counter-model for one of its premises that is, in a sense that we make precise below,

‘smaller’. In the case that s , t , using a fresh z allows us to pick from all possible counter-models of

the conclusion, from which we may then construct the required counter-model for the right-hand

premise. If we allowed an arbitrary term r instead, this might restrict the counter-models we can

choose from, only leaving ones ‘larger’ than the one we had for the conclusion. See Lemma 4.7

below for more details.

Proofs in this system are possibly infinite derivation trees. However, not all infinite derivations

are proofs: only those that admit an infinite descent argument. Thus we use the terminology

‘pre-proof’ for derivations.

Definition 4.2 (Pre-proofs). An RTCωG pre-proof is a possibly infinite (i.e. non-well-founded)

derivation tree formed using the inference rules. A path in a pre-proof is a possibly infinite sequence
of sequents s0, s1, . . . (, sn) such that s0 is the root sequent of the proof, and si+1 is a premise of si
for each i < n.

The following definitions tell us how to track RTC formulas through a pre-proof, and allow us to

formalize inductive arguments via infinite descent.

Definition 4.3 (Trace Pairs). Let τ and τ ′ be RTC formulas occurring in the left-hand side of the

conclusion s and a premise s ′, respectively, of (an instance of) an inference rule. (τ ,τ ′) is said to be

a trace pair for (s, s ′) if the rule is:
• the (Subst) rule, and τ = τ ′θ where θ is the substitution associated with the rule instance;

• Rule (4), and either:

a) τ is the principal formula of the rule instance and τ ′ is the immediate ancestor of τ , in
which case we say that the trace pair is progressing;

b) otherwise, τ = τ ′.
• any other rule, and τ = τ ′.

Definition 4.4 (Traces). A trace is a (possibly infinite) sequence of RTC formulas. We say that

a trace τ1,τ2, . . . (,τn) follows a path s1, s2, . . . (, sm) in a pre-proof P if, for some k ≥ 0, each

consecutive pair of formulas (τi ,τi+1) is a trace pair for (si+k , si+k+1). If (τi ,τi+1) is a progressing

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 8 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Non-well-founded Proof Theory of Transitive Closure Logic :9

pair then we say that the trace progresses at i , and we say that the trace is infinitely progressing if it

progresses at infinitely many points.

Proofs, then, are pre-proofs which satisfy a global trace condition.

Definition 4.5 (Infinite Proofs). A RTCωG proof is a pre-proof in which every infinite path is

followed by some infinitely progressing trace.

4.2 Soundness and Completeness
The infinitary system RTCωG , in contrast to the finitary system RTCG , is both sound and complete

w.r.t. the standard semantics. To prove soundness, we make use of the following notion of measure
for RTC formulas.

Definition 4.6 (Degree of RTC Formulas). For ϕ ≡ (RTCx,y φ) (s, t), we define δϕ (M,v) = 0 if

v (s) = v (t), and δϕ (M,v) = n if v (s) , v (t) and a0, . . . ,an is a minimal-length sequence of

elements in the semantic domain D such that v (s) = a0, v (t) = an , andM,v[x := ai ,y := ai+1] |= φ
for 0 ≤ i < n. We call δϕ (M,v) the degree of ϕ with respect to the modelM and valuation v .

Soundness then follows from the following fundamental lemma.

Lemma 4.7 (Descending Counter-models). If there exists a standard modelM and valuation v
that invalidates the conclusion s of (an instance of) an inference rule, then 1) there exists a standard
model M ′ and valuation v ′ that invalidates some premise s ′ of the rule; and 2) if (τ ,τ ′) is a trace
pair for (s, s ′) then δτ ′ (M

′,v ′) ≤ δτ (M,v). Moreover, if (τ ,τ ′) is a progressing trace pair then
δτ ′ (M

′,v ′) < δτ (M,v).

Proof. The cases for the standard LK = and substitution rules are straightforward adaptations

of those found in e.g. [11].

• The case for Rule (1) follows trivially since it follows immediately from Definition 2.2 that

M,v |= (RTCx,y φ) (s, s) for allM and v .

• For Rule (2), since M,v ̸ |= (RTCx,y φ) (s, t) it follows that either M,v ̸ |= (RTCx,y φ) (s, r)
or M,v ̸ |= φ

{
r
x ,

t
y

}
. To see this, suppose for contradiction that both M,v |= (RTCx,y φ) (s, r) or

M,v |= φ
{
r
x ,

t
y

}
; but then it would follow by Definition 2.2 that M,v |= (RTCx,y φ) (s, t). We

thus take M ′ = M and v ′ = v , and either the left- or right-hand premise according to whether

M,v ̸ |= (RTCx,y φ) (s, r) orM,v ̸ |= φ
{
r
x ,

t
y

}
.

• For Rule (4), sinceM,v |= (RTCx,y φ) (s, t) there are two cases to consider:

(i) If v (s) = v (t) then we take the left-hand premise with modelM ′ = M and valuation v ′ = v ,
and so the degree of any RTC formula in Γ with respect toM ′ and v ′ remains the same.

(ii) Otherwise, if there are a0, . . . ,an ∈ D (n > 0) such that v (s) = a0 and v (t) = an with

M,v[x := ai ,y := ai+1] |= φ for 0 ≤ i < n, we then take the right-hand premise, the model

M ′ = M and valuationv ′ = v[z := an−1]. Note that, without loss of generality, we may assume

a sequence a0, . . . ,an of minimal length, and thus surmise δ (RTCx,y φ) (s,t) (M,v) = n. Since z is

fresh, it follows that M ′,v ′ |= φ
{
z
x ,

t
y

}
and M ′,v ′[x := ai ,y := ai+1] |= φ for 0 ≤ i < n − 1. If

n = 1 then v ′(s) = v ′(z) = a0 and soM,v ′ |= (RTCx,y φ) (s, z); otherwise this is witnessed by

the sequence a0, . . . ,an−1. Thus we also have that δ (RTCx,y φ) (s,z) (M
′,v ′) = n − 1. To conclude,

it also follows from z fresh that M ′,v ′ |= ψ for all ψ ∈ Γ and M ′,v ′ ̸ |= ϕ for all ϕ ∈ ∆;
moreover, the degree of any RTC formula in Γ remains unchanged with respect to M ′ and
v ′. □

2020-04-05 19:33. Page 9 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

:10 Liron Cohen and Reuben N. S. Rowe

As is standard for infinite descent inference systems [9–11, 20, 32, 37], the above result entails the

local soundness of the inference rules (in our case, for standard first-order models). The presence

of infinitely progressing traces for each infinite path in a RTCωG proof ensures soundness via a

standard infinite descent-style construction.

Theorem 4.8 (Soundness of RTCωG). If there is a RTCωG proof of Γ ⇒ ∆, then Γ ⇒ ∆ is valid
(w.r.t. the standard semantics).

Proof. Suppose, for contradiction, that Γ ⇒ ∆ is not valid. Then by Lemma 4.7 there exists an

infinite path {si }i>0 in the proof and an infinite sequence of model-valuation pairs {⟨Mi ,vi ⟩}i>0

such that ⟨Mi ,vi ⟩ invalidates si for each i > 0. Since the proof is a valid RTCωG proof, this infinite

path is followed by an infinitely progressing trace {τi }i>0 for which we can take the degree of

each formula with respect to its corresponding counter-model to obtain an infinite sequence of

natural numbers {δτi (Mk+i ,vk+i)}i>0 (for some k ≥ 0). By Lemma 4.7 this sequence is decreasing

and, moreover, since the trace is infinitely progressing the sequence strictly decreases infinitely

often. From the fact that the natural numbers are a well-founded set we derive a contradiction, and

thus conclude that Γ ⇒ ∆ is indeed valid. □

Following a standard technique (as used in e.g. [11]), we can show cut-free completeness of

RTCωG with respect to the standard semantics.

Definition 4.9 (Schedule). A schedule element E is defined as any of the following:

• a formula of the form ¬φ,φ ∧ψ ,φ ∨ψ ,φ → ψ ;
• a pair of the form ⟨∀x φ, t⟩ or ⟨∃x φ, t⟩ where ∀x φ and ∃x φ are formulas and t is a term;

• a tuple of the form ⟨(RTCx,y φ) (s, t), r , z, Γ,∆⟩ where (RTCx,y φ) (s, t) is a formula, r is a term,

Γ and ∆ are finite sequences of formulas, and z is a variable not occurring free in Γ, ∆, or
(RTCx,y φ) (s, t); or
• a tuple of the form ⟨s = t ,x ,φ,n⟩where s , t are terms, x a variable, φ a formula, and n ∈ {1, 2}.

A schedule is a recursive enumeration of schedule elements in which every schedule element

appears infinitely often (these exist since our language is countable).

Each schedule corresponds to an exhaustive search strategy for a cut-free proof for each sequent

Γ ⇒ ∆, via the following notion of a ‘search tree’.

Definition 4.10 (Search Tree). Given a schedule {Ei }i>0, for each sequent Γ ⇒ ∆ we inductively

define an infinite sequence of (possibly open) derivation trees, {Ti }i>0, such that T1 consists of the

single open node Γ ⇒ ∆, and each Ti+1 is obtained by replacing all suitable open nodes in Ti with
applications of first axioms and then the left and right inference rules for the formula in the ith

schedule element.
3
We show the cases for buildingTi+1 for when Ei corresponds to an RTC formula

and an equality formula. The cases for when Ei corresponds to a standard compound first-order

formula are similar.

• When Ei is of the form ⟨(RTCx,y φ) (s, t), r , z, Γ,∆⟩, then Ti+1 is obtained by:

(1) first closing as such any open node that is an instance of an axiom (after left and right

weakening, if necessary);

(2) next, replacing every open node Γ′, (RTCx,y φ) (s, t) ⇒ ∆′ of the resulting tree for which

Γ′ ⊆ Γ and ∆′ ⊆ ∆ with the derivation:

3
Note that since sequents consist of sets (as opposed to multisets), inference rules are applied with an implicit contraction,

i.e., the principal formula is also part of the context and is therefore kept in the premises.

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 10 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Non-well-founded Proof Theory of Transitive Closure Logic :11

Γ′, (RTCx,y φ) (s, t), s = t ⇒ ∆′ Γ′, (RTCx,y φ) (s, t), (RTCx,y φ) (s, z),φ
{
z
x ,

t
y

}
⇒ ∆′

Γ′, (RTCx,y φ) (s, t) ⇒ ∆′
(4)

(3) finally, replacing every open node Γ′ ⇒ ∆′, (RTCx,y φ) (s, t) of the resulting tree with the

derivation:

Γ′ ⇒ ∆′, (RTCx,y φ) (s, t), (RTCx,y φ) (s, r) Γ′ ⇒ ∆′, (RTCx,y φ) (s, t),φ
{
r
x ,

t
y

}

Γ′ ⇒ ∆′, (RTCx,y φ) (s, t)
(2)

• When Ei is of the form ⟨s = t ,x ,φ,n⟩, then Ti+1 is then obtained by first closing as such any

open node that is an instance of an axiom (after left and right weakening, if necessary); and next, if

n = 1 (resp. n = 2), replacing every open node Γ, s = t ⇒ ∆ in the resulting tree for which φ
{
s
x

}
∈ ∆

(resp. φ
{
t
x

}
∈ ∆) with the appropriate one of the following derivations:

Γ, s = t ⇒ ∆,φ
{
t
x

}
,φ

{
s
x

}

Γ, s = t ⇒ ∆,φ
{
t
x

} (=L1)
Γ, s = t ⇒ ∆,φ

{
s
x

}
,φ

{
t
x

}

Γ, s = t ⇒ ∆,φ
{
s
x

} (=L2)

The limit of the sequence {Ti }i>0 is a possibly infinite (and possibly open) derivation tree called the

search tree for Γ ⇒ ∆ with respect to the schedule {Ei }i>0, and denoted by Tω .

Search trees are, by construction, recursive and cut-free. We construct special ‘sequents’ out of

search trees, called limit sequents, as follows.

Definition 4.11 (Limit Sequents). When a search tree Tω is not an RTCωG proof, either: (1) it is

not even a pre-proof, i.e. it contains an open node; or (2) it is a pre-proof but contains an infinite

branch that fails to satisfy the global trace condition. In case (1) it contains an open node to which,

necessarily, no schedule element applies (e.g. a sequent containing only atomic formulas), for

which we write Γω ⇒ ∆ω . In case (2) the global trace condition fails, so there exists an infinite

path {Γi ⇒ ∆i }i>0 in Tω which is followed by no infinitely progressing traces; we call this path

an untraceable branch of Tω . We then take the left-most open node ν or untraceable branch β and

define Γω =
⋃

i>0
Γi and ∆ω =

⋃
i>0

∆i . We call Γω ⇒ ∆ω the limit sequent.

Note that use of the word ‘sequent’ here is an abuse of nomenclature, since limit sequents may

be infinite and thus technically not sequents. However when we say that such a limit sequent is

provable, we mean that it has a finite sub-sequent that is provable.

Lemma 4.12. Limit sequents Γω ⇒ ∆ω are not cut-free provable.

Proof. Straightforward adaptation of the proof of [11, Lemma 6.3]. □

As standard, we use a limit sequent to induce a counter-interpretation, consisting of a Herbrand

model of open terms quotiented by the equalities found in the limit sequent.

Definition 4.13 (Quotient Relation). For a limit sequent Γω ⇒ ∆ω , the relation ∼ is defined as the

smallest congruence relation on terms such that s ∼ t whenever s = t ∈ Γω . We write [t] for the
∼-equivalence class of t , i.e. [t] = {u | t ∼ u}.

The following property holds of the quotient relation.

Lemma 4.14. If t ∼ u, then Γω ⇒ F
{
t
x

}
is cut-free provable in RTCωG if and only if Γω ⇒ F

{
u
x

}
is

cut-free provable in RTCωG .

2020-04-05 19:33. Page 11 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

:12 Liron Cohen and Reuben N. S. Rowe

Proof. By induction on the conditions defining ∼. We use ≡ to denote syntactic equality on

terms, in order to distinguish from formulas s = t asserting equality between (interpretations of)

terms.

(t ∼ t): Immediate, since then t ≡ u.
(t = u ∈ Γω): Assume Γω ⇒ F

{
t
x

}
is cut-free provable, then we can apply the (=L1) rule to derive

(without cut) Γω , t = u ⇒ F
{
u
x

}
; however notice that Γω , t = u is simply Γω since t = u ∈ Γω

already. The converse direction is symmetric, using rule (=L2).

(t ∼ u ⇒ u ∼ t): Immediate, by induction.

(t ∼ u ∧ u ∼ v ⇒ t ∼ v): Straightforward, by induction.

(t1 ∼ u1 ∧ . . . ∧ tn ∼ un ⇒ f (t1, . . . , tn) ∼ f (u1, . . . ,un)): Consider the formula F ; clearly there

exist formulas G1, . . . ,Gn and some variable y such that Gi
{
t
y

}
≡ F

{ f (u1, ...,ui−1,ti , ...,tn)
x

}
for each

i ≤ n. By induction, each sequent Γω ⇒ Gi
{
ti
y

}
is cut-free provable if and only if so too is

Γω ⇒ Gi
{
ui
y

}
. The result then follows since F

{ f (t1, ...,tn)
x

}
≡ G1

{
t1

y

}
and F

{ f (u1, ...,un)
x

}
≡ Gn

{
un
y

}
,

and also Gi
{
ui
y

}
≡ Gi+1

{
ti+1

y

}
for each i < n. □

We define the counter-interpretation as follows.

Definition 4.15 (Counter-interpretations). Assume a search tree Tω which is not a RTCωG proof

with limit sequent Γω ⇒ ∆ω . Define a structureMω = ⟨D, I ⟩ as follows:
• D = {[t] | t is a term} (i.e. the set of terms quotiented by the relation ∼).

• For every k-ary function symbol f : I (f) ([t1], . . . , [tk]) = [f (t1, . . . , tk)]
• For every k-ary relation symbol q: I (q) = {([t1], . . . , [tk]) | q(t1, . . . , tk) ∈ Γω }

We also define a valuation ρω forMω by ρω (x) = [x] for all variables x .

The counter-interpretation ⟨Mω , ρω ⟩ has the following property, which entails that Mω is a

counter-model for the corresponding sequent Γ ⇒ ∆ if its search tree Tω is not a proof.

Lemma 4.16. Ifψ ∈ Γω thenMω , ρω |= ψ ; and ifψ ∈ ∆ω thenMω , ρω ̸ |= ψ .

Proof. By well-founded induction using the lexicographic ordering of the number of binders

(i.e. ∃, ∀, and RTC) inψ and the structure ofψ . Notice that, by definition, ρω (t) = [t] for all terms t .

Forψ atomic (i.e. of the formq(t1, . . . , tk)), ifψ ∈ Γω then it follows immediately by Definition 4.15

thatMω , ρω |= q(t1, . . . , tk). If, on the other hand,ψ ∈ ∆ω then assume for contradiction that indeed

Mω , ρω |= q(t1, . . . , tk). It then follows from Definition 4.15 that there are termsu1, . . . ,uk such that
q(u1, . . . ,uk) ∈ Γω and ui ∼ ti for each i ≤ k . Notice that then we can prove Γω ⇒ q(u1, . . . ,uk)
axiomatically, and so it follows by (k applications of) Lemma 4.14 that Γω ⇒ q(t1, . . . , tk) is
cut-free provable. However, since q(t1, . . . , tk) ∈ ∆ω , this would mean that the limit sequent

Γω ⇒ ∆ω is cut-free provable, which contradicts Lemma 4.12. Thus we conclude that in fact

Mω , ρω ̸ |= q(t1, . . . , tk).

For ψ an equality formula s = t , if ψ ∈ Γω then we have immediately by Definition 4.15 that

ρω (s) = ρω (t) and thus that Mω , ρω |= s = t by Definition 2.2. If, on the other hand, s = t ∈ ∆ω ,
suppose for contradiction that indeed Mω , ρω |= s = t . It then follows from Definition 4.15 that

s ∼ t . Since we may derive Γω ⇒ s = s axiomatically, it thus follows from Lemma 4.14 that there

is a cut-free proof of Γω ⇒ s = t . However, since s = t ∈ ∆ω this would mean that the limit

sequent Γω ⇒ ∆ω is cut-free provable, which contradicts Lemma 4.12. We thus conclude that in

factMω , ρω ̸ |= s = t .

The cases where ψ is a standard compound first-order formula follow straightforwardly by

induction.

In caseψ = (RTCx,y φ) (s, t), we reason as follows.

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 12 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Non-well-founded Proof Theory of Transitive Closure Logic :13

• For the first part of the lemma assume (RTCx,y φ) (s, t) ∈ Γω . Then, by the construction of Tω ,
there is at least one occurrence of rule (4) with active formulaψ in the untraceable branch; thus

there are two cases:

i) The branch follows the left-hand premise, so there is s = t ∈ Γω . Therefore, by Definition 4.15,

ρω (s) = ρω (t) and so it follows immediately from Definition 2.2 thatMω , ρω |= (RTCx,y φ) (s, t).

ii) The branch follows the right-hand premise and so there is some variable z1 such that both

(RTCx,y φ) (s, z1) ∈ Γω and φ
{
z1

x ,
t
y

}
∈ Γω . Again, by the construction of Tω , the branch must

subsequently traverse an instance of rule (4) now with (RTCx,y φ) (s, z1) as the principal formula.

In fact, since there is no infinitely progressing trace along the untraceable branch, it must traverse

only a finite number of instances of rule (4) for which the principal formula is connected via a

trace to the formula (RTCx,y φ) (s, t). Thus there are a finite number of distinct variables z1, . . . , zn
(n > 0) with φ

{
z1

x ,
t
y

}
∈ Γω , φ

{
zi+1

x ,
zi
y

}
∈ Γω , for each i < n, and (RTCx,y φ) (s, z1) ∈ Γω , where

the untraceable branch traverses the left-hand branch of an instance of rule (4) with the latter

formula as principal from which it follows that also s = zn ∈ Γω . By the inductive hypothesis

Mω , ρω |= φ
{
z1

x ,
t
y

}
, and Mω , ρω |= φ

{
zi+1

x ,
zi
y

}
for each i < n. So Mω , ρω [x := [z1],y := [t]] |= φ,

andMω , ρω [x := [zi+1],y := [zi]] |= φ for each i < n. Moreover, since s = zn ∈ Γω , we have that
ρω (s) = ρω (z1) = [z1]. We then have from Definition 2.2 thatMω , ρω |= ψ .

• For the second part of the lemma we first prove, by an inner induction on n, the following
auxiliary result for all terms s and t and elements a0, . . . ,an ∈ D (n > 0):

if (RTCx,y φ) (s, t) ∈ ∆ω , with ρω (s) = a0 and ρω (t) = an , then there exists some i < n such

thatMω , ρω [x := ai ,y := ai+1] ̸ |= φ.

(n = 1): Since (RTCx,y φ) (s, t) ∈ ∆ω , we have φ
{
s
x ,

t
y

}
∈ ∆ω by construction as the untraceable

branch must traverse an instance of rule (2) with r ≡ s and moreover must traverse the right-hand

premise (otherwise, we would have (RTCx,y φ) (s, s) ∈ ∆ω resulting in the branch being closed by

an instance of rule (1)). Thus by the outer induction it follows thatMω , ρω ̸ |= φ
{
s
x ,

t
y

}
and thence

thatMω , ρω [x := ρω (s),y := ρω (t)] ̸ |= φ as required.

(n = k + 1, k > 0): Then there exists some term r such that ak = [r] = ρω (r). If (RTCx,y φ) (s, t) ∈
∆ω , then by construction of the search tree Tω we also have that either (RTCx,y φ) (s, r) ∈ ∆ω or

φ
{
r
x ,

t
y

}
∈ ∆ω , as the untraceable branch must traverse an instance of rule (2) for the term r . In the

case of the former, the required result holds by the inner induction. In the case of the latter, we have

Mω , ρω ̸ |= φ
{
r
x ,

t
y

}
by the outer induction and thence that Mω , ρω [x := ρω (r),y := ρω (t)] ̸ |= φ;

i.e.Mω , ρω [x := ak ,y := ak+1] ̸ |= φ as required.

We now show that the primary result holds. Assume (RTCx,y φ) (s, t) ∈ ∆ω and suppose for

contradiction thatMω , ρω |= (RTCx,y φ) (s, t) holds. Thus, by Definition 2.2, there are two cases to

consider.

– If ρω (s) = ρω (t) then s ∼ t . Thus since we may derive Γω ⇒ (RTCx,y φ) (s, s) by applying rule

(1), by Lemma 4.14 there must also be a cut-free proof of Γω ⇒ (RTCx,y φ) (s, t). However, since
(RTCx,y φ) (s, t) ∈ ∆ω this would imply that Γω ⇒ ∆ω is cut-free provable, which contradicts

Lemma 4.12.

– Otherwise, there are a0, . . . ,an ∈ D (n > 0) such that ρω (s) = a0, ρω (t) = an and Mω , ρω [x :=

ai ,y := ai+1] |= φ for each i < n. However this directly contradicts the auxiliary result proved

above.

In both cases, we have derived a contradiction, and so we conclude thatMω , ρω ̸ |= (RTCx,y φ) (s, t)
as required. □

2020-04-05 19:33. Page 13 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

:14 Liron Cohen and Reuben N. S. Rowe

The completeness result therefore follows since, by construction, a sequent S is contained within

its corresponding limit sequents.

Theorem 4.17 (Completeness). RTCωG is complete for standard semantics.

Proof. Now given any sequent S , if some search tree Tω contracted for S is not an RTCωG proof

then it follows from Lemma 4.16 that S is not valid (Mω is a counter model for it). Thus if S is valid,

then Tω is a recursive RTCωG proof for it. □

We obtain admissibility of cut for the full infinitary system as the search tree Tω is cut-free.

Corollary 4.18 (Cut admissibility). Cut is admissible in RTCωG .

4.3 The Proof System CRTCωG
In general, one cannot reason effectively about infinite proofs as in RTCωG . In order to do so we need

to restrict our attention to those proof trees which are finitely representable. These are the regular
infinite proof trees, which contain only finitely many distinct subtrees. They can be specified as

systems of recursive equations or, alternatively, as cyclic graphs [19]. Note that a given regular

infinite proof may have many different graph representations. One possible way of formalizing

such proof graphs is as standard proof trees containing open nodes (called buds), to each of which

is assigned a syntactically equal internal node of the proof (called a companion).

The cyclic proof system CRTCωG for LRTC is (essentially) the subsystem of RTCωG comprising of

all and only the finite and regular infinite proofs (i.e. those proofs that can be represented as finite,

possibly cyclic, graphs).

Definition 4.19 (Cyclic Proofs). A CRTCωG pre-proof is a pair ⟨P , f ⟩, where P is a finite derivation

tree formed using the inference rules of RTCωG and f is a function assigning a companion to every

bud node in P . The graph associated with a pre-proof is the one induced by P by identifying each

bud node with its companion. A CRTCωG proof is then a CRTCωG pre-proof whose graph satisfies

the global trace condition, i.e., every infinite path is followed by some infinitely progressing trace.

It is decidable whether a cyclic pre-proof satisfies the global trace condition, using a construction

involving an inclusion between Büchi automata (see, e.g., [9, 34]). However since this requires

complementing Büchi automata (a PSPACE procedure), our system cannot be considered a proof

system in the Cook-Reckhow sense [18]. The problem of deciding whether the global trace condition

holds for a cyclic proofs in a fragment of linear logic with fixed points has in fact recently been

shown to be PSPACE-complete [30]. We also think it likely that a similar technique will serve to

give similar lower bounds for our system, as well as others. Notwithstanding, checking the trace

condition for cyclic proofs found in practice is not prohibitive [32, 37].

Since every CRTCωG proof is also a RTCωG proof, soundness of CRTCωG is an immediate corollary

of Theorem 4.8.

Corollary 4.20 (Soundness of CRTCωG). If there is a CRTCωG proof of Γ ⇒ ∆, then Γ ⇒ ∆ is
valid (w.r.t. the standard semantics).

Notice that the construction of Definition 4.10 does not necessarily produce CRTCωG pre-proofs,

and so we do not obtain a completeness result using this technique. Indeed, since one may encode

arithmetic in TC and the set ofCRTCωG proofs is recursively enumerable,CRTCωG cannot be complete

w.r.t. the standard semantics. In Section 6 below we show that CRTCωG subsumes RTCG , which

entails its Henkin-completeness. However, the question of whether CRTCωG is sound w.r.t. Henkin

semantics remains open.

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 14 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Non-well-founded Proof Theory of Transitive Closure Logic :15

5 VARIANTS OF LRTC

We now present two important variants of TC logic—one with an assumed pairing function, and

one without a designated equality symbol—and show how the theory of the previous sections

extends to them.

5.1 LRTC with Pairs
To obtain full inductive expressivity we must allow the formation of the transitive closure of not

only binary relations, but any 2n-ary relation. In [2] it was shown that taking a 2n-ary operator

RTCn
for every n ≥ 1 results in a more expressive logic, namely one that captures all finitary

first-order definable inductive definitions and relations. However one may argue that, from a proof

theoretical point of view, having infinitely many such operators is sub-optimal: the language is no

longer generated using a finite signature and proof systems must also contain an infinite number

of rule schemata.

Instead, we incorporate the notion of ordered pairs and use it to encode such operators. For

example, writing ⟨x ,y⟩ for the application of the pairing function ⟨⟩(x ,y), the 2n-ary RTC-formula

(RTC2

x1,x2,y1,y2

φ) (s1, s2, t1, t2) can be encoded by:

(RTCx,y ∃x1,x2,y1,y2 . x = ⟨x1,x2⟩ ∧ y = ⟨y1,y2⟩ ∧ φ) (⟨s1, s2⟩, ⟨t1, t2⟩)

Accordingly, we may assume languages that explicitly contain a pairing function, providing that we

(axiomatically) restrict to structures that interpret it as such (i.e. the admissible structures). For such
languages we can consider two induced semantics: admissible standard semantics and admissible

Henkin semantics, obtained by restricting the (first-order part of the) structures to be admissible.

The proof systems we have considered above can be extended to capture ordered pairs as follows.

Definition 5.1. For a signature containing at least one constant c , and a binary function symbol

denoted by ⟨⟩, the proof systems ⟨RTC⟩G , ⟨RTC⟩
ω
G , and ⟨CRTC⟩

ω
G are obtained from RTCG , RTCωG ,

CRTCωG (respectively) by the addition of the following rules:

Γ ⇒ ⟨x ,y⟩ = ⟨u,v⟩,∆

Γ ⇒ x = u ∧ y = v,∆ Γ, ⟨x ,y⟩ = c ⇒ ∆

The proofs of Theorems 3.2 and 4.17 can easily be extended to obtain the following results

for languages with a pairing function. For completeness, the key observation is that the model

comprising the counter-interpretation is one in which every binary function is a pairing function.

That is, the interpretation of any binary function is such that satisfies the standard pairing axioms.

Therefore, the model of the counter-interpretation is an admissible structure.

Theorem 5.2 (Soundness and Completeness of ⟨RTC⟩G and ⟨RTC⟩ωG). The proof systems
⟨RTC⟩G and ⟨RTC⟩ωG are both sound and complete for the admissible forms of Henkin and standard
semantics, respectively.

5.2 LRTC without Equality
For the sake of simplicity of presentation we have thus far included a designated equality symbol

in the language LRTC. Nonetheless, under both the standard semantics and Henkin semantics for

the language, the equality relation is definable and thus there is no need to explicitly include it

in our languages. The proof-theoretic results obtained in the previous sections for languages that

do assume an equality symbol can be adapted without too much difficulty to hold for languages

without equality. This is a noteworthy added degree of expressivity over other logics.

2020-04-05 19:33. Page 15 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

:16 Liron Cohen and Reuben N. S. Rowe

5.2.1 Adaptations of the Language and Proof Rules. We remove s = t as atomic formulas of the

language, and instead include a constant ⊥, whose interpretation is defined such that M,v |= ⊥
never holds.

4
For the Henkin semantics, we must also add to the parametric closure condition in

the definition of Henkin structures (Definition 2.5) the requirement that {a} ∈ D for all a ∈ D.
This is to ensure that Henkin models are fine-grained enough to allow individual elements to be

distinguished via formula-definability. Equality is then definable under both semantics by:

s = t := (RTCx,y ⊥) (s, t). (5)

We also modify the proof systems slightly by removing the three equality rules of LK = and instead

including the following rule:

(⊥)
⊥ ⇒

While the rules pertaining to RTC formulas in the finitary system remain unchanged, cf. Rules (1)

to (3), in the infinitary systems Rule (4) is reformulated as follows

Γ′
{
s
v ,

t
w

}
⇒ ∆′

{
s
v ,

t
w

}
Γ, (RTCx,y φ) (s, z),φ

{
z
x ,

t
y

}
⇒ ∆

Γ, (RTCx,y φ) (s, t) ⇒ ∆
(6)

where z is fresh, i.e. z does not occur free in Γ, ∆, or (RTCx,y φ) (s, t); and Γ′ and ∆′ are such that

Γ = Γ′
{
t
v ,

s
w

}
and ∆ = ∆′

{
t
v ,

s
w

}
. This formulation essentially combines the RTC case-split rule with

the equality rules: in the left-hand premise, corresponding to the case that s = t , we may swap

occurrences of s in the context for t , and vice-versa. As a consequence, the definition of trace pairs

for this rule becomes slightly more complex.

Definition 5.3 (Trace Pairs for LRTC without Equality). Let τ and τ ′ be RTC formulas occurring in

the left-hand side of the conclusion s and a premise s ′, respectively, of (an instance of) an inference

rule. (τ ,τ ′) is said to be a trace pair for (s, s ′) if the rule is:

• the (Subst) rule, and τ = τ ′θ where θ is the substitution associated with the rule instance;

• Rule (6), and either:

a) τ is the principal formula of the rule instance and τ ′ is the immediate ancestor of τ , in
which case we say that the trace pair is progressing;

b) s ′ is the right-hand premise and τ = τ ′; or
c) s ′ is the left-hand premise and τ ′ = τ ′′

{
s
v ,

t
w

}
for some τ ′′ ∈ Γ′.5

• any other rule, and τ = τ ′.

The proof of soundness (Theorem 4.8) can be trivially adapted for this modified infinitary system.

5.2.2 Derivability of the Equality Rules. In these variations of both the finitary and infinitary

systems, the equality rules of LK = become derivable using the RTC-defined equality. Rule (=R) is

derivable since t = t stands for (RTCx,y ⊥) (t , t), which is provable using Rule (1). In the finitary

variation, Rule (=L1) is derivable as follows:

Γ ⇒ ∆, ψ
{
s
x

}
Γ, ψ , ⊥ ⇒ ∆, ψ

{ y
x

} (⊥+WL+WR)

Γ, ψ
{
s
x

}
, (RTCx,y ⊥) (s, t) ⇒ ∆, ψ

{
t
x

} (3)

Γ, (RTCx,y ⊥) (s, t) ⇒ ∆, ψ
{
t
x

} (Cut)

and Rule (=L2) is derived dually, as follows:

4
Note that the inclusion of ⊥ is itself also only a notational convenience since it may be encoded via any contradiction.

5
Here, Γ′, v , w , s and t refer to the instantiations of these same meta-variables appearing in the schema of Rule (6).

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 16 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Non-well-founded Proof Theory of Transitive Closure Logic :17

Γ, ψ
{
s
x

}
⇒ ∆, ψ

{
s
x

} (Ax+WL+WR)

Γ ⇒ ∆, ψ
{
s
x

}
, ¬ψ

{
s
x

} (¬R)
Γ, ψ , ⊥ ⇒ ∆, ψ

{ y
x

} (⊥+WL+WR)

Γ, ¬ψ
{
s
x

}
, (RTCx,y ⊥) (s, t) ⇒ ∆, ¬ψ

{
t
x

} (3)

Γ, (RTCx,y ⊥) (s, t) ⇒ ∆, ψ
{
s
x

}
, ¬ψ

{
t
x

} (Cut)
Γ ⇒ ∆, ψ

{
t
x

}

Γ, ¬ψ
{
t
x

}
⇒ ∆

(¬L)

Γ, (RTCx,y ⊥) (s, t) ⇒ ∆, ψ
{
s
x

} (Cut)

In the infinitary variations, both Rule (=L1) and Rule (=L2) are simply instances of Rule (6). For

example, Rule (=L1) is derivable as follows:

Γ ⇒ ∆, ψ
{
s
x

}
Γ, (RTCx,y ⊥) (s, z), ⊥ ⇒ ∆, ψ

{
t
x

} (⊥+WL+WR)

Γ, (RTCx,y ⊥) (s, t) ⇒ ∆, ψ
{
t
x

} (6)

where the only occurrences of t in the context of the conclusion that are swapped for s in the

left-hand premise are those in the formulaψ (and no occurrences of s in the conclusion are swapped

for t). Rule (=L2) is derived symmetrically.

5.2.3 Completeness. The adaptation of the completeness proof for the finitary variation is

standard. Completeness of the infinitary system follows from the fact that, in addition to the

equality rules derived above, we can also derive the original form of the case-split rule as follows.

(1)

⇒ (RTCx,y ⊥) (s, s)

Γ, (RTCx,y ⊥) (s, t) ⇒ ∆

Γ, (RTCx,y φ) (s, z), φ
{
z
x ,

t
y

}
⇒ ∆

(WL)

Γ, (RTCx,y ⊥) (s, s), (RTCx,y φ) (s, z), φ
{
z
x ,

t
y

}
⇒ ∆

(6)

Γ, (RTCx,y ⊥) (s, s), (RTCx,y φ) (s, t) ⇒ ∆
(Cut)

Γ, (RTCx,y φ) (s, t) ⇒ ∆

Notice that this uses a cut, so we do not obtain cut-free completeness this way. The technique

used in Section 4.2 to show cut-admissibility of RTCωG does not immediately apply in the setting

without equality since the limit sequent no longer contains formulas explicitly witnessing equalities

between terms. Although we believe the technique can be adapted for the case without explicit

equality, since this is tangential to our main contributions we leave this for future work.

6 RELATING THE FINITARY AND INFINITARY PROOF SYSTEMS
This section discusses the relation between the explicit and the cyclic system for TC. In Section 6.1

we show that the former is contained in the latter. The converse direction, which is much more

subtle, is discussed in Section 6.2.

6.1 Inclusion of RTCG in CRTCωG
Provability in the explicit induction system implies provability in the cyclic system. The key

property is that we can derive the explicit induction rule in the cyclic system, as shown in Figure 2.

Lemma 6.1. Rule (3) is derivable in CRTCωG .

This leads to the following result (an analogue to [11, Theorem 7.6]).

Theorem 6.2. CRTCωG ⊇ RTCG , and is thus complete w.r.t. Henkin semantics.

Proof. Let P be a proof in RTCG and P ′ be the corresponding pre-proof in CRTCωG obtained

by replacing each instance of Rule (3) by the corresponding instance of the proof schema given in

Lemma 6.1. We argue that P ′ is a valid CRTCωG proof. Since the only cycles in P ′ are internal to

the subproofs that simulate Rule (3), any infinite path in P ′ must eventually end up traversing one

of these cycles infinitely often. Therefore, it suffices to show that there is an infinitely progressing

2020-04-05 19:33. Page 17 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

:18 Liron Cohen and Reuben N. S. Rowe

(WL,WR,Ax)

Γ,ψ
{
v
x

}
⇒ ∆,ψ

{
v
x

}

(=L1)

Γ,ψ
{
v
x

}
,v = w ⇒ ∆,ψ

{
w
x

}
.
.
.
.
.
.
.
.

Γ,ψ
{
v
x

}
, (RTCx,y φ) (v,w) ⇒ ∆,ψ

{
w
x

}

(Subst)

Γ,ψ
{
v
x

}
, (RTCx,y φ) (v, z) ⇒ ∆,ψ

{
z
x

}
Γ,ψ ,φ ⇒ ∆,ψ

{ y
x

}

(Subst)

Γ,ψ
{
z
x

}
,φ

{
z
x ,

w
y

}
⇒ ∆,ψ

{
w
x

}

(Cut)

Γ,ψ
{
v
x

}
, (RTCx,y φ) (v, z),φ

{
z
x ,

w
y

}
⇒ ∆,ψ

{
w
x

}

(4)

Γ,ψ
{
v
x

}
, (RTCx,y φ) (v,w) ⇒ ∆,ψ

{
w
x

}

(Subst)

Γ,ψ
{
s
x

}
, (RTCx,y φ) (s, t) ⇒ ∆,ψ

{
t
x

}

Fig. 2. CRTCωG derivation simulating Rule (3). The variables v andw are fresh (i.e. not free in Γ, ∆, φ, orψ).

trace following each such path. This is clearly the case since we can trace the active RTC formulas

along these paths, which progress once each time around the cycle, across Rule (4). □

Lemma 6.1 is the TC counterpart of [11, Lemma 7.5]. It is interesting to note that the simulation

of the explicit LKID induction rule in the cyclic LKID system is rather complex since each predicate

has a slightly different explicit induction rule, which depends on the particular productions defining

it. Thus, the construction for the cyclic LKID system must take into account the possible forms

of arbitrary productions. In contrast, CRTCωG provides a single, uniform way to unfold an RTC
formula: the construction given in Fig. 2 is the cyclic representation of the RTC operator semantics,

with the variables v and w implicitly standing for arbitrary terms, which we then subsequently

substitute for the particular terms begin reasoned over.

This uniform syntactic translation of the explicit RTCG induction rule into CRTCωG allows us

to syntactically identify a proper subset of cyclic proofs which is also complete w.r.t. Henkin

semantics.
6
The criterion we use is based on the notion of overlapping cycles. Recall the definition

of a basic cycle, which is a path in a (proof) graph starting and ending at the same point, but

containing no other repeated nodes. We say that two distinct basic cycles (i.e. ones not identical

up to cyclic permutation) overlap if they share any nodes in common; that is, at some point they

both traverse the same path in the graph. We say that a cyclic proof is non-overlapping whenever

no two distinct basic cycles it contains overlap. The restriction to non-overlapping proofs has an

advantage for automation, since one has only to search for cycles in one single branch.

Definition 6.3 (Normal Cyclic Proofs). The normal cyclic proof system NCRTCωG is the subsystem

of RTCωG comprising of all and only the non-overlapping cyclic proofs.

The following theorem is immediate due to the fact that the translation of an RTCG proof into

CRTCωG , using the construction shown in Figure 2, results in a proof with no overlapping cycles.

Theorem 6.4. NCRTCωG ⊇ RTCG .

Henkin-completeness of the normal cyclic system then follows fromTheorem 6.4 and Theorem 3.2.

6.2 Inclusions of CRTCωG in RTCG

This section addresses the question of whether the cyclic system is equivalent to the explicit one,

or strictly stronger. In [11] it was conjectured that for the system with inductive definitions, LKID
6
Note that it is not clear that a similar complete structural restriction is possible for LKID.

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 18 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Non-well-founded Proof Theory of Transitive Closure Logic :19

and CLKIDω
are equivalent. Later, it was shown that they are indeed equivalent when containing

arithmetics [7, 34]. We obtain a corresponding theorem in Section 6.2.1 for the TC systems. However,

it was also shown in [6] that in the general case the cyclic system is stronger than the explicit one.

We discuss the general case for TC and its subtleties in Section 6.2.2.

6.2.1 The Case of Arithmetics. Herewe show equivalence of the systemsRTCG+A andCRTCωG+A
for languages LRTC based on the signature {0, s,+}, obtained by adding to RTCG and CRTCωG ,
respectively, the standard axioms of Peano arithmetic (PA) together with the RTC characterization

of the natural numbers
7
, i.e.:

i) sx = 0⇒

ii) sx = sy ⇒ x = y
iii) ⇒ x + 0 = x
iv) ⇒ x + sy = s(x + y)
v) ⇒ (RTCw,u sw = u) (0,x)

Note that we do not need to assume multiplication explicitly in the signature, nor add axioms for it,

since multiplication is definable in LRTC and its standard axioms are derivable in RTCG+A [2, 16]

and thus also in CRTCωG+A. In the presence of pairs, addition is also definable in LRTC for languages

based on the signature {0, s}, and corresponding versions of axioms (iii) and (iv) are derivable.

Furthermore, recall that we can express facts about sequences of numbers in PA by using a

β-function such that for any finite sequence k0,k1, ...,kn there is some c such that for all i ≤ n,
β (c, i) = ki . Accordingly, let B be a well-formed formula of the language of PA with three free

variables which captures in PA a β-function. The β-translation of a formula φ in LRTC is defined

inductively. For atomic formulas φβ = φ, the translation is homomorphic with respect to the

first-order logical connectives, and for RTC-formulas ((RTCx,y φ) (s, t))
β
is defined as:

s = t ∨
(
∃z, c . B (c, 0, s) ∧ B (c, sz, t) ∧

(
∀u ≤ z . ∃v,w . B (c,u,v) ∧ B (c, su,w) ∧ φβ

{
v
x ,

w
y

}))
.

Proof Outline. We demonstrate the equivalence of RTCG+A and CRTCωG+A in two stages.

First, we use a result from [13, 16] that RTCG+A is equivalent to Gentzen’s system PAG for Peano

arithmetic, modulo translation via the β-function. It is mainly based on the fact that in RTCG+A all

instances of the PAG induction rule are derivable.

Theorem 6.5 (cf. [16]). The following hold.
(1) ⊢RTCG+A φ ⇔ φβ .
(2) ⊢RTCG+A Γ ⇒ ∆ iff ⊢PAG Γβ ⇒ ∆β .

Secondly we show that, also modulo translation via the β-function, CRTCωG+A is equivalent

to Simpson’s Gentzen-style cyclic system CAG for arithmetic. Simpson’s result [34] that CAG is

equivalent to PAG provides the final link in the chain. This is summarised in Fig. 3 below.

Cyclic Arithmetic. We reprise the salient details of the cyclic system CAG for arithmetic

introduced in [34]. Sequents Γ ⇒ ∆ of CAG consist of sets Γ and ∆ of formulas of the language

over the signature {0, s,+, ·, <,=}. Pre-proofs of CAG are the regular, non-wellfounded derivation

trees formed using the standard inference rules of Gentzen’s system LK (with substitution), as

well as the following inference rules

(Eq):

Γ
{
u
x ,

t
y

}
⇒ ∆

{
u
x ,

t
y

}

Γ
{
t
x ,

u
y

}
, t = u ⇒ ∆

{
t
x ,

u
y

} (Ind):

Γ, t = sx ⇒ ∆
x is fresh

Γ, 0 < t ⇒ ∆

7
Axioms are added as new inference rules without any premises.

2020-04-05 19:33. Page 19 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

:20 Liron Cohen and Reuben N. S. Rowe

⊢RTCG+A Γ ⇒ ∆

⊢PAG Γβ ⇒ ∆β ⊢CAG Γβ ⇒ ∆β

⊢CRTCωG+A Γ ⇒ ∆

Theorem 6.5(2)

Simpson [34]

Lemma 6.10Lemma 6.13

Theorem 6.15

Fig. 3. The structure of the equivalence proof for RTCG+A and CRTCωG+A.

and the following axiom schemas:

t < u,u < v ⇒ t < v

t < u,u < t ⇒

t < u,u < st ⇒

t < 0⇒

t < u ⇒ st < su
⇒ t < st
⇒ t < u, t = u,u < t

⇒ t + 0 = t

⇒ t + su = s(t + u)
⇒ t · 0 = 0

⇒ t · su = (t · u) + t

Traces of CAG consist of terms, rather than formulas as in CRTCωG . If sequents S and S ′ are the
conclusion and premise, respectively, of a CAG inference rule, and t and t ′ are terms occurring,

respectively, in S and S ′ (possibly as subterms), then we say that t ′ is a precursor of t when the

following holds:

– if S and S ′ are the conclusion and premise of an instance of the (Subst) rule, then t = t ′θ ,
where θ is the substitution applied in the rule instance;

– if S and S ′ are the conclusion and premise of an instance of the (Eq) rule with principal

formula u = v , then t = t ′′
{
u
x ,

v
y

}
and t ′ = t ′′

{
v
x ,

u
y

}
for some term t ′′; and

– if S and S ′ are the conclusion and premise of an instance of any other rule, then t ′ = t .

A pair of terms (t , t ′) is a CAG trace pair for (S, S ′) if either t ′ is a precursor of t or there is a

formula t ′ < t ′′ in the antecedent of S ′ with t ′′ a precursor of t . In the latter case, the trace pair is

called progressing. We say that a CAG trace t0, t1, . . . (, tn) follows a path S0, S1, . . . (, Sm) in a CAG
pre-proof when there is some k ≥ 0 such that (ti , ti+1) is a trace pair for (Si+k , Si+k+1), for all i ≥ 0.

A CAG proof is a pre-proof in which every infinite path is followed by a trace containing infinitely

many progressing trace pairs.

Inclusion of CAG in CRTCωG+A. We give a translation of CAG proofs into CRTCωG+A proofs.

Since CRTCωG subsumes RTCG in the general case (Theorem 6.2), this translation is not actually

necessary to prove the main result of this section (Theorem 6.15). However we show the inclusion

of CAG in CRTCωG+A as part of a proof of the equivalence of CAG and CRTCωG+A, which stands

as an interesting result in its own right. This provides a fuller picture, mirroring the equivalence

between PAG and RTCG+A, and establishes a correlation between the different forms of tracing in

the two systems: namely via terms and via formulas.

Technically, the signature of CAG includes the relation symbol < for strict ordering, and the

function symbol ‘ · ’ for multiplication. As mentioned above, multiplication (and its axioms) are

derivable in RTCG+A. The strict ordering on natural numbers s < t is definable in LRTC as

s , t ∧ (RTCx,y sx = y) (s, t), and its standard axioms are also derivable in RTCG+A. Therefore,
in the following result, we implicitly assume that all CAG terms of the form s · t and s < t are
translated in CRTCωG into their defining formulas in LRTC.

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 20 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Non-well-founded Proof Theory of Transitive Closure Logic :21

We call an occurrence of a (sub)term free if it does not contain any variables bound by quantifiers

under whose scope it occurs.

Definition 6.6 ([·]∗X -translation). Let X be a finite set of variables, and fix an injection, ·̂, from

the set of terms into the set of variablesV \ X . Then, for a set of formulas Γ, define Γ∗X to be the

smallest set satisfying Γ ⊆ Γ∗X and, for all free (sub)terms t occurring in formulas in Γ, t = t̂ ∈ Γ∗X
and (RTCx,y sx = y) (0, t̂) ∈ Γ∗X . For S = Γ ⇒ ∆, we define S∗X = Γ∗X ⇒ ∆.

To prove the inclusion, notice that it suffices to prove that ifX is the set of free variables occurring

in a CAG proof of Γ ⇒ ∆ then there is a CRTCωG+A proof of Γ∗X ⇒ ∆. Thence we may obtain

a CRTCωG+A proof of Γ ⇒ ∆ by cutting all the added formulas (RTCx,y sx = y) (0, t̂) in Γ∗X using

instances of axiom (v), then introducing existential quantifiers binding all variables t̂ and cutting

the resulting formulas ∃z.t = z.
The key to this is showing that the [·]∗X -translations of the CAG axioms and inference rules

are derivable in CRTCωG+A in such a way that (progressing) CAG trace pairs are simulated by

(progressing) CRTCωG traces.

Lemma 6.7. Let S and S1, . . . , Sn be the conclusion and the premises, respectively, of an instance
of a CAG inference rule or axiom, and X a superset of the set of free variables occurring therein. The
following inference rule is derivable in CRTCωG+A

(S1)
∗
X . . . (Sn)

∗
X

(S)∗X

such that the following hold.
1. If t ′ is a precursor (in Si) of t (in S) then each path in the derived inference rule from the

conclusion to the premise corresponding to Si is followed by a CRTCωG trace starting with the
formula (RTCx,y sx = y) (0, t̂) and ending with the formula (RTCx,y sx = y) (0, t̂ ′). Furthermore,
all infinite paths in the derived inference rule are followed by infinitely progressing (CRTCωG)
traces.

2. If (t , t ′) is a (progressing) CAG trace pair for (S, Si) then each path in the derived inference
rule from the conclusion to the premise corresponding to Si is followed by a (progressing)
CRTCωG trace starting with the formula (RTCx,y sx = y) (0, t̂) and ending with the formula
(RTCx,y sx = y) (0, t̂ ′).

Proof. The axioms ofCAG can be derived straightforwardly using axioms (i) to (v) and reasoning

inductively (i.e. with cycles) over the RTC definition of the ordering relation <. For axiomatic rules

the properties (1) and (2) hold trivially: there are no precursors or trace pairs since there are no

premises.

For non-axiomatic rules, we build the required derivations in two stages. Firstly the (Eq) rule

and standard LK inference rules can be applied directly to the [·]∗X -translations, and cuts used to

introduce formulas (RTCx,y sx = y) (0, t̂) and t = t̂ in the antecedents of the premises for any new

terms t that appear there. The (Ind) rule may be derived using an instance of Rule (4) that unfolds

the RTC-formula in the translation of 0 < t . Property (1) immediately holds, since we can trace

occurrences of formulas (RTCx,y sx = y) (0, t̂) in the conclusion to their ancestors in the premises.

Secondly, to show that property (2) holds, for each premise we construct a further derivation

containing progressing CRTCωG traces simulating each CAG progressing trace pair. That is, for each

pair of terms t and t ′ with t ′ < t occurring in the premise, the subderivation contains progressing

traces between formulas (RTCx,y sx = y) (0, t̂) and (RTCx,y sx = y) (0, t̂ ′). The schema for these

subderivations is shown in Figs. 4 and 5, where (for a term u) the notation Nu abbreviates the

2020-04-05 19:33. Page 21 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

:22 Liron Cohen and Reuben N. S. Rowe

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 = t̂ ⇒ 0 = t̂
(Ax)

t = t̂ , 0 = t̂ ⇒ 0 = t
(=L2)

Fig. 5a

.

.

.

.

t ′ < z, t ′ = t̂ ′,N t̂ ′, 0 = z ⇒

t ′ < t , t ′ = t̂ ′,N t̂ ′, 0 = t ⇒
(Subst)

t ′ < t , t ′ = t̂ ′,N t̂ ′, t = t̂ , 0 = t̂ ⇒
(Cut)

Γ, t ′ < t , t ′ = t̂ ′,N t̂ ′, t = t̂ , 0 = t̂ ⇒ ∆
(WL/WR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

sz = t̂ ⇒ sz = t̂
(Ax)

t = t̂ , sz = t̂ ⇒ sz = t
(=L2)

Fig. 5b

.

.

.

.

t ′ < z, sz ′ = z ⇒ t ′ = z ′ ∨ t ′ < z ′

t ′ < t , sz = t ⇒ t ′ = z ∨ t ′ < z
(Subst)

t ′ < t , t = t̂ , sz = t̂ ⇒ t ′ = z ∨ t ′ < z
(Cut)

(∗) Γ, t ′ < t , t ′ = t̂ ′, t = t̂ ,N t̂ , N t̂ ′ ⇒ ∆

Γ, t ′ < t , t ′ = z, t = t̂ ,N t̂ , N z ⇒ ∆
(Subst)

Γ, t ′ < t , t ′ = z, t ′ = t̂ ′,N t̂ ′, t = t̂ ,N t̂ , N z ⇒ ∆
(WL)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 5a

.

.

.

.

t ′ < z, t ′ = t̂ ′,N t̂ ′, 0 = z ⇒

Γ, t ′ < t , t ′ < z, t ′ = t̂ ′,N t̂ ′, t = t̂ ,N t̂ , 0 = z ⇒ ∆
(WL)

.

.

.

.

.

.

.

.

Fig. 5b

.

.

.

.

t ′ < z, sz ′ = z ⇒ t ′ = z ′ ∨ t ′ < z ′

Γ, t ′ < t , t ′ = z ∨ t ′ < z, t ′ = t̂ ′,N t̂ ′, t = t̂ ,N t̂ , N z ⇒ ∆

Γ, t ′ < t , t ′ = z ′ ∨ t ′ < z ′, t ′ = t̂ ′,N t̂ ′, t = t̂ ,N t̂ , N z ′ ⇒ ∆
(Subst)

Γ, t ′ < t , t ′ < z, t ′ = t̂ ′,N t̂ ′, t = t̂ ,N t̂ , N z ′ , sz ′ = z ⇒ ∆
(Cut)

Γ, t ′ < t , t ′ < z, t ′ = t̂ ′,N t̂ ′, t = t̂ ,N t̂ , N z ⇒ ∆
(4)

Γ, t ′ < t , t ′ = z ∨ t ′ < z, t ′ = t̂ ′,N t̂ ′, t = t̂ ,N t̂ , N z ⇒ ∆
(∨L)

Γ, t ′ < t , t ′ = t̂ ′,N t̂ ′, t = t̂ ,N t̂ , N z , sz = t̂ ⇒ ∆
(Cut)

Γ, t ′ < t , t ′ = t̂ ′,N t̂ ′, t = t̂ , N t̂ ⇒ ∆
(4)

Fig. 4. A derivation schema simulating a CAG trace progression point in CRTCωG+A.

RTC-formula (RTCx,y sx = y) (0,u) and the symbols †, ‡ and✠ (in Fig. 5) denote straightforward

CRTCωG proofs of the ∗-translations of the appropriate axioms. Fig. 4 presents the core of the

derivation, and Fig. 5 presents auxiliary subderivations. The CAG progression point from t to t ′ is
simulated by the CRTCωG traces consisting of the boxed formulas in Fig. 4, following paths from

the conclusion to the premise (marked with ∗). These traces progress at the point indicated by the

doubly boxed formula. Thus, in the resulting CRTCωG derivation, each CAG trace pair (consisting

of terms) is simulated by CRTCωG traces (consisting of formulas). □

This allows us to construct a global translation of CAG proofs into CRTCωG+A proofs.

Lemma 6.8. If ⊢CAG Γ ⇒ ∆ then ⊢CRTCωG+A Γ ⇒ ∆.

Proof. Take a CAG proof P of Γ ⇒ ∆. Let X be the set of variables occurring free in the

sequents appearing in P. By Lemma 6.7(2), it follows that we can transform a CAG pre-proof, via

the [·]∗X -translation of each rule, into a CRTCωG+A pre-proof with the same global structure. It

remains to show that each suchCRTCωG+A pre-proof resulting from aCAG proof is also aCRTCωG+A
proof. That is, it satisfies the CRTCωG global trace condition. Consider an arbitrary infinite path in

the CRTCωG+A pre-proof. There are two cases to consider:

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 22 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Non-well-founded Proof Theory of Transitive Closure Logic :23

t ′ < z ⇒ t ′ < z
(Ax)

t ′ < z, 0 = z ⇒ t ′ < 0

(=L2)

⇒ 0 = 0
(=R)

⇒ N 0

(1)

⇒ 0 = 0 ∧ N 0

(∧R)

⇒ ∃x .0 = x ∧ Nx
(∃R)

†
.
.
.
.

t ′ < 0, t ′ = t̂ ′,N t̂ ′, 0 = 0̂,N 0̂⇒

t ′ < 0, t ′ = t̂ ′,N t̂ ′, 0 = 0̂ ∧ N 0̂⇒
(∧L)

t ′ < 0, t ′ = t̂ ′,N t̂ ′,∃x .0 = x ∧ Nx ⇒
(∃L)

t ′ < 0, t ′ = t̂ ′,N t̂ ′ ⇒
(Cut)

t ′ < z, t ′ = t̂ ′,N t̂ ′, 0 = z ⇒
(Cut)

(a) Subderivation leading to CRTCωG+A simulation of axiom t ′ < 0⇒ .

t ′ < z ⇒ t ′ < z
(Ax)

t ′ < z, sz ′ = z ⇒ t ′ < sz ′
(=L2)

.

.

.

.

.

.

.

.

‡
.
.
.
.

⇒ z ′ < t ′, z ′ = t ′, t ′ < z ′
⇒ z ′ = z ′

(=R)

z ′ = t ′ ⇒ t ′ = z ′
(=L1)

⇒ z ′ < t ′, t ′ = z ′, t ′ < z ′
(Cut)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⇒ z ′ = z ′
(=R)

⇒ N z ′
(v)

⇒ z ′ = z ′ ∧ N z ′
(∧R)

⇒ ∃x .z ′ = x ∧ Nx
(∃R)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⇒ t ′ = t ′
(=R)

⇒ N t ′
(v)

⇒ t ′ = t ′ ∧ N t ′
(∧R)

⇒ ∃x .t ′ = x ∧ Nx
(∃R)

.

.

.

.

.

.

⇒ sz ′ = sz ′
(=R)

⇒ N sz ′
(v)

⇒ sz ′ = sz ′ ∧ N sz ′
(∧R)

⇒ ∃x .sz ′ = x ∧ Nx
(∃R) ✠

.

.

.

.

z ′ < t ′, t ′ < sz ′, z ′ = ẑ ′,N ẑ ′, t ′ = t̂ ′,N t̂ ′, sz ′ = ˆsz ′,N ˆsz ′ ⇒
z ′ < t ′, t ′ < sz ′,∃x .z ′ = x ∧ Nx ,∃x .t ′ = x ∧ Nx ,∃x .sz ′ = x ∧ Nx ⇒

(∃L/∧L)

z ′ < t ′, t ′ < sz ′,∃x .z ′ = x ∧ Nx ,∃x .t ′ = x ∧ Nx ⇒
(Cut)

z ′ < t ′, t ′ < sz ′,∃x .z ′ = x ∧ Nx ⇒
(Cut)

z ′ < t ′, t ′ < sz ′ ⇒
(Cut)

t ′ < sz ′ ⇒ t ′ = z ′, t ′ < z ′
(Cut)

t ′ < z, sz ′ = z ⇒ t ′ = z ′, t ′ < z ′
(Cut)

t ′ < z, sz ′ = z ⇒ t ′ = z ′ ∨ t ′ < z ′
(∨R)

(b) Subderivation of key case-split in CRTCωG+A simulation of CAG progression point.

Fig. 5. Subcomponents of the derivation schema simulating a CAG trace progression point in CRTCωG+A.

• The infinite path ends up traversing an infinite path local to the [·]∗X -translation of an

inference rule or CAG axiom; in this case notice that each such infinite path has an infinitely

progressing trace.

• The infinite path corresponds to an infinite path in the CAG proof (possibly interspersed

with finite traversals of the cycles local to the [·]∗X -translation of each rule instance). Since

there is an infinitely progressing trace following the path in the CAG proof, by the properties

above there is also a corresponding infinitely progressing trace following the path in the

CRTCωG+A pre-proof. □

The following result also entails that β-translation of a sequent is provable in CAG only if the

sequent is provable in CRTCωG .

Proposition 6.9. ⊢CRTCωG+A φ ⇔ φβ .

Proof. This follows from Theorem 6.5(1) and Theorem 6.2. □

Lemma 6.10. If ⊢CAG Γβ ⇒ ∆β then ⊢CRTCωG+A Γ ⇒ ∆.

Proof. We first use Lemma 6.8 to derive Γβ ⇒ ∆β in CRTCωG+A, and then combine this with

derivations in CRTCωG+A of φ ⇒ φβ (resp. φβ ⇒ φ) for each φ ∈ Γ (resp. φ ∈ ∆), which exist by

Proposition 6.9, with applications of cuts to derive Γ ⇒ ∆. □

2020-04-05 19:33. Page 23 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

:24 Liron Cohen and Reuben N. S. Rowe

Inclusion of CRTCωG+A in CAG . We next show that from a CRTCωG+A proof one can construct

an analogous proof in CAG which preserves cycles. Our construction introduces free variables that

we are then able to trace in the cyclic CAG proof. This is similar to the use of ‘stage’ variables to

show the equivalence of the explicit and cyclic systems for LKID in [7]. There, LKID predicates P (⃗t)
are translated into predicates P ′ (⃗t ,n) with equivalent inductive definitions and an extra parameter

n comprising a stage variable. The equivalence is then derived by using the cycles in a proof to

construct an explicit induction hypothesis over these stage variables.

As for the proof of Lemma 6.8 above, we define a local translation on proof rules that preserves

CRTCωG+A traces as CAG traces. For this, we use a parameterised variant
¯β[n] of the β-translation,

which introduces its parameter as a free variable in the translation.

Definition 6.11 (Parameterised β-translation). The variant ¯β of the β-translation takes a variable

n as an additional parameter and is similarly defined inductively. For atomic formulas φ
¯β
n = φ, the

translation is homomorphic with respect to the first-order logical connectives, and for RTC-formulas

(RTCx,y φ) (s, t)
¯β
n is defined as follows:

s = t ∨∃z, c .n = sz ∧B (c, 0, s) ∧B (c, sz, t) ∧∀u ≤ z . ∃v,w . B (c,u,v) ∧B (c, su,w) ∧φβ
{
v
x ,

w
y

}

Note the use of the original β-translation for the body of the RTC formula φ. We define a translation

ˆβ on sets of formulas, sequents, and inference rules as follows.

(i) For a set of formulas Γ, we define Γ
ˆβ
to be the set of

¯β-translations of the formulas in Γ
such that each translation of an RTC (sub-)formula uses a fresh (i.e. distinct) variable z for the

parameter. If φ is a (sub-)formula in Γ, then we write φ
¯β
z to indicate that the variable z was used in

the
¯β-translation of φ to produce Γ

ˆβ
.

(ii) For sequents, we define (Γ ⇒ ∆)
ˆβ
to be Γ

ˆβ ⇒ ∆β such that the variable parameters used by

the
ˆβ-translation of the antecedent Γ are distinct from the free variables in the succedent ∆.

(iii) For an inference rule with premises Γ1 ⇒ ∆1, . . . , Γn ⇒ ∆n and conclusion Γ ⇒ ∆, we define

its
ˆβ-translation as the inference rule with premises (Γ1 ⇒ ∆1)

ˆβ , . . . , (Γn ⇒ ∆n)
ˆβ
and conclusion

(Γ ⇒ ∆)
ˆβ
such that RTC (sub-)formulas in the premises are

¯β-translated using the same variable

parameter as the
¯β-translations of their immediate descendants in conclusion.

Remark 1. Note that for any sequence of formulas Σ, we can straightforwardly derive Γ, Σβ ⇒ ∆

from Γ, Σ
ˆβ ⇒ ∆ by first introducing existential quantifiers for the variable parameters in Σ

ˆβ
and

then eliminating the terms n = sz with cuts. We abbreviate such a derivation using the label (ˆβ).

We now show that the
ˆβ-translation of each CRTCωG+A inference rule can be derived in CAG in

such a way that there is a (progressing) CAG trace simulating each (progressing) CRTCωG+A trace

pair present in the original rule. This is done by tracing the variables introduced as parameters in

the
ˆβ-translation of the rule.

Lemma 6.12. Let (r) be an instance of a CRTCωG+A axiom or inference rule, with conclusion S

and premises S1, . . . , Sn . Then the inference rule (r)
ˆβ is derivable in CAG ; moreover, if (τ ,τ ′) is a

(progressing) CRTCωG trace pair for (S, Si), with τ
¯β
n in S and (τ ′)

¯β
m in Si , then there is a (progressing)

CAG trace following the path in the derived rule from the conclusion to the premise corresponding to
Si that starts with n in the conclusion and finishes withm in the premise.

Proof. We here show the construction for Rule (4); the other rules are straightforward, and

do not contain progressing CRTCωG traces. Take an instance of Rule (4) with contexts Γ and ∆,

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 24 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Non-well-founded Proof Theory of Transitive Closure Logic :25

z = 0, Σ(z) ⇒ 0 < s0
(PA-Ax)

z = 0, Σ(z) ⇒ 0 < n
(=L)

.

.

.

.

.

.

.

.

z = 0, Σ(z) ⇒ s = s
(=R)

z = 0, Σ(z) ⇒ s = s ∨A(0, s, s)
(∨R)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

φβ
{
s
x ,

t
y

}
⇒ φβ

{
s
x ,

t
y

} (Ax)

s = v, t = w,φβ
{
v
x ,

w
y

}
⇒ φβ

{
s
x ,

t
y

} (=L)

B (c, 0, s),B (c, s0, t),B (c, 0,v),B (c, s0,w),φβ
{
v
x ,

w
y

}
⇒ φβ

{
s
x ,

t
y

} (B)

B (c, 0, s),B (c, s0, t),∀u ≤ 0 . ϑ (u) ⇒ φβ
{
s
x ,

t
y

} (≤0/∃L)

z = 0, Σ(z) ⇒ φβ
{
s
x ,

t
y

} (WL/=L)

z = 0, Σ(z) ⇒ ∃z,m .m < n ∧ (s = z ∨A(m, s, z)) ∧ φβ
{
z
x ,

t
y

} (∃R/∧R)

(a) One step from s to t .

Π(z ′) ⇒ sz ′ < ssz ′
(PA-Ax)

Π(z ′) ⇒ sz ′ < n
(=L)

.

.

.

.

.

.

.

.

Π(z ′) ⇒ sz ′ = sz ′
(=R)

Π(z ′) ⇒ B (c, 0, s)
(Ax)

Π(z ′) ⇒ B (c, sz ′,v)
(Ax)

Π(z ′) ⇒ ∀u ≤ z ′ . ϑ (u)
(Ax)

Π(z ′) ⇒ ∃z, c . sz ′ = sz ∧ B (c, 0, s) ∧ B (c, sz,v) ∧ ∀u ≤ z . ϑ (u)
(∃R/∧R)

Π(z ′) ⇒ s = v ∨A(sz ′, s,v)
(∨R)

φβ
{
v
x ,

t
y

}
⇒ φβ

{
v
x ,

t
y

} (Ax)

t = w,φβ
{
v
x ,

w
y

}
⇒ φβ

{
v
x ,

t
y

} (=L)

Π(z ′) ⇒ φβ
{
v
x ,

t
y

} (B/WL)

Π(z ′) ⇒ ∃z,m .m < n ∧ (s = z ∨A(m, s, z)) ∧ φβ
{
z
x ,

t
y

} (∃R/∧R)

n = ssz ′,B (c, 0, s),B (c, ssz ′, t),ϑ (sz ′),∀u ≤ z ′ . ϑ (u) ⇒ ψ
(∃L/∧L)

n = ssz ′,B (c, 0, s),B (c, ssz ′, t),∀u ≤ sz ′ . ϑ (u) ⇒ ψ
(≤s)

∃z ′ . z = sz ′, Σ(z) ⇒ ψ
(∃L/=L)

(b) Multi-step from s to t .

†
.
.
.
.

⇒ z = 0 ∨ ∃z ′ . z = sz ′

a
.
.
.
.

z = 0, Σ(z) ⇒ ψ

b
.
.
.
.

∃z ′ . z = sz ′, Σ(z) ⇒ ψ

z = 0 ∨ ∃z ′ . z = sz ′, Σ(z) ⇒ ψ
(∨L)

Σ(z) ⇒ ∃z,m .m < n ∧ (s = z ∨A(m, s, z)) ∧ φβ
{
z
x ,

t
y

} (Cut)

A(n, s, t) ⇒ ∃z,m .m < n ∧ (s = z ∨A(m, s, z)) ∧ φβ
{
z
x ,

t
y

} (∃L)

Fig. 6. The core subderivation of the simulation of Rule (4) in CAG .

and principal formula (RTCx,y φ) (s, t) with immediate ancestor (RTCx,y φ) (s, z) in the right-hand

premise. For terms r , s , and t , let ϑ (r) abbreviate ∃v,w . B (c, r ,v) ∧ B (c, sr ,w) ∧ φβ
{
v
x ,

w
y

}
, and

A(r , s, t) abbreviate ∃z, c . r = sz ∧ B (c, 0, s) ∧ B (c, sz, t) ∧ ∀u ≤ z . ϑ (u). Additionally, we define
the following two abbreviations for sets of formulas:

Σ(r) = {n = sr ,B (c, 0, s),B (c, sr , t),∀u ≤ r . ϑ (u)}
Π(r) = {n = ssr ,B (c, 0, s),B (c, ssr , t),B (c, sr ,v),B (c, ssr ,w),φβ

{
v
x ,

w
y

}
,∀u ≤ r . ϑ (u)}

Moreover, note the following.

2020-04-05 19:33. Page 25 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

:26 Liron Cohen and Reuben N. S. Rowe

(Γ′)
ˆβ { s

u ,
t
w

}
⇒ (∆′)β

{
s
u ,

t
w

}

Γ
ˆβ , s = t ⇒ ∆β

(=L)
.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 6
.
.
.
.

A(n, s, t) ⇒ ∃z,m .m < n ∧ (s = z ∨A(m, s, z)) ∧ φβ
{
z
x ,

t
y

}

Γ
ˆβ , (s = z ∨A(m , s, z)),φ

ˆβ { z
x ,

t
y

}
⇒ ∆β

Γ
ˆβ , (s = z ∨A(m , s, z)),φβ

{
z
x ,

t
y

}
⇒ ∆β

(ˆβ)

Γ
ˆβ , m < n, (s = z ∨A(m, s, z)),φβ

{
z
x ,

t
y

}
⇒ ∆β

(WL)

Γ
ˆβ ,∃z,m .m < n ∧ (s = z ∨A(m, s, z)) ∧ φβ

{
z
x ,

t
y

}
⇒ ∆β

(∃L/∧L)

Γ
ˆβ ,A(n , s, t) ⇒ ∆β

(Cut)

Γ
ˆβ , s = t ∨A(n , s, t) ⇒ ∆β

(∨L)

Fig. 7. A derivation schema simulating Rule (4) in CAG .

i) We can easily derive ⇒ z = 0 ∨ ∃z ′ . z = sz ′ using standard first-order rules and the axioms

of CAG ; we refer to this derivation using †.

ii) Technically, ∀u ≤ t . γ abbreviates the CAG formula ∀u . (u = t ∨u < t) → γ , and so we may

straightforwardly derive both ∀u ≤ 0 . γ (u) ⇒ γ (0) and ∀u ≤ st . γ (u) ⇒ γ (st) ∧ ∀u ≤ t . γ (u); for
brevity, we refer to an instance of the (Cut) rule that applies these sequents using the labels (≤0)
and (≤s), respectively.
iii) Recall that, since the formula B captures a β-function, we may derive B (r , s, t),B (r , s,u) ⇒

t = u; we abbreviate using the label (B) instances of (Cut) that apply an instance of this sequent.

Using these elements, Fig. 6 shows a derivation (in which we have abbreviated the consequent

formula by ψ) of the sequent A(n, s, t) ⇒ ∃z,m .m < n ∧ (s = z ∨A(m, s, z)) ∧ φβ
{
z
x ,

t
y

}
. Then,

using Fig. 6 as a subderivation, we derive the
ˆβ-translation of Rule (4) in CAG as shown in Fig. 7.

Recall that the rule labelled (
ˆβ) abbreviates a derivation as described above in Remark 1. Note that

this derivation admits non-progressing traces for all the
¯β-translation variable parameters in Γ.

However the crucial feature is that there is a CAG trace (indicated by the boxed variables in Fig. 7)

from the variable parameter n in the conclusion tom in the right-hand premise, which progresses at

the sequent containing the double-boxed variablem. Also, since the context Γ
ˆβ
is preserved along

the paths in the derivation from conclusion to premises, all non-progressing traces are simulated

as well. □

Lemma 6.13. If ⊢CRTCωG+A Γ ⇒ ∆ then ⊢CAG Γβ ⇒ ∆β .

Proof. By Remark 1, it suffices to show that if ⊢CRTCωG+A Γ ⇒ ∆ then ⊢CAG (Γ ⇒ ∆)
ˆβ
. Using the

derivations of
ˆβ-translations of the inference rules given in Lemma 6.12, from aCRTCωG+A pre-proof

we can build a CAG pre-proof with the same global structure. For each bud in the resulting CAG
pre-proof, we first apply an instance of the substitution rule that substitutes each variable parameter

of the
¯β-translated RTC-formulas in order to match those used in its companion. Notice that this is

possible, since the parameter variable is unique for the
¯β-translation of each RTC sub-formula. We

can then form a cycle in the CAG pre-proof. Since the CRTCωG traces for each rule are simulated by

the CAG derived rules, for each trace following a (finite or infinite) path in the CRTCωG+A pre-proof

there is a trace following the corresponding path in the CAG pre-proof containing a progression

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 26 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Non-well-founded Proof Theory of Transitive Closure Logic :27

point for each progression point in the CRTCωG+A trace. From this it follows that if the CRTCωG+A
pre-proof satisfies the CRTCωG global trace condition, then its translation satifies the CAG global

trace condition. □

Theorem 6.14. ⊢CRTCωG+A Γ ⇒ ∆ iff ⊢CAG Γβ ⇒ ∆β .

Proof. By Lemmas 6.10 and 6.13. □

Equivalence of RTCG+A and CRTCωG+A. These results allow us to show an equivalence

between the finitary and cyclic systems for TC with arithmetic.

Theorem 6.15. RTCG+A and CRTCωG+A are equivalent.

Proof. The fact that RTCG+A ⊆ CRTCωG+A follows immediately from Theorem 6.2. For the

converse, suppose Γ ⇒ ∆ is provable in CRTCωG+A. By Lemma 6.13 we get that ⊢CAG Γβ ⇒ ∆β .

Using the equivalence between CAG and PAG , we obtain ⊢PAG Γβ ⇒ ∆β . Then we conclude using

Theorem 6.5(2). □

Note that the result above can easily be extended to show that adding the same set of additional

axioms to both RTCG+A and CRTCωG+A results in equivalent systems. Also note that in the systems

with pairs, to embed arithmetics there is no need to explicitly include addition and its axioms.

Thus, by only including the signature {0, s} and the corresponding axioms for it we can obtain that

⟨RTC⟩G+A and ⟨CRTC⟩ωG+A are equivalent.

In [7], the equivalence result of [34] was improved to show it holds for any set of inductive

predicates containing the natural number predicate N. On the one hand, our result goes beyond

that of [7] as it shows the equivalence for systems with a richer notion of inductive definition, due

to the expressiveness of TC. On the other hand, TC does not support restricting the set of inductive

predicates, i.e. the RTC operator may operate on any formula in the language. To obtain a finer

result which corresponds to that of [7] we need to further explore the transformations between

proofs in the two systems. This is left for future work.

6.2.2 The General Case. As mentioned, the general equivalence conjecture between LKID and

CLKIDω
was refuted in [6], by providing a concrete example of a statement which is provable

in the cyclic system but not in the explicit one. The statement, involving the 2-Hydra predicate

described above in Section 2.2, is the following:

((∀x .0 , sx) ∧ (∀x .∀y.sx = sy → x = y)) → ∀x .∀y.((N(x) ∧ N(y)) → H(x ,y))

where N is a predicate defined by the induction scheme for natural numbers. That is, assuming

that 0 is not a successor element and that the successor function is injective, then every pair of

natural numbers is related by the 2-Hydra predicate. The non-provability of this statement in LKID
(i.e. using explicit induction) follows from the existence of a Henkin model in which the statement

does not hold, whose construction was given in [6].

However, a careful examination of this counter-example reveals that it only refutes a strong form

of the conjecture, according to which both systems are based on the same set of productions. In

fact, already in [6] it is shown that if the explicit system is extended by another inductive predicate,

namely one expressing the standard ordering ≤ over natural numbers, then the 2-Hydra statement

above becomes provable. Therefore, the less strict formulation of the question, namely whether for

any proof in CLKIDω
ϕ there is a proof in LKIDϕ′ for some ϕ ′ ⊇ ϕ, has not yet been resolved. Notice

that in TC the equivalence question is of this weaker variety, since the RTC operator ‘generates’ all

inductive definitions at once. That is, there is no a priori restriction on the inductive predicates

one is allowed to use. Indeed, the 2-Hydra counter-example from [6] can be expressed in LRTC

2020-04-05 19:33. Page 27 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

:28 Liron Cohen and Reuben N. S. Rowe

(cf. Section 2.2) and proved in CRTCωG . However this does not produce a counter-example to the

equivalence of the two TC proof systems, since it is also provable in RTCG due to the fact that s ≤ t
is definable via the formula (RTCw,u sw = u) (s, t).
Despite our best efforts, we have not yet managed to settle this question, which appears to

be harder to resolve in the TC setting. One possible approach to solving it is the semantical one,

i.e. exploiting the fact that the explicit system is known to be sound w.r.t. Henkin semantics. This is

what was done in [6]. Thus, to show strict inclusion one could construct an alternative statement

that is provable in CRTCωG whilst also demonstrating a Henkin model for TC that is not a model of

the statement. However, it has become apparent through communications with one of the authors

of [6] that constructing a Henkin model appears to be much more difficult for TC than for LKID, due
to its rich inductive power. In particular, it is not at all clear whether the structure that underpins

the LKID counter-model for 2-Hydra admits a Henkin model for TC [5]. Alternatively, to prove

equivalence, one could show thatCRTCωG is also sound w.r.t. Henkin semantics. Here, again, proving

this does not seem to be straightforward.

In our setting, there is also the question of the inclusion of CRTCωG in NCRTCωG , which amounts

to the question of whether overlapping cycles can be eliminated. Moreover, we can ask if NCRTCωG
is included in RTCG , independently of whether this also holds for CRTCωG . Again, the semantic

approach described above may prove fruitful in answering these questions.

7 CONCLUSIONS AND FUTUREWORK
Transitive closure logic seems to offer a congenial framework for inductive reasoning. In this paper

we have enhanced its proof theory by developing a natural infinitary proof system which is cut-free

complete for its standard semantics. We further explored the restriction of this framework to cyclic

proofs which provides the basis for an effective system for automating inductive reasoning and

subsumes its explicit proof system. In particular, we syntactically identified a subset of cyclic proofs

that is Henkin-complete.

As mentioned in the introduction, as well as throughout the paper, this research was motivated

by other work on systems of inductive definitions, particularly the LKID framework of [11], its

infinitary counterpart LKIDω
, and its cyclic subsystem CLKIDω

. In terms of the expressive power

of the underlying logic, TC (assuming pairs) subsumes the inductive machinery underlying LKID.
This is because for any inductive predicate P of LKID, there is an LRTC formula ψ such that for

every standard admissible structureM for LRTC, P has the same interpretation asψ underM . This

is due to Theorem 3 in [2] and the fact that the interpretation of P must necessarily be a recursively

enumerable set. As for the converse inclusion, for any positiveLRTC formula there is a production of

a corresponding LKID inductive definition. This is due to the fact that since productions can be seen

as Horn clauses they can capture disjunction and conjunction. However, the RTC operator can also

be applied on complex formulas (whereas LKID productions only consider atomic predicates). This

indicates that TCmight be more expressive. It was noted in [11, p. 1180] that complex formulas may

be handled by stratifying the theory of LKID, similar to [27], but the issue of relative expressiveness

of the resulting theory is not addressed. While we strongly believe it is the case that TC is strictly

more expressive than the logic of LKID, proving so is left for future work. Also left for future

research is establishing the comparative status of the corresponding formal proof systems.

It is already clear that TC logic, as a framework, diverges from existing systems for inductive

reasoning (e.g. LKID) in interesting, non-trivial ways. At this point, it is still unclear whether or

not the added flexibility of transitive closure logic over that of LKID is sufficient for establishing an

equivalence between RTCG and CRTCωG even in the absence of arithmetic. Thus an immediate open

question that remains for future work is that of the (in)equivalence of the systems in the general

case, as discussed in Section 6.2. However the question of general equivalence notwithstanding, the

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 28 of 1–30.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Non-well-founded Proof Theory of Transitive Closure Logic :29

uniformity provided by the transitive closure operator may offer a way to better study the more

subtle relationship between implicit and explicit induction. That is, it can help in the investigation

of the connections between cuts required in each system, or the relative complexity of proofs that

each system admits.

In addition, several other questions and directions for further study naturally arise from the work

of this paper. An obvious one would be to implement our cyclic proof system in order to investigate

the practicalities of using TC logic to support automated inductive reasoning. In particular, we

would like to further study the applications of the logic, and the proof systems we have defined for

it, in various areas of computer science such as those described in Section 2.2. Furthermore, our

preliminary investigations suggest we could enable coinductive reasoning in a variant of the formal

system. Determining how naturally such a variant would capture styles of coinductive reasoning

commonly found in the literature, and the extent of its expressivity, is left for future work.

REFERENCES
[1] Bahareh Afshari and Graham E. Leigh. Cut-free Completeness for Modal Mu-calculus. In Proceedings of the 32nd

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20–23, 2017, pages 1–12,
2017. doi:10.1109/LICS.2017.8005088.

[2] Arnon Avron. Transitive Closure and the Mechanization of Mathematics. In F. D. Kamareddine, editor, Thirty Five
Years of Automating Mathematics, volume 28 of Applied Logic Series, pages 149–171. Springer, Netherlands, 2003.
doi:10.1007/978-94-017-0253-9_7.

[3] David Baelde, Amina Doumane, and Alexis Saurin. Infinitary Proof Theory: the Multiplicative Additive Case. In

Proceedings of the 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 – September 1, 2016,
Marseille, France, pages 42:1–42:17, 2016. doi:10.4230/LIPIcs.CSL.2016.42.

[4] Johan van Benthem. The Logic of Time. Synthese Library. Springer Netherlands, 2nd edition, 2012.

[5] Stefano Berardi. Personal Communication (10
th
April 2018).

[6] Stefano Berardi and Makoto Tatsuta. Classical System of Martin-Löf’s Inductive Definitions Is Not Equivalent to Cyclic

Proof System. In Proceedings of the 20th International Conference on Foundations of Software Science and Computation
Structures, FOSSACS 2017, Uppsala, Sweden, April 22–29, 2017, pages 301–317, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg. doi:10.1007/978-3-662-54458-7_18.

[7] Stefano Berardi and Makoto Tatsuta. Equivalence of Inductive Definitions and Cyclic Proofs Under Arithmetic. In

Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20–23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005114.

[8] Patrick Blackburn and Johan van Benthem. Modal Logic: A Semantic Perspective. In Patrick Blackburn, Johan van

Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning,
pages 1–84. Elsevier, 2007. doi:10.1016/S1570-2464(07)80004-8.

[9] James Brotherston. Formalised Inductive Reasoning in the Logic of Bunched Implications. In Proceedings of Static
Analysis, 14th International Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22–24, 2007, pages 87–103, 2007.
doi:10.1007/978-3-540-74061-2_6.

[10] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic Proofs of Program Termination in Separation

Logic. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2008, San Francisco, California, USA, January 7–12, 2008, pages 101–112, 2008. doi:10.1145/1328438.1328453.

[11] James Brotherston and Alex Simpson. Sequent Calculi for Induction and Infinite Descent. Journal of Logic and
Computation, 21(6):1177–1216, 2010. doi:10.1093/logcom/exq052.

[12] Samuel R. Buss. Handbook of Proof Theory. Studies in Logic and the Foundations of Mathematics. Elsevier Science,

1998.

[13] Liron Cohen. Ancestral Logic and Equivalent Systems. Master’s thesis, Tel-Aviv University, Israel, 2010.

[14] Liron Cohen. Completeness for Ancestral Logic via a Computationally-Meaningful Semantics. In Proceedings of the
26th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2017,
Brasília, Brazil, September 25–28, 2017, pages 247–260, 2017. doi:10.1007/978-3-319-66902-1_15.

[15] Liron Cohen and Arnon Avron. Ancestral Logic: A Proof Theoretical Study. In U. Kohlenbach et al., editor, Logic,
Language, Information, and Computation, volume 8652 of Lecture Notes in Computer Science, pages 137–151. Springer,
2014. doi:10.1007/978-3-662-44145-9_10.

[16] Liron Cohen and Arnon Avron. The Middle Ground–Ancestral Logic. Synthese, pages 1–23, 2015.

doi:10.1007/s11229-015-0784-3.

2020-04-05 19:33. Page 29 of 1–30. , Vol. 1, No. 1, Article . Publication date: April 2020.

https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1007/978-94-017-0253-9_7
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1007/978-3-662-54458-7_18
https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1016/S1570-2464(07)80004-8
https://doi.org/10.1007/978-3-540-74061-2_6
https://doi.org/10.1145/1328438.1328453
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1007/978-3-319-66902-1_15
https://doi.org/10.1007/978-3-662-44145-9_10
https://doi.org/10.1007/s11229-015-0784-3

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

:30 Liron Cohen and Reuben N. S. Rowe

[17] Liron Cohen and Reuben N. S. Rowe. Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent. In

Proceedings of the 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4–7, 2018, Birmingham,
UK, pages 16:1–16:17, 2018. doi:10.4230/LIPIcs.CSL.2018.16.

[18] Stephen A. Cook and Robert A. Reckhow. The Relative Efficiency of Propositional Proof Systems. The Journal of
Symbolic Logic, 44(1):36–50, 1979. doi:10.2307/2273702.

[19] Bruno Courcelle. Fundamental Properties of Infinite Trees. Theoretical Computer Science, 25:95–169, 1983.
doi:10.1016/0304-3975(83)90059-2.

[20] Anupam Das and Damien Pous. A Cut-Free Cyclic Proof System for Kleene Algebra. In Proceedings of the 26th

International Conference Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2017, Brasília,
Brazil, September 25–28, 2017, pages 261–277, 2017. doi:10.1007/978-3-319-66902-1_16.

[21] AnupamDas and Damien Pous. Non-Wellfounded Proof Theory for (Kleene+Action)(Algebras+Lattices). In Proceedings
of the 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4–7, 2018, Birmingham, UK, pages
19:1–19:18, 2018. doi:10.4230/LIPIcs.CSL.2018.19.

[22] Amina Doumane. Constructive Completeness for the Linear-time µ-calculus. In Proceedings of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20–23, 2017, pages 1–12, 2017.
doi:10.1109/LICS.2017.8005075.

[23] Gerhard Gentzen. Untersuchungen über das Logische Schließen. I. Mathematische Zeitschrift, 39(1):176–210, 1935.
doi:10.1007/BF01201353.

[24] Leon Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic, 15(2):81–91, 1950. doi:10.2307/2266967.
[25] Ryo Kashima and Keishi Okamoto. General Models and Completeness of First-order Modal µ-calculus. Journal of

Logic and Computation, 18(4):497–507, 2008. doi:10.1093/logcom/exm077.

[26] Laurie Kirby and Jeff Paris. Accessible Independence Results for Peano Arithmetic. Bulletin of the London Mathematical
Society, 14(4):285–293, 1982. doi:10.1112/blms/14.4.285.

[27] Per Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions. In J. E. Fenstad, editor,

Proceedings of the Second Scandinavian Logic Symposium, volume 63 of Studies in Logic and the Foundations of
Mathematics, pages 179–216. Elsevier, 1971. doi:10.1016/S0049-237X(08)70847-4.

[28] Per Martin-Löf and Giovanni Sambin. Intuitionistic Type Theory, volume 9. Bibliopolis Napoli, 1984.

[29] Raymond McDowell and Dale Miller. Cut-elimination for a Logic with Definitions and Induction. Theoretical Computer
Science, 232(1-2):91–119, 2000. doi:10.1016/S0304-3975(99)00171-1.

[30] Remi Nollet, Christine Tasson, and Alexis Saurin. The Complexity of Thread Criterion for Least and Greatest fixed

points. In Proceedings of the 27th International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, TABLEAUX 2019, London, UK, September 3–7, 2019, 2019.

[31] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science (SFCS 1977), pages 46–57, 1977. doi:10.1109/SFCS.1977.32.

[32] Reuben N. S. Rowe and James Brotherston. Automatic Cyclic Termination Proofs for Recursive Procedures in Separation

Logic. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France,
January 16–17, 2017, pages 53–65, 2017. doi:10.1145/3018610.3018623.

[33] Luigi Santocanale. A Calculus of Circular Proofs and Its Categorical Semantics. In Mogens Nielsen and Uffe Engberg,

editors, Proceedings of the 5th International Conference on Foundations of Software Science and Computation Structures,
FOSSACS 2002, Grenoble, France, April 8–12, 2002, pages 357–371, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

doi:10.1007/3-540-45931-6_25.

[34] Alex Simpson. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In Proceedings of the 20th International Conference
on Foundations of Software Science and Computation Structures, FOSSACS 2017, Uppsala, Sweden, April 22–29, 2017, pages
283–300, 2017. doi:10.1007/978-3-662-54458-7_17.

[35] Christoph Sprenger and Mads Dam. On the Structure of Inductive Reasoning: Circular and Tree-Shaped Proofs in the

µCalculus. In Andrew D. Gordon, editor, Proceedings of the 6th International Conference on Foundations of Software
Science and Computation Structures, FOSSACS 2003, Warsaw, Poland, April 7–11, 2003, pages 425–440, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. doi:10.1007/3-540-36576-1_27.

[36] Gaisi Takeuti. Proof Theory. Courier Dover Publications, 1987.
[37] Gadi Tellez and James Brotherston. Automatically Verifying Temporal Properties of Pointer Programs with Cyclic

Proof. In Proceedings of the 26th International Conference on Automated Deduction, CADE 26, Gothenburg, Sweden,
August 6–11, 2017, pages 491–508, 2017. doi:10.1007/978-3-319-63046-5_30.

[38] Alwen Tiu. A Logical Framework For Reasoning About Logical Specifications. PhD thesis, Penn. State University, 2004.

, Vol. 1, No. 1, Article . Publication date: April 2020. 2020-04-05 19:33. Page 30 of 1–30.

https://doi.org/10.4230/LIPIcs.CSL.2018.16
https://doi.org/10.2307/2273702
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.1007/978-3-319-66902-1_16
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1109/LICS.2017.8005075
https://doi.org/10.1007/BF01201353
https://doi.org/10.2307/2266967
https://doi.org/10.1093/logcom/exm077
https://doi.org/10.1112/blms/14.4.285
https://doi.org/10.1016/S0049-237X(08)70847-4
https://doi.org/10.1016/S0304-3975(99)00171-1
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/978-3-319-63046-5_30

	Abstract
	1 Introduction
	2 Transitive Closure Logic and its Expressivness
	2.1 The Syntax and Semantics
	2.2 Applications of Transitive Closure Logic

	3 A Finitary Proof System for LRTC
	3.1 The Proof System RTCG
	3.2 Soundness and Completeness

	4 Infinitary Proof Systems for LRTC
	4.1 The Proof System RTCG
	4.2 Soundness and Completeness
	4.3 The Proof System CRTCG

	5 Variants of LRTC
	5.1 LRTC with Pairs
	5.2 LRTC without Equality

	6 Relating the Finitary and Infinitary Proof Systems
	6.1 Inclusion of RTCG in CRTCG
	6.2 Inclusions of CRTCG in RTCG

	7 Conclusions and Future Work
	References

